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Abstract—Coarse-Grained Reconfigurable Arrays (CGRAs)
are popular accelerators predominantly used in streaming, filter-
ing, and decoding applications. Due to their high performance
and high power-efficiency, CGRAs can be a promising solution
to accelerate the loops of general purpose applications also.
However, the loops in general purpose applications are often
complicated, like loops with perfect and imperfect nests and
loops with nested if-then-else’s (conditionals). We argue that
the existing hardware-software solutions to execute branches
and conditions are inefficient. In order to efficiently execute
complicated loops on CGRAs, we present a hardware-software
hybrid solution: LASER – a comprehensive technique to ac-
celerate compute-intensive loops of applications. In LASER,
compiler transforms complex loops, maps them to the CGRA,
and lays them out in the memory in a specific manner, such that
the hardware can fetch and execute the instructions from the
right path at runtime. LASER achieves a geomean performance
improvement of 40.91% and utilization of 43.43% with 46%
lower energy consumption.

I. INTRODUCTION

Accelerators have now become an integral part of the

modern processor design to accelerate specialized or compute-

intensive part of the code. CGRAs are programmable, yet

power-efficient accelerators [1]. As shown in Fig 1, a CGRA

is an array of processing elements (PEs) connected in a

2-D mesh. Each PE consists of functional unit (FU) for

computation, and a register file (RF) to store values. The

PEs can get inputs from the neighboring PEs, RF or the data

memory. In each cycle, instructions to be executed are issued

to every PE. The performance and power-efficiency of CGRA

rely on the compiler technology [2]–[4].

The main advantage of CGRAs over custom ASIC (Ap-

plication Specific Integrated Circuit) and FPGA (Field Pro-

grammable Gate Arrays) accelerators is the higher-level of

programmability. CGRAs can be programmed at instruction-

level, whereas FPGAs are programmed at bit-level [5]. This

makes programming much simpler for CGRAs. As opposed

to GPUs (Graphics Processing Units), CGRAs can accelerate

non-parallel loops also [6].

CGRAs are popular in streaming applications, e.g., set-top

boxes, TVs, projectors, for filtering and decoding [1], [7], [8],

and over the years, several compiler techniques have been

developed to map the innermost loops without conditionals

(if-then-else) in the applications on CGRAs [2], [3], [5]. Our

vision is to exploit the advantages of CGRAs in general-

purpose processors to accelerate compute-intensive loops of

Fig. 1: A 4x4 CGRA with PEs connected in a 2-D mesh.

PE consists of an ALU and RF. Additional predicate RF and

mux (shaded) are required in each PE by full and partial

predication.

general-purpose applications. However, the compute-intensive

loops in real general-purpose applications are complex. They

often feature several levels of loop nests and nested condition-

als, which can be perfect or imperfectly nested (nested loops

where the outer loops contains the inner loops along with one

or more assignments). Mapping imperfectly nested loops also

requires the ability to map loops with conditionals, since they

must be (and can be) converted into loops with conditionals.

The state-of-the-art CGRA compiler techniques cannot map

complex loops or give out a mapping that achieves only

marginal speedups. The most popular approach to map loops

with conditionals is to use partial predication [9]. While this

approach can be applied to loops with arbitrary nesting of

conditionals, it increases the number of operations to be

executed. For our set of compute-intensive loop kernels from

MiBench [10], the partial predication approach will increase

the number of operation and seriously degrades the ability of

CGRA to accelerate the kernel.

To execute complicated loops (with imperfectly nested loops

and arbitrary nesting of conditionals), we propose a hardware-

software hybrid solution: LASER – Loop Acceleration by

Selective Execution on CGRA. This technique enhances the

abilities of both compiler and hardware for achieving max-

imum power efficiency and performance. LASER compiler,

converts the nested loops into a single loop with conditional

statements and fuses the operation of both paths of the condi-

tional (the true-path and the false-path) to the CGRA, so that

only one of them is issued and executed. This ensures high-
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Fig. 2: a) A simple loop to be accelerated on CGRA (b) Flattened 2×2 CGRA where each PE has 2 registers (c) Data-

Dependence Graph (DDG) of a simple loop (d) Mapping of the DDG onto the CGRA with II=2. (e) A loop with an if-then-else

(f) DDG of the loop with Partial Predication (f) Mapping of DDG on 2×2 CGRA with II=3.

utilization of resources of CGRA. The instruction fetch unit

enhancement ensures that only the correct instruction is issued

at runtime, based on the branch outcome. LASER outperforms

the state-of-the-art partial predication with 43.43% better

utilization of PE resources and 40.91% better performance.

II. BACKGROUND AND TERMINOLOGY

Fig 2(a)-(d) explains how a CGRA executes a compute

intensive loop. Fig 2(a) shows a simple loop with 4 operations,

to be executed on a 2×2 CGRA (Fig 2(b)), in which each PE

has 2 registers. The compiler constructs a Data Dependence
graph (DDG) of the loop (as shown in Fig 2(c)). DDG is a

graph, in which each node represents an operation in the loop

and edges represent the dependency between the operations.

Fig 2(d) shows the mapping of nodes of the DDG to CGRA

at different time. The iterations are software-pipelined [3], [5],

[8], and the next iteration of the loop can begin in cycle

4 (denoted by a as shaded node). The interval between the

beginning of consecutive iterations is known as the initiation
interval (II). The II of this mapping is 2. II is the performance

metric of CGRA and lower the II, better the performance.

III. LIMITATIONS OF RELATED WORK

Previous compiler techniques such as [2], [3], [5] accelerate

only the innermost loop and fall short in accelerating rest of

the loop nest which in turn has to be executed on a core. The

communication overhead also multiplies if the trip count of

outer-loop is higher. Existing techniques such as [11], [12] are

restricted to handle only perfectly nested loops with 2-level.

On the other hand, flattening based approach of [13] is promis-

ing but restricts the scalability because of its hardware-based

solution with modified PE architecture. Major techniques to

accelerate loops with conditionals are - (i) Full predication,

(ii) Partial Predication, (iii) Dual-Issue and (iv) Path Selection

Based Mapping (PSB). Full and partial predication schemes

requires predicated register files and muxes (shown in Fig 1

shaded) to communicate the branch outcome. Full predication

maps the nodes from both the if- and else- path on the same

PE, but at different time, so that correct value is updated at the

end of the execution [6]. Partial predication allows execution

of nodes from both paths simultaneously but correct outcome

needs to be selected through additional select node [9]. Dual

issue schemes such as [6] fetches instructions for both paths

but executes instructions of only correct path based on the

branch condition, but requires additional mux in each PE to

select the if-path or else-path instructions and is applicable to

single-level only. Path selection based approach [4] selectively

issues the instruction based on the branch outcome, but is

applicable to only single if-then-else. For nested-conditionals

PSB relies on partial predication. In this paper, we evaluate

partial predication as it is the only technique that can map

loops with nested conditional at lower II.

A. Partial Predication incurs high overhead

In partial predication, the nodes of DDG from both true

and false paths can be mapped on different PEs and a select

operation is required to choose the correct outcome based

on the condition evaluated. Fig 2(e) shows a simple loop

with conditional, while Fig 2(f) shows DDG using partial

predication. Node cmp represents condition x%i==1. Nodes

dt and df are true and false paths of d and a selection

operation is added. Mapping of the DDG is shown in Fig 2(g)

with II is 3. Due to the additional nodes required by partial

predication, if a variable is computed inside the innermost nest

of if-then-else, there is a corresponding node for operation

inside each if-path and an else-path and so is a selection.

Applying partial predication on a loop with nested conditional

in Fig 3(a), we get DDG shown in Fig 3(b). Mapping DDG

on 2×2 CGRA yields II of 11. Partial predication method

increases the number of nodes in accelerating performance-

critical loops with nested conditionals and the nested loops

from MiBench benchmark suite. Clearly, there is no technique

that can accelerate nested loops and nested conditionals with

less overhead.

IV. OUR APPROACH

The compiler transforms arbitrary nested (perfect or imper-

fect) loops into a single loop with nested conditional by loop
flattening [13]. Fig 4 shows the transformation of a simple

nested loop into a single-level loop with nested conditional.

In some special cases, nested loops cannot be converted into
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1:for(i=0;i<10;i++){
2: if (x ){d =0;
3: if (y ==1){
4: a =0;
5: b =0;
6: c =0;}else{a= 1;
7:
8:

b= 1;
else d= 1; }

(a)

(b)

Fig. 3: (a) A loop with nested conditional (b) DDG using

partial predication results in 31 nodes.Nodes h and g represent

conditions x%i==1 and y%i==1.

a single loop1. However, in general, loop flattening is needed

to convert a nested loop to a loop with conditional statements.

Executing branches on CGRA is challenging due to the lack

of support from the CGRA’s instruction fetch unit (IFU). The

existing CGRA IFU issues instructions sequentially from the

instruction memory and hence cannot jump memory addresses

in case of conditional operations. In LASER, we enhance the

CGRA IFU functionality to issue only the instructions of the

correct path2 at runtime. For the correct-path instructions to

be issued by the IFU, LASER compiler lays out the program

instruction in a specific way such that the IFU jumps to the

exact memory location of instruction of the correct-path and

issue them at runtime.

With this IFU support to issue correct-path instructions, if

a variable c is updated in both true and false path, mapping ct
and cf on different PEs without a select operation will lead to

an incorrect execution. This is because the compiler generates

instructions statically and since the correct-path executed is

unknown at the static time, the PE that will hold the correct

value of c at the end of the execution is also unknown. This

discrepancy can lead to errors in the value of c at the end of

program execution. To overcome this, LASER compiler fuses

the true-path operation and false-path operation of the variable

1If a loop contains sibling loops, flattening based approach may be
impractical, so a loop fission approach [13] should be used. We did not come
across any compute-intensive loops that have sibling loops, in our experiments.

2Either true-path or false-path based on the branch outcome at runtime.

for (;cond1;) {
/*statements*/
for (;cond2;) {
/*statements*/
}
/*statements*/

}
(a)

for (;cond3;) {
if(cond4) {
/*outer for-loop statements

and iterator calculations*/
}

else {
/* inner for-loop statements

and iterator calculations*/
} } 

(b)

Fig. 4: (a) An imperfectly nested loop with cond1 and cond2
conditions (b) Flattening converts (a) into single-level loop

with conditionals with new cond3 and cond4

into a single node, 〈ct, cf 〉. This single fused node is mapped

to only one PE of the CGRA and only one instruction (either

true-path or false-path) is issued at runtime by the IFU. After

the execution of the instruction the PE on which the fused

node was mapped, holds the correct value of c. Similarly, if a

variable d is updated in only one path (only in true-path (dt)
and not updated in the false-path) the compiler creates a no-

operation (nop) for the false path and performs the fusing. The

fused node will now have 〈dt, nop〉, which means that if the

branch condition is true dt is issued by IFU otherwise a nop is

issued. LASER compiler transforms complicated loops, maps

them on to the CGRA architecture and lays the instructions in

the memory in a specific manner, such that the IFU can fetch

the instructions from correct-path at runtime.

A. LASER – Compiler

By evaluating the condition of a nest a priori and then

mapping the true and false path of the nest on to the same PE,

LASER-compiler reduces the total number of nodes created.

For example, in the program of Fig 3(a), the assignments to

the variable a are inside a nested if-then-else (if-else inside

another if-else). So, for a conditional nest of two, four different

assignments for variable a are possible. Corresponding four

nodes (or operations) are fused as a single node by LASER-

compiler. At runtime, correct instruction out of four possible

instructions can be provided to the PE to execute the operation

from the nested conditional.

Our heuristic targets fusing nodes from different if-else

paths pertaining to the conditional nest. Pairing is done with

operations from the innermost if-then-else (i.e., one with

highest conditional depth d). The unbalanced operations (i.e.

one path has more operations than the other) are paired with

a no-op. For example, in program of Fig 3(a), operations

corresponding to variables a, b and c are fused first. Hence,

〈att, atf 〉 and 〈btt, btf 〉 are fused nodes, as shown in Fig 5(a).

Such pairing is one-to-one with operations from both the paths.

In our example, innermost if-path has 3 operations compared

to 2 operations inside respective else path. Hence, the unbal-

anced operation ctt is fused with a no-op. Note that we do

not need any selection among the operations from if-path and

else-path so, corresponding select operations are eliminated

during this DDG transformation. Once the operations of the
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Fig. 5: (a) DDG obtained from LASER-compiler for loop of Fig 3. Nodes from multiple if-paths and else-path to a single

node. If such path is absent, balancing no-ops are added and a node such as ao preserves the old value. (b) 2×2 CGRA where

each PE has 2 registers. (c) Mapping with II = 4. (d) Instructions are selectively issued during the execution of the kernel.

innermost conditional are fused (i.e. y%i == 1), operations

from outer nests can be fused iteratively. So, operations of the

conditionals with nest depth of d− 1 can be fused where d is

the highest depth. Thus, we fuse all the operations associated

with the condition x%i == 1. The compiler iterates on the

entire conditional nest and produces DDG with the fused

nodes as shown in Fig 5. Mapping can be then obtained with

mapping techniques such as [2], [5]. Mapping the DDG with

the fused nodes, obtained from LASER-compiler is like any

other mapping with CGRAs. The fused nodes can be also

routed to satisfy data-dependency and necessary values are

stored in the register file3.

After obtaining the mapping for CGRA PEs, compiler

generates instructions to support the execution of conditional

nest. One such layout of instructions for CGRA PEs is shown

in Fig 5(d). Instructions are grouped in particular manner

so that hardware can easily issue the needed instructions

based on the condition evaluated. Compiler associates k value

with each of the conditional, which is simply number of the

CGRA instructions associated. For example, first condition

h (x%i == 1) is evaluated on PE2 which is associated

k1=3 because maximum number of cycles required to execute

the if-path or the else-path for h are three. If this condition

is true, PEs should be given next three instructions from

location 2– 4. In this case, PE2 is issued another conditional

g (y%i == 1). g is associated with k2=1 as all fused

nodes related to conditional g are mapped on PEs in a single

cycle (time 4 in Fig 5(c)). So, only one instruction for each

of CGRA PEs is enough to execute either if or else-path

corresponding to g. If g is evaluated as false, k2=1 instruction

will be skipped at run-time. Once instructions from location

2–4 are issued, if-path corresponding to h gets over and next

k1=3 instructions are skipped, which corresponds to else-path

of the outer conditional h. Then, instruction at location 8

can be executed allowing independent operations and kernel

instructions executes from the location 1 again. Before the

3In Fig 5(c) fused node 〈〈att, atf 〉, 〈ao, nop〉〉 is routed (named as ac)
and the correct value of a is also stored in a register of PE 4 for later usage.

architecture can support the execution in such fashion, it is

the compiler’s job to associate corresponding k values with

CGRA instructions and to configure the hardware correctly.

As shown in Algorithm 1, our heuristic first determines

conditional with highest nest depth and pairs the nodes from

both if and else paths. Pairing can proceed until there is an

operation in if-path or else-path (line 5). If no such path exists

or if the number of nodes in either of the paths is unbalanced,

we need to fuse the nodes with no-ops (lines 8-11). Such

assembling results in fused nodes after iterative pairing (lines

3-15). While forming the DDG, compiler preserves the data

Algorithm 1 FuseNodes (Input DDG D, Output DDG P )

1: d ← getHighestConditionalDepth()
2: for i = d to 1 do
3: ni

if ← getLastNode(N i
if )

4: ni
else ← getLastNode(N i

else)
5: while ni

if �= NULL or ni
else �= NULL do

6: if ni
if ∈ N i

if and ni
else ∈ N i

else then
7: fuse(ni

if , n
i
else)

8: else if ni
if ∈ N i

if and ni
else == NULL then

9: fuse(ni
if , nop)

10: else if ni
if == NULL and ni

else ∈ N i
else then

11: fuse(nop, ni
else)

12: end if
13: ni

if ← getLastRemainingNode(N i
if )

14: ni
else ← getLastRemainingNode(N i

else)
15: end while
16: for ni

j such that j = 0 to |N | do
17: if nj

i is an eligible select operation ∈ N j
other,�

input1(nj
i ), input2(n

j
i ) = mfused ∈ Mfused then

18: Eliminatephi(n
j
i )

19: end if
20: end for
21: RemoveRedundantArcs(E)
22: PrunePredicateArcs(E)
23: end for
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Fig. 6: LASER is a scalable solution with 40.91% cumulative geomean reduction in II compared to partial predication.

dependencies throughout such fusing. After all operations in

if-and-else paths are paired for a particular conditional (with

any depth), eligible select operations are eliminated via a

phi elimination. Then the redundant edges are eliminated and

predicate arcs are pruned, which is shown at lines 16-22.

B. LASER – Architecture

LASER-compiler relies on Instruction Fetch Unit (IFU)

support to jump to the correct instruction in the instruction

memory and issue only those instructions based on the branch

outcome. LASER-architecture is shown in Fig 7 which aids

in selectively issuing the instructions throughout the loop

execution. The IFU keeps track of the all the conditions being

evaluated in the loop. Once a PE encounters a conditional

Fig. 7: LASER-Architecture to accelerate complex loops.

PEs do not have a predicate network. Branch outcome is

communicated to the IFU to issue instructions selectively

based on the path taken at runtime.

node and evaluates the outcome, it communicates that to the

instruction fetch logic. Based on the information about the

latest branch outcome, IFU can lookup in conditional look-

aside buffer (CLB) to determine the number of instructions

(k) associated with that condition. CLB keeps track of the

information about PC of the conditional instruction and cor-

responding k value. So, if the condition evaluated is false,

hardware can look-up for needed k value and IFU skips k
instructions. To correctly determine the ki value, the hardware

maintains a state register which gets incremented when a new

conditional is evaluated. During execution of the path for a

conditional, corresponding cycle counter keeps incrementing

by 1. Once the cycle counter reaches the value ki, it means

that all ki instructions for the path of condition Ci is executed

and now it should again execute the instructions from the path

of the higher condition nest.

V. EXPERIMENTAL RESULTS

We profiled MiBench and extracted 12 compute-intensive

loops which are nested and/or have conditional nest. We

implemented LASER-compiler in the DDG construction stage

to correctly fuse the nodes of the true and false paths. LASER-

compiler can be used with any mapping technique for mapping

the nodes onto the CGRA. We compare LASER with partial

predication scheme – only viable approach to map loops with

nested conditionals. For evaluation, we used REGIMap [5] to

map the DDG obtained from LASER and partial predication.

PEs perform fixed-point operations with 1-cycle latency and

have 4 local registers. The memory bus is shared among PEs

in a row. For load and store operations, two instructions are

executed, one generates the address and second loads/stores

the data.

A. LASER reduces nodes by 43.43%

Partial predication scheme requires three nodes to correctly

execute an operation (true and false paths, and a selection)

and increases total nodes to be mapped drastically. In Fig 8

the vertical axis denotes the number of nodes normalized

to partial predication and the horizontal axis denotes various

benchmarks. Due to fusing of nodes and elimination of select
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Fig. 8: LASER reduces nodes by 43.43%

operation, LASER reduces the nodes by 43.43%. LASER

achieves much better utilization with increase in depth of

nested conditionals and with increase in number of operations

inside the nests e.g., susan corner has a depth of 24, resulting

in the geomean reduction of 64%, but gsm 2 shows very less

reduction, as it has only 2 operations in a conditional.

B. LASER scales better while mapping with 40.91% better
geomean performance compared to partial predication.

Fig 6 shows the comparison of II achieved with partial

predication and LASER for different CGRA sizes 4×4, 8×8

and 16×16. Compared to partial predication, LASER has

a geomean performance improvement of 42.79% on 4×4

CGRA. As the size of CGRA increases to 8×8, the geomean

II reduction for LASER was 38.05%, compared to partial

predication. For 16×16 CGRA the geomean II reduction is

41.9%. LASER achieves consistent performance improvement

with a cumulative geomean reduction of 40.91% across all

three configurations of CGRA.

C. LASER reduces energy by 46%

We implemented the RTL model of LASER-architecture

shown in Fig 7, and for comparison with partial predication

a 4×4 CGRA with predicate network in each PE (Fig 1

including shaded portions) was implemented. Both the models

were synthesized in 32nm using RTL compiler. The power is

estimated by Cadence RTL power estimation tool. From the

power numbers obtained, we estimated the energy consumed

(given in [14]) by LASER and partial predication to accelerate

Fig. 9: LASER reduces energy by 46%

the loops of MiBench benchmarks. Energy consumed (nJ)

is given by E = clock cycle × critical path delay(ns) ×
Power(W ). Fig 9 shows that LASER consumes on an average

45.78% less energy compared to partial predication.

VI. CONCLUSION

To accelerate general purpose applications with computation

bottlenecks as nested loops and nested conditionals, CGRA

should behave more like a general purpose modern processor

with operationally enhanced IFU, to issue only the correct

instruction. State-of-the-art compilers impose a high overhead

to accelerate loops with only marginal performance improve-

ment. We have presented LASER, a novel hardware-software

approach where, LASER compiler fuses the nodes of various

paths of the conditionals, and IFU issues selectively only

correct instructions based on the branch outcome. LASER

exceeds the state-of-the-art partial predication in accelerating

complicated loops efficiently, with 43.43% node reduction and

40.91% better performance.
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