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Abstract—Dataflow and tile size choices, which we collectively refer
to as mappings, dictate the efficiency (i.e., latency and energy) of DNN
accelerators. Rapidly evolving DNN models is one of the major challenges
for DNN accelerators since the optimal mapping heavily depends on the
layer shape and size. To maintain high efficiency across multiple DNN
models, flexible accelerators that can support multiple mappings have
emerged. However, we currently lack a metric to evaluate accelerator
flexibility and quantitatively compare their capability to run different
mappings. In this work, we formally define the concept of flexibility
in DNN accelerators and propose flexion (flexibility fraction), flexion,
which is a quantitative metric of mapping flexibility on DNN accelerators.
We codify the formalism we construct and evaluate the flexibility of
accelerators based on Eyeriss, NVDLA, and TPUv1. We show that
Eyeriss-like accelerator is 2.2× and 17.0× more flexible (i.e., capable of
running more mappings) than NVDLA and TPUv1-based accelerators on
selected ResNet-50 and MobileNetV2 layers. This work is the first work
to enable such a quantitative comparison of the flexibility of accelerators.

1 INTRODUCTION

Domain-specific accelerators exhibit significantly increased ef-
ficiency for their target workload but are not Turing Complete.
However, many non-programmable accelerators do retain a degree
of configurability, especially related to data orchestration: namely,
the choice of scheduling data movement, tile size, buffer allocation,
and computation ordering. We term the degree of data orchestration
configurability as accelerator flexibility and distinguish it from the
degree of reconfigurability based on functionality in reconfigurable
logic (i.e., FPGAs). Flexibility is particularly important for deep-
learning accelerators, as different neural-network layers can vary
significantly in size and shape. Relying on a single problem
dimension (e.g., rows of weights, output channels, etc.) for
parallelism or data reuse can result in severe under-utilization
when the dimension is too small. For example, in an early layer in
ResNet-50 (CONV2 1) has 56x56 activation with 64 channels, but
in a late layer in ResNet-50 (CONV5 3) has 7x7 activation with
2048 channels. A mapping that exploits parallelism on activation
can result in severe underutilization on the late layer, and vice versa
for one that exploits parallelism on channels on the early layer.
There is extensive evidence that the optimal data orchestration
configuration can vary both across and within networks [5], [8].

Furthermore, the field of neural networks is changing rapidly,
with new networks being proposed at a breakneck pace. Architects
cannot see the future, and so must make decisions today based
on finite benchmark sets and a limited ability to predict trends
in neural networks, knowing that it may be several years before
their design reaches the field. From this point of view, flexibility
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Fig. 1. An overview of the impact of hardware implementation
choices on DNN deployment on an accelerator.

is desirable for “future-proofing” as well, but whether or not this
investment pays off can only be quantified post-facto.

This leads to an intractable computer architecture problem that
we term the Accelerator Mapping Flexibility Conundrum. Namely,
investing in hardware features for flexibility consumes resources
that could be applied elsewhere–area, energy, and significant
engineering effort in design/verification and configuration toolchain.
Therefore, even if a strong predictive case can be made for
flexibility features, they often end up “on the cutting room floor”
when faced with real-world budgeting of area/energy/effort.

In order to break this conundrum, this paper proposes a first-
of-its-kind quantitative metric of accelerator flexibility. In contrast
with Turing Completeness, our goal is not binary yes/no judgement,
but rather a flexibility fraction or flexion1 of the general form:

MappingsAchievable

MappingsPossible

Where: (1) MappingsPossible derives only from the network layer
being mapped, and is the same across all accelerators (with
some key restrictions to avoid infinity that we detail), and (2)
MappingsAchievable is the number of those mappings that the
specific accelerator design being measured can exploit.

Therefore, within the limit, a fully-fixed accelerator will
approach 0, and a fully-flexible accelerator will approach 1. The
flexion formulation enables architecture-time comparison across
potential design points of the same accelerator, and also comparison
across accelerators. Ultimately, our metric can be paired with

1. Pronounced “fleck-shun.” In biology this term refers to the act of bending
a joint or limb, so we find it particularly suitable for a flexibility metric.
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TABLE 1
An example trade-off study of 256-PE-Eyeriss-, NVDLA-, and TPU-like

accelerators (EL, NL, and TL) implemented in RTL and synthesized
using 28nm library. We run MAESTRO [5] with optimized mapping
generated by GAMMA [10] to estimate the latency. We quantify the

flexibility of each accelerator Flexion. RC layers are from Resnet50 [2],
and MB layers are from MobileNetV2 [9] as listed in Section 4.

Acc. Area(mm2) Power(mW ) Layer Latency Flexion

EL 5.13 188.33

RC2 3 4.92E+03 2.23E-04
RC3 2 2.02E+04 7.53E-05
RC5 2 3.27E+04 1.57E-05

MB1 DW 4.17E+03 4.15E-06
MB5 DW 1.14E+03 4.57E-06
MB6 R 2.34E+02 2.33E-03

Avg. 1.06E+04 4.77E-05

NL 3.85 100.18

RC2 3 1.39E+05 6.24E-07
RC3 2 3.96E+04 5.29E-06
RC5 2 8.43E+03 1.10E-05

MB1 DW 5.11E+03 7.69E-08
MB5 DW 4.02E+03 2.90E-06
MB6 R 1.26E+03 7.71E-03

Avg. 3.29E+04 6.30E-06

TL 1.82 40.79

RC2 3 5.67E+04 1.73E-08
RC3 2 6.79E+04 1.49E-07
RC5 2 1.25E+04 3.11E-07

MB1 DW 5.08E+03 7.69E-08
MB5 DW 1.94E+03 2.90E-06
MB6 R 3.29E+02 7.71E-03

Avg. 2.41E+04 1.05E-06

ell-understood area/energy quantification techniques to create a
comprehensive flexibility cost/benefit analysis of buffering, control,
and network-on-chip hardware features, as an example in Table 1.

2 BACKGROUND

Each layer of a DNN can be expressed as a multi-dimensional loop
nest over the input and weight tensors. When running a layer on
a DNN accelerator, we collectively refer to the execution order of
computations, parallelized dimensions, and the number of tiling
levels as the accelerator’s dataflow. We refer to the dataflow with
specific tile sizes at each level as mapping.

Since all DNN accelerators compute DNNs, the definition of
flexibility based on functionality (i.e., what they can compute)
does not provide distinction among flexible accelerators. Instead of
supporting more applications, the focus of flexible accelerators is
providing capabilities for supporting various mapping styles [3],
[4]. Therefore, we also focus on the number of supported mappings
to compute a target DNN. Considering that the total number of
possible mappings on unconstrained hardware depends on layer
operation and sizes, we define the flexibility at a layer granularity.

We identify the following four components of mapping flexibil-
ity, abbreviated as TOPS (i.e., as a synonym of the performance
metric, TOPS): (1) Loop Tiling (T): The number of tiling levels
and tile sizing. (2) Loop Order (O): The order of data dimension
iterations. (3) Loop Parallelization (P): The data dimension to be
parallelized. Represents the spatial partitioning (i.e., partitioning
data over processing elements (PEs)) of data.) (4) Array Shape
(S): The shape of the accelerator array. This determines the number
of tiling levels and the maximum tile sizes for the tensor dimensions
being mapped in parallel (i.e., spatially) over the accelerator array.

Based on the four components, we can define flexibility on each
component, and define a mapping flexibility, we term as Flexion as
the cross-product of all of the four components, which represents
the flexibility fraction we discussed in Section 1. We discuss the
definition and computation of flexibility fraction next.

3 FLEXIBILITY FRACTION, OR FLEXION

Hardware implementation choices impose constraints on available
mappings and present preference to a specific set of mappings,
as illustrated in Figure 1. Based on the observation, we define
flexion based on the number of available mappings with hardware
constraints over the total number of available mappings for given
hierarchy levels without hardware constraints. To formalize the
available and achievable mapping counts, we model accelerators
to be a hierarchy of temporal/spatial distribution (i.e., buffer and
distribution NoCs) and reduction elements (i.e., reduction NoCs).
Figure 1 shows an example accelerator of two-level hierarchy
where the level boundary is highlighted by a blue dotted line. We
model layer size and tile size to be a list of layer dimension-size
tuples. Based on the base definitions, we discuss how hardware
choices impact mapping choices next.

3.1 Hardware Choice and Constraints on Mapping
We focus on hard constraints on mappings to identify the number
of legal mappings under hardware constraints (i.e., flexibility), not
finding the best mapping, which is an open research question [10].
Figure 2 summarizes such hard constraints on mapping based on
non-circular FIFO buffers and temporal reduction.

FIFO’s constraints are based on convolutional reuse across
sliding windows, which requires breaking the FIFO behavior to
read data accessed in the past. Temporal reduction refers to a
reduction network-on-chip (NoC) supporting reduction only over
time, not across PEs [5], where its constraints are based.

Based on the constraints we discussed and buffer sizes, we can
determine if a mapping is valid on an accelerator (e.g., check tile
sizes if data tiles fit into memories). We codify the mapping validity
checker and use them in our flexibility evaluation framework used
for case studies in Section 4. We can use such a checker to count
the number of valid mappings on a given accelerator, on which the
mapping flexibility we define is based.

Next, we discuss how to compute the total number of choices
for each flexibility component (TOPS) without constraint and
introduce the definition of our flexibility metric.

3.2 The Number of Mappings without Constraints
Based on the four components of flexibility, TOPS (Tile size, loop
Order, Parallel dimension, and Shape) we discussed in Section 2,
we first define total number of choices for each component without
hardware constraints for a given number of hierarchies in an
accelerator.

Definition 1. Tiling Choices at Hierarchy Level Hlv
At cluster level Hlv, given the tile size of T(Hlv), the num-
ber of tile size choices for level Hlv−1, τ(T(Hlv),Hlv−1),
is as follows:

τ(T(Hlv),Hlv−1) = ∏
∀(d,sz)∈T(Hlv)

sz

Note that the number of tiling choices depends on the tile size
at the upper-level (i.e., tile size at lower level ≤ tile size at the
upper level) Therefore, we first define the relationship between two
adjacent tile sizes in Definition 1. Based on Definition 1, we define
the entire number of tiling choices in Definition 2.

Definition 2. Tiling Choices
The number of tiling choices for a given layer size Lsz
and number of on-chip cluster levels NH , the number of
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Fig. 2. A summary of hardware choices and their implication to mapping. In the implication to mapping columns, red texts describe
the hard constraints, and plain texts describe the preference for better efficiency. K/C refer to output/input channels, Y/X refer to input
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tiling choices, τall(Lsz,NH), is as follows:

τall(Lsz,NH) = τrec(Tsz = Lsz,Hlv = NH) =

∑
∀T(Hlv)

τrec(T(Hlv),Hlv−1)

where τrec(Tsz,0) = 1

Definition 1 indicates that the number of available tile size at a
lower level cluster is constrained by the tile size at the upper level
cluster. For example, if a mapping assigns indices of a dimension α

in the range of [0, T(Hlv)[α]), one level below cluster cannot have
tile size larger than T(Hlv)[α] (i.e., T(Hlv− 1)[α] ≤ T(Hlv)[α])
because of out-of-range indices. Therefore, the number of choices
depends on the tile sizes on the upper-level cluster, which results
in a recursive definition as shown in Definition 2. Also, note that
the definition covers entire tile sizes including those do not divide
the upper level tile sizes. For example, if T(3)[α] = 64, T(2)[α]
can be any number between 1 and 64.

Definition 3. Loop Order Choices
Given a layer size, Lsz, and the number of on-chip cluster
levels, NH , then loop order choices, ω(Lsz,NH), is as
follows:

ω(Lsz,NH) = (len(Lsz)!)NH

In Definition 3, we consider permutation at each hierarchy level
for all the independent data dimensions. For example, in CONV2D
without batches, six dimensions lead to 6! choices at each level.
The iteration order choice at each level is independent, so we
compute the power of choices at each level.

Definition 4. Parallel Dimension Choices
Given a layer size, Lsz, and the number of on-chip
hierarchy levels (NH ) the number of parallel dimension
choices (π) is defined as follows:

π(Lsz,NH) = ∏
0≤Hlv<NH

(
Len(LSz)−Hlv

1

)
In this definition, we exclude redundant cases that spatially

partition a data dimension multiple times at multiple hierarchy
levels since it is equivalent to a flattened mapping. For example, if
we try to parallelize output channels across PE rows and columns
(twice) on a 4x4 PE array, the resulting mapping is equivalent to
parallelizing output channel across a 1D PE array with 4x4=16
PEs. They result in different performance and cost, but they are
equivalent from the logical mapping’s perspective. We do not count

them separately when we estimate the flexibility.

Definition 5. Shape choices for a 2D PE array
Given an accelerator with NPE of PEs in a flexible shape
2D PE array, the number of shape choices σ(Acc) is
defined as follows:

σ(Acc) = |{r|r = bNPE

i
c, 1≤ i≤ NPE , i ∈ N}|

In Definition 5, we count all the possible combination of
the aspect ratio of a fully-flexible shape 2D PE array, which can
reconfigure the logical aspect ratio of the array. We separately count
symmetric pairs (e.g., 2×4 and 4×2) since some architectures have
specific features coupled with a specific array dimension (e.g.,
adder trees only support row-wise reduction).

Now we define component-wise flexibility based on the number
of possible mappings with and without constraints.

3.3 Flexibility Metric

Definition 6. Component-wise Flexibility

Flextiling =
τall−supported(Acc,Lsz,NH)

τall(Lsz,NH)

Flexorder =
ωsupported(Acc,Lsz,NH)

ω(Lsz,NH)

Flexspatial =
πsupported(Acc,Lsz,NH)

π(Lsz,NH)

Flexshape =
σsupported(Acc)

σall(Acc)

where τall−supported ,ωsupported , πsupported , and σsupported
refer to the number of available tile sizes, iteration orders,
spatial (or, parallel) dimensions, and array shape choices
by an accelerator Acc.
Flextiling, Flexorder,Flexparallel , and Flexshape refer to
tiling, iteration order, parallel dimension, and array shape
flexibility, respectively.

In component-wise flexibility definitions listed in Definition 6,
the denominator of each refers to algorithmic choices, which are
determined by the layer size and the high-level architecture template
of a target accelerator (the number of on-chip cluster levels;
NH ). A high-level architecture template refers to an accelerator’s
organization, which includes the number of memory hierarchy
levels and PE dimensionality without exact design parameters for
them (e.g., memory size, number of PE rows/columns, etc.). The
numerators (τall−supported , ωsupported , πsupported , and σsupported) of
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TABLE 2
A list of evaluated accelerators based on Eyeriss [1], NVDLA [6], and

TPUv1 [7]. SF, RF, AT, and Spad refer to store-and-forward,
reduce-and-forward, adder tree, and scratchpad.

Accelerator D. NoC (L2/L1) R. NoC (L2/L1) Buffer (L2/L1)
Eyeriss-like Bus / Bus RF / Temporal Spad / Spad

NVDLA-like Bus / Bus Temporal / AT Spad / FIFO
TPUv1-like SF / SF Temporal / RF Spad / FIFO

each refers to actually available choices constrained by a concrete
accelerator (Acc) with all the design parameters.

Based on the component-wise flexibility definition, we define
the mapping flexibility of an accelerator as the cross-product of all
the component-wise flexibility.

Definition 7. Mapping Flexibility (Flexion)
Mapping flexibility is the product of all the component-
wise flexibility (each ranges between 0 and 1):

Flexmapping = Flextiling×Flexorder×Flexparallel×Flexshape

Since we have defined ω,π, and τall , in this subsection, we
need ωsupported ,πsupported , and τall−supported for computing the
mapping flexibility. Therefore, we implement a mapping space
enumerator based on the mapping validity checker we discussed
in Subsection 3.1, which is based on a branch-and-bound mapping
space iterator. We codify the computation of the flexibility metric
we define in this paper and perform case studies.
4 CASE STUDIES

We implement a framework that computes the number of possible
mappings based on hardware choices and the total number of
mappings without those constraints. Using the framework, we
perform a case study on flexibility on selected early, late, and fully-
connected layers in ResNet-50 [2] and two depth-wise convolution
layers and residual in MobileNetV2 [9] on three accelerator styles
we summarize in Table 2. For each accelerator style, we explore
three variants of each accelerator style varying global buffer
(L2) and local buffer in each PE (L1) sizes: A-150KB/1.5KB,
B-150KB/150B, and C-60KB/1.5KB.

Figure 3 (a) and (b) show the evaluated tiling flexibility and
overall flexibility metric. Spatial and loop order flexibilities are
independent of buffer sizes. Eyeriss-like, NVDLA-like, and TPU-
like designs scored for the Flexspatial of 0.25, 0.125, and 0.125,
respectively, based on their reduction NoC and buffer choices. For
loop orders, all accelerators are based on fixed loop orders, resulting
in the Flexorder of 0.027. Compiling all, Eyeriss-like accelerator
is 2.2× and 17.0 × more flexible than NVDLA-like and TPU-like
accelerators, on average across evaluated layers.
which led to significant differences in tiling flexibility between
Impact of Buffer Choice. Because we applied the same buffer
size for each accelerator variants, such differences are based on the
choice of distribution/reduction NoC and buffers. In particular, non-
circulate FIFO imposes a strict restriction on available tile sizes,

Eyeriss-like and other designs. Based on the flexible scratchpad
in both L1 and L2 buffers, Eyeriss-like designs have 39.7× and
39.6× higher Flextilling, on average across evaluated layers.
Impact of Buffer Size. The variants B and C have smaller L1
and L2 buffer sizes than the variant A for each accelerator style.
Normalizing the buffer size differences between L1 and L2, we
observe that flexibility is 1.77× more sensitive on L2 buffer sizes.

We list up Flexion scores with latency and area/power informa-
tion in Table 1.

5 CONCLUSION

In this work, we formally defined a first-of-its-kind quantitative
metric of flexibility in DNN accelerators, flexion, which ranges
from 0 for fully-fixed to 1 for fully-flexible accelerators. Flexion
enables us to quantitatively evaluate the mapping flexibility of DNN
accelerators and compare their capability of running mappings.
Using Flexion, we showed that an Eyeriss-like accelerator we
evaluate is 2.2× and 17.0 × more flexible (i.e., capable of running
more mappings) than NVDLA and TPUv1-based accelerators on
selected Resnet50 and MobileNetV2 layers. The case study showed
that scratchpad provides dramatically higher tiling flexibility than
FIFOs, and global buffer size is more critical for flexibility than
local buffer sizes, which can guide the DNN accelerator design
targeting future DNN models.

Flexion can be another pillar of DNN accelerator optimization
as the amount of adaptivity to various layers in future DNN
models combined with area/energy quantification techniques Such
an approach enables a comprehensive flexibility-hardware cost-
latency/energy benefit analysis of buffering, control, and network-
on-chip hardware features.

Also, Flexion can be extended to layer fusion and sparsity, since
the fundamental idea (i.e., MappingAchievable / Mappingpossible) is
generic. We believe this work will enable such works in the future.
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