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A search for lepton-flavor-violating Z → eτ and Z → μτ decays with pp collision data recorded by the
ATLAS detector at the LHC is presented. This analysis uses 139 fb−1 of Run 2 pp collisions at

ffiffiffi
s

p ¼
13 TeV and is combined with the results of a similar ATLAS search in the final state in which the τ lepton
decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying τ
leptons significantly improves the sensitivity reach for Z → lτ decays. The Z → lτ branching fractions are
constrained in this analysis to BðZ → eτÞ< 7.0 × 10−6 and BðZ → μτÞ< 7.2 × 10−6 at 95% confidence
level. The combination with the previously published analyses sets the strongest constraints to date:
BðZ → eτÞ< 5.0 × 10−6 and BðZ → μτÞ< 6.5 × 10−6 at 95% confidence level.
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Three lepton families (flavors) exist in the standard
model (SM) of particle physics [1–4], and the number of
leptons of each family is conserved in their interactions.
Nevertheless, this conservation is not postulated by any
fundamental principle of the theory, and neutrino oscil-
lations [5,6] indicate that processes violating this conser-
vation do occur in nature. According to current knowledge,
lepton-flavor-violating (LFV) processes in charged-lepton
interactions can occur via neutrino mixing but are too rare
to be detected by current experiments [7]. An observation
of these would be an unambiguous sign of physics beyond
the SM. LFV processes occur, for example, in models
predicting the existence of heavy neutrinos [8], which may
also explain the observed tiny masses and large mixing of
the SM neutrinos. In such models, up to one in 105 Z
bosons would undergo an LFV decay involving τ leptons.
In an earlier analysis, the ATLAS experiment at the LHC
set the strongest constraints on the branching fractions (B)
of the LFV decays of the Z boson involving a τ lepton by
searching for such decays in which the τ lepton decays
hadronically [9]. This result was achieved by analyzing
proton-proton (pp) collision data corresponding to an
integrated luminosity of 139 fb−1 at a center-of-mass
energy

ffiffiffi
s

p ¼ 13 TeV and 20.3 fb−1 at
ffiffiffi
s

p ¼ 8 TeV. In
that search, ATLAS measured the branching fractions to be
BðZ → eτÞ< 8.1 × 10−6 and BðZ → μτÞ< 9.5 × 10−6 at
95% confidence level (C.L.), superseding former limits set

by the LEP experiments of BðZ → eτÞ< 9.8 × 10−6 [10]
and BðZ → μτÞ< 1.2 × 10−5 [11] at 95% C.L.
This Letter presents a complementary search for Z → lτ

decays (l ¼ light charged lepton, i.e., e or μ) in which the τ
leptons decay into electrons or muons (lτl0 channel) using
139 fb−1 of pp collision data at

ffiffiffi
s

p ¼ 13 TeV collected by
the ATLAS experiment [12–14]. The search is performed
here for the first time at the LHC and is combined with the
similar ATLAS search using hadronic τ-lepton decays
(lτhad channel) [9]. The two searches follow similar
analysis strategies. Neural network classifiers are used
for optimal discrimination of signal from backgrounds
and their distributions are employed in a binned maxi-
mum-likelihood fit to achieve better sensitivity.
ATLAS is a multipurpose particle detector with a

forward-backward symmetric cylindrical geometry and a
near 4π coverage in solid angle [12,15,16]. It consists of an
inner tracking detector surrounded by a superconducting
solenoid, electromagnetic and hadronic calorimeters, and a
muon spectrometer based on superconducting air-core
toroidal magnets. This search analyzes pp collision events
recorded by the ATLAS experiment using single-electron
or single-muon triggers [17–19]. Prompt electrons and
muons from the Z-boson decays and those from the
τ-lepton decays are reconstructed and selected in the same
way. Candidates for electrons [20], muons [21], jets
[22–24], and visible decay products of hadronic τ-lepton
decays (τhad-vis) [25,26] are reconstructed from energy
deposits in the calorimeters and charged-particle tracks
measured in the inner detector and the muon spectrometer.
These candidates are selected with sets of requirements
similar to those used in Ref. [9]. Electron candidates are
required to pass the medium likelihood-based identifica-
tion requirement [20] and have a transverse momentum
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pT > 15 GeV and a pseudorapidity jηj < 1.37 or 1.52<

jηj < 2.47. The latter selection vetoes electron candidates
passing through the transition region between the barrel and
end-cap electromagnetic calorimeters. Muon candidates are
required to pass the medium identification requirement [27]
and have a pT > 10 GeV and jηj < 2.5. Both the electron
and muon candidates must satisfy the tight isolation
requirement [20,27], which is intended to reject misidenti-
fied candidates produced from the hadronization of quarks
or gluons based on tracks and clusters reconstructed
collinear to the candidates. Events with exactly one electron
and one muon candidate are selected with the requirement
that the lepton with higher transverse momentum has a
pT > 27 GeV. This selection lies above the threshold for
constant efficiency of both single-lepton trigger selections.
Events with same-flavor lepton pairs are rejected, in order
to reduce the background from Z → ll decays. Events
with a leading-pT electron are used in the search for Z →
eτ decays (eτμ channel), while those with a leading-pT

muon are used in the search for Z → μτ decays (μτe
channel), assuming the prompt lepton from the Z-boson
decay is the leading one in pT . In the μτe channel, the
ratio of the electron’s pT reconstructed in the inner
tracking detector to the transverse energy reconstructed
in the electromagnetic calorimeter, ptrack

T ðeÞ=ET
clusterðeÞ, is

required to be smaller than 1.1 in order to reject Z → μμ
events. Opposite-charge lepton-pair events are analyzed in
the search for signal events, while events with same-charge
lepton pairs are used for estimates of background proc-
esses. Quark- or gluon-initiated particle showers (jets) are
reconstructed using the anti-kt algorithm [22,23] with a
radius parameter R ¼ 0.4. Jets fulfilling pT > 20 GeV and
jηj < 2.5 are identified as containing b hadrons if tagged by
a dedicated multivariate algorithm [28]. To ensure the
samples of selected events do not overlap with those used
in the lτhad channel, events with a τhad-vis candidate are
vetoed. The τhad-vis candidates reconstructed from jets with
a pT > 10 GeV and with one or three associated tracks are

selected in jηj < 1.37 or 1.52< jηj< 2.5. The τhad-vis
identification is performed by a recurrent neural network
algorithm [25]. A τhad-vis candidate is required to have a
pT > 25 GeV and pass the tight identification selection.
The missing transverse momentum (Emiss

T ) is calculated as
the negative pT sum of all fully reconstructed and calibrated
physics objects [29,30]. Additionally, the calculation
includes inner detector tracks that originate from the vertex
associated with the hard-scattering process but are not
associated with any of the reconstructed objects.
The Z → lτ → ll0 þ 2ν signal events are characterized

by a final state which has two light charged leptons with
different flavor and opposite electric charge, two neutrinos,
and an invariant mass of all these particles compatible with
the Z-boson mass. In most cases, these two leptons are
emitted approximately back-to-back in the plane transverse
to the proton beam direction. Since the τ lepton is typically
boosted due to the large difference between its mass and the
mass of its parent Z boson, the two neutrinos from its decay
are usually almost collinear with the charged lepton from
the τ-lepton decay. The dominant background contribution
is from the lepton-flavor-conserving Z → ττ → ll0 þ 4ν
decays, where the two τ leptons decay leptonically.
Subleading background contributions from other SM proc-
esses with final states with two prompt leptons include the
decays of a top-antitop-quark pair (tt̄), two gauge bosons
(diboson), or a Higgs boson. Finally, small background
contributions come from Z → ll decays, where one of the
light charged leptons is misidentified with the wrong flavor,
and events with “fake leptons.” The latter type of back-
ground events includes mostlyWð→ lνÞ þ jets events with
leptons from heavy-flavor quark decays or with light-
quark-initiated jets that are misidentified as electrons or
muons. The signal and background events are separated by
using a set of selection criteria that define a signal-
enhanced sample, referred to as the signal region (SR).
The selection criteria are listed in Table I. Three neural
network (NN) binary classifiers similar to those used in

TABLE I. Selection criteria for events in the signal region. The invariant transverse mass of l and Emiss
T is defined as

mTðl;Emiss
T Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pTðlÞEmiss

T ½1 − cosðϕl − ϕEmiss
T

Þ�
q

.

Selection criterion Purpose

Exactly two isolated light leptons ðl0;l1Þ with opposite electric
charge and different flavor (e or μ); pTðl0Þ > pTðl1Þ

Select events consistent with signal decays.

No τhad-vis candidate Complementarity to the lτhad channel.

Transverse mass mTðl1;Emiss
T Þ< 35 GeV

Reject top-quark and diboson events.jΔϕðl0;Emiss
T Þj > 1 rad

No b-tagged jets (using the 77% efficiency working point [28])

Invariant mass of the l0-l1 pair mðl0; l1Þ > 40 GeV Reject events incompatible with Z-boson decays.

Neural network (optimized for signal vs Z → ττ) output > 0.2 Complementarity to the CRZττ region.

In μτe channel: ptrack
T ðeÞ=Ecluster

T ðeÞ< 1.1 Reject Z → μμ events.
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Ref. [9] are trained on simulated events to distinguish
signal events from Z → ττ, top-quark pair, and diboson
background events individually. The input to these NNs is
a mixture of low- and high-level kinematic variables,
following the same strategy as in the lτhad channel [9].
The low-level variables are the momentum components of
the reconstructed electron and muon candidates, and the
Emiss
T . The high-level variables are kinematic properties of

the e-μ-Emiss
T system, such as the collinear mass mcollðe; μÞ,

defined as the invariant mass of the e-μ-2ν system, where
the two neutrinos are assumed to have a vectorial momen-
tum sum that is equal in pT and the azimuthal angle ϕ
around the beam axis to the measured Emiss

T and equal in η
to the subleading-pT lepton momentum. The outputs of the
individual NNs (NNi with values between zero and one) are
combined into a final discriminant as shown in Eq. (1),
hereafter referred to as the “combined NN output”:

combined NN output ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

X3
i¼1

ð1 − NNiÞ2
vuut : ð1Þ

Events classified by the NN trained for Z → ττ as back-
groundlike are excluded from the SR and used in a control
region to better determine the Z → ττ background in the
maximum-likelihood fit (see Table I). The signal accep-
tance in the SR is 19.5% for the eτμ channel and 11.2% for
the μτe channel, as determined from simulated signal
samples. The lower acceptance in the μτe channel is due
to the higher pT threshold on the subleading-pT lepton and
the additional selection on ptrack

T =Ecluster
T .

Predictions for signal and background contributions are
based partly on Monte Carlo (MC) simulations and partly
on estimates from data. Signal and background processes
were simulated as in Ref. [9]. The signal events were
simulated using PYTHIA8 [32] with matrix elements calcu-
lated at leading order (LO) in the strong coupling constant.
Nominal signal samples were generated with a parity-
conserving Zlτ vertex and unpolarized τ leptons. Scenarios
where the decays are maximally parity violating were
considered by reweighting the simulated events using
TAUSPINNER [33], as discussed in Ref. [9]. The Z → ττ
background events were simulated with the SHERPA2.2.1

[34] generator using the NNPDF 3.0 NNLO PDF set [35]
and next-to-leading-order (NLO) matrix elements for up to
two partons, and LO matrix elements for up to four partons,
calculated with the COMIX [36] and OPENLOOPS [37–39]
libraries. Background Z → ll events were simulated using
the POWHEG-BOX [40] generator with NLO matrix ele-
ments. All MC samples include a detailed simulation of the
ATLAS detector with GEANT [41,42]. As in Ref. [9], the
simulation of Z-boson production is improved through a
correction derived from measurements in data. The simu-
lated pT spectra of the Z boson are reweighted to match the
unfolded distribution measured by ATLAS in Ref. [43].

The predicted overall yields of signal and Z → ττ events
are determined by a binned maximum-likelihood fit to the
combined data in the SR and in a control region enhanced
in Z → ττ events (CRZττ). This eliminates the theoretical
uncertainties in the total Z-boson production cross section
(σZ), as well as the experimental uncertainties related to the
acceptance of the common ll0 final state. The selection
criteria for events in the CRZττ are the same as those for
events in the SR, except that events are required to be
classified as Z → ττ-like, i.e., with an output smaller than
0.2 for the Z → ττ NN and greater than 0.2 for both the top-
quark and diboson NNs. In the μτe channel, a small
contribution to the total background originates from Z →
μμ events in which one muon is misreconstructed as an
electron. Such electron candidates may originate from
muons that fail the muon selection requirements and whose
tracks are associated with a calorimeter energy cluster and
reconstructed as electrons. They may also originate from
muons undergoing bremsstrahlung. Such events are mod-
eled with simulation and their predicted yield is based on
the measured σZ [44]. The modeling is validated in a
dedicated region which has the same selection as the μτe
SR except for the inverse selection on ptrack

T ðeÞ=Ecluster
T ðeÞ.

Based on the observed level of agreement between data and
simulation, a systematic uncertainty of 15% is assigned to
the predicted yield of Z → μμ events in the SR, with no
further correction.
Events with fake leptons yield a small but still significant

background contribution. In most cases, the fake lepton
is the subleading one. These events are estimated from
data using a “fake-factor method” similar to the one
used in Ref. [9]. The fake factor is defined as the ratio
Npass-iso

fake =Nfail-iso
fake , where “fake” indicates events with at least

one fake lepton and “pass-iso” or “fail-iso” indicate
whether the subleading lepton passes or fails the isolation
requirement. The fake factor is measured in events with
pairs of same-sign leptons (SS). These events are enhanced
inWð→ lνÞ þ jets, which is the dominant source of events
with fake leptons in the SR. Events in the SS region pass
the same event selections as those in the SR except for a
same-charge requirement. The fake factors are measured as
functions of the transverse momentum and pseudorapidity
of the leptons, separately for eτμ and μτe events. The
kinematic properties of events with fake leptons in the SR
or in the CRs are estimated by the distributions of events
with the subleading lepton failing the isolation requirement,
but otherwise satisfying all other selection criteria for that
region, multiplied by the fake factor. The total predicted
yields of the events with fake leptons in the SR and CRs are
instead determined by a combined maximum-likelihood fit
to data, separately for eτμ and μτe events. The remaining
background processes are estimated using simulations.
These backgrounds include events from the production
and decay of top quarks [32,40], pairs of gauge bosons
[34,35], and the Higgs boson [32,40]. The yield of the

PHYSICAL REVIEW LETTERS 127, 271801 (2021)

271801-3



events with top quarks is determined in the maximum-
likelihood fit to data via the inclusion of a top-quark control
region (CRTop). The selection requirements for the CRTop
are the same as for the SR except that at least one b-tagged
jet is required. The expected event yields of the remaining
processes are determined based on their production cross
section, the integrated luminosity, and the simulated selec-
tion efficiency.
A statistical analysis of the selected events is performed

to assess the presence of signal events, following the same
method used in Ref. [9]. A simultaneous binned maximum-
likelihood fit to the combined NN output distribution in the
SR, the mcollðe; μÞ distribution in the CRZττ, and the event
yield in CRTop is used to constrain uncertainties in the
predictions and extract evidence of a possible signal. The fit
is performed independently for the eτ and μτ channels. The
fraction of Z → eτ events selected in the μτ channel (and
vice versa) is negligible and is therefore neglected. In order
to improve the discrimination between signal and the
events with fake leptons, the events in the SR are further
split into two regions based on the transverse momentum of
the subleading-pT lepton l1. The low-pT SR contains
events with a pTðl1Þ< 20ð25Þ GeV in the eτμ (μτe)
channel, while the high-pT SR contains the events above
these thresholds. Both SRs in the eτμ channel have
comparable sensitivity, while the low-pT SR in the μτe
channel is more sensitive than the high-pT SR. Both SRs
are fitted simultaneously. There are four unconstrained
parameters in the fits: the parameter of interest determines
the LFV branching fraction BðZ → lτÞ by modifying an
arbitrary prefit signal yield, μZ determines σZ times the
overall acceptance and reconstruction efficiency of the ll0
final state in Z → ττ and signal events, μtop determines the
yield of the top-quark events, and μfakes determines the
yield of the events with fake leptons. Constrained param-
eters are also introduced to account for systematic uncer-
tainties in the signal and background predictions, as in
Ref. [9]. These include uncertainties in simulated events in
the modeling of trigger, reconstruction, identification and
isolation efficiencies, as well as energy calibrations and
resolutions of reconstructed objects. No systematic uncer-
tainties are assigned to the overall yields of events with Z-
boson decays, fake leptons, or top quarks as these yields are
determined from data. Uncertainties related to events with
fake leptons include statistical uncertainties due to the size
of the data sample used to measure the fake factors as well
as to model their distributions in the SRs and CRs.
Systematic uncertainties assigned to events with fake
leptons account for: shape differences in the modeling of
the combined NN output in the SS events; differences in the
composition of the events with fake leptons between SS
events and the events in the SRs; and uncertainties affecting
the number of events with prompt leptons failing the
isolation requirements as estimated by simulation. The
dominant uncertainties of the search are statistical in nature.

Among the systematic uncertainties, the dominant ones are
those in the jet calibration which enter through the
calculation of the Emiss

T [24]. A summary of the uncertain-
ties and their impact on the LFV branching fraction is given
in Table II.
The observed and best-fit predicted distributions of the

combined NN output in the SRs with the highest sensitivity
as well as distributions of the collinear mass in the high-pT
SRs are shown in Fig. 1. The best-fit yield of Z → lτ signal
corresponds to the branching fractions BðZ → eτÞ ¼
½−2.6� 3.5ðstatÞ � 2.7ðsystÞ� × 10−6 and BðZ → μτÞ ¼
½−4.4� 3.9ðstatÞ � 3.4ðsystÞ� × 10−6. The best-fit yields
of Z → ττ, top quarks, and events with fake leptons are
close to the prefit predicted values and are determined with
a relative precision of 2%–4%, except the events with fake
leptons in the μτe channel, which have an uncertainty of
30%. As no significant excess of data over the predicted
background is observed, a combined fit of the lτl0 and
lτhad channels is used to set upper limits on BðZ → lτÞ.
The analysis of the lτhad channel with Run 2 data [9] uses
a similar scheme of regions and unconstrained parameters.
In the statistical combination, the parameters of interest are
correlated among the different SRs and CRs. The other
unconstrained parameters are uncorrelated as these account
either for backgrounds specific to each channel or for dif-
ferent acceptances of the lτl0 or lτhad final states. Common
systematic uncertainties are correlated, besides those rela-
ted to the jet energy calibrations, which are uncorrelated.

TABLE II. Summary of the contributions to the uncertainty in
the measured BðZ → lτl0 Þ. The uncertainties related to light
charged leptons include those in the trigger, reconstruction,
identification, and isolation efficiencies, as well as energy
calibrations. The uncertainties related to jets and Emiss

T include
those in the energy calibration and resolution. The uncertainty in
the Z → μμ yield is only applicable in the μτ channel. The total
systematic uncertainty can differ from the sum in quadrature of
the different contributions due to correlations among uncertain-
ties as a result of the likelihood fit to data.

Uncertainty in BðZ → lτÞ [×10−6]
Source of uncertainty eτ μτ

Statistical �3.5 �3.9
Fake leptons (statistical) �0.1 �0.1

Systematic �2.7 �3.4
Light charged leptons �0.4 �0.4
Emiss
T �0.4 �0.8

Jets �1.9 �2.2
Flavor tagging �0.5 �0.9
Z-boson modeling <0.1 �0.1
Z → μμ yield �0.8
Other backgrounds �0.1 �0.6
Fake leptons (systematic) �0.4 �0.9

Total �4.4 �5.2
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This conservative correlation scheme was chosen because
of different best-fit values for the parameters associated
with these uncertainties in the two channels. However,
the fit with correlated jet energy calibration uncertainties
yields compatible combined upper limits. The analysis of
the lτhad channel with Run 1 data is combined using
the same correlation scheme as in Ref. [9]. The combined

best-fit amount of Z → lτ signal corresponds to the
branching fractions BðZ → eτÞ ¼ ½−1.4� 2.5ðstatÞ �
1.8ðsystÞ� × 10−6 and BðZ → μτÞ ¼ ½1.7� 2.2ðstatÞ �
1.6ðsystÞ� × 10−6.

Since no significant deviation from the SM background
hypothesis is observed, exclusion limits are set using theCLS
method [45]. The upper limits are shown in Table III for LFV
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FIG. 1. Observed and best-fit predicted distributions in the SRs. Distributions of the combined NN output are shown in (a) for the low-
pT SR of the eτμ channel, and in (b) for the high-pT SR of the μτe channel. Distributions of the collinear mass in the high-pT SR are
shown in (c) and (d) for the eτμ and μτe channels, respectively. The expected signal, normalized to an arbitrary BðZ → lτÞ ¼ 3 × 10−4

for visualization purposes, is shown as a dashed histogram in each plot. In the panel below each plot, the ratios of the observed yield
(dots) and the best-fit background-plus-signal yield (solid line) to the best-fit background yield are shown. The hatched uncertainty
bands represent one standard deviation of the combined statistical and systematic uncertainties. The first and last bins in each plot
include underflow and overflow events, respectively.
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decays with different assumptions about the τ-polarization
state. The polarization of the τ lepton affects the energy of its
visible decay products and thus the acceptance for signal
events. In the scenario where the τ leptons are unpolarized,
the observed upper limits at 95% C.L. on BðZ → eτÞ and
BðZ → μτÞ are 5.0 × 10−6 and 6.5 × 10−6, respectively.

In conclusion, this Letter reports the first analysis of the
lτl0 channel in the search for Z → lτ decays at the LHC.
This channel yields a sensitivity similar to the lτhad channel.
With the combined results of the two channels, the ATLAS
experiment sets the most stringent constraints on LFV Z-
boson decays involving τ leptons to date. The precision of
these results is mainly limited by statistical uncertainties.

We thank CERN for the very successful operation of the
LHC, as well as the support staff from our institutions
without whom ATLAS could not be operated efficiently.
We acknowledge the support of ANPCyT, Argentina;
YerPhI, Armenia; ARC, Australia; BMWFW and FWF,
Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and
FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN;
ANID, Chile; CAS, MOSTand NSFC, China; Minciencias,
Colombia; MSMT CR, MPO CR and VSC CR, Czech
Republic; DNRF and Danish Natural Science Research
Council, Denmark; IN2P3-CNRS and CEA-DRF/IRFU,
France; Shota Rustaveli National Science Foundation of
Georgia, Georgia; BMBF, HGF and MPG, Germany;
General Secretariat for Research and Innovation, Greece;
RGC and Hong Kong SAR, China; ISF and Benoziyo
Center, Israel; INFN, Italy; MEXT and JSPS, Japan;
CNRST, Morocco; NWO, Netherlands; Research
Council of Norway, Norway; MNiSW and NCN,
Poland; FCT, Portugal; MNE/IFA, Romania; JINR;
Ministry of Education and Science of the Russian
Federation and NRC KI, Russian Federation; Ministry of
Education, Science and Technological Development,
Serbia; Ministry of Education, Science, Research and
Sport, Slovakia; ARRS and Ministry of Education,
Science and Sport, Slovenia; DSI/NRF, South Africa;

MICINN, Spain; Swedish Research Council and
Wallenberg Foundation, Sweden; Secretariat for
Education and Research, Switzerland, SNSF and
Cantons of Bern and Geneva, Switzerland; MOST,
Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE
and NSF, USA In addition, individual groups and members
have received support from BCKDF, CANARIE, Compute
Canada and CRC, Canada; COST, ERC, ERDF, Horizon
2020 and Marie Skłodowska-Curie Actions, European
Union; Investissements d’Avenir Labex, Investissements
d’Avenir Idex and ANR, France; DFG and AvH
Foundation, Germany; Herakleitos, Thales and Aristeia
programmes co-financed by EU-ESF and
the Herakleitos, Thales and Aristeia programmes co-
financed by EU-ESF and the Greek NSRF, Greece;
BSF-NSF and GIF, Israel; Norwegian Financial
Mechanism 2014-2021, Norway; La Caixa Banking
Foundation, CERCA Programme Generalitat de
Catalunya and PROMETEO and GenT Programmes
Generalitat Valenciana, Spain; Göran Gustafssons
Stiftelse, Sweden; The Royal Society and Leverhulme
Trust, United Kingdom. The crucial computing support
from all WLCG partners is acknowledged gratefully, in
particular from CERN, the ATLAS Tier-1 facilities at
TRIUMF (Canada), NDGF (Denmark, Norway,
Sweden), CC-IN2P3 (France), KIT/GridKA (Germany),
INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain),
ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2
facilities worldwide and large non-WLCG resource pro-
viders. Major contributors of computing resources are
listed in Ref. [46].

[1] S. Glashow, Partial-symmetries of weak interactions, Nucl.
Phys. 22, 579 (1961).

[2] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19, 1264
(1967).

TABLE III. Observed and expected (median) upper limits on the signal branching fraction at 95% C.L., in
different τ-polarization scenarios.

Observed (expected) upper limit on BðZ → lτÞ [×10−6]
Final state, polarization assumption eτ μτ

lτhad Run 1þ Run 2, unpolarized τ [9] 8.1 (8.1) 9.5 (6.1)
lτhad Run 2, left-handed τ [9] 8.2 (8.6) 9.5 (6.7)
lτhad Run 2, right-handed τ [9] 7.8 (7.6) 10 (5.8)

lτl0 Run 2, unpolarized τ 7.0 (8.9) 7.2 (10)
lτl0 Run 2, left-handed τ 5.9 (7.5) 5.7 (8.5)
lτl0 Run 2, right-handed τ 8.4 (11) 9.8 (13)

Combined lτ Run 1þ Run 2, unpolarized τ 5.0 (6.0) 6.5 (5.3)
Combined lτ Run 2, left-handed τ 4.5 (5.7) 5.6 (5.3)
Combined lτ Run 2, right-handed τ 5.4 (6.2) 7.7 (5.3)

PHYSICAL REVIEW LETTERS 127, 271801 (2021)

271801-6

https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/PhysRevLett.19.1264


[3] A. Salam, Weak and electromagnetic interactions, in Se-
lected Papers of Abdus Salam (World Scientific, Singapore,
1994), pp. 244–254, 10.1142/9789812795915_0034.

[4] G. ’t Hooft and M. Veltman, Regularization and renormal-
ization of gauge fields, Nucl. Phys. B44, 189 (1972).

[5] Super-Kamiokande Collaboration, Evidence for Oscillation
of Atmospheric Neutrinos, Phys. Rev. Lett. 81, 1562
(1998).

[6] SNO Collaboration, Direct Evidence for Neutrino Flavor
Transformation from Neutral-Current Interactions in the
Sudbury Neutrino Observatory, Phys. Rev. Lett. 89, 011301
(2002).

[7] J. I. Illana, M. Jack, and T. Riemann, Predictions for Z → μτ
and related reactions, in Proceedings of the 2nd Workshop
of the 2nd Joint ECFA/DESY Study on Physics and
Detectors for a Linear Electron Positron Collider (1999),
p. 490, arXiv:hep-ph/0001273.

[8] J. I. Illana and T. Riemann, Charged lepton flavor violation
from massive neutrinos in Z decays, Phys. Rev. D 63,
053004 (2001).

[9] ATLAS Collaboration, Charged-lepton-flavour violation at
the LHC: A search for Z → eτ=μτ decays with the ATLAS
detector, Nat. Phys. 17, 819 (2021).

[10] OPAL Collaboration, A search for lepton flavour violating
Z0 decays, Z. Phys. C 67, 555 (1995).

[11] DELPHI Collaboration, Search for lepton flavour number
violating Z0 decays, Z. Phys. C 73, 243 (1997).

[12] ATLAS Collaboration, The ATLAS experiment at the
CERN Large Hadron Collider, J. Instrum. 3, S08003 (2008).

[13] ATLAS Collaboration, Luminosity determination in pp
collisions at

ffiffiffi
s

p ¼ 13 TeV using the ATLAS detector at
the LHC, ATLAS-CONF-2019-021, 2019, https://cds.cern
.ch/record/2677054.

[14] G. Avoni et al., The new LUCID-2 detector for luminosity
measurement and monitoring in ATLAS, J. Instrum. 13,
P07017 (2018).

[15] ATLAS Collaboration, ATLAS insertable B-layer technical
design report, ATLAS-TDR-19; CERN-LHCC-2010-013,
2010, https://cds.cern.ch/record/1291633; Addendum: AT-
LAS-TDR-19-ADD-1; CERN-LHCC-2012-009, 2012,
https://cds.cern.ch/record/1451888.

[16] B. Abbott et al., Production and integration of the ATLAS
insertable B-layer, J. Instrum. 13, T05008 (2018).

[17] ATLAS Collaboration, Performance of the ATLAS trigger
system in 2015, Eur. Phys. J. C 77, 317 (2017).

[18] ATLAS Collaboration, Performance of electron and photon
triggers in ATLAS during LHC Run 2, Eur. Phys. J. C 80, 47
(2020).

[19] ATLAS Collaboration, Performance of the ATLAS muon
triggers in Run 2, J. Instrum. 15, P09015 (2020).

[20] ATLAS Collaboration, Electron and photon performance
measurements with the ATLAS detector using the 2015–
2017 LHC proton-proton collision data, J. Instrum. 14,
P12006 (2019).

[21] ATLAS Collaboration, Muon reconstruction and identifica-
tion efficiency in ATLAS using the full run 2 pp collision
data set at

ffiffiffi
s

p ¼ 13 TeV, Eur. Phys. J. C 81, 578 (2021).
[22] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet

clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[23] M. Cacciari, G. P. Salam, and G. Soyez, FASTJET user
manual, Eur. Phys. J. C 72, 1896 (2012).

[24] ATLAS Collaboration, Jet energy scale and resolution
measured in proton-proton collisions at

ffiffiffi
s

p ¼ 13 TeV with
the ATLAS detector, Eur. Phys. J. C 81, 689 (2021).

[25] ATLAS Collaboration, Identification of hadronic tau lepton
decays using neural networks in the ATLAS experiment,
ATL-PHYS-PUB-2019-033, 2019, https://cds.cern.ch/
record/2688062.

[26] ATLAS Collaboration, Measurement of the tau lepton
reconstruction and identification performance in the ATLAS
experiment using pp collisions at

ffiffiffi
s

p ¼ 13 TeV, ATLAS-
CONF-2017-029, 2017, https://cds.cern.ch/record/2261772.

[27] ATLAS Collaboration, Muon reconstruction performance of
the ATLAS detector in proton-proton collision data atffiffiffi
s

p ¼ 13 TeV, Eur. Phys. J. C 76, 292 (2016).
[28] ATLAS Collaboration, ATLAS b-jet identification perfor-

mance and efficiency measurement with tt̄ events in pp
collisions at

ffiffiffi
s

p ¼ 13 TeV, Eur. Phys. J. C 79, 970 (2019).
[29] ATLAS Collaboration, Performance of missing transverse

momentum reconstruction with the ATLAS detector using
proton-proton collisions at

ffiffiffi
s

p ¼ 13 TeV, Eur. Phys. J. C
78, 903 (2018).

[30] ATLAS Collaboration, Emiss
T performance in the ATLAS

detector using 2015–2016 LHC pp collisions, ATLAS-
CONF-2018-023, 2018, https://cds.cern.ch/record/2625233.

[32] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai,
P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z.
Skands, An introduction to PYTHIA8.2, Comput. Phys.
Commun. 191, 159 (2015).

[33] T. Przedzinski, E. Richter-Was, and Z. Was, Documentation
of TAUSPINNER algorithms: Program for simulating spin
effects in τ-lepton production at LHC, Eur. Phys. J. C 79, 91
(2019).

[34] E. Bothmann et al., Event generation with Sherpa 2.2,
SciPost Phys. 7, 034 (2019).

[35] R. D. Ball et al., Parton distributions for the LHC Run II,
J. High Energy Phys. 04 (2015) 040.

[36] T. Gleisberg and S. Höche, Comix, a new matrix element
generator, J. High Energy Phys. 12 (2008) 039.

[37] F. Buccioni, J.-N. Lang, J. M. Lindert, P. Maierhöfer, S.
Pozzorini, H. Zhang, and M. F. Zoller, OpenLoops 2, Eur.
Phys. J. C 79, 866 (2019).

[38] F. Cascioli, P.Maierhöfer, and S. Pozzorini, Scattering Ampli-
tudes with Open Loops, Phys. Rev. Lett. 108, 111601 (2012).

[39] A. Denner, S. Dittmaier, and L. Hofer, Collier: A fortran-
based complex one-loop library in extended regularizations,
Comput. Phys. Commun. 212, 220 (2017).

[40] S. Alioli, P. Nason, C. Oleari, and E. Re, A general
framework for implementing NLO calculations in shower
Monte Carlo programs: The POWHEG BOX, J. High
Energy Phys. 06 (2010) 043.

[41] ATLAS Collaboration, The ATLAS simulation infrastruc-
ture, Eur. Phys. J. C 70, 823 (2010).

[42] S. Agostinelli et al. (GEANT4 Collaboration), GEANT4 - a
simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect.
A 506, 250 (2003).

[43] ATLAS Collaboration, Measurement of the transverse
momentum distribution of Drell-Yan lepton pairs in

PHYSICAL REVIEW LETTERS 127, 271801 (2021)

271801-7

https://dx.doi.org/10.1142/9789812795915_0034
https://dx.doi.org/10.1142/9789812795915_0034
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1103/PhysRevLett.81.1562
https://doi.org/10.1103/PhysRevLett.81.1562
https://doi.org/10.1103/PhysRevLett.89.011301
https://doi.org/10.1103/PhysRevLett.89.011301
https://arXiv.org/abs/hep-ph/0001273
https://doi.org/10.1103/PhysRevD.63.053004
https://doi.org/10.1103/PhysRevD.63.053004
https://doi.org/10.1038/s41567-021-01225-z
https://doi.org/10.1007/BF01553981
https://doi.org/10.1007/s002880050313
https://doi.org/10.1088/1748-0221/3/08/S08003
https://cds.cern.ch/record/2677054
https://cds.cern.ch/record/2677054
https://cds.cern.ch/record/2677054
https://doi.org/10.1088/1748-0221/13/07/P07017
https://doi.org/10.1088/1748-0221/13/07/P07017
https://cds.cern.ch/record/1291633
https://cds.cern.ch/record/1291633
https://cds.cern.ch/record/1291633
https://cds.cern.ch/record/1451888
https://doi.org/10.1088/1748-0221/13/05/T05008
https://doi.org/10.1140/epjc/s10052-017-4852-3
https://doi.org/10.1140/epjc/s10052-019-7500-2
https://doi.org/10.1140/epjc/s10052-019-7500-2
https://doi.org/10.1088/1748-0221/15/09/P09015
https://doi.org/10.1088/1748-0221/14/12/P12006
https://doi.org/10.1088/1748-0221/14/12/P12006
https://doi.org/10.1140/epjc/s10052-021-09233-2
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-021-09402-3
https://cds.cern.ch/record/2688062
https://cds.cern.ch/record/2688062
https://cds.cern.ch/record/2688062
https://cds.cern.ch/record/2688062
https://cds.cern.ch/record/2261772
https://cds.cern.ch/record/2261772
https://cds.cern.ch/record/2261772
https://doi.org/10.1140/epjc/s10052-016-4120-y
https://doi.org/10.1140/epjc/s10052-019-7450-8
https://doi.org/10.1140/epjc/s10052-018-6288-9
https://doi.org/10.1140/epjc/s10052-018-6288-9
https://cds.cern.ch/record/2625233
https://cds.cern.ch/record/2625233
https://cds.cern.ch/record/2625233
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1140/epjc/s10052-018-6527-0
https://doi.org/10.1140/epjc/s10052-018-6527-0
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.1007/JHEP04(2015)040
https://doi.org/10.1088/1126-6708/2008/12/039
https://doi.org/10.1140/epjc/s10052-019-7306-2
https://doi.org/10.1140/epjc/s10052-019-7306-2
https://doi.org/10.1103/PhysRevLett.108.111601
https://doi.org/10.1016/j.cpc.2016.10.013
https://doi.org/10.1007/JHEP06(2010)043
https://doi.org/10.1007/JHEP06(2010)043
https://doi.org/10.1140/epjc/s10052-010-1429-9
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8


proton-proton collisions at
ffiffiffi
s

p ¼ 13 TeV with the ATLAS
detector, Eur. Phys. J. C 80, 616 (2020).

[44] ATLAS Collaboration, Measurement of W� and Z-boson
production cross sections in pp collisions at

ffiffiffi
s

p ¼ 13 TeV
with the ATLAS detector, Phys. Lett. B 759, 601 (2016).

[45] A. L. Read, Presentation of search results: The CLS tech-
nique, J. Phys. G 28, 2693 (2002).

[46] ATLAS Collaboration, ATLAS computing acknowledge-
ments, ATL-SOFT-PUB-2021-003, https://cds.cern.ch/
record/2776662.

G. Aad,99 B. Abbott,124 D. C. Abbott,100 A. Abed Abud,34 K. Abeling,51 D. K. Abhayasinghe,91 S. H. Abidi,27

H. Abramowicz,157 H. Abreu,156 Y. Abulaiti,5 A. C. Abusleme Hoffman,142a B. S. Acharya,64a,64b,b B. Achkar,51 L. Adam,97

C. Adam Bourdarios,4 L. Adamczyk,81a L. Adamek,162 J. Adelman,117 A. Adiguzel,11c,c S. Adorni,52 T. Adye,139

A. A. Affolder,141 Y. Afik,156 C. Agapopoulou,62 M. N. Agaras,12 J. Agarwala,68a,68b A. Aggarwal,115 C. Agheorghiesei,25c

J. A. Aguilar-Saavedra,135f,135a,d A. Ahmad,34 F. Ahmadov,77 W. S. Ahmed,101 X. Ai,44 G. Aielli,71a,71b S. Akatsuka,83

M. Akbiyik,97 T. P. A. Åkesson,94 A. V. Akimov,108 K. Al Khoury,37 G. L. Alberghi,21b,21a J. Albert,171

M. J. Alconada Verzini,86 S. Alderweireldt,48 M. Aleksa,34 I. N. Aleksandrov,77 C. Alexa,25b T. Alexopoulos,9 A. Alfonsi,116

F. Alfonsi,21b,21a M. Alhroob,124 B. Ali,137 S. Ali,154 M. Aliev,161 G. Alimonti,66a C. Allaire,34 B. M.M. Allbrooke,152

P. P. Allport,19 A. Aloisio,67a,67b F. Alonso,86 C. Alpigiani,144 E. Alunno Camelia,71a,71b M. Alvarez Estevez,96

M. G. Alviggi,67a,67b Y. Amaral Coutinho,78b A. Ambler,101 L. Ambroz,130 C. Amelung,34 D. Amidei,103

S. P. Amor Dos Santos,135a S. Amoroso,44 C. S. Amrouche,52 C. Anastopoulos,145 N. Andari,140 T. Andeen,10 J. K. Anders,18

S. Y. Andrean,43a,43b A. Andreazza,66a,66b V. Andrei,59a S. Angelidakis,8 A. Angerami,37 A. V. Anisenkov,118b,118a

A. Annovi,69a C. Antel,52 M. T. Anthony,145 E. Antipov,125 M. Antonelli,49 D. J. A. Antrim,16 F. Anulli,70a M. Aoki,79

J. A. Aparisi Pozo,169 M. A. Aparo,152 L. Aperio Bella,44 N. Aranzabal,34 V. Araujo Ferraz,78a C. Arcangeletti,49

A. T. H. Arce,47 E. Arena,88 J-F. Arguin,107 S. Argyropoulos,50 J.-H. Arling,44 A. J. Armbruster,34 A. Armstrong,166

O. Arnaez,162 H. Arnold,34 Z. P. Arrubarrena Tame,111 G. Artoni,130 H. Asada,113 K. Asai,122 S. Asai,159 N. A. Asbah,57

E. M. Asimakopoulou,167 L. Asquith,152 J. Assahsah,33d K. Assamagan,27 R. Astalos,26a R. J. Atkin,31a M. Atkinson,168

N. B. Atlay,17 H. Atmani,58b P. A. Atmasiddha,103 K. Augsten,137 S. Auricchio,67a,67b V. A. Austrup,177 G. Avner,156

G. Avolio,34 M. K. Ayoub,13c G. Azuelos,107,e D. Babal,26a H. Bachacou,140 K. Bachas,158 F. Backman,43a,43b A. Badea,57

P. Bagnaia,70a,70b H. Bahrasemani,148 A. J. Bailey,169 V. R. Bailey,168 J. T. Baines,139 C. Bakalis,9 O. K. Baker,178

P. J. Bakker,116 E. Bakos,14 D. Bakshi Gupta,7 S. Balaji,153 R. Balasubramanian,116 E. M. Baldin,118b,118a P. Balek,138

E. Ballabene,66a,66b F. Balli,140 W. K. Balunas,130 J. Balz,97 E. Banas,82 M. Bandieramonte,134 A. Bandyopadhyay,17

L. Barak,157 E. L. Barberio,102 D. Barberis,53b,53a M. Barbero,99 G. Barbour,92 K. N. Barends,31a T. Barillari,112

M-S. Barisits,34 J. Barkeloo,127 T. Barklow,149 B. M. Barnett,139 R. M. Barnett,16 A. Baroncelli,58a G. Barone,27 A. J. Barr,130

L. Barranco Navarro,43a,43b F. Barreiro,96 J. Barreiro Guimarães da Costa,13a U. Barron,157 S. Barsov,133 F. Bartels,59a

R. Bartoldus,149 G. Bartolini,99 A. E. Barton,87 P. Bartos,26a A. Basalaev,44 A. Basan,97 I. Bashta,72a,72b A. Bassalat,62

M. J. Basso,162 C. R. Basson,98 R. L. Bates,55 S. Batlamous,33e J. R. Batley,30 B. Batool,147 M. Battaglia,141 M. Bauce,70a,70b

F. Bauer,140,a P. Bauer,22 H. S. Bawa,29 A. Bayirli,11c J. B. Beacham,47 T. Beau,131 P. H. Beauchemin,165 F. Becherer,50

P. Bechtle,22 H. P. Beck,18,f K. Becker,173 C. Becot,44 A. J. Beddall,11a V. A. Bednyakov,77 C. P. Bee,151 T. A. Beermann,177

M. Begalli,78b M. Begel,27 A. Behera,151 J. K. Behr,44 C. Beirao Da Cruz E Silva,34 J. F. Beirer,51,34 F. Beisiegel,22

M. Belfkir,4 G. Bella,157 L. Bellagamba,21b A. Bellerive,32 P. Bellos,19 K. Beloborodov,118b,118a K. Belotskiy,109

N. L. Belyaev,109 D. Benchekroun,33a Y. Benhammou,157 D. P. Benjamin,27 M. Benoit,27 J. R. Bensinger,24 S. Bentvelsen,116

L. Beresford,34 M. Beretta,49 D. Berge,17 E. Bergeaas Kuutmann,167 N. Berger,4 B. Bergmann,137 L. J. Bergsten,24

J. Beringer,16 S. Berlendis,6 G. Bernardi,131 C. Bernius,149 F. U. Bernlochner,22 T. Berry,91 P. Berta,44 A. Berthold,46

I. A. Bertram,87 O. Bessidskaia Bylund,177 S. Bethke,112 A. Betti,40 A. J. Bevan,90 S. Bhatta,151 D. S. Bhattacharya,172

P. Bhattarai,24 V. S. Bhopatkar,5 R. Bi,134 R. M. Bianchi,134 O. Biebel,111 R. Bielski,34 N. V. Biesuz,69a,69b M. Biglietti,72a

T. R. V. Billoud,137 M. Bindi,51 A. Bingul,11d C. Bini,70a,70b S. Biondi,21b,21a C. J. Birch-sykes,98 G. A. Bird,19,139

M. Birman,175 T. Bisanz,34 J. P. Biswal,2 D. Biswas,176,g A. Bitadze,98 C. Bittrich,46 K. Bjørke,129 I. Bloch,44 C. Blocker,24

A. Blue,55 U. Blumenschein,90 J. Blumenthal,97 G. J. Bobbink,116 V. S. Bobrovnikov,118b,118a D. Bogavac,12

A. G. Bogdanchikov,118b,118a C. Bohm,43a V. Boisvert,91 P. Bokan,44 T. Bold,81a M. Bomben,131 M. Bona,90
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L. Jeanty,127 J. Jejelava,155a,nn P. Jenni,50,aa S. Jézéquel,4 J. Jia,151 Z. Jia,13c Y. Jiang,58a S. Jiggins,50 J. Jimenez Pena,112

S. Jin,13c A. Jinaru,25b O. Jinnouchi,160 H. Jivan,31f P. Johansson,145 K. A. Johns,6 C. A. Johnson,63 D. M. Jones,30

E. Jones,173 R.W. L. Jones,87 T. J. Jones,88 J. Jovicevic,51 X. Ju,16 J. J. Junggeburth,34 A. Juste Rozas,12,u A. Kaczmarska,82

M. Kado,70a,70b H. Kagan,123 M. Kagan,149 A. Kahn,37 C. Kahra,97 T. Kaji,174 E. Kajomovitz,156 C.W. Kalderon,27

A. Kaluza,97 A. Kamenshchikov,119 M. Kaneda,159 N. J. Kang,141 S. Kang,76 Y. Kano,113 J. Kanzaki,79 D. Kar,31f

K. Karava,130 M. J. Kareem,163b I. Karkanias,158 S. N. Karpov,77 Z. M. Karpova,77 V. Kartvelishvili,87 A. N. Karyukhin,119

E. Kasimi,158 C. Kato,58d J. Katzy,44 K. Kawade,146 K. Kawagoe,85 T. Kawaguchi,113 T. Kawamoto,140 G. Kawamura,51

E. F. Kay,171 F. I. Kaya,165 S. Kazakos,12 V. F. Kazanin,118b,118a Y. Ke,151 J. M. Keaveney,31a R. Keeler,171 J. S. Keller,32

D. Kelsey,152 J. J. Kempster,19 J. Kendrick,19 K. E. Kennedy,37 O. Kepka,136 S. Kersten,177 B. P. Kerševan,89

S. Ketabchi Haghighat,162 M. Khandoga,131 A. Khanov,125 A. G. Kharlamov,118b,118a T. Kharlamova,118b,118a E. E. Khoda,170

T. J. Khoo,17 G. Khoriauli,172 E. Khramov,77 J. Khubua,155b S. Kido,80 M. Kiehn,34 A. Kilgallon,127 E. Kim,160 Y. K. Kim,35

N. Kimura,92 A. Kirchhoff,51 D. Kirchmeier,46 J. Kirk,139 A. E. Kiryunin,112 T. Kishimoto,159 D. P. Kisliuk,162 V. Kitali,44

C. Kitsaki,9 O. Kivernyk,22 T. Klapdor-Kleingrothaus,50 M. Klassen,59a C. Klein,32 L. Klein,172 M. H. Klein,103 M. Klein,88

U. Klein,88 P. Klimek,34 A. Klimentov,27 F. Klimpel,34 T. Klingl,22 T. Klioutchnikova,34 F. F. Klitzner,111 P. Kluit,116

S. Kluth,112 E. Kneringer,74 T. M. Knight,162 A. Knue,50 D. Kobayashi,85 M. Kobel,46 M. Kocian,149 T. Kodama,159

P. Kodys,138 D. M. Koeck,152 P. T. Koenig,22 T. Koffas,32 N. M. Köhler,34 M. Kolb,140 I. Koletsou,4 T. Komarek,126

K. Köneke,50 A. X. Y. Kong,1 T. Kono,122 V. Konstantinides,92 N. Konstantinidis,92 B. Konya,94 R. Kopeliansky,63

S. Koperny,81a K. Korcyl,82 K. Kordas,158 G. Koren,157 A. Korn,92 S. Korn,51 I. Korolkov,12 E. V. Korolkova,145

N. Korotkova,110 B. Kortman,116 O. Kortner,112 S. Kortner,112 V. V. Kostyukhin,145,161 A. Kotsokechagia,62 A. Kotwal,47

A. Koulouris,34 A. Kourkoumeli-Charalampidi,68a,68b C. Kourkoumelis,8 E. Kourlitis,5 R. Kowalewski,171 W. Kozanecki,140

A. S. Kozhin,119 V. A. Kramarenko,110 G. Kramberger,89 D. Krasnopevtsev,58a M.W. Krasny,131 A. Krasznahorkay,34

J. A. Kremer,97 J. Kretzschmar,88 K. Kreul,17 P. Krieger,162 F. Krieter,111 S. Krishnamurthy,100 A. Krishnan,59b M. Krivos,138

K. Krizka,16 K. Kroeninger,45 H. Kroha,112 J. Kroll,136 J. Kroll,132 K. S. Krowpman,104 U. Kruchonak,77 H. Krüger,22

N. Krumnack,76 M. C. Kruse,47 J. A. Krzysiak,82 A. Kubota,160 O. Kuchinskaia,161 S. Kuday,3b D. Kuechler,44

J. T. Kuechler,44 S. Kuehn,34 T. Kuhl,44 V. Kukhtin,77 Y. Kulchitsky,105,bb S. Kuleshov,142b M. Kumar,31f N. Kumari,99

M. Kuna,56 A. Kupco,136 T. Kupfer,45 O. Kuprash,50 H. Kurashige,80 L. L. Kurchaninov,163a Y. A. Kurochkin,105

A. Kurova,109 M. G. Kurth,13a,13d E. S. Kuwertz,34 M. Kuze,160 A. K. Kvam,144 J. Kvita,126 T. Kwan,101 C. Lacasta,169

F. Lacava,70a,70b H. Lacker,17 D. Lacour,131 N. N. Lad,92 E. Ladygin,77 R. Lafaye,4 B. Laforge,131 T. Lagouri,142c S. Lai,51

I. K. Lakomiec,81a N. Lalloue,56 J. E. Lambert,124 S. Lammers,63 W. Lampl,6 C. Lampoudis,158 E. Lançon,27 U. Landgraf,50

M. P. J. Landon,90 V. S. Lang,50 J. C. Lange,51 R. J. Langenberg,100 A. J. Lankford,166 F. Lanni,27 K. Lantzsch,22 A. Lanza,68a

PHYSICAL REVIEW LETTERS 127, 271801 (2021)

271801-11



A. Lapertosa,53b,53a J. F. Laporte,140 T. Lari,66a F. Lasagni Manghi,21b,21a M. Lassnig,34 V. Latonova,136 T. S. Lau,60a

A. Laudrain,97 A. Laurier,32 M. Lavorgna,67a,67b S. D. Lawlor,91 M. Lazzaroni,66a,66b B. Le,98 B. Leban,89 A. Lebedev,76

M. LeBlanc,34 T. LeCompte,5 F. Ledroit-Guillon,56 A. C. A. Lee,92 C. A. Lee,27 G. R. Lee,15 L. Lee,57 S. C. Lee,154 S. Lee,76

L. L. Leeuw,31c B. Lefebvre,163a H. P. Lefebvre,91 M. Lefebvre,171 C. Leggett,16 K. Lehmann,148 N. Lehmann,18

G. Lehmann Miotto,34 W. A. Leight,44 A. Leisos,158,cc M. A. L. Leite,78c C. E. Leitgeb,44 R. Leitner,138 K. J. C. Leney,40

T. Lenz,22 S. Leone,69a C. Leonidopoulos,48 A. Leopold,131 C. Leroy,107 R. Les,104 C. G. Lester,30 M. Levchenko,133

J. Levêque,4 D. Levin,103 L. J. Levinson,175 D. J. Lewis,19 B. Li,13b B. Li,58b C. Li,58a C-Q. Li,58c,58d H. Li,58a H. Li,58b J. Li,58c

K. Li,144 L. Li,58c M. Li,13a,13d Q. Y. Li,58a S. Li,58d,dd X. Li,44 Y. Li,44 Z. Li,58b Z. Li,130 Z. Li,101 Z. Li,88 Z. Liang,13a

M. Liberatore,44 B. Liberti,71a K. Lie,60c K. Lin,104 R. A. Linck,63 R. E. Lindley,6 J. H. Lindon,2 A. Linss,44 A. L. Lionti,52

E. Lipeles,132 A. Lipniacka,15 T. M. Liss,168,ee A. Lister,170 J. D. Little,7 B. Liu,13a B. X. Liu,148 J. B. Liu,58a J. K. K. Liu,35

K. Liu,58d,58c M. Liu,58a M. Y. Liu,58a P. Liu,13a X. Liu,58a Y. Liu,44 Y. Liu,13c,13d Y. L. Liu,103 Y.W. Liu,58a M. Livan,68a,68b

A. Lleres,56 J. Llorente Merino,148 S. L. Lloyd,90 E. M. Lobodzinska,44 P. Loch,6 S. Loffredo,71a,71b T. Lohse,17

K. Lohwasser,145 M. Lokajicek,136 J. D. Long,168 R. E. Long,87 I. Longarini,70a,70b L. Longo,34 R. Longo,168 I. Lopez Paz,12

A. Lopez Solis,44 J. Lorenz,111 N. Lorenzo Martinez,4 A. M. Lory,111 A. Lösle,50 X. Lou,43a,43b X. Lou,13a A. Lounis,62

J. Love,5 P. A. Love,87 J. J. Lozano Bahilo,169 G. Lu,13a M. Lu,58a S. Lu,132 Y. J. Lu,61 H. J. Lubatti,144 C. Luci,70a,70b

F. L. Lucio Alves,13c A. Lucotte,56 F. Luehring,63 I. Luise,151 L. Luminari,70a B. Lund-Jensen,150 N. A. Luongo,127

M. S. Lutz,157 D. Lynn,27 H. Lyons,88 R. Lysak,136 E. Lytken,94 F. Lyu,13a V. Lyubushkin,77 T. Lyubushkina,77 H. Ma,27

L. L. Ma,58b Y. Ma,92 D. M. Mac Donell,171 G. Maccarrone,49 C. M. Macdonald,145 J. C. MacDonald,145 R. Madar,36

W. F. Mader,46 M. Madugoda Ralalage Don,125 N. Madysa,46 J. Maeda,80 T. Maeno,27 M. Maerker,46 V. Magerl,50

J. Magro,64a,64c D. J. Mahon,37 C. Maidantchik,78b A. Maio,135a,135b,135d K. Maj,81a O. Majersky,26a S. Majewski,127

N. Makovec,62 B. Malaescu,131 Pa. Malecki,82 V. P. Maleev,133 F. Malek,56 D. Malito,39b,39a U. Mallik,75 C. Malone,30

S. Maltezos,9 S. Malyukov,77 J. Mamuzic,169 G. Mancini,49 J. P. Mandalia,90 I. Mandić,89 L. Manhaes de Andrade Filho,78a

I. M. Maniatis,158 M. Manisha,140 J. Manjarres Ramos,46 K. H. Mankinen,94 A. Mann,111 A. Manousos,74 B. Mansoulie,140

I. Manthos,158 S. Manzoni,116 A. Marantis,158,cc L. Marchese,130 G. Marchiori,131 M. Marcisovsky,136 L. Marcoccia,71a,71b

C. Marcon,94 M. Marjanovic,124 Z. Marshall,16 S. Marti-Garcia,169 T. A. Martin,173 V. J. Martin,48 B. Martin dit Latour,15

L. Martinelli,70a,70b M. Martinez,12,u P. Martinez Agullo,169 V. I. Martinez Outschoorn,100 S. Martin-Haugh,139

V. S. Martoiu,25b A. C. Martyniuk,92 A. Marzin,34 S. R. Maschek,112 L. Masetti,97 T. Mashimo,159 J. Masik,98

A. L. Maslennikov,118b,118a L. Massa,21b,21a P. Massarotti,67a,67b P. Mastrandrea,69a,69b A. Mastroberardino,39b,39a

T. Masubuchi,159 D. Matakias,27 T. Mathisen,167 A. Matic,111 N. Matsuzawa,159 J. Maurer,25b B. Maček,89

D. A. Maximov,118b,118a R. Mazini,154 I. Maznas,158 S. M. Mazza,141 C. Mc Ginn,27 J. P. Mc Gowan,101 S. P. Mc Kee,103

T. G. McCarthy,112 W. P. McCormack,16 E. F. McDonald,102 A. E. McDougall,116 J. A. Mcfayden,152 G. Mchedlidze,155b

M. A. McKay,40 K. D. McLean,171 S. J. McMahon,139 P. C. McNamara,102 R. A. McPherson,171,m J. E. Mdhluli,31f

Z. A. Meadows,100 S. Meehan,34 T. Megy,36 S. Mehlhase,111 A. Mehta,88 B. Meirose,41 D. Melini,156

B. R. Mellado Garcia,31f F. Meloni,44 A. Melzer,22 E. D. Mendes Gouveia,135a A. M. Mendes Jacques Da Costa,19

H. Y. Meng,162 L. Meng,34 S. Menke,112 M. Mentink,34 E. Meoni,39b,39a S. A. M. Merkt,134 C. Merlassino,130 P. Mermod,52,a

L. Merola,67a,67b C. Meroni,66a G. Merz,103 O. Meshkov,110,108 J. K. R. Meshreki,147 J. Metcalfe,5 A. S. Mete,5 C. Meyer,63

J-P. Meyer,140 M. Michetti,17 R. P. Middleton,139 L. Mijović,48 G. Mikenberg,175 M. Mikestikova,136 M. Mikuž,89

H. Mildner,145 A. Milic,162 C. D. Milke,40 D.W. Miller,35 L. S. Miller,32 A. Milov,175 D. A. Milstead,43a,43b

A. A. Minaenko,119 I. A. Minashvili,155b L. Mince,55 A. I. Mincer,121 B. Mindur,81a M. Mineev,77 Y. Minegishi,159 Y. Mino,83

L. M. Mir,12 M. Miralles Lopez,169 M. Mironova,130 T. Mitani,174 V. A. Mitsou,169 M. Mittal,58c O. Miu,162 P. S. Miyagawa,90

Y. Miyazaki,85 A. Mizukami,79 J. U. Mjörnmark,94 T. Mkrtchyan,59a M. Mlynarikova,117 T. Moa,43a,43b S. Mobius,51

K. Mochizuki,107 P. Moder,44 P. Mogg,111 A. F. Mohammed,13a S. Mohapatra,37 G. Mokgatitswane,31f B. Mondal,147

S. Mondal,137 K. Mönig,44 E. Monnier,99 A. Montalbano,148 J. Montejo Berlingen,34 M. Montella,123 F. Monticelli,86

N. Morange,62 A. L. Moreira De Carvalho,135a M. Moreno Llácer,169 C. Moreno Martinez,12 P. Morettini,53b

M. Morgenstern,156 S. Morgenstern,173 D. Mori,148 M. Morii,57 M. Morinaga,159 V. Morisbak,129 A. K. Morley,34

A. P. Morris,92 L. Morvaj,34 P. Moschovakos,34 B. Moser,116 M. Mosidze,155b T. Moskalets,50 P. Moskvitina,115 J. Moss,29,ff

E. J. W. Moyse,100 S. Muanza,99 J. Mueller,134 D. Muenstermann,87 G. A. Mullier,94 J. J. Mullin,132 D. P. Mungo,66a,66b

J. L. Munoz Martinez,12 F. J. Munoz Sanchez,98 M. Murin,98 P. Murin,26b W. J. Murray,173,139 A. Murrone,66a,66b

J. M. Muse,124 M. Muškinja,16 C. Mwewa,27 A. G. Myagkov,119,i A. A. Myers,134 G. Myers,63 M. Myska,137

PHYSICAL REVIEW LETTERS 127, 271801 (2021)

271801-12



B. P. Nachman,16 O. Nackenhorst,45 A. Nag Nag,46 K. Nagai,130 K. Nagano,79 J. L. Nagle,27 E. Nagy,99 A. M. Nairz,34

Y. Nakahama,113 K. Nakamura,79 H. Nanjo,128 F. Napolitano,59a R. Narayan,40 I. Naryshkin,133 M. Naseri,32 C. Nass,22

T. Naumann,44 G. Navarro,20a J. Navarro-Gonzalez,169 P. Y. Nechaeva,108 F. Nechansky,44 T. J. Neep,19 A. Negri,68a,68b

M. Negrini,21b C. Nellist,115 C. Nelson,101 K. Nelson,103 M. E. Nelson,43a,43b S. Nemecek,136 M. Nessi,34,gg

M. S. Neubauer,168 F. Neuhaus,97 J. Neundorf,44 R. Newhouse,170 P. R. Newman,19 C.W. Ng,134 Y. S. Ng,17 Y.W. Y. Ng,166

B. Ngair,33e H. D. N. Nguyen,99 T. Nguyen Manh,107 R. B. Nickerson,130 R. Nicolaidou,140 D. S. Nielsen,38 J. Nielsen,141

M. Niemeyer,51 N. Nikiforou,10 V. Nikolaenko,119,i I. Nikolic-Audit,131 K. Nikolopoulos,19 P. Nilsson,27 H. R. Nindhito,52

A. Nisati,70a N. Nishu,2 R. Nisius,112 T. Nitta,174 T. Nobe,159 D. L. Noel,30 Y. Noguchi,83 I. Nomidis,131 M. A. Nomura,27

M. B. Norfolk,145 R. R. B. Norisam,92 J. Novak,89 T. Novak,44 O. Novgorodova,46 L. Novotny,137 R. Novotny,114

L. Nozka,126 K. Ntekas,166 E. Nurse,92 F. G. Oakham,32,e J. Ocariz,131 A. Ochi,80 I. Ochoa,135a J. P. Ochoa-Ricoux,142a

K. O’Connor,24 S. Oda,85 S. Odaka,79 S. Oerdek,167 A. Ogrodnik,81a A. Oh,98 C. C. Ohm,150 H. Oide,160 R. Oishi,159

M. L. Ojeda,162 Y. Okazaki,83 M.W. O’Keefe,88 Y. Okumura,159 A. Olariu,25b L. F. Oleiro Seabra,135a S. A. Olivares Pino,142c

D. Oliveira Damazio,27 D. Oliveira Goncalves,78a J. L. Oliver,166 M. J. R. Olsson,166 A. Olszewski,82 J. Olszowska,82

Ö. O. Öncel,22 D. C. O’Neil,148 A. P. O’neill,130 A. Onofre,135a,135e P. U. E. Onyisi,10 H. Oppen,129

R. G. Oreamuno Madriz,117 M. J. Oreglia,35 G. E. Orellana,86 D. Orestano,72a,72b N. Orlando,12 R. S. Orr,162 V. O’Shea,55

R. Ospanov,58a G. Otero y Garzon,28 H. Otono,85 P. S. Ott,59a G. J. Ottino,16 M. Ouchrif,33d J. Ouellette,27 F. Ould-Saada,129

A. Ouraou,140,a Q. Ouyang,13a M. Owen,55 R. E. Owen,139 V. E. Ozcan,11c N. Ozturk,7 S. Ozturk,11c J. Pacalt,126

H. A. Pacey,30 K. Pachal,47 A. Pacheco Pages,12 C. Padilla Aranda,12 S. Pagan Griso,16 G. Palacino,63 S. Palazzo,48

S. Palestini,34 M. Palka,81b P. Palni,81a D. K. Panchal,10 C. E. Pandini,52 J. G. Panduro Vazquez,91 P. Pani,44 G. Panizzo,64a,64c

L. Paolozzi,52 C. Papadatos,107 S. Parajuli,40 A. Paramonov,5 C. Paraskevopoulos,9 D. Paredes Hernandez,60b

S. R. Paredes Saenz,130 B. Parida,175 T. H. Park,162 A. J. Parker,29 M. A. Parker,30 F. Parodi,53b,53a E. W. Parrish,117

J. A. Parsons,37 U. Parzefall,50 L. Pascual Dominguez,157 V. R. Pascuzzi,16 F. Pasquali,116 E. Pasqualucci,70a S. Passaggio,53b

F. Pastore,91 P. Pasuwan,43a,43b J. R. Pater,98 A. Pathak,176 J. Patton,88 T. Pauly,34 J. Pearkes,149 M. Pedersen,129

L. Pedraza Diaz,115 R. Pedro,135a T. Peiffer,51 S. V. Peleganchuk,118b,118a O. Penc,136 C. Peng,60b H. Peng,58a M. Penzin,161

B. S. Peralva,78a M.M. Perego,62 A. P. Pereira Peixoto,135a L. Pereira Sanchez,43a,43b D. V. Perepelitsa,27 E. Perez Codina,163a

M. Perganti,9 L. Perini,66a,66b H. Pernegger,34 S. Perrella,34 A. Perrevoort,116 K. Peters,44 R. F. Y. Peters,98 B. A. Petersen,34

T. C. Petersen,38 E. Petit,99 V. Petousis,137 C. Petridou,158 P. Petroff,62 F. Petrucci,72a,72b M. Pettee,178 N. E. Pettersson,34

K. Petukhova,138 A. Peyaud,140 R. Pezoa,142d L. Pezzotti,68a,68b G. Pezzullo,178 T. Pham,102 P.W. Phillips,139

M.W. Phipps,168 G. Piacquadio,151 E. Pianori,16 F. Piazza,66a,66b A. Picazio,100 R. Piegaia,28 D. Pietreanu,25b J. E. Pilcher,35

A. D. Pilkington,98 M. Pinamonti,64a,64c J. L. Pinfold,2 C. Pitman Donaldson,92 D. A. Pizzi,32 L. Pizzimento,71a,71b

A. Pizzini,116 M.-A. Pleier,27 V. Plesanovs,50 V. Pleskot,138 E. Plotnikova,77 P. Podberezko,118b,118a R. Poettgen,94 R. Poggi,52

L. Poggioli,131 I. Pogrebnyak,104 D. Pohl,22 I. Pokharel,51 G. Polesello,68a A. Poley,148,163a A. Policicchio,70a,70b R. Polifka,138

A. Polini,21b C. S. Pollard,44 Z. B. Pollock,123 V. Polychronakos,27 D. Ponomarenko,109 L. Pontecorvo,34 S. Popa,25a

G. A. Popeneciu,25d L. Portales,4 D. M. Portillo Quintero,56 S. Pospisil,137 P. Postolache,25c K. Potamianos,130 I. N. Potrap,77

C. J. Potter,30 H. Potti,1 T. Poulsen,44 J. Poveda,169 T. D. Powell,145 G. Pownall,44 M. E. Pozo Astigarraga,34

A. Prades Ibanez,169 P. Pralavorio,99 M.M. Prapa,42 S. Prell,76 D. Price,98 M. Primavera,65a M. A. Principe Martin,96

M. L. Proffitt,144 N. Proklova,109 K. Prokofiev,60c F. Prokoshin,77 S. Protopopescu,27 J. Proudfoot,5 M. Przybycien,81a

D. Pudzha,133 P. Puzo,62 D. Pyatiizbyantseva,109 J. Qian,103 Y. Qin,98 A. Quadt,51 M. Queitsch-Maitland,34

G. Rabanal Bolanos,57 F. Ragusa,66a,66b G. Rahal,95 J. A. Raine,52 S. Rajagopalan,27 K. Ran,13a,13d D. F. Rassloff,59a

D. M. Rauch,44 S. Rave,97 B. Ravina,55 I. Ravinovich,175 M. Raymond,34 A. L. Read,129 N. P. Readioff,145

D. M. Rebuzzi,68a,68b G. Redlinger,27 K. Reeves,41 D. Reikher,157 A. Reiss,97 A. Rej,147 C. Rembser,34 A. Renardi,44

M. Renda,25b M. B. Rendel,112 A. G. Rennie,55 S. Resconi,66a E. D. Resseguie,16 S. Rettie,92 B. Reynolds,123 E. Reynolds,19

M. Rezaei Estabragh,177 O. L. Rezanova,118b,118a P. Reznicek,138 E. Ricci,73a,73b R. Richter,112 S. Richter,44

E. Richter-Was,81b M. Ridel,131 P. Rieck,112 P. Riedler,34 O. Rifki,44 M. Rijssenbeek,151 A. Rimoldi,68a,68b M. Rimoldi,44

L. Rinaldi,21b T. T. Rinn,168 M. P. Rinnagel,111 G. Ripellino,150 I. Riu,12 P. Rivadeneira,44 J. C. Rivera Vergara,171

F. Rizatdinova,125 E. Rizvi,90 C. Rizzi,52 B. A. Roberts,173 S. H. Robertson,101,m M. Robin,44 D. Robinson,30

C. M. Robles Gajardo,142d M. Robles Manzano,97 A. Robson,55 A. Rocchi,71a,71b C. Roda,69a,69b S. Rodriguez Bosca,59a

A. Rodriguez Rodriguez,50 A. M. Rodríguez Vera,163b S. Roe,34 J. Roggel,177 O. Røhne,129 R. A. Rojas,142d B. Roland,50

C. P. A. Roland,63 J. Roloff,27 A. Romaniouk,109 M. Romano,21b,21a N. Rompotis,88 M. Ronzani,121 L. Roos,131 S. Rosati,70a

PHYSICAL REVIEW LETTERS 127, 271801 (2021)

271801-13



G. Rosin,100 B. J. Rosser,132 E. Rossi,162 E. Rossi,4 E. Rossi,67a,67b L. P. Rossi,53b L. Rossini,44 R. Rosten,123 M. Rotaru,25b

B. Rottler,50 D. Rousseau,62 D. Rousso,30 G. Rovelli,68a,68b A. Roy,10 A. Rozanov,99 Y. Rozen,156 X. Ruan,31f A. J. Ruby,88

T. A. Ruggeri,1 F. Rühr,50 A. Ruiz-Martinez,169 A. Rummler,34 Z. Rurikova,50 N. A. Rusakovich,77 H. L. Russell,34

L. Rustige,36 J. P. Rutherfoord,6 E. M. Rüttinger,145 M. Rybar,138 E. B. Rye,129 A. Ryzhov,119 J. A. Sabater Iglesias,44

P. Sabatini,169 L. Sabetta,70a,70b H. F-W. Sadrozinski,141 R. Sadykov,77 F. Safai Tehrani,70a B. Safarzadeh Samani,152

M. Safdari,149 P. Saha,117 S. Saha,101 M. Sahinsoy,112 A. Sahu,177 M. Saimpert,140 M. Saito,159 T. Saito,159 D. Salamani,52

G. Salamanna,72a,72b A. Salnikov,149 J. Salt,169 A. Salvador Salas,12 D. Salvatore,39b,39a F. Salvatore,152 A. Salzburger,34

D. Sammel,50 D. Sampsonidis,158 D. Sampsonidou,58d,58c J. Sánchez,169 A. Sanchez Pineda,4 V. Sanchez Sebastian,169

H. Sandaker,129 C. O. Sander,44 I. G. Sanderswood,87 J. A. Sandesara,100 M. Sandhoff,177 C. Sandoval,20b D. P. C. Sankey,139

M. Sannino,53b,53a Y. Sano,113 A. Sansoni,49 C. Santoni,36 H. Santos,135a,135b S. N. Santpur,16 A. Santra,175 K. A. Saoucha,145

A. Sapronov,77 J. G. Saraiva,135a,135d J. Sardain,99 O. Sasaki,79 K. Sato,164 C. Sauer,59b F. Sauerburger,50 E. Sauvan,4

P. Savard,162,e R. Sawada,159 C. Sawyer,139 L. Sawyer,93 I. Sayago Galvan,169 C. Sbarra,21b A. Sbrizzi,64a,64c T. Scanlon,92

J. Schaarschmidt,144 P. Schacht,112 D. Schaefer,35 L. Schaefer,132 U. Schäfer,97 A. C. Schaffer,62 D. Schaile,111

R. D. Schamberger,151 E. Schanet,111 C. Scharf,17 N. Scharmberg,98 V. A. Schegelsky,133 D. Scheirich,138 F. Schenck,17

M. Schernau,166 C. Schiavi,53b,53a L. K. Schildgen,22 Z. M. Schillaci,24 E. J. Schioppa,65a,65b M. Schioppa,39b,39a B. Schlag,97

K. E. Schleicher,50 S. Schlenker,34 K. Schmieden,97 C. Schmitt,97 S. Schmitt,44 L. Schoeffel,140 A. Schoening,59b

P. G. Scholer,50 E. Schopf,130 M. Schott,97 J. Schovancova,34 S. Schramm,52 F. Schroeder,177 H-C. Schultz-Coulon,59a

M. Schumacher,50 B. A. Schumm,141 Ph. Schune,140 A. Schwartzman,149 T. A. Schwarz,103 Ph. Schwemling,140

R. Schwienhorst,104 A. Sciandra,141 G. Sciolla,24 F. Scuri,69a F. Scutti,102 C. D. Sebastiani,88 K. Sedlaczek,45 P. Seema,17

S. C. Seidel,114 A. Seiden,141 B. D. Seidlitz,27 T. Seiss,35 C. Seitz,44 J. M. Seixas,78b G. Sekhniaidze,67a S. J. Sekula,40

L. P. Selem,4 N. Semprini-Cesari,21b,21a S. Sen,47 C. Serfon,27 L. Serin,62 L. Serkin,64a,64b M. Sessa,58a H. Severini,124

S. Sevova,149 F. Sforza,53b,53a A. Sfyrla,52 E. Shabalina,51 R. Shaheen,150 J. D. Shahinian,132 N.W. Shaikh,43a,43b

D. Shaked Renous,175 L. Y. Shan,13a M. Shapiro,16 A. Sharma,34 A. S. Sharma,1 S. Sharma,44 P. B. Shatalov,120 K. Shaw,152

S. M. Shaw,98 P. Sherwood,92 L. Shi,92 C. O. Shimmin,178 Y. Shimogama,174 J. D. Shinner,91 I. P. J. Shipsey,130 S. Shirabe,52

M. Shiyakova,77 J. Shlomi,175 M. J. Shochet,35 J. Shojaii,102 D. R. Shope,150 S. Shrestha,123 E. M. Shrif,31f M. J. Shroff,171

E. Shulga,175 P. Sicho,136 A. M. Sickles,168 E. Sideras Haddad,31f O. Sidiropoulou,34 A. Sidoti,21b,21a F. Siegert,46

Dj. Sijacki,14 M. V. Silva Oliveira,34 S. B. Silverstein,43a S. Simion,62 R. Simoniello,34 S. Simsek,11b P. Sinervo,162

V. Sinetckii,110 S. Singh,148 S. Sinha,44 S. Sinha,31f M. Sioli,21b,21a I. Siral,127 S. Yu. Sivoklokov,110 J. Sjölin,43a,43b A. Skaf,51

E. Skorda,94 P. Skubic,124 M. Slawinska,82 K. Sliwa,165 V. Smakhtin,175 B. H. Smart,139 J. Smiesko,138 S. Yu. Smirnov,109

Y. Smirnov,109 L. N. Smirnova,110,hh O. Smirnova,94 E. A. Smith,35 H. A. Smith,130 M. Smizanska,87 K. Smolek,137

A. Smykiewicz,82 A. A. Snesarev,108 H. L. Snoek,116 S. Snyder,27 R. Sobie,171,m A. Soffer,157 F. Sohns,51

C. A. Solans Sanchez,34 E. Yu. Soldatov,109 U. Soldevila,169 A. A. Solodkov,119 S. Solomon,50 A. Soloshenko,77

O. V. Solovyanov,119 V. Solovyev,133 P. Sommer,145 H. Son,165 A. Sonay,12 W. Y. Song,163b A. Sopczak,137 A. L. Sopio,92

F. Sopkova,26b S. Sottocornola,68a,68b R. Soualah,64a,64c A. M. Soukharev,118b,118a Z. Soumaimi,33e D. South,44

S. Spagnolo,65a,65b M. Spalla,112 M. Spangenberg,173 F. Spanò,91 D. Sperlich,50 T. M. Spieker,59a G. Spigo,34 M. Spina,152

D. P. Spiteri,55 M. Spousta,138 A. Stabile,66a,66b B. L. Stamas,117 R. Stamen,59a M. Stamenkovic,116 A. Stampekis,19

M. Standke,22 E. Stanecka,82 B. Stanislaus,34 M.M. Stanitzki,44 M. Stankaityte,130 B. Stapf,44 E. A. Starchenko,119

G. H. Stark,141 J. Stark,99 D. M. Starko,163b P. Staroba,136 P. Starovoitov,59a S. Stärz,101 R. Staszewski,82 G. Stavropoulos,42

P. Steinberg,27 A. L. Steinhebel,127 B. Stelzer,148,163a H. J. Stelzer,134 O. Stelzer-Chilton,163a H. Stenzel,54 T. J. Stevenson,152

G. A. Stewart,34 M. C. Stockton,34 G. Stoicea,25b M. Stolarski,135a S. Stonjek,112 A. Straessner,46 J. Strandberg,150

S. Strandberg,43a,43b M. Strauss,124 T. Strebler,99 P. Strizenec,26b R. Ströhmer,172 D. M. Strom,127 L. R. Strom,44

R. Stroynowski,40 A. Strubig,43a,43b S. A. Stucci,27 B. Stugu,15 J. Stupak,124 N. A. Styles,44 D. Su,149 S. Su,58a W. Su,58d,144,58c

X. Su,58a N. B. Suarez,134 K. Sugizaki,159 V. V. Sulin,108 M. J. Sullivan,88 D. M. S. Sultan,52 S. Sultansoy,3c T. Sumida,83

S. Sun,103 S. Sun,176 X. Sun,98 O. Sunneborn Gudnadottir,167 C. J. E. Suster,153 M. R. Sutton,152 M. Svatos,136

M. Swiatlowski,163a T. Swirski,172 I. Sykora,26a M. Sykora,138 T. Sykora,138 D. Ta,97 K. Tackmann,44,ii A. Taffard,166

R. Tafirout,163a E. Tagiev,119 R. H. M. Taibah,131 R. Takashima,84 K. Takeda,80 T. Takeshita,146 E. P. Takeva,48 Y. Takubo,79

M. Talby,99 A. A. Talyshev,118b,118a K. C. Tam,60b N. M. Tamir,157 A. Tanaka,159 J. Tanaka,159 R. Tanaka,62 Z. Tao,170

S. Tapia Araya,76 S. Tapprogge,97 A. Tarek Abouelfadl Mohamed,104 S. Tarem,156 K. Tariq,58b G. Tarna,25b,jj

G. F. Tartarelli,66a P. Tas,138 M. Tasevsky,136 E. Tassi,39b,39a G. Tateno,159 Y. Tayalati,33e G. N. Taylor,102 W. Taylor,163b

PHYSICAL REVIEW LETTERS 127, 271801 (2021)

271801-14



H. Teagle,88 A. S. Tee,176 R. Teixeira De Lima,149 P. Teixeira-Dias,91 H. Ten Kate,34 J. J. Teoh,116 K. Terashi,159 J. Terron,96

S. Terzo,12 M. Testa,49 R. J. Teuscher,162,m N. Themistokleous,48 T. Theveneaux-Pelzer,17 O. Thielmann,177 D.W. Thomas,91

J. P. Thomas,19 E. A. Thompson,44 P. D. Thompson,19 E. Thomson,132 E. J. Thorpe,90 Y. Tian,51 V. O. Tikhomirov,108,109

Yu. A. Tikhonov,118b,118a S. Timoshenko,109 P. Tipton,178 S. Tisserant,99 S. H. Tlou,31f A. Tnourji,36 K. Todome,21b,21a

S. Todorova-Nova,138 S. Todt,46 M. Togawa,79 J. Tojo,85 S. Tokár,26a K. Tokushuku,79 E. Tolley,123 R. Tombs,30

M. Tomoto,79,113 L. Tompkins,149 P. Tornambe,100 E. Torrence,127 H. Torres,46 E. Torró Pastor,169 M. Toscani,28 C. Tosciri,35

J. Toth,99,kk D. R. Tovey,145 A. Traeet,15 C. J. Treado,121 T. Trefzger,172 A. Tricoli,27 I. M. Trigger,163a S. Trincaz-Duvoid,131
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56LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France

57Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
58aDepartment of Modern Physics and State Key Laboratory of Particle Detection and Electronics,

University of Science and Technology of China, Hefei, China
58bInstitute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE),

Shandong University, Qingdao, China
58cSchool of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MOE),

SKLPPC, Shanghai, China
58dTsung-Dao Lee Institute, Shanghai, China

59aKirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
59bPhysikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

60aDepartment of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
60bDepartment of Physics, University of Hong Kong, Hong Kong, China

60cDepartment of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong, China

61Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
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95Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
96Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain

97Institut für Physik, Universität Mainz, Mainz, Germany
98School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

99CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
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