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A B S T R A C T   

Physics-based multi-scale in silico models offer an excellent opportunity to study the effects of heterogeneous 
tissue damage on airflow and pressure distributions in COVID-19-afflicted lungs. The main objective of this study 
is to develop a computational modeling workflow, coupling airflow and tissue mechanics as the first step towards 
a virtual hypothesis-testing platform for studying injury mechanics of COVID-19-afflicted lungs. We developed a 
CT-based modeling approach to simulate the regional changes in lung dynamics associated with heterogeneous 
subject-specific COVID-19-induced damage patterns in the parenchyma. Furthermore, we investigated the effect 
of various levels of inflammation in a meso-scale acinar mechanics model on global lung dynamics. Our simu
lation results showed that as the severity of damage in the patient’s right lower, left lower, and to some extent in 
the right upper lobe increased, ventilation was redistributed to the least injured right middle and left upper lobes. 
Furthermore, our multi-scale model reasonably simulated a decrease in overall tidal volume as the level of tissue 
injury and surfactant loss in the meso-scale acinar mechanics model was increased. This study presents a major 
step towards multi-scale computational modeling workflows capable of simulating the effect of subject-specific 
heterogenous COVID-19-induced lung damage on ventilation dynamics.   

1. Introduction 

Coronavirus Disease 2019 (COVID-19) infection due to the Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus can 
cause extensive damage to many tissues and organs, including the lungs. 
Millions of lives have been lost to the disease, while others face long- 
term effects of this viral infection [1,2]. Though computer models may 
assist with managing and tracking the spread of COVID-19, yet new 
variants of the SARS-CoV-2 virus may spread more easily and can pose 
an increased risk of severe disease and other complications linked to 
COVID-19 [3,4]. Alveolar damage is seen in imaging and histopatho
logical studies of COVID-19 infected lungs [5], and heterogeneous 
damage throughout the acinar regions of the lung is observed in 
computed tomography (CT) images [5]. In particular, CT imaging can 
provide useful spatial information on patterns of lung injury, including 
ground-glass opacities (GGO) and areas of consolidation [6]. Also, some 
patients suffering from COVID-19 acute respiratory distress syndrome 

(CARDS) exhibit increased hypoxemia compared to typical acute res
piratory distress syndrome (ARDS) [7]. However, there is currently little 
quantitative information on how acinar level patho-mechanics 
contribute to whole lung function in COVID-19 patients. A better un
derstanding of how COVID-19 impairs regional ventilation may give 
insight into overall lung dynamics specific to CARDS. 

To provide a four-dimensional view of airflow patterns in the lung, 
CT images can be used to develop geometric models of the lung, which 
then can be combined with fluid flow and tissue mechanics physics- 
based models. Such physics-based computer models of the lung pre
sent an opportunity for gaining valuable insights into pulmonary 
ventilation dynamics [8,9]. For instance, computational modeling of 
lung dynamics across multiple spatial scales may allow a deeper un
derstanding of how mechanical changes at the alveolar and acinar levels 
affect lobar and whole-lung dynamics in CARDS. Previous physics-based 
computer models of the lung have provided a detailed four-dimensional 
view of pulmonary ventilation in both healthy and disease states. In the 
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aforementioned computer models, CT images were used to determine 
lobar volumes and airway branching patterns of large airways with 
small peripheral airways constructed utilizing volume-filling tree-gen
erating algorithms [10,11] and the coupling of airway trees to compliant 
acinar regions provided realistic flow distribution among the lung lobes 
[12]. Along with realistic geometries for airways and compliant acinar 
regions, in silico models have also incorporated other factors such as 
tissue deformation, gravity, acinar-level interdependence, and surfac
tant all of which contribute to distribution of ventilation in the healthy 
lung [13–15]. 

Disease can lead to remodeling of airways and parenchymal tissue 
thus inducing changes in airflow patterns and tissue mechanics that can 
be implemented in in silico models [16]. Insight into the effects of disease 
on ventilation and pressure distribution of the lung has been gained 
through modification of model geometry and mechanics in previous 
studies [17,18]. Additionally, information on distribution and mani
festation of damage throughout the lung is important for realistic rep
resentation of disease states [18]. Registration of high resolution and 4D 
CT images has been used to identify damaged areas of parenchyma and 
changes in airway geometry and regional ventilation in disease states 
[16,19]. Utilization of imaging techniques also opened the door for 
patient-specific modeling of airflow and pressure distribution [10,18]. 
Multi-scale in silico lung models with geometries resolved from CT im
aging have proven useful in understanding various pulmonary diseases 
like cystic fibrosis, chronic obstructive pulmonary disease (COPD) and 
asthma [18,20,21]. However, there is a need for computer modeling 
studies on pulmonary ventilation dynamics in COVID-19 patients.. 

The main objective of this study is to develop a physics-based in silico 
modeling workflow for studying the pulmonary ventilation of COVID- 
19-infected lungs by bringing existing methodologies for coupling 
airflow and lung tissue mechanics together [10,11,22]. The presented in 
silico modeling approach is the foundation and first step towards a vir
tual hypothesis testing platform for a better understanding of COVID-19 
pulmonary dynamics utilizing 4D CT data from COVID-19-infected 
lungs and accoutning for patient-specific lung geometry and disease 
distribution with varying levels of damage. In addition, we aimed to 
develop an in silico multi-scale approach to simulate and compare the 
regional changes in lung dynamics associated with heterogeneous 
subject-specific COVID-19-induced damage in the parenchyma of the 
lung. To this end, we present an investigation of the effect of various 
levels of inflammation in a meso-scale acinar mechanics model on global 
lung dynamics. 

2. Methods 

2.1. Imaging 

This study utilized the 4D CT scan of a male patient recently hospi
talized in Vidant Medical Center (Greenville, North Carolina, USA) for 
an advanced case of COVID-19. The 4D CT scan was obtained during 
tidal breathing using an Optima CT580 RT scanner (GE Healthcare, 
Waukesha, WI). The methodology used in this paper was approved by 
the East Carolina University and Medical Center Institutional Review 
Board (UMCIRB) with study ID 20–001447. Informed consent was ob
tained from the patient. Sorting of the CT images into phases of the 
breathing cycle was accomplished using the Varian 4DCT Real-time 
Position Management (RPM) system (Varian Medical Systems, Palo 
Alto, CA). When a series of CT images was attained over a time com
parable to that of a normal breathing cycle, the Varian RPM camera 
captured the patient’s real-time external chest motion amplitude, and 
Advantage 4D (GE Healthcare, Waukesha, WI) software retrospectively 
sorted the CT data into corresponding phases of the respiratory cycle 
from 0% to 90%, with 0% corresponding to end-inspiration and 50% 
corresponding to end-expiration [23]. The images were taken at 120 
kVp, 300 mAs, and 20 mm collimation and were reconstructed through a 
512 × 512 matrix with a 2.5 mm slice thickness and reconstructed 

retrospectively to a slice thickness of 1.25 mm. 

2.2. Segmentation 

Following imaging, the geometry of the major airways visible in CT 
and lungs lobes was segmented. The major conducting airway geometry 
was segmented from the end-inspiratory phase using a combination of 
dynamic region growing and manual editing in Materialise Mimics 23.0 
(Materialise NV, Belgium) (Fig. 1a). Centerline detection and extraction 
as described in Bordas et al.‘s work [10] for the major airways were also 
achieved using Mimics 23.0. Five different lung lobe (right upper, right 
middle, right lower, left upper, and left lower) geometries were 
segmented at the end-inspiratory phase and end-expiratory phase using 
the Chest Imaging Platform [24] available in 3D Slicer [25,26]. Total 
segmented lobe volume was validated against total segmented lung 
volume. 3D Slicer was used to segment the COVID-19 affected GGO and 
consolidated regions of the lungs at end-inspiratory and end-expiratory 
phases using the LungCTAnalyzer [27] extension of the Chest Imaging 
Platform (Fig. 1b). This segmentation was based on Hounsfield unit 
(HU) values in the CT images. Inflated lung Hounsfield unit thresholds 
were determined based on the study by Kassin et al. [28] with a range of 
−1000 to −650 HU. The difference between ground glass opacities and 
consolidated regions were determined based on the 3D Slicer Chest 
Imaging Platform [24] and Lung CT Analyzer [27] (https://github. 
com/rbumm/SlicerLungCTAnalyzer) extensions preset values for 
COVID-19 lung analysis. 

2.3. Geometry 

Segmented major airway geometry was limited to the first four to six 
generations. Further airway segmentation was constrained by CT image 
resolution. Subsequently, a space-filling airway generation algorithm 
with random heterogeneity based on the work of Tawhai et al. [11,29] 
was used to create up to 16 generations of conducting airways. Airway 
diameter, length, and branching angles were based on the segmented 
geometry and lung lobe models (Fig. 1c) following the methods 
described in Refs. [29–31]. The number of acini per lung was approxi
mately 15,000 [32]. The lumen diameter for each one-dimensional line 
segment was assigned based on the Horsfield number [10,11]: 

log D(x) = (x − Max)log RdH + log DMax (1)  

where x, D, Max, DMax represented the current Horsfield order, the 
airway diameter, the maximum Horsfield order and the maximum 
diameter, respectively. RdH represented the anti-log slope of airway 
diameter plotted against Horsfield order and was assigned to be 1.15. 

2.4. Airflow and acinar mechanics model 

Here, our multi-scale computational models of the lung are devel
oped through the C++ simulation package CHASTE (Cardiac, Heart, and 
Soft Tissue Environment) [10,33]. Airflow in the airway tree geometry 
was described by a reduced dimensional airway model implemented in 
CHASTE, which was coupled to the tissue mechanics acinar models [10, 
34]. The flow was presented as a modified Poiseuille flow following the 
approach developed by Swan et al. [13] and Ismail et al. [12] and by 
assuming isotropic expansion of acini. Corrections to the dynamic 
resistance based on work by Pedley et al. [10,35] were applied as shown 
in Equation (2): 

R = γ
(

Re
Daw

law

)1/2

Rp (2)  

where R is the dynamic resistance, Rp is the Poiseuille resistance, Daw 
and law are the diameter and length of an airway, respectively, Re is the 
Reynold’s number, and γ was set to be generation-dependent based on 
the work of van Ertbruggen et al. and Ismail et al. [12,36]. 
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Atmospheric pressure was assigned at the trachea, hence airflow into 
the lungs was driven by variations in the volume of acini as a function of 
changes in the transpulmonary pressure during breathing. All nodal 
pressures and edge fluxes were solved for simultaneously using multi
frontal lower–upper factorization solver UMFPACK. Flow from the 
airway model was fed into each acinar model to calculate the change in 
acinar volume using the stretch ratio during each time step taken by the 
solver. 

A sigmoidal acinar mechanics model based on the work of Fujioka 
et al. and Venegas et al. [37,38] was coupled to the generated airway 
tree in the simulations (Fig. 2). In this model, as shown in Equation (3), 
Va is the acinar volume, Pa is the transpulmonary pressure for each 
acinus (defined as the difference between pressure in the acinus and the 
pleural pressure), and A, B, C, and D are constants that vary based on 
surfactant level and consequently tissue compliance: 

Va = A +
B

1 + e−(Pa−C)/D (3) 

Time-derivative of equation (3) was solved at the end of each ter
minal bronchiole, where an acinus was connected to an airway, thus 
coupling the pressure in the airway tree and the acinar model. 

2.5. Boundary conditions and simulation settings 

2.5.1. Boundary and loading conditions 
Pulmonary ventilation dynamics during tidal breathing was simu

lated in accordance with the aforementioned coupled airway-acinar 
model. To simulate tidal breathing, a varying pleural pressure was 
applied at the acini while a constant atmospheric pressure boundary 
condition was applied at the trachea. The varying pleural pressure was 
assumed to be [12,40]: 

Ppl = Ppl max +
ΔPpl

2

(

1 − cos
(

2πt
T

+ Φ
)

+ π
)

(4)  

where Ppl max = −5 cmH2O (-490 Pa), ΔPpl = −3.2 cmH2O (-314 Pa), 
and the phase shift Φ = π/11. 

2.5.2. Simulation of COVID-19-afflicted lungs 
The coupled airway-acinar model was used to simulate COVID-19 

lung damage based on the segmented CT images and the associated 
region-specific levels of damage, corresponding to GGO and consoli
dated regions. Since the CT images were obtained from a patient 
recovering from advanced COVID-19, hypothetical healthy lung simu
lations were also performed to provide a basis for comparison of the 
results. To simulate the changes between healthy and COVID-19 afflic
ted lung function, different mechanical behavior of the sigmoidal acinar 
model (Fig. 2) was implemented based on the amount of surfactant and 
compliance of the acinar units. Simulations were run for the healthy case 
considering the normal amount of surfactant. The COVID-19 affected 
lung simulations considered the reduced amount of surfactant and 
decreased compliance in both GGOs and consolidation regions [41–43]. 

Previously segmented GGO and consolidated regions in lung CT 
images were used to identify acinar regions affected by COVID-19. We 
assumed GGOs to represent partial filling of air spaces while consoli
dated regions may signify more severe damage where a large proportion 
of airspace is filled with liquid and inflammatory infiltrates [5,6]. While 
the airspace becomes compromised and inflamed, as seen in CT images 
of GGO and consolidation regions, the amount of surfactant and 
compliance of the acini can be altered [38,44,45]. Different acinar 
properties were applied to the GGO and consolidated regions to simulate 
these varying levels of tissue damage. Two simulations were run to 
visualize the effects of varying levels of COVID-19 severity: for the first 
simulation, a 20% reduction in the surfactant amount was used for the 

Fig. 1. CT image as segmented in 3D Slicer and Mimics software. (a) Purple regions show major airways at end-inspiration. (b) Areas affected by COVID-19 damage, 
such as GGO (orange) and consolidated (blue) are highlighted based on HU values used for segmentation. The remaining dark grey areas are aerated lung tissue; (c) 
Geometrical representation of the entire generated tree, viewed from the front, including the airways generated using the space-filling algorithm. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. The sigmoidal model derived from Refs. [22,39] used in a simula
tion for healthy lung and COVID-19 affected lungs. The pressure – volume 
curve for a healthy lung is shown in blue, with pressure being equal to the 
transpulmonary pressure. As damage progresses in the lungs, there is a 
progressive reduction of surfactant amount and compliance of the acinar 
units. The decrease in surfactant shifts the pressure-volume curves to the 
right, as seen in the 20% reduced surfactant (orange), 40% reduced sur
factant (grey), and 60% reduced surfactant (yellow) cases. The dashed 
grey lines indicate the pressure range used for the simulation. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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GGO regions, and 40% reduction in the surfactant for the consolidation 
regions was considered. For the second simulation, a 20% reduction of 
surfactant in the GGO regions and a 60% reduction in the consolidated 
regions was considered (Fig. 2). 

Coefficients for the healthy sigmoidal model were fit to physiologi
cally relevant coefficients based on patient-specific lung volumes [39]. 
Lung volumes were estimated based on the gender, height, and age of 
the COVID-19 positive patient used for CT scans in this study: male, 
167.6 cm, 51 years, and 88.5 kg, respectively [46]. 

The following equations from Boren et al. [47] were used to estimate 
lung capacities and volumes for a healthy adult male: 

TLC = 0.078H − 7.30 (5)  

FRC = 0.032H − 2.94 (6)  

RV = 0.019H + 0.0115Ag − 2.24 (7)  

VC = 0.052H − 0.022Ag − 3.60 (8)  

where TLC is the total lung capacity in liters, H is the subject’s height in 
centimeters, FRC is functional residual capacity in liters, RV is residual 
volume in liters, Ag is the subject’s age in years, and VC is vital capacity 
in liters. Based on these equations for the patient in this study, we found 
that TLC = 5.77 L, FRC = 2.42 L, RV = 1.53 L, and VC = 3.99 L. Esti
mated lung volumes were then used to define coefficients A and B, as A is 
approximated by the residual volume and B is approximated by the vital 
capacity [39]. The values of C and D in the sigmoidal model correspond 
to the inflection point of the curve and the pressure range in which the 
volume change takes place, respectively [39]. As such, C and D are not as 
easily determined by available physiological data and were estimated 
such that in the healthy case, they were estimated based on the calcu
lated FRC and the tidal volume pressure range. 

Then, to define the regions of GGO and consolidation, C and D co
efficients signifying reduced surfactant as reported by Fujioka et al. 
[38], were scaled to fit our patient data. Fujioka et al.‘s [38] coefficients 
were limited to normal surfactant, 20% reduced, and 40% reduced 
surfactant amounts. Coefficients for 60% reduced surfactant was not 
directly available. Hence, the coefficients for 60% reduced surfactant 
were extrapolated. Assumptions for extrapolation were based on work 
by Fujioka et al. [38] that only coefficient C varied markedly when 
surfactant level was changed (Table 1). 

Three different simulations were executed for this study:  

1. A hypothetical control study where the lung was assumed to be 
healthy; GGO and consolidated regions are considered to be normal 
inflated regions with normal surfactant levels.  

2. COVID-19-afflicted lung with 20% reduced surfactant for the GGO 
region and 40% reduced surfactant for the consolidated region  

3. COVID-19-afflicted lung with 20% reduced surfactant for the GGO 
region and 60% reduced surfactant for the consolidated region. 

The total simulation time was 12 s, with each breathing cycle 
assumed to be 4 s between consecutive end-inspirations. The time step 
used by the solver was 0.001 s, and data were saved every 100 time 
steps. A smaller 0.0001 s time step was also tested for the healthy case 
and showed no significant difference in results other than an increase in 

simulation time. Three breathing cycles were executed, with the first 
two cycles discarded so that only steady-state conditions were analyzed. 
Following the onset of steady-state conditions, the data from that 
breathing cycle was used to calculate the flow rate at the trachea, flow 
rate into the individual lobes, total tidal volume of the lungs at different 
time points, the flow rate through individual lobes. Flowcharts sum
marizing the entire model development and simulation process are 
shown in Figs. 3 and 4, respectively. 

3. Results 

In total, three simulations were performed consisting of a hypo
thetical healthy lung with normal surfactant levels as well as two 
COVID-19-afflicted simulations created through reduction of surfactant 
levels based on the degree of damage present in the CT images. The first 
simulation will be referred to as the hypothetical “healthy” case, while 
the second and third simulations will be referred to as “diseased 20–40” 
and “diseased 20–60” cases, respectively. 

Airflow during the simulations was generated due to the negative 
pressure as a result of the acinar expansion. Fig. 5 shows the flow rate of 
air at the trachea and into each lobe after reaching steady-state over an 
entire breathing cycle. Different colored lines represent each simulation 
scenario, with the highest flow rate in the healthy simulation and the 
lowest in the diseased 20–60 simulation. The lobar flow rate values were 
determined by calculating the flow rate at the first airway branch that 
enters each lobe. 

The flow rate at various points in the lung can be integrated to 
determine the total and lobar tidal volumes (Fig. 6). The maximum 
values of tidal volumes for the whole lung and each lobe are also re
ported in Table 2, in addition to the percent change in tidal volumes in 
diseased cases versus the hypothetical healthy case. From Table 2, it can 
be seen that the healthy, diseased 20–40, and diseased 20–60 simulation 
tidal volumes were 0.592 L, 0.392 L, and 0.248 L, respectively. Thus, the 
results in Fig. 5 and Table 2 demonstrate that the tidal volume of the 
whole lung decreases as the severity of COVID-19 in the affected 
consolidated regions increases. It can also be seen in Table 2 that the 
right middle lobe shows the least difference in its tidal volume between 
the healthy and diseased simulations. 

The volumes of GGO and consolidated regions calculated from CT 
images at end-inspiration were also quantified and are presented in 
Table 3. As previously described, these volumes were determined 
directly by thresholding the CT images. Note that actual COVID-19 
affected volumes are likely to be slightly larger than presented, as 
very small unconnected “islands” of damage had to be excluded from 
analysis for volume meshing purposes. In Table 3, “COVID-Afflicted %” 
is the combined portion of consolidated and GGO regions. It can be seen 
that at end-inspiration, the right middle lobe shows the lowest per
centage of damage by COVID-19, followed by the left upper lobe by a 
large margin. The two lobes with the smallest volume of air and the 
highest amount of damage in both states are the left and right lower 
lobes (Table 3). 

Table 4 compares the share of ventilation that goes into each lobe 
during tidal breathing for each of the three simulated scenarios versus 
the values calculated from the CT using images at end-inspiration and 
end-expiration. Based on these results, it can be seen that the right 
middle lobe which shows the lowest COVID-19 infiltration of 29.6% at 
end-inspiration, demonstrates a 10% increase in tidal volume percent 
share as the simulations progress from healthy to the diseased 20–40 and 
20–60 states. The left upper lobe which has a relatively low 45.1% 
infiltration at end-inspiration, shows an increase in tidal volume percent 
share with COVID-19 progression, though not as drastically as the right 
middle lobe, with only a 3.4% increase (Table 4). At end-inspiration, the 
right upper, right lower, and left lower lobes demonstrated remarkable 
COVID-19-induced damage with 58.7%, 78.2%, and 75.0% affliction, 
respectively, and each lobe showed a decrease in tidal volume percent 
share with disease progression. The less-afflicted right upper lobe 

Table 1 
Coefficients for use in the sigmoidal model of equation (4), defining the acinar 
unit’s pressure-volume relationship.   

A (L) B (L) C (Pa) D (Pa) 

Healthy 1.53 4.24 1078.73 449.14 
20% reduced surfactant 1.53 4.24 1420.00 451.11 
40% reduced surfactant 1.53 4.24 1818.15 356.96 
60% reduced surfactant 1.53 4.24 2359.48 356.96  
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showed a far more minor change in tidal volume (−1.6%) than the right 
lower lobe (−6.5%) or the left lower lobe (−6.5%). 

Additionally, Table 4 contains a column showing lobar air volume 
fraction, averaged over inspiration and expiration and converted to a 
percentage, as defined in a Jahani et al. [48] study investigating regional 
healthy lung deformation and ventilation with 4D-CT. This column was 
added for validation purposes to show a general agreement with our 
healthy model and CT-based estimations of lobar ventilation distribu
tion. Note that lungs differ from person to person morphologically, but 
general trends in shape persist in most lungs; in this case, our healthy 
simulation successfully predicts that the left upper lobe is the largest, 
followed by the right lower, right upper, left lower, and right middle 
lobes, which mirrors Jahani et al.‘s results [48]. 

The pressure distributions of the lung in the three different simula
tion scenarios are visualized in Fig. 7. All pressure distribution results 
are shown at both maximum inspiration and maximum expiration. 
Qualitatively, it can be discerned from Fig. 7 that the subject had the 
highest magnitude of pressure during both inhalation and exhalation in 
the right middle lobe and left upper lobe. These results correlate with the 
percentage of healthy (air-filled) acini determined from the CT images 
(Table 3). As these two lobes had the lowest percentage of COVID-19 
affliction, they were expected to have the most unrestricted airflow. It 
is also notable that the three more COVID-19 affected lobes, the right 
upper and right and left lower lobes, show very different pressure dis
tributions and magnitudes when comparing the healthy case to the 
diseased simulations. Furthermore, the diseased simulation scenarios 
show much more heterogeneity in air pressure distribution throughout 
the lung. Table 5 shows the average pressure at the terminal bronchioles 
in the entire lung for each simulation. From these values, it can be seen 
that the healthy lung simulation produced the highest average pressure 
magnitude and the least heterogeneity, while progressive disease states 
caused an increase in standard deviation and a substantial decrease in 
mean pressure. 

4. Discussion 

Few computer modeling studies have been performed with the aim of 
better understanding ventilation dynamics changes in advanced cases of 
COVID-19. Three purely mathematical yet elegant and informative 
models of COVID-19 effects on pulmonary ventilation and perfusion 
were presented by Voutouri et al. [49], Busana et al. [50] and Herrmann 
et al. [51]. Another mathematical modeling study by Weaver et al. [52] 
simulated the effect of increased respiratory effort of patients with 
COVID-19 acute hypoxemic respiratory failure during spontaneous 
breathing on parameters associated with lung injury such as tidal swings 
in pleural pressure. Additionally, a computational fluid dynamics model 
of airflow in the upper airways of COVID-19 patients was also recently 
presented by Pan et al. [53]. In our simulation-based study, a virtual 
physics-based hypothesis-testing platform was developed and presented 
to study lobar ventilation dynamics of COVID-19-infected lungs. In 
particular, the mechanical changes in severely COVID-19-afflicted lungs 
compared to theoretically healthy lungs were modeled and examined in 
a multi-scale modeling framework. To the authors’ knowledge, this is 
the first in silico modeling approach to use 4D CT images of 
COVID-19-induced lung damage to simulate regional airflow and pres
sure distribution in the COVID-19-infected lung. We present this study as 
the first step towards patient-specific physics-based models of 
COVID-19-afflicted lung dynamics and to lay the foundation for more 
detailed and individualized in silico models currently in development by 
our group. The multi-scale approach presented here uses patient-specific 
lung geometry and injury patterns obtained from CT images of a patient 
with advanced COVID-19 and accounts for changes in flow rate into 
individual lobes as a consequence of COVID-19-induced lung injury and 
decreased tissue compliance. Heterogeneous damage in the parenchyma 
of the lung due to COVID-19 was represented through changing the in 
surfactant levels and tissue compliance at the acinar level. In addition, 
our computational models enabled the visualization of acinar-level im
pacts of the infection on global lung dynamics. Images obtained through 
4D CT were processed for efficient image segmentation and conversion 

Fig. 3. Flowchart for generating the airway tree geometric model from CT images. The CT image was segmented to determine major conducting airways, 
lungs, and lobes as well as COVID-19-affected regions. CHASTE [33] was then used to generate the complete airway tree down to terminal bronchioles. 
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to physics-based computer models. This methodology provides a solid 
foundation for future investigations of other potential mechanisms of 
COVID-19 damage to the lungs and the ensuing effects on global lung 
function through a computationally efficient approach. 

Our disease scenario simulation results showing differences in the 
lobar distribution of tidal volume are in agreement with previous studies 
demonstrating that lung damage in advanced ARDS, which resembles 
Type H COVID-19 pneumonia as categorized by Gattinoni et al. [54], 
can decrease the compliance of injured regions to a large extent, hence 
decreasing airflow [55]. As expected, the least damaged lobe (right 
middle, 29.6% damage at end-inhalation) showed a large increase 
(83%) in tidal volume share when comparing the healthy and the most 
severe simulated disease case, and the most damaged lobe (right lower, 
78.2% damage measured at end-inhalation) experienced a significant 
decrease in ventilation share (−35%) in the same comparison. Mean
while, the full lung (56.7% damage at end-inhalation) also showed a 
notable overall reduction in tidal volume when comparing the healthy 
and the most severe simulated disease state (−58%). 

In this study, analysis of damaged regions from the segmented CT 
images showed that lower lobes contained higher amounts of damage 
(combined GGO and consolidated regions) than other lobes (Tables 2 
and 3), in this patient. These findings correspond to those from previous 

studies of CT imaging of COVID-19 lungs [56]. In a study using ven
tilation/perfusion single-photon emission computed tomography com
bined with computed tomography (V/Q SPECT/CT) performed in 
COVID-19 patients, large ventilation defects in the subpleural areas 
were observed [57]. The researchers observed that ventilation defects 
were present in the GGO areas while perfusion was largely preserved. 
However, in more severely damaged areas of the lung where complete 
alveolar filling and parenchymal lesions and fibrosis were present, 
perfusion defects were additionally observed which can be a sign of 
involvement of capillary walls [57]. Furthermore, the researchers pro
posed a potential adaptive mechanism where redistribution of ventila
tion towards the healthy parenchyma occurs [57]. This is indeed what 
our multi-scale model demonstrates: as the severity of damage in the 
right lower, left lower, and to some extent in the right upper lobe was 
increased, ventilation was redistributed to the least injured right middle 
and left upper lobes (Table 4). While our computer model in its current 
version only includes ventilation, we are actively developing a perfusion 
model which will be coupled to our ventilation dynamics model and will 
enable us to simulate microangiopathy induced by COVID-19. 

Our simulations reasonably predicted a decrease in overall tidal 
volume as the level of lung damage and surfactant loss was increased. 
Although preserved compliance has been reported in early CARDS, lungs 

Fig. 4. Flowchart for running the tidal breathing simulation for healthy and diseased lungs. The airway tree model was coupled with the sigmoidal acinar 
model in CHASTE [33] to simulate tidal breathing. Different levels of surfactant reduction were applied to the acinar model to simulate lung function in 
disease states. 
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Fig. 5. Flow through the trachea (a) and each lung lobe (b–f) during tidal breathing over one breathing cycle, plotted by tracking the flow every 100 time steps.  

Fig. 6. Time-dependent volume change of the entire lung, determined at the trachea (a), and individual lobes (b–f). Values for volume change obtained by inte
gration of flow rates. 

Table 2 
Tidal volume of the different lobes during one breathing cycle based on the integration of simulation results.  

Lobes Tidal Volume under different conditions (L) 

Healthy Diseased 20-40 % change between healthy and 20-40 Diseased 20-60 % change between healthy and 20-60 

Whole lung 0.592 0.392 −33.8% 0.248 −58.1% 
Right upper 0.106 0.070 −33.8% 0.040 −61.9% 
Right middle 0.079 0.071 −9.8% 0.060 −23.3% 
Right lower 0.111 0.062 −44.2% 0.030 −72.6% 
Left upper 0.196 0.137 −29.9% 0.091 −53.7% 
Left lower 0.101 0.052 −48.8% 0.026 −74.0%  
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in more advanced COVID-19, such as those of our patient, are reported 
to have decreased compliance, in line with typical ARDS [54]. The 
decrease in tidal volume represents this reduction in compliance, as 
stiffer acini in the pressure range of tidal breathing would have a smaller 
change in volume compared to healthy acini with normal stiffness. 
Overall, the data in this study exhibit trends of decreased airflow to 
areas most affected by COVID-19 damage in an advanced case of the 
infection. The lower lobes showed a greater change in percent share of 
tidal volume in disease state simulations, while the upper lobes showed 
a less overall shift in percent share of tidal volumes and were less 
affected by COVID-19 (Tables 3 and 4). Our hypothetical simulation of 
healthy lung ventilation distribution among the different lobes was in 
qualitative agreement with the results of Jahani et al.‘s [48] 4D CT 
analysis of healthy lungs (Table 4). However, the ventilation distribu
tion was notably altered in the COVID-19-infected lung simulations, 
with less damaged lobes receiving higher portions of tidal volume and 
more damaged lobes receiving a lower share of tidal volume (Table 4). 
Thus, regional differences seen in tidal volume distribution and subse
quent changes in lobar share of tidal volume due to damage hint at how 
heterogenous damage in acinar regions may affect global lung function 
in a region-specific manner. 

However, discrepancies in the lobar share of lung volumes between 
our CT analysis and simulations exist and are most evident when 
considering the right middle lobe (Table 4). The difference in values 
found in our study compared to 4D CT measured values could be the 
result of simplifications and assumptions of our model, specifically not 
accounting for gravity with respect to the position of the patient during 
imaging and the interdependence of gravity and tissue mechanics [58] 
or not incorporating the interdependence of acini [59] and collateral 
ventilation. We would like to emphasize here that the presented work is 
the first step toward patient-specific modeling of COVID-19 lung dy
namics and hence is not intended to make quantitative predictions about 
ventilation dynamics, nor is it meant to serve as a clinical decision 
support system for clinicians at this stage. Rather our aim in this study is 
to lay the foundation for and take the first steps toward developing a 

patient-specific modeling workflow for the investigation of 
COVID-19-afflicted lung dynamics. We acknowledge this study has 
limitations that we intend to address in future studies. For example, a 
uniform pleural pressure was applied to all acini in our models. How
ever, gravity has been shown to affect the spatial distribution of pleural 
pressure, tissue compliance, and acinar volumes [58]. Swan et al. [60] 
showed that even in the healthy lung, distribution of tissue compliance 
is spatially non-uniform. We plan on adding the effect of gravity on 
pleural pressure and tissue compliance distribution in future studies. 

Similarly, collateral ventilation and inter-acinar interactions can 
affect the uniformity of pressure distributions and thus may improve the 
fidelity of human lung digital twins [59]. Airway deformation can also 
affect airflow and pressure distributions but was not included in our 
model; a fluid-structure interaction modeling approach would be able to 
capture the detailed interaction of airflow and airway wall mechanics 
but can be computationally more expensive compared to a 
reduced-order model like the one presented in our study [53,61]. 
Moreover, gas exchange and ventilation-perfusion coupling are impor
tant considerations for comprehensive pulmonary dynamics modeling 
and need to be accounted for in future studies of COVID-19-afflicted 
lungs [62,63]. Likewise, the lack of spirometry data of the patient and 
not accounting for lung motion via image registration did not allow for 
the implementation of patient-specific boundary conditions and direct 
validation of the model against 4D CT data. We are developing image 
registration approaches based on the work of other researchers [64,65] 
to account for lung motion to make the model’s predictions more 
credible and accurate. 

While surfactant dysfunction accounted for acinar level damage in 
this study, other forms of damage, such as diffuse alveolar damage, 
microangiopathy, edema, and fibrosis, lead to altered lung mechanics in 
the COVID-19 affected lung [36]. Including more detailed alveolar 
mechanics models and accounting for different types of damage in the 
simulations, could further elucidate the impact of the disease on global 
lung function. Furthermore, we modeled surfactant loss at two levels of 
damage based on ground-glass opacities and consolidations. Damage 
distribution in the lung will be more accurately represented if a 
continuous range of damage based on CT-derived Hounsfield values is 
incorporated in the model. Furthermore, we acknowledge that 
population-based in silico studies are bringing researchers a step closer to 
making virtual clinical trials a reality [66]. While the modeling work
flow was demonstrated for one patient here, we aim to perform the 
modeling and simulation for a larger cohort of patients to study inter
subject variabilities of airflow as the imaging data is collected and 
analyzed and our modeling workflow becomes more automated and 
streamlined. 

In conclusion, this study presents a major step towards a modeling 
workflow capable of simulating the effect of heterogenous COVID-19- 
induced lung damage on ventilation dynamics in a patient-specific 
manner. The in silico model reasonably predicted redistribution of 
ventilation from severely damaged lung lobes to the lobes the least 
affected by viral insult in advanced COVID-19. This modeling study lays 

Table 3 
Total volume of air, GGO, and consolidated regions at end-inspiration obtained 
from segmenting the CT image.  

Volume (L) Right 
Upper 
Lobe 

Right 
Middle 
Lobe 

Right 
Lower 
Lobe 

Left 
Upper 
Lobe 

Left 
Lower 
Lobe 

TOTAL 

Air 0.252 0.324 0.136 0.518 0.118 1.348 
GGO 0.189 0.079 0.263 0.187 0.126 0.844 
Consolidated 0.169 0.057 0.225 0.239 0.228 0.918 
Total 0.61 0.46 0.624 0.944 0.472 3.110 
Air % 41.3% 70.4% 21.8% 54.9% 25.0% 43.3% 
GGO% 31.0% 17.2% 42.1% 19.8% 26.7% 27.1% 
Consolidated 

% 
27.7% 12.4% 36.1% 25.3% 48.3% 29.5% 

COVID- 
Afflicted % 

58.7% 29.6% 78.2% 45.1% 75.0% 56.7%  

Table 4 
Difference between the lobar share of tidal volume obtained from 4D CT (4th column), simulations of healthy and different disease states (columns 1 to 3), 
and Jahani et al. [48] study on lobar distribution of ventilation in healthy subjects (5th column).   

Lobar Share of Tidal Volume of 
Healthy simulation 

Lobar Share of Tidal Volume of 
Diseased 20–40 simulation 

Lobar Share of Tidal Volume of 
Diseased 20–60 simulation 

Lobar Share of Tidal 
Volume from CT 

Mean Lobar Air Volume 
from Jahani et al. 

Right 
upper 

17.9% 17.9% 16.3% 23.5% 20.9% 

Right 
middle 

13.3% 18.1% 24.3% 8.6% 10.7% 

Right 
lower 

18.7% 15.8% 12.2% 13.2% 22.8% 

Left 
upper 

33.1% 35.0% 36.5% 38.8% 25.8% 

Left lower 17.1% 13.2% 10.6% 13.7% 20.6%  

S. Middleton et al.                                                                                                                                                                                                                              



Computers in Biology and Medicine 145 (2022) 105513

9

the foundation for patient-specific investigations of pulmonary ventila
tion in COVID-19 patients and individualized treatment strategies. 
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Fig. 7. Lung pressure distribution as viewed from the front in a healthy simulation (a, b), diseased 20–40 simulation (c, d), and diseased 20–60 simulation (e, f), at 
maximum inhalation (a,c,e) and maximum exhalation (b,d,f). Note that the right lung appears on the left in this image and vice versa. 

Table 5 
Mean and standard deviation of lung pressure at the terminal bronchioles in 
each simulation.  

Average Pressure (Pa) Maximum Inspiration Maximum Expiration 

Healthy −16.9 ± 1.46 17.5 ± 1.58 
Diseased 20-40 −9.63 ± 2.63 8.99 ± 2.99 
Diseased 20-60 −5.06 ± 3.03 4.85 ± 3.02  
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