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Search for Higgs boson decays into a pair of pseudoscalar particles in the
bbuy final state with the ATLAS detector in pp collisions at \/s =13 TeV
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This paper presents a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new
pseudoscalar particles, H — aa, where one a-boson decays into a b-quark pair and the other into a muon
pair. The search uses 139 fb~! of proton-proton collision data at a center-of-mass energy of /s = 13 TeV
recorded between 2015 and 2018 by the ATLAS experiment at the LHC. A narrow dimuon resonance is
searched for in the invariant mass spectrum between 16 GeV and 62 GeV. The largest excess of events
above the Standard Model backgrounds is observed at a dimuon invariant mass of 52 GeV and corresponds
to a local (global) significance of 3.30 (1.7¢). Upper limits at 95% confidence level are placed on the
branching ratio of the Higgs boson to the bbuu final state, B(H — aa — bbuyu), and are in the range

0.2-4.0 x 107*, depending on the signal mass hypothesis.
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I. INTRODUCTION

Light (pseudo) scalars that couple to the 125 GeV Higgs
boson [1,2] appear in many well-motivated extensions of
the Standard Model (SM) [3-8]. These include models
addressing the baryon asymmetry of the universe [9,10],
offering a solution to the naturalness problem [11,12], or
providing insights into the nature of dark matter [13-19].
Light bosons produced in Higgs boson decays could also
be mediators to dark sectors that do not couple to the SM
otherwise [20-24]. Furthermore, pseudoscalar mediators
appear in models, such as those described in Ref. [25], that
were proposed to explain the anomalous muon magnetic
moment [26]. A combination of ATLAS measurements of
the Higgs boson production cross sections and branching
ratios constrains the branching ratios into invisible and
undetected states to be B(H — inv) <30% and B(H —
undetected) < 21%, respectively, whereas the overall
branching fraction of the Higgs boson into beyond-the-
SM (BSM) states is determined to be less than 47% at
95% confidence level (CL) [27]. Combined measure-
ments of Higgs boson couplings performed by the CMS
Collaboration set upper limits of B(H — inv) < 22% and
B(H — undetected) < 38% at 95% CL [28]. This moti-
vates searches for light states in the Higgs boson decays
that probe this potentially large 5(H — BSM).
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This paper presents a search for decays of the 125 GeV
Higgs boson into two pseudoscalars, denoted by a, in
proton-proton (pp) collisions at the LHC [29]. The search
is performed in events where one a-boson decays into
two b-quarks and the other into two muons, H — aa —
bl_)/ﬁ;f.l The a-bosons are assumed to have a decay width
that is narrow compared to the detector resolution.
As pseudoscalar couplings are generally proportional to
mass, which is for example the case in two-Higgs-doublet
models [20,30], the bbuyu final state provides a good
balance between a high branching ratio from the a — bb
decay and a clean, high mass-resolution, dimuon resonance
signature that is easy to trigger on from the a — pu decay.
In scenarios with enhanced lepton couplings, the a — up
branching ratio can also be relatively large, resulting in
B(H — aa — bbuu)/B(H — aa) of up to 0.16% [31].

Light resonances in Higgs boson decays have been
searched for by ATLAS and CMS in many different
channels, i.e., in the final states involving 4u [32,33],
2u27 or 4v [34-38], 2b27 [39], 4b [40,41], 4y [42], and
2y + 2-jets [43]. A search for a dimuon resonance produced
in association with b-jets has been performed by CMS [44]
and a light resonance decaying to two muons has been
searched for by LHCb [45]. CMS has performed a search
for H — aa — bbuu in 35.9 fb~! of pp collision data at a
center-of-mass energy of /s = 13 TeV that sets upper
limits on B(H — aa — bbuy) of (1-7) x 10~* for a-boson
masses (m,) in the range 20 < m, < 62.5 GeV [46]. The
ATLAS search based on 36 fb~!' of Run 2 data [47] sets

'Denoted by H — aa — bbuyu from now on for the rest of the
paper.
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upper limits on B(H — aa — bbuyu) between 1.2 x 107*
and 8.4 x 10™* for a-boson masses in the range 20 <
m, < 60 GeV. In this paper, the full Run 2 dataset cor-
responding to an integrated luminosity of 139 fb~! is used
and the search is extended down to m, = 16 GeV and up to
m, = 62 GeV. Additionally, boosted decision tree (BDT)
techniques are used to improve the separation of the signal
from the SM backgrounds, increasing the analysis sensi-
tivity, especially for higher m,,.

II. ATLAS DETECTOR

The ATLAS experiment [48,49] is a multipurpose
particle detector with a forward-backward symmetric
cylindrical geometry and a nearly 4z coverage in solid
angle.2 It consists of an inner detector (ID) surrounded by
a thin superconducting solenoid providing a 2T axial
magnetic field, electromagnetic (EM), and hadron calo-
rimeters, and a muon spectrometer (MS). The inner
tracking detector covers the pseudorapidity range
|| <2.5. It consists of silicon pixel, silicon microstrip,
and transition radiation tracking detectors. Lead/liquid-
argon (LAr) sampling calorimeters provide electromag-
netic energy measurements with high granularity. A steel/
scintillator-tile hadron calorimeter covers the central
pseudorapidity range |n| < 1.7. The endcap and forward
regions are instrumented with LAr calorimeters for both
the EM and hadronic energy measurements up to
[n| =4.9. The MS surrounds the calorimeters and is
based on three large superconducting air-core toroidal
magnets with eight coils each. The field integral of the
toroids ranges between 2.0 Tm and 6.0 Tm across most
of the detector. The MS includes a system of precision
tracking chambers and fast detectors for triggering. A
two-level trigger system is used to select events. The
first-level trigger is implemented in hardware and uses a
subset of the detector information to accept events at a
rate below 100 kHz [50]. This is followed by a software-
based trigger that reduces the accepted event rate to
1 kHz on average. An extensive software suite [51] is
used in the reconstruction and analysis of real and
simulated data, in detector operations, and in the trigger
and data acquisition systems of the experiment.

III. DATASET AND SIMULATED EVENTS

The data used in this analysis were collected in Run 2 of
the LHC during the 2015-2018 data-taking period with pp

“ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP
to the center of the LHC ring, and the y-axis points upwards.
Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢
being the azimuthal angle around the z-axis. The pseudorapidity is
defined in terms of the polar angle § as 7 = — Intan(6/2). Angular

distance is measured in units of AR = /(An)* + (A¢)>.

collisions at a center-of-mass energy of /s =13 TeV.
The dataset corresponds to an integrated luminosity of
139 fb~!. The lowest-threshold unprescaled single-muon
and dimuon triggers are used to select the events [52].
Single-muon triggers require the transverse momentum
(pr) of the muon to be above 20 or 26 GeV, depending on
the data-taking period, while the dimuon trigger requires
both muons to have a p; above 14 GeV.

Simulated events are used in the estimation of the
SM backgrounds. SHERPA 22.1 [53,54] was used as
the baseline generator for the Drell-Yan (DY) + jets,
W(— ¢v) + jets, diboson and triboson backgrounds. It is
a multiparton matrix element and parton shower (PS)
generator including hadronization [55-59], with the
NNPDF3.0 parton distribution function (PDF) set at
next-to-next-to-leading-order (NNLO) accuracy [60].
The DY —+ jets and multiboson samples were generated
with a minimum dilepton mass of 10 and 4 GeV,
respectively. The 77 and single-top-quark samples were
generated with Powheg-Box v2 [61-65] using the
NNPDF3.ONLO PDF in matrix element interfaced to
PYTHIA 8230 [66] for the PS. For the underlying-event
description a set of tuned parameters called the A14 tune
[67] was used, along with the NNPDF2.3LO PDF [68]. The
1T + vector-boson processes (17 + V) were generated with
MadGraph5_aMC@NLO 2.3.3 [69] interfaced to PYTHIA 8.210
for the PS. The underlying-event tune was the same as
for the 7 sample. EviGen [70] was used for the properties
of the bottom and charm hadron decays in all simulated
samples, except those simulated with SHERPA.

Higgs boson production through gluon—gluon fusion
(ggF) was generated using the NNLOPS program [71,72]
with Powheg-Box v2 [61,63,73,74]. The vector-boson fusion
(VBF) processes were generated with Powheg-Box v2 at NLO
accuracy [75]. The Higgs boson mass was set to 125 GeV.
For both the ggF and VBF production processes, Powheg-Box
was interfaced with PYTHIA 8.212 using the AZNLO tune
[76] for the simulation of the H — aa — bbuyu decays,
where the a-boson is a pseudoscalar, as well as for parton
showering, hadronization and the underlying event. The
ggF Higgs boson production rate is normalized to the total
cross section predicted at next-to-next-to-next-to-leading-
order accuracy in QCD with NLO electroweak corrections
applied [77-81] and amounts to 48.58 pb. The VBF
production rate is normalized to an approximate NNLO
cross section with the NLO electroweak corrections applied
[82—85], which amounts to 3.8 pb. The contribution from
the associated production of a Higgs boson and a vector
boson (VH) is calculated to be 3.5% of the total ggF +
VBF cross section and is accounted for by scaling the
simulated ggF and VBF samples. The contribution from
Higgs boson production in association with a pair of top
quarks is found to be negligible (below the percent level)
and is neglected in the analysis. Thirteen mass points were
simulated for the ggF and VBF production modes, with the
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a-boson mass in the range m, = 16-62 GeV.? Below

m, = 16 GeV the b-quarks coming from the decays of
the a-boson tend to be so collimated due to its boost that
they cannot be reconstructed as two separate b-jets (with
a radius parameter of R = 0.4). Another effect is that in
the highly asymmetric decays of low-mass a-bosons, the
subleading b-jet falls below the jet reconstruction threshold
of 20 GeV [86]. As a result, the signal acceptance falls
below 0.2% and the analysis loses sensitivity.

The effects of additional interactions in the same
and neighboring beam-bunch crossings (pileup) were
modeled for all simulated events by overlaying additional
pp collisions generated with PYTHIA 8.186 using the
NNPDF2.3LO PDF set and the A3 tune [87]. Simulated event
samples are weighted to reproduce the distribution of the
number of pileup interactions observed in the data. All the
generated background and signal samples are processed
through the ATLAS detector simulation [88] based on
GEANT4 [89] and reconstructed using the same software as
for the data.

IV. EVENT RECONSTRUCTION
AND SELECTION

Muons are reconstructed by combining track information
from the MS with tracks found in the ID [90]. They also
have to satisfy py >5 GeV and || <2.7 (for || > 2.5,
only tracking information from the MS is used), and pass
the LowPt working point identification requirement defined
in Ref. [90]. Muon tracks must have a longitudinal impact
parameter z,, satisfying |z, sin @] < 0.5 mm and a transverse
impact parameter significance |dy|/c,, < 3 relative to the
primary interaction vertex, chosen as the reconstructed
vertex with the highest sum of the p;? of its associated
tracks. Furthermore, muons are required to be isolated from
the surrounding detector activity by requiring that the scalar
sum of the p; of additional inner detector tracks and the
sum of the transverse momentum Er of calorimeter energy
deposits within a cone of size AR = 0.2 around a muon be
less than 15% and 30% of the muon py, respectively.

Jets are reconstructed using the anti-k, algorithm [91]
implemented in the Fastet package [92] with a radius
parameter of R = 0.4. The inputs to the jet clustering
are built by combining the information from both the
calorimeters and the ID using a particle-flow algorithm
[86,93]. Jets with py < 60 GeV originating from pileup
are suppressed with the jet-vertex-tagger (JVT) [94], a
multivariate algorithm combining track-based variables.
Selected jets are required to have p;>20 GeV and
|n| < 2.5. An algorithm (MV2c10) relying on multivariate
techniques, taking as input the properties of displaced
tracks and vertices reconstructed within a jet, is employed

*More specifically, the simulated mass points are at m, = 16,
18, 20, 25, 30, 35, 40, 45, 50, 52, 55, 60, and 62 GeV.

to identify (tag) jets containing b-hadrons [95]. The
MV2c10 tagger is used at 77% b-jet identification effi-
ciency, with an approximate misidentification probability
of 25% for jets arising from charm quarks, 6.3% for
hadronically decaying z-leptons, and 0.8% for light-flavor
jets as measured in simulated ¢f events.

The missing transverse momentum (E%iss) is calculated
as the magnitude of the negative vector sum of the trans-
verse momenta of all the reconstructed and calibrated
objects in the event, including a soft term that accounts
for charged particles that are associated with the primary
vertex, but not with any reconstructed object [96,97].

The events selected for the analysis are required to
have two muons of opposite charge, either with the

leading and subleading muons satisfying pE*"¢ >
27 GeV and p3*U"™ > 5 GeV, and the event being
triggered by a single-muon trigger, or with both muons
having py > 15 GeV, and the event being triggered by a
dimuon trigger. The dimuon invariant mass, My, 1s
required to be between 15 and 65 GeV. Furthermore, the
events must contain exactly two b-tagged jets with pr
above 20 GeV.

A kinematic likelihood (KL) [98] fit exploiting the equal
invariant masses of the bb and pu systems in H — aa
decays is performed to improve the four-body invariant
mass (1myy,,) resolution and reduce the SM backgrounds.
The same fit approach as considered in the previous
ATLAS publication [47] is used. The dimuon invariant
mass, m,,, is used to constrain the di-b-jet mass, as the
former has a resolution approximately ten times better than
the latter. The m,, resolution ranges between 0.4 GeV at
m, = 16 GeV and 1.3 GeV at m, = 62 GeV. The fit
maximizes the likelihood by shifting the b-jet energies
within the resolution in order to satisfy the constraint
m,, =~ my;,. The output of the fit is the logarithm of the
maximum likelihood value, In(L™*), which quantifies how
well the event matches the m,, = m;;, hypothesis, char-
acteristic of signal events. The four-body invariant mass,
recomputed after the KL fit, is denoted by mjs;- , and is used
for further event categorization.

Signal-like events are chosen by requiring that
110 < mj}.,, < 140 GeV, and that In(L™) > —8, which

ensures that m,,;, is compatible with m,,,. Finally, Emiss is
required to be less than 60 GeV to reduce the background
from 7 events, which is one of the two major backgrounds
and can contain large ET® from neutrinos in top-quark
decays. This selection defines the “inclusive” signal region
(SRincl) and is summarized in Table I, along with the
selection requirements for other analysis regions described
later in the text.

A BDT classifier implemented using the TMVA frame-
work [99] is employed to further reduce the SM back-
grounds. Its training is done in partially overlapping

8-GeV-wide m,, windows centered at the m, values of

012006-3



G. AAD et al.

PHYS. REV. D 105, 012006 (2022)

TABLE I. Summary of the selection requirements for the control (TCR and DYCR), validation (VR1 and VR2), and inclusive signal
(SRincl) regions in the analysis, as well as the final SR bins. The control and validation regions are defined in Sec. V.

TCR DYCR SRincl VR1 VR2
my, (GeV) [15, 65]
ml,f,l;m (GeV) [110, 140] [80, 110] or [140, 170] [110, 140] [170, 300] [110, 140]
ERiss (GeV) >60 <60
In(L™) >-8 | [~11,-8]
SR bins SRincl & BDTm, > 0.2

2-GeV-wide (3-GeV-wide) m

. bins for m, <45 GeV (m, > 45 GeV)

each of the 12 generated signals,” in order to fully exploit
their kinematic differences. The background sample con-
sists of {7 and DY + jets events, the two dominant back-
grounds, combined in the proportions extracted from the
background validation fit described in Sec. VII. The signal
samples

used for the training include ggF and VBF Higgs boson
production samples combined according to their cross
sections. The seven kinematic variables included in the
training are:

(1) myp,

(i) In(L™*),

(iii) AR, ;, (the angular distance between the two b-jets),

(iv) diffAR,R, = AR} ,, — AR, ,, (the difference be-

tween the angular separations between the two b-jets
and the two muons),

(V) ARy, (the angular distance between the bb and pu

systems),

(vi) AR,,=[AR} , +ARy ,, +AR, , +AR, , ]/4 (the

average angular distance of all four combinations of
a b-jet and a muon),
(vii) i, = [my,, +mp,, +my, +m,, ]/4 (the aver-
age mass of all four combinations of a b-jet and
a muon).
The distributions of these variables for the background and
three representative signal masses are shown in Fig. 1.

The my,; variable helps separate the low-mass signal
from the backgrounds, as m,,;, peaks around 60 GeV for the
17 and DY processes. The In(L™**) peaks at higher values as
the signal mass becomes smaller.

Due to a higher boost of a lighter a-boson, its decay
products are collimated, resulting in AR, ;, and AR, ,
being much smaller than for a signal from a heavier
a-boson or for background processes. As a consequence,
diff AR, R, shows a narrow distribution centered around
zero, while the background and a higher-mass signal
exhibit a much broader diffAR,R,, distribution.

*One BDT was trained for each generated signal MC sample,
except for m, = 52 GeV, as this sample was produced only at a
later analysis stage.

The ARy, variable helps enhance the sensitivity to
higher signal masses. Heavier a-bosons are produced
approximately at rest, resulting in the ARy, distribution
being relatively flat with a small peak at low values. As the
signal mass decreases, the ARy, distribution transitions
into a “back-to-back” topology, characteristic of both a
low-mass signal and the background events.

Finally, the AR, , and m,, variables provide another
measure of how close the two a-bosons are in AR. In the
back-to-back topology for lower signal masses, the muons
are, on average, further away from the b-jets, while for
heavier a-bosons produced approximately at rest, the average
distance between the muons and the b-jets is smaller.
Consequently, AR, , and m,,, peak at high (low) values
for low (high) signal masses, while the backgrounds peak
somewhere between the two extreme signal topologies.

The output score of the BDT trained for a signal with
mass m, is denoted by BDTm,. The BDTm, distributions
for m, = 20, 40, and 60 GeV are shown in Fig. 2.

The final signal region (SR) bin for each signal mass is
defined by imposing two requirements in addition to the
SRincl selection: m, — X <m,,, <m,+X and BDTm, >0.2,
where X =1GeV (X =1.5GeV) for m, <45 GeV
(m, > 45 GeV). The widths of the SR bins and the
BDTm, cut value are optimized to maximize the significance
of signal over background events. For masses at which no
signal sample was generated, and, consequently, no BDT was
trained, the BDT trained for the m, closest to the one being
tested is used. For example, when testing the m, = 32 GeV
hypothesis, the requirement BDT30 > 0.2 is applied to select
the events for the SR bin. Signal yields for mass points where
no signal sample was generated (m, = 32 GeV in this
example) are obtained by selecting events with BDT scores
above 0.2 for the same BDTm, (BDT30 in this case) in all
simulated mass points and interpolating using third-order
splines. To assess the uncertainty, the yields of the neigh-
boring simulated mass points (m, = 30 GeV and m, =
35 GeV in this case) are interpolated using a linear function.
The difference between the yields obtained using the splines
and a linear function for the interpolation is assigned as
a systematic uncertainty on the interpolated signal yield.
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FIG. 1. Kinematic variables used as inputs to the BDT training. From top left to bottom right: m,,, In(L™), AR,, ,,,, diff AR,R,,,
ARypyy> ARy, 11y, . The variables are plotted in SRincl. All the distributions are normalized to unit area. The background histogram is
the sum of the 77 and DY event templates, combined in the proportions extracted from the background validation fit described in Sec. VIIL.

Using a BDT at a mass for which the training was not

performed results in a negligible loss of significance relative

to a BDT that was optimized for that mass point.

The signal acceptance x efficiency varies between 0.3%
and 2.5% for ggF Higgs boson production and between

0.2% and 3.0% for VBF production, where the lowest
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FIG. 2. Three BDTm, distributions, BDT20, BDT40, and BDT60, plotted in the m,, windows of SRincl, as indicated in the figures.
The distributions are normalized to unit area. The background histogram is the sum of the 7 and DY event templates, combined in the
proportions extracted from the background validation fit described in Sec. VIIL.

acceptance X efficiency is obtained for the lowest m,, and
grows as m, increases. The largest loss of acceptance
occurs when requiring that there are two b-jets in the event,
as one of the signal jets tends to fall below the recon-
struction threshold of 20 GeV. The fraction of signal events
passing the two-b-jet requirement is less than 20% for all
mass points.

V. BACKGROUND ESTIMATION

The dominant backgrounds in the analysis arise from the
DY dimuon process in association with b-quarks and pair
production of top quarks (¢7) where each W boson decays into
a muon and a neutrino. These two backgrounds account for
more than 96% of background events in all analysis regions.

Two control regions are designed to constrain the f7 and
DY backgrounds. They are chosen so that they have
negligible signal contamination, are kinematically as
close as possible to SRincl, and maximize the contribution
of one of the respective background processes. A top-quark
control region (TCR) is defined by inverting the E%’iss
selection criterion in SRincl to EWS® > 60 GeV. This
results in an event sample approximately 93% pure in 7
events. The DY control region (DYCR) is defined in
the 30 GeV-wide ;- , sidebands of SRincl, i.e., by requi-

ring 80 < myp,, <110 GeV or 140 < my; < 170 GeV.

Approximately 50% of the events in DYCR originate from
the DY process, whereas the rest mostly come from 7

production. Two validation regions (VR1 and VR2) are
used to validate the normalizations of the backgrounds. VR1
is defined in the 170 < myy. < 300 GeV range, while VR2
is obtained by inverting the In(L™*) selection criterion of
SRincl to —11 < In(L™*) < —8. All the analysis regions are
summarized in Table I and illustrated in Fig. 3.

The shapes of the ¢f kinematic variable distributions are
obtained from simulation, while the overall normalization

ET® [GeV]

60

DY

CR SRincl

DY

CR VR1

\4

80 110 140

KL

My bpp

FIG. 3.

170 300

[GeV]

Tllustration of the signal, control, and validation regions

used in the analysis. VR2 (not shown) is defined by the same
selection as SRincl, except that the requirement on In(L™) is
inverted to —11 < In(L™*) < —8.
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is extracted from the fits described in Sec. VII. The
distributions for the DY background are taken from data
templates because the limited sizes of the simulated event
samples do not allow a reliable estimate. The template
regions are defined in the same way as the analysis regions
in Table I, except that the two-b-tag requirement is replaced
by a zero-b-tag requirement. The template regions are
>95% pure in DY events. Contributions from other
processes, namely 77, W + jets, diboson and single-top,
are subtracted using simulation. Following the subtraction,
the DY templates are corrected to account for kinematic
differences between event samples dominated by jets
originating from light quarks or gluons (template regions)
and event samples dominated by b-jets (analysis regions).
The correction is applied as a per-event weight, where the
reweighting is derived from a comparison between two-b-
tag and zero-b-tag kinematic distributions in simulated DY
events. Two sets of event weights are derived and applied
sequentially. First, the jet multiplicity of the zero-b-tag MC
sample is reweighted to the one in the two-b-tag sample.
It is the distribution with the largest difference between the
zero- and two-b-tag samples and was hence corrected first.
Second, a BDT-based reweighting is employed to further
correct the zero-b-tag template kinematics. A BDT is
trained on the zero-b-tag versus the two-b-tag simulated
DY samples. The BDT input consists of kinematic proper-
ties and angular distributions of the b-jets, muons and the
two corresponding a-boson candidates, as well as EX' and
My~ The ratio of the BDT score distributions obtained

for the two-b-tag and zero-b-tag simulated events is then
applied as a weight to every event from the zero-b-tag DY
template, as a function of its BDT score. Following the
BDT-based reweighting, the mjj;  and EF™ distributions

are corrected by up to 20%. The DY templates are
normalized to data in the fits described in Sec. VII.

Minor backgrounds include diboson and single-top-
quark production, production of a ¢f pair in association
with a vector boson, and W boson production in association
with b-jets. The estimation of these minor backgrounds
relies purely on simulation normalized to the best available
theoretical prediction. The events where a jet is misidenti-
fied as a muon are taken into account as follows: non-
prompt/misidentified muons in W + jets and 7 events are
included in the analysis on the basis of simulation, any
contribution of nonprompt/misidentified muons in the
DY + jets component is accounted for by the data template,
and the potential contribution from multijet events is found
to be negligible.

VI. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties in the analysis are divided
into three categories: experimental uncertainties affecting
the simulated background and signal processes, uncertain-
ties in the modeling of the DY template, and theoretical

uncertainties of the simulated background and signal
samples. Table II shows a summary of the dominant
systematic uncertainties in the total background and
signal yields in the signal region bins, as resulting from
the fits described in Sec. VII and hereafter denoted by
“postfit”.

Among the experimental uncertainties, the leading
effects come from those associated with the calibration
and resolution of jet energies [100], and with the meas-
urement of the b-tagging efficiency [95]. The impact of
these uncertainties on the total background (signal) yields
in the SR bins is as large as 3% (10%). The uncertainty in
the combined 2015-2018 integrated luminosity is 1.7%
[101], obtained using the LUCID-2 detector [102] for the
primary luminosity measurement. Other uncertainties, such
as those arising from the muon identification efficiency,
momentum scale and resolution [90,103], and pileup are
found to have a negligible impact on the final yields.

The uncertainty arising from limited MC sample sizes
ranges from 8% to as large as 40% in the low m, mass bins
due to there being few 77 events in this region.

Five sources of uncertainty in the data-driven DY
template are considered. The uncertainty in subtracting
non-DY events from the non-reweighted template in the

TABLE II. Summary of the dominant postfit systematic un-
certainties in the background and signal yields. The uncertainties
are expressed as a percentage of the total background and signal
yields per m,, bin of the signal region. Only uncertainties
exceeding 2% in at least one SR bin are shown.

Total
background Signal
Category Source (%) (%)
DY BDTm, selection 7-14
Normalization 5-10
m,, shape 1-8
Kinematics 0.3-6
Background subtraction 0.6-3
tt Hadronization/PS 0.3-4
Hard-scatter generation 0.2-3
Normalization 0.2-3
Overall MC Sample statistics 8-40 1-2
Jets b-tagging 0.03-0.7  9-10
Jet-energy resolution 1-3 67
Jet-energy scale 1-3 4-5
Signal FSR 5
PS . 4
VH contribution e 35
MPI e 3
QCD scale 3
ISR 3
ggF cross section
-missing higher-order QCD 5
-PDF & ag 3
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analysis regions is assessed by comparing the nominal
template, for which the simulated non-DY backgrounds
had been subtracted before reweighting, with an alternative
template for which no subtraction had been performed.
The uncertainties in the template kinematics modeling
are derived by comparing the DY template with simulation
in two key variables: EF** and mj- . The ratios of the
template to the simulated DY events are fit with linear
functions and used in assigning uncertainties to the shapes
of the EF™ and mjy  distributions. Similarly, the uncer-
tainty in the m,, template shape is assessed by comparing
the template with the smoothed simulated sample and
applying the observed difference as a systematic uncer-
tainty. The uncertainty in the normalization of the DY
template is obtained from the fits to data. Finally,
the uncertainty in the efficiency of the BDTm, selec-

tion criteria is evaluated by taking the difference in the

. . BDTm,>0.2 no BDTm,, cut
BDTm, cut efficiency, Ny evens SR /NDy events SR » between

the template and the simulation. All one-sided DY tem-
plate uncertainties are symmetrized around the nominal
value.

To assess the uncertainties in the generation of the hard-
scatter {7 process, the Powheg sample is compared with a
sample generated using MadGraph5_aMC@NLO 2.3.3. The
hadronization and fragmentation uncertainties in the PS
are evaluated by comparing the nominal sample showered
by PYTHIA 8.230 with an alternative sample generated by
Powheg using the same PDF in matrix element as for the
nominal sample, but showered with HERWIG 7.0.4 [104,105].
The initial- and final-state radiation (ISR and FSR)
uncertainties of the 77 sample are assessed by varying
the internal PYTHIA 8.230 showering parameters. Finally, the
uncertainties due to the PDF choice are evaluated using
the internal variations of the nominal PDF4LHCI15_NLO_30
set [106].

Uncertainties in the calculation of the ggF and VBF
Higgs boson production cross sections are assessed by
following the recommendations of the LHC Higgs Working
Group given in Refs. [77,82]. As no VH signal sample was
generated, a conservative 100% uncertainty is assigned
to the estimated VH yield. To evaluate the uncertainties
due to the PDF choice, the yields obtained with the
baseline NNPDF30_NLO_AS_0118 set are compared with
the yields obtained using the internal variations of
NNPDF30_NLO_AS_0118 and with the yields obtained with
the nominal MMHT2014NLO68CLAS118 [107] and CT14NLO
[108] sets. The largest difference is taken as the overall
PDF uncertainty for all signal mass points. Furthermore,
the effects of uncertainties in the ISR, FSR, multiparton
interactions (MPI) in PYTHIA, parton showering, and
renormalization and factorization scales are also assessed.
Uncertainties from these sources have an impact of 1-6%
on the signal yields, with the largest contributions
arising from the ggF production cross section and FSR
uncertainties.

VII. ANALYSIS AND RESULTS

The final background and signal estimates are obtained
in a set of binned likelihood fits [109] using the HistFitter
[110] package. The likelihood is a product of Poisson
probability functions, describing the observed and pre-
dicted numbers of events in each region, and Gaussian
distributions that constrain the nuisance parameters asso-
ciated with the systematic uncertainties. In the background
validation fit, the data in TCR and DYCR are used to
extract the normalization of the 77 and DY backgrounds,
respectively. As the ¢7 sample in TCR is modeled very well,
it is implemented as only one bin in the fit, whereas DYCR
is divided into five equal-width bins in m,, to provide
greater sensitivity to the DY template shape. The purpose of
this fit is to validate the modeling of the background in the
control and validation regions and in SRincl. The fitted ¢7
normalization factor is p; = 1.0770:39, while the value of
Upy has no physical meaning because it is scaled from a
template region and is thus not quoted. Figures 4 and 5

show postfit distributions of m,‘f,];m, ERiss n(L™>), and

m,,,, spanning various analysis regions, while Fig. 6 shows
BDT20 and BDT50 in SRincl. Good agreement between
the estimated backgrounds and the data is observed in
the kinematic distributions. In SRincl, 1185 events are
observed, which is compatible with the total estimated
background of 1155.3 + 13.6. The yields in several rep-
resentative SR bins, i.e., m,, windows after applying the
BDT selection, as obtained from the background validation
fit above, are shown in Table III. When comparing the
systematic uncertainty with the statistical uncertainty, it can
be seen that the analysis is clearly statistically limited.
Figure 7 shows the data and the estimated backgrounds in
all final SR bins. Due to the limited statistics of the
background samples, the estimates are not perfectly
smooth; however, the bin-to-bin fluctuations are much
smaller than the statistical uncertainty of the data. Larger
jumps, which occur at m, = 23, 28, 33, 38 GeV etc., appear
when the BDT discriminant used for the selection changes
from the one trained in the lower mass range to the one
trained in the higher mass range.

To test for the presence of new phenomena, fits are
performed for each of the 47 hypothesized signal masses in
the range 16 <m,, <62 GeV in 1 GeV steps. It was
verified that the analysis is also sufficiently sensitive to a
signal with m,, centered in between these 1 GeV steps.
TCR, DYCR, and the respective SR bin are included in
each fit in order to constrain the backgrounds and the signal
to the data.

A model-independent fit, i.e., not including any signal
sample, is performed to test whether the data are compat-
ible with the background-only hypothesis. The result is a
scan of pg-values as shown in Fig. 8. The largest discrep-
ancy is found at m,, = 52 GeV, corresponding to a local
(global) py-value of 0.00054 (0.048) and a local (global)
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is applied in the analysis regions shown in the figures. The signal distributions are normalized to the SM Higgs boson cross section
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backgrounds.
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TABLE IIL

Total and individual background yields in six representative m,,, bins of the signal region after the BDT selection is

applied. The yields are the postfit values as determined by the background validation fit. The uncertainties shown include all systematic
and statistical uncertainties. As the diboson, single top quark, 77V, and W + jets contributions are very small, they are summed in the

table under “Other”.

m,, bin (GeV) [15-17] [24-26] [34-36] [44-46] [50.5-53.5] [60.5-63.5]
Observed events 6 9 19 17 39 8
Total background 48+22 9.0+1.8 11.9+1.6 155+2.0 193 +2.7 934+1.7
DY 4.6 +2.1 64+1.5 57+1.1 6.4+1.5 8.3+2.1 53+1.4
tf 0.2+0.1 26+0.8 6.0+L1.1 85+14 104 +24 35+09
Other 0.03 £ 0.01 0.03 £0.00 0.24 £0.12 0.50 £ 0.40 0.50 £0.12 0.45£0.19

significance of 3.36 (1.70). The global significance was
calculated from the asymptotic formulas in Refs. [109,111].

Upper limits, derived using the CL technique [112,113],
are set on B(H — aa — bbuy) in a series of conditional
fits, this time also including the signal samples. The limits
as a function of m,, are shown in Fig. 9. Uniform sensitivity
is achieved for all masses above 18 GeV, while for lower
signal masses, m, < 18 GeV, the sensitivity of the analysis
decreases due to b-jets falling below the reconstruction
threshold or merging into one reconstructed jet. Figure 10
shows m,, and BDTm, distributions after the signal +
background fit for two SR bins, m, =35 GeV and
m, = 52 GeV, where the two largest deviations from the
background-only hypothesis are observed. The signal in the
plots is scaled to the best-fit value, corresponding to
B(H — aa — bbup) = 6.4 x 1075 (1.9 x 107*) for m, =
35 GeV (m, = 52 GeV).

The upper limits at 95% CL on B(H — aa — bbuu)
range between 0.2 x 107 and 4.0 x 107, depending on
m,. These limits improve upon the previous ATLAS result
based on 36 fb~! of data [47] by a factor of 2-5 over the

full m,, range. A factor of ~2 improvement in sensitivity
comes from the larger dataset, and a further factor of ~2 is
achieved thanks to the use of multivariate techniques to
discriminate between the signal and the SM backgrounds.
Due to small number of background events at lower signal
masses m,, the BDT training is less efficient in this region,
and the gain from applying the BDTm,, selection criteria is
higher at higher m,. Taking as an example the favorable
scenario with B(H — aa — bbuu)/B(H - aa) = 0.16%,
the analysis probes the Higgs boson branching fraction into
pseudoscalars down to B(H — aa) = 1.3%, much lower
than the limits derived from combinations of the Higgs
boson measurements.

So as not to restrict the analysis sensitivity solely to
models where the a-particle is a pseudoscalar, upper limits
obtained without employing the BDT discriminants are
also derived as shown in Fig. 11. In addition to being less
sensitive to the particle’s CP properties, the limits in SRincl
without the BDT selection also facilitate reinterpretations
of the analysis. These limits are derived in the same way as

described above, i.e., by scanning the m,, windows of

50

ATLAS
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20

Events / bin
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e Data 44 SM total
40 A DY+jets ﬁ
Vs=13TeV, 139 fb B Other

(nobs - npred) / Oiot

1617 18 1920 212223 24 2526 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4142 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 6162
my,, bin center [GeV]

FIG. 7. Postbackground-validation-fit number of events in all SR bins (after applying the BDT selection) that are tested for the
presence of signal. The bin widths are 2 GeV (3 GeV) in m,,, for m, <45 GeV (m, > 45 GeV). Neighboring bins partially overlap,
hence they are not statistically independent. The bottom panel shows the pull in each bin, defined as (14ps — 7prea)/ Gior, Where 71y, is the
number of events in the data, n,.q is the number of fitted background events and o, is the total (systematic and statistical, added in
quadrature) uncertainty in the fitted background yield. Discontinuities in the background predictions appear when the BDT discriminant
used for the selection changes from the one trained in the lower mass range to the one trained in the higher mass range. The histogram
labeled as “Other” in the legend includes the contributions from the diboson, single-top-quark, 7 + V, and W + jets backgrounds.
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sensitivity.
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FIG. 10. m,, distributions in the SRincl after the BDT35 > 0.2 selection (top left) and BDT50 > 0.2 selection (bottom left), and

BDT35 (top right) and BDT50 (bottom right) distributions in the SRincl in the m

. window 34-36 GeV and 50.5-53.5 GeV,

respectively. The signal is scaled to the best-fit value, B(H — aa — bbuu) = 6.4 x 107 for the top plots, and 1.9 x 10~* for the bottom
plots, assuming the SM Higgs boson cross section (including ggF, VBF, and VH production). The hatched bands show the total postfit
statistical and systematic uncertainties of the backgrounds and the signal. The histogram labeled as “Other” in the legend includes the
contributions from the diboson, single-top-quark, 77 + V, and W + jets backgrounds.
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FIG. 11. Upper limits on B(H — aa — bbuu) at 95% CL, with
no BDT selection applied, as a function of the signal mass
hypothesis. The dash-dotted blue line indicates the expected limit
set in the analysis with the BDT selection. Black and red dots
show masses for which the hypothesis testing was done. Between
these points, the limits are interpolated and may not be fully
representative of the actual sensitivity.

SRincl, but omitting the final selection on the BDT
discriminants. The expected limits obtained when employ-
ing the baseline analysis strategy are also shown in Fig. 11
for comparison, illustrating the significant improvement in
sensitivity to pseudoscalars when using the BDTs. The
excess observed at m,, = 52 GeV in the BDT analysis is
not supported by the limits derived without the BDTs.

Figure 12 shows the data and the estimated backgrounds in
all final SR bins, without applying the BDT selection.

VIII. CONCLUSION

A search for light pseudoscalar particles (denoted by a)
in the decays of the 125 GeV Higgs boson in the final state
with two muons and two b-tagged jets, H — aa — bbuy,
is presented. The analysis is performed using 139 fb~! of
\/s =13 TeV pp collision data recorded by the ATLAS
detector at the LHC between 2015 and 2018. A narrow
resonance is searched for in the dimuon invariant mass
spectrum in the range 16 < m,, <62 GeV. BDT classi-
fiers are trained to distinguish the H — aa signal, where
a is a pseudoscalar, from the SM backgrounds. Addi-
tionally, the result without selection on the BDT discrim-
inants is also provided to ensure sensitivity to models
where the a-particle is not necessarily a pseudoscalar, as
well as to facilitate reinterpretations of the analysis. No
significant excess of the data above the SM backgrounds is
observed. In the BDT analysis, the lowest local p,-value of
0.00054 is observed at m,,, = 52 GeV and corresponds to a
local significance of 3.30. The global significance of that
excess is determined to be 1.7¢. Upper limits at 95% CL
including (excluding) the BDT selection criteria are set on
B(H — aa — bbuy) and range between 0.2 x 10™* and
4.0 x 107* (0.5 x 107* and 5.0 x 10™*), depending on m,,.
The result including the BDT selection criteria improves
upon previous ATLAS and CMS limits by about a factor of
2-5 for m, > 20 GeV, while both results (with and without
the BDT) extend the search down to m, values of 16 GeV.
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FIG. 12. Postbackground-validation-fit number of events in all SR bins (without applying the BDT selection) that are tested for the
presence of signal. The bin widths are 2 GeV (3 GeV) in m,,, for m, <45 GeV (m, > 45 GeV). Neighboring bins partially overlap,

hence they are not statistically independent. The bottom panel shows the pull in each bin, defined as (1,

= Npreq )/ Orors Where ngpg is the

number of events in the data, 74 is the number of fitted background events, and 6y, is the total (systematic and statistical, added in
quadrature) uncertainty in the fitted background yield. The discontinuity at m, = 45 GeV appears where the m,, window size is
changed. The histogram labeled as “Other” in the legend includes the contributions from the diboson, single-top-quark, #7 + V, and

W + jets backgrounds.
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