
URECA: Unified Register File for CGRAs

Shail Dave, Mahesh Balasubramanian, Aviral Shrivastava
Compiler Microarchitecture Lab, Arizona State University, Tempe, AZ

Email: {shail.dave, mbalasu2, aviral.shrivastava}@asu.edu

Abstract—Coarse-grained reconfigurable array (CGRA) is a
promising solution to accelerate loops featuring loop-carried
dependencies or low trip-counts. One challenge in compiling
for CGRAs is to efficiently manage both recurring (repeatedly
written and read) and nonrecurring (read-only) variables of
loops. Although prior works manage recurring variables in
rotating register file (RF), they access the nonrecurring variables
through the on-chip memory. It increases memory accesses and
degrades the performance. Alternatively, both the variables can
be managed in separate rotating and nonrotating RFs. But,
it increases code size and effective utilization of the registers
becomes challenging. Instead, this paper proposes to manage
the variables in a single nonrotating RF. During mapping loop
operations on CGRA, the compiler allocates necessary registers
and splits RF in rotating and nonrotating parts. While rotation
is implemented by a modulo addition based indexing mechanism,
read-only values are preloaded and directly accessed. Evaluating
compute-intensive benchmarks from MiBench show that URECA
provides a geomean speedup of 11.41x over sequential loop
execution. It improves the loop acceleration through CGRAs by
1.74x at 32% reduced energy consumption over state-of-the-art.

I. INTRODUCTION

The need for faster and power-efficient processors paved

the way for multi-cores along with considerable research in

accelerators. ASIC accelerators are efficient but suffer from

poor usability. Although popular, acceleration benefits through

GPUs are often limited to parallel loops and loops with high

trip-counts [1]. Field programmable gate arrays (FPGAs) are

reconfigurable and general-purpose but are marred by low

power efficiency due to fine-grained management [1].

CGRA is an attractive alternative, as programmable, yet

power efficient accelerator that is quite popular in embedded

systems for streaming and multimedia applications [2]–[4].

CGRA is simply an array of processing elements (PEs) in-

terconnected by a 2-D network. Each PE consists of an ALU-

like functional unit and a register file (RF). At every cycle,

instructions are issued to the PEs. The PE gets the inputs from

the neighboring PEs, itself, and registers and executes some

operation. Then, it writes the result into RF and to the output

register, from which neighboring PEs may read the result in

the next cycle. The PE optionally sends/gets the data to/from

the data memory. CGRA achieves higher power efficiency due

to simpler hardware and intelligent software techniques.

A challenge for CGRA compiler is how to manage loop

variables efficiently. Recurring variables are repeatedly read

and written throughout the loop execution. Their outcomes

across multiple loop iterations need to be managed simultane-

ously. This is because of i) loop-carried dependencies and ii)

in a software pipelined schedule [5], operations from multiple

iterations are executed simultaneously. So, prior techniques

manage recurring variables in rotating RFs [5], preserving the

outcome of operations across multiple iterations. Rotation is

done in the hardware by either interchanging the data through

shift registers or by accessing different physical register at each

iteration [2]. However, storing read-only values in rotating

RF leads to accessing incorrect values. So, they are usually

managed through the memory [6]–[9]. Accessing memory

increases the number of loads and degrades the performance.

An alternative can be to access read-only values from a

separate global RF [3]. But, managing variables in separate

RFs requires larger RFs, resulting in poor register utilization.

It also increases the instruction width and hence, the code size.

This paper proposes URECA – unified register file architec-

ture for CGRA accelerators. Our hardware-software approach

manages both recurring and nonrecurring values in a single

nonrotating RF, which is local (i.e. within a PE). Based on reg-

ister requirements of the operation being mapped on CGRA,

compiler dedicatedly reserves the registers for recurring and/or

nonrecurring values. After mapping, it generates a configura-

tion to split RF into rotating and nonrotating parts. So, the

hardware of RF can flexibly support a different number of

registers for storing both recurring and nonrecurring variables,

for mapping of different loops. RF is nonrotating (i.e. does

not employ shift registers) and hence, read-only values are

directly accessed. These nonrecurring variables are preloaded

in registers before loop execution. Rotation is implemented

by a simple modulo addition based mechanism, which allows

accessing registers correctly for recurring variables. We find

RF modifications increasing the area by merely 3% and total

CGRA power by < 0.4%. Such unified RF based approach can

be easily integrated with any mapping technique for CGRAs.

Evaluating compute-intensive applications from MiBench

[10] shows that URECA improves CGRA’s loop acceleration

capability by 1.74x with 32% reduction in energy consumption

as compared to CGRA accessing constant memory. It also

reduces the number of registers needed by 39% in comparison

with CGRA managing variables through two separate RFs.

II. MANAGING LOOP VARIABLES IN CGRA EXECUTION

To accelerate loops on a CGRA, a target application is

profiled and compute-intensive loops are extracted. For each

loop, a data dependency graph (DDG) is generated by pars-

ing the intermediate representation (IR) [11]. As shown in

Fig. 1(a), DDG is a directed graph D=(V,E); nodes V represent

the operations to be executed by PEs and edges E represent

1081978-3-9819263-0-9/DATE18/ c©2018 EDAA

Authorized licensed use limited to: ASU Library. Downloaded on April 18,2022 at 17:16:45 UTC from IEEE Xplore. Restrictions apply.

i i-1

i+1

i-1

l
i-2l

iiiiiiiiii-ii 11111111111 i-1
i-2

i-2

i-3

i-1

i-2
i-1l
i

i-1

Fig. 1. (a) DDG of a critical loop with loop-carried dependence, (b) a 1×2
CGRA. (c) a register aware mapping of (a) on (b) with II=3

data dependencies among the operations. An iterative modulo

schedule [5] is generated for DDG and operations are mapped

on PEs in a software pipelined manner. For example, a valid

mapping of DDG of Fig. 1(a) on a 1×2 CGRA of Fig. 1(b)

is shown in Fig. 1(c). Node a of the ith iteration is mapped

to PE1 at time t+1. Nodes b, c and d are mapped to PE2 at

consequent timings, honoring the data dependencies. Node l
is a live-in value and is always loaded by PE1. In an iterative

modulo schedule, the constant interval between the start of

successive iterations is referred as Initiation Interval (II) [5],

which is the performance metric. In this example, operation

‘a’ executes after every 3 cycles and hence, II is 3 cycles.

Mapping 5 operations on 2 PEs requires at least 3 cycles.

Thus, obtained II is Minimum II (MII) [5]. There are various

techniques to obtain the mapping [2], [3], [9].

Need to Manage Recurring and Nonrecurring Variables:
Mapping loop operations to CGRA PEs require management

of two kinds of variables – i) recurring and ii) nonrecurring.

Recurring values are repeatedly read and written throughout

the loop execution. For example, in a software pipelined

schedule, outcomes of a node execution across few iterations

are stored in the registers and as a result, the liveness of the

same variable may overlap [2], [5]. Additionally, in acceler-

ating loops with loop-carried dependency, the data values are

required across iterations [5]. For example, Fig. 1(a) indicates

a recurrence through an arc d → b, with weight of 2. Hence,

node b of ith iteration (bi) needs data from previously executed

node di−2. This implies that every value of d for 2 iterations

must be stored in 2 different registers of the RF.

To address the issue of overwriting recurring values, rotating

RF is used [2], [5], [12]. For example, Fig. 1(b) shows that

each CGRA PE has a rotating register with a depth of 2 (total

2 registers R1 and R2 to hold 2 different values of a variable).

In the mapping of Fig. 1(c), operation d executes on PE2 and

always writes to R1 and b reads from R2. At time t+1, di−1

writes its value into R1 of PE2. R2 of PE2 contains the value

of previously computed di−2, which is read later at time t+2

to compute bi. For correct execution, rotation of the register

values occurs at every II cycles (shown by exchanging the

values of R1 and R2 at the beginning of t+3). After rotation,

R1 of PE2 contains unwanted value di−2 which is overwritten

by new value di at time t+4. Thus, rotation helps preserving

di−1 into R2 which is needed by bi+1 at t+5 (not shown).

CGRA PEs also need to access nonrecurring variables like

read-only operands, live-in data (values needed for loop exe-

cution) etc. They are frequently accessed throughout the loop

execution and should be stored in registers. But, if managed

in rotating RF, they undergo the rotation. It causes either the

register value to be overwritten or PEs access incorrect values.

This results in incorrect execution. For example, operation

a needs to access live-in value l which cannot be stored in

the rotating registers. Hence, PE1 always loads l from the

memory throughout the loop execution. Alternatively, such

nonrecurring values can be managed in a separate nonrotating

RF. But, managing both recurring and nonrecurring values

separately has been inevitable.

III. LIMITATIONS OF PRIOR APPROACHES

Majority of prior works manage recurring variables in local

registers of PEs and nonrecurring variables through memory.

Alternatively, variables can be managed in separate register

files – recurring in local rotating RFs, nonrecurring in a global

nonrotating RF. Fig. 2(a) shows CGRA managing nonrecurring

values in constant memory (L1 cache or a memory bank in

scratch-pad memory) [6]–[9]. In some CGRA designs, only

specific PEs can access constant memory; a constant is placed

and routed through a PE [13]. Accessing memory is simple,

but it results in extra load operations during each loop iteration,

which can degrade the performance. In fact, adding more loads

can be much more harmful because of 2 reasons: i) in most

CGRAs, only a few PEs can perform memory operations

[2], [3], ii) Often load/store bandwidth is limited, e.g., data

and address buses are usually shared by PEs in row [8], [9].

Such restrictions along with more operations to be mapped

and executed on CGRA PEs result in higher II i.e. more

execution cycles. It also increases the code size as we need

to manage more CGRA instructions with the increased II.

Besides, managing nonrecurring variables in memory require

larger data memory throughout the execution.

CGRA mapping technique proposed by Oh et. al. [3]

considered the issue of increased memory accesses. They

suggested reserving the nonrecurring values into a separate

global RF. As shown in Fig. 2(b), global RF is accessed by

all PEs, allowing data sharing between PEs without external

Fig. 2. CGRAs manage recurring variables in local rotating RFs. For
nonrecurring values, CGRA accesses (a) on-chip memory (b) a global RF;
each PE is connected to global RF through column-wise bus structure

1082 Design, Automation And Test in Europe (DATE 2018)

Authorized licensed use limited to: ASU Library. Downloaded on April 18,2022 at 17:16:45 UTC from IEEE Xplore. Restrictions apply.

routing. Experiments have shown that it is crucial to connect

all PEs to global RF [14], which requires many R/W ports,

resulting in performance degradation and increased total area

[14]. Furthermore, accessing separate RFs burdens instruction

set architecture (ISA) and increases instruction width. For ex-

ample, a 32-bit instruction for a PE requires – 5 bits for opcode

field, 2×3 bits for selecting input through 2 multiplexers for

two operands and 3×2 bits for indexing register number to

access a local RF with 2 read and 1 write port; RF contains

4 registers. Moreover, 1 bit is needed for each of – indicating

RF write, asserting address bus and asserting data bus. Finally,

the immediate field consists of 12 bits. Now, consider CGRA

of Fig. 2(b) that manages recurring values in local RF of 4

registers and read-only operands in a global RF of 64 registers.

Then, we need 18 bits just to index registers of the RF; PE

can get 2 inputs from RF and writes back to the RF (i.e.

3×6). Managing 2 separate RFs requires selection between

RFs for each register index field (i.e. 3 more bits). Hence,

such approach increases instruction width to 47-bits from 32-

bits when compared to CGRA with a local RF of 4 registers.

It increases memory bus width and the code size.

True that we can have separate rotating and nonrotating

RFs to manage recurring and nonrecurring variables [3], [12].

But, efficient utilization of registers becomes a challenge. This

is because different loops in target application(s) require the

different number of rotating and nonrotating registers. For

example, some loops may feature loop-carried dependencies

with larger distance whereas, operations of some other loops

may need many live-in values. So, if any of the rotating and

nonrotating RF is of smaller size, then a mapping may not

be achieved. CGRA with larger rotating and nonrotating RFs

not only end up with poor utilization of registers but also

consume more area and power. Plus, managing separate larger

RFs increases the instruction width and hence, the code size.

Instead, this paper proposes to use a single nonrotating

RF. Our RF solution is local, as local RFs are smaller,

scalable and help to obtain the better performance [3]. The

compiler allocates necessary registers and configures the RF

dynamically, splitting it into rotating and nonrotating parts.

IV. URECA: EFFICIENTLY MANAGE ALL VARIABLES IN

SINGLE RECONFIGURABLE REGISTER FILE

To manage both recurring and nonrecurring variables in an

efficient manner, this paper presents URECA, a local unified

RF. Compiler manages all variables in single RF with the least

number of registers. The hardware is simple yet configurable,

with regular (i.e. nonrotating) RF. During mapping of each

loop operation on a CGRA PE, compiler analyzes the number

of registers needed to store recurring and/or nonrecurring

values in RF within a PE. An operation is mapped only if reg-

isters are available. After register allocation, RF configuration

is generated to split RF in rotating and nonrotating section.

Rotation of RF is implemented through modulo addition with

register index to correctly access recurring values. Nonrecur-

ring variables are preloaded into registers of the nonrotating

section and are directly accessed throughout the execution.

During allocating registers for nonrecurring values, compiler

employs data reuse analysis to avoid duplication; same value

can be used by numerous operations mapped on a PE.

A. Accessing Right Registers in Unified RF

The unified RF is shown Fig. 3. In our URECA, the registers

are split into the rotating and nonrotating parts, based on the

configuration value c. Value c controls the boundary between

both sections and can be set dynamically. Such mechanism

gives CGRA compiler the flexibility to support different

register requirements for different loops. The register index

for the read and write operations is indicated by readReg1,

readReg2 and write, respectively.

Accessing Nonrotating Section: If the register index is greater

than c then, the control unit generates a select signal as 1.

Then, a PE directly access the register inside the nonrotating

section. For example, if RF has a total n = 6 registers,

the value of c = 3 implies that there are 4 registers in

rotating section and 2 in a nonrotating section. In this case,

a read operation with index readReg1 = 5 enables accesses

to the register 5 inside nonrotating part. Register 5 contains

a nonrecurring value, that directly drives the read port. Note

that for the unified RF of each PE, such nonrecurring variables

are pre-loaded into corresponding registers through machine

instructions, at the beginning of the loop execution.

Accessing Rotating Section: If the register index is less

than or equals to c, we need to access the rotating section.

URECA is nonrotating and hence, it eliminates the use of

complex structures such as shift registers. Instead, the rotation

is implemented by a modulo addition of the register index with

a stage counter [2]. The stage counter (SC) is incremented at

the end of every II cycles and is reset to 0 when it reaches the

value of c. The outcome of the adder is ANDed with c to get

the modulo addition. This mechanism helps to access different

physical registers at each loop iteration. For example, we want

to access values of a variable d across 4 different iterations.

We read the value of di−3 through index readReg2 = 0 and

we overwrite the new value of di with the index write = 3.

In such scenario, a select signal is always 0. For SC = 2

(iteration i = 10), the summation of SC with readReg2 is

2. Then, modulo operation through ANDing yields access to

Fig. 3. Unified RF is a regular register file that can be split in rotating and
nonrotating sections. Compiler configures RF through a machine instruction.

Design, Automation And Test in Europe (DATE 2018) 1083

Authorized licensed use limited to: ASU Library. Downloaded on April 18,2022 at 17:16:45 UTC from IEEE Xplore. Restrictions apply.

the physical register of index 2 that contains d7. Similarly,

physical register 1 is selected to overwrite with the newest

value d10. And, physical registers with index 3 and 0 still

preserve the older values d8 and d9, respectively. Thus, we

can manage both recurring and nonrecurring variables in a

single RF; RF configuration splits RF into two parts.

B. How Compiler Determines Register Requirements?

In CGRA compiler, register allocation is integrated with a

place and route stage of the mapping and the operation is

placed on the PE only if the required number of registers

are available. So, during mapping an operation on a PE, our

compiler analysis determines the number of registers needed

for both, i) storing nonrecurring variables ii) managing recur-

ring values. It reveals the total number of registers required

inside rotating and nonrotating section of unified RF. The

number of nonrotating registers needed is easily determined

from the live-in operands in DDG (with a liveness analysis

through use-definition chains [11]). Plus, if the value of a

constant operand is larger than the maximum value supported

by immediate bits in the CGRA instruction then, it is also a

nonrecurring variable. During register allocation, data reuse

analysis is employed to avoid duplicating the nonrecurring

value in the RF. For example, multiple operations often require

the same live-in value. So, when they are mapped on the same

PE, reuse analysis avoids storing redundant values in the RF.

Algorithm 1 shows how compiler analyzes registers for

recurring values. First, it finds out the information about

successor nodes that access the outcome through registers, due

to either intra-iteration dependency or a loop-carried depen-

dence. Based on the scheduling and mapping information, the

compiler calculates a difference of absolute mapping times

of a node and its successor (in terms of II cycles). Finally,

with calculated mapping distance, it computes the number of

rotating registers required to map a node vi on PE pi.

C. URECA Ensures Efficient Management in Single RF

Upon determining the total registers needed to manage both

the variables, the compiler ensures availability of registers

prior to their reservation. For mapped operations, it keeps track

of register allocation per PE, as shown in Algorithm 2. For a

PE pi, rotating[pi] indicates the number of registers allocated

Algorithm 1: getRotatingReg(Input Node vi, PE pi)

1 (successors, total successors) ←get successors(vi);

2 while i < total successors do
3 si ← successors[i];
4 if (isMoreThanACycleApart(vi, si)) then
5 distance ← calculate distance(vi, si);
6 reg needed ← distance + 1;

7 if (reg needed > rotating reg) then
8 rotating reg ← reg needed;

9 i++;

10 return rotating reg;

Algorithm 2: allocateRegs(Input PE pi, Size N ,Node vi)

1 r1 ← getRotatingReg(vi, pi);
2 r2 ← get number of nonrotating registers(vi, pi);
3 r′1 ← get nearest power of two(rotating[pi] + r1);
4 total ← r′1 + (nonrotating[pi] + r2);
5 if total � N then
6 rotating[pi] += r1; nonrotating[pi] += r2;

7 configuration[pi] ← r′1; return true;

8 return false;

previously in the rotating section. The compiler ensures that

new size of rotating section r′1 is equal to the nearest power of

2, satisfying constraint due to implementing modulo addition.

If enough registers are available to map a new operation vi,

then the allocation is done and the function returns success

(lines 5–7). Once all operations are mapped, instructions to

configure RFs of PEs is generated based on the value of

configuration[pi], and fed to control unit of Fig. 3 at run-time.

Unlike existing RF designs for CGRAs, our unified RF

can support the variable number of the recurring and/or

nonrecurring values. The boundary between the rotating and

nonrotating sections in the unified RF can be varied dynami-

cally, supporting different mappings of different loops. Thus,

URECA enhances the capability of the compiler to efficiently

and flexibly manages the variables in a single RF of limited

size, promoting general-purpose computing on CGRAs.

D. Integration with CGRA Mapping Techniques

Fig. 4 shows a high-level overview of the compilation

flow. Input DDG is translated to a set of clusters/cliques.

Then, the compiler tries to map the operation on a PE. If

it finds a PE slot, it checks for register availability inside

the unified RF else, it finds another PE. If no other PE is

available, it increases II by 1. Register reservation is done

through Algorithm 2. If II value crosses the preset limit, it

terminates the mapping, resulting in failure. Upon successfully

mapping all the operations, a valid mapping is generated along

with machine instructions to configure the unified RFs and to

preload nonrecurring values. In this way, our solution can be

easily integrated with any CGRA mapping technique.

Generate
Configurations

Mapping
Succeeded

Yes

Input Data Dependency Graph

Generate Edge Set/Clusters/Cliques

II MII

Calculate Costs/Reserve Resources

II > Total
Attempts?

II II + 1

Mapping
Failed

Yes
No

No
Select Target Node & PE

All Nodes Mapped?

Reserve Registers

Success?

Update Costs/Resources

Another PE
Available?

No

Yes

Yes

Success?

Yes

No

No

Fig. 4. Integrating Register Reservation Function with a Mapping Technique

1084 Design, Automation And Test in Europe (DATE 2018)

Authorized licensed use limited to: ASU Library. Downloaded on April 18,2022 at 17:16:45 UTC from IEEE Xplore. Restrictions apply.

0.85
Higher the better

Fig. 5. Managing all variables within local unified RF achieves II close to
Minimum II (MII) as compared to CGRA accessing constant memory.

V. EXPERIMENTAL SETUP

Benchmarks: We profile MiBench benchmark suite [10] with

Alinea Map and Intel Parallel Studio XE tools and deter-

mine the top non-vectorizable performance-critical loops in

compute-intensive applications. These benchmarks represent

the workloads in the fields of security, telecom, automotive

etc. and can benefit from acceleration through CGRAs.

Compilation: The mapping is obtained through REGIMap

[9], which maps operations with a clique based approach; the

corresponding rotating RFs of the PEs should have enough

rotating registers. Instead, we modify the register allocation

constraint (with Algo. 2) to target unified RF, accommodating

both recurring and nonrecurring values for the operation. Our

CGRA compiler is implemented in LLVM 4.0 [11] as a pass.

We use optimization level 3 and also consider loops accessing

sub-words/pointers or loops with dynamic trip-counts.

Simulation: Techniques are evaluated on popular cycle-

accurate simulator gem5 [15] in system emulation mode; we

modeled CGRA as a separate core coupled to ARM Cortex-

like processor core with ARMv7a profile. In a 4x4 homoge-

neous CGRA, PEs are connected in a 2D torus, performing

fixed-point operations with 1-cycle latency. PEs access data

and instruction memories of 4 kB; memory bus is shared

among PEs in a row. For load/store operation, 2 instructions

are executed; 1st generates address and 2nd loads/stores data.

Techniques Evaluated: In evaluating prior works, CGRA

manages recurring variables in local rotating RF (LRRF) of 4

32-bit registers [2]. With 12-bit immediate in our ISA, con-

stants greater than 4095 are treated as nonrecurring variables.

In state-of-the-art approach (i.e. CM+LRRF), CGRA manages

nonrecurring values by accessing 4 kB of data memory (CM).
We also evaluate an alternative of managing them in sep-

arate global nonrotating RF (GNRRF) of 64 registers (i.e.

GNRRF+LRRF). However, URECA is evaluated with just a

single RF for each PE, with 4 registers. RF configuration takes

1 cycle and a variable is preloaded in 3 cycles. We implement

RTL for CGRA, mapping it to Synopsys 32nm process and

synthesize it with Cadence RTL compiler (Table I).

VI. RESULTS AND ANALYSIS

A. URECA Improves CGRA’s Loop Acceleration Capability
by 1.74× over CGRA Accessing Constant Memory

Fig. 5 shows that employing URECA achieves the mapping

of nearly ideal quality. For each performance-critical loop, we

measure mapping quality as a ratio of MII to II, since values

of II span over a larger range. In CM+LRRF, the nonrecurring

Fig. 6. URECA helps CGRA to accelerate loop execution cycles by 11.41x
over sequential execution on ARM Cortex-like core with ARMv7a profile.

values were accessed from memory, increasing nodes by 50%.

It increased II by 1.75x due to bandwidth restrictions as only

1 PE among 4 PEs in a row can access memory bus at a

time. For example, the critical loop of sha translated to a

DDG with 30 nodes (including 10 load/store nodes) and 9

nonrecurring values. This resulted in additional 18 load nodes

and in II of 8 for CM+LRRF, while URECA achieved MII

of 3 honoring the resource constraints. However, the critical

loop of adpcm encoder featured a loop-carried dependence

with distance 1 and about a delay of 20 operations in the

path. So, all approaches easily obtained mapping at higher

II (recurrence-bounded). Fig. 6 shows that better mapping

provided acceleration of 1.74x in terms of loop execution cy-

cles (including RF configuration/pre-loading cycles). URECA

promoted variables to registers from memory, helping CGRA

to accelerate loops by 11.41x over sequential execution.

B. URECA Reduces Energy Consumption by 32% in Compar-
ison with CGRA Accessing Constant Memory

With critical path delay (D), power (P) (Table I), we

compute energy E as P×C×D [16], for loop execution cycles

C. With a significant reduction in execution time, URECA re-

duces energy consumption by 32% as compared to CM+LRRF.

Using separate RFs (GNRRF+LRRF) consumes 5% higher en-

ergy than URECA and increases code size by 50%, requiring 8

kB of instruction memory. However, the code is partitioned for

evaluation. If we do not consider the impact of instruction and

data memories, CGRA accessing GNRRF+LRRF consumes

57% more power than CGRA with URECA.

Here, an exception is the benchmarks where the perfor-

mance with unified or global RF 1 is similar to the CGRA

accessing memory, e.g. adpcm encoder. Compared to LRRF,

URECA has little higher cycle time and it takes some more

cycles for pre-loading constants. So, URECA requires little

higher energy than CM+LRRF. In such scenario, employing

global RF is even worst (1.2x) as it consumes higher power

1Although GNRRF+LRRF yields performance at par with URECA, it
increases the code size and results in poor utilization of the registers.

TABLE I
HARDWARE SPECIFICATIONS OF CGRA WITH DIFFERENT RFS AND 4 KB

OF DATA AND INSTRUCTION MEMORIES FOR 32NM PROCESS

RF Architecture Delay (ns) Area (mm2) Power(mW)

LRRF 1.94 1.062 365.26
URECA 2.10 1.097 366.69
GNRRF + LRRF 2.15 1.287 382.86

Design, Automation And Test in Europe (DATE 2018) 1085

Authorized licensed use limited to: ASU Library. Downloaded on April 18,2022 at 17:16:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Normalized energy consumption for CGRA with unified RF and for
CGRA managing nonrecurring values in global RF when compared to the
approach of accessing nonrecurring variables from memory.

and yields larger cycle time because of all PEs accessing a

separate larger global RF via many R/W ports.

C. URECA Reduces Register Requirement by 39% as Com-
pared to CGRA Managing Two Separate Register Files

To demonstrate the impact of managing variables in single

yet configurable RF, we analyze RF size requirements for

various approaches. A simple way can be to keep nonrecurring

and recurring values in 2 separate local RFs, local nonrotating
RF (LNRRF) and LRRF (i.e. LNRRF+LRRF). Other possible

solutions are GNRRF+LRRF and URECA. For each approach,

we obtain mapping with no constraint on RF size and de-

termine the total number of registers needed. Our analysis

reveals that having 2 separate local RFs is worst as there is no

data sharing. Although a GNRRF can help to share the data

among PEs, still many rotating registers in separate LRRFs are

left unutilized. In contrast, URECA provides CGRA compiler

the flexibility to allocate registers for both recurring and/or

nonrecurring values in single RF and reduces total registers

required. For example, Susan smoothing requires 4 rotating

registers. Hence, we need LRRF of at least 4 registers for all 16

PEs. It also needs to manage 12 live-in/live-out values; some

PEs require 2 live-in values. Hence, LNRRF of 2 registers

is needed (total 32 + 64 registers for LNRRF + LRRF).

Alternatively, we need total 12 + 64 registers for accessing

GNRRF + LRRF. On the other hand, having a URECA

of just 4 registers (total 64) is enough. URECA can easily

manage both types of variables in a single RF, reducing the

register requirements. This greatly helps CGRA compiler to

generate the needed mapping. Furthermore, data reuse analysis

in managing nonrecurring values in RF also reduces register

requirements (especially for adpcm and gsm).

VII. SUMMARY

This paper presents challenges in the traditional approach of

the managing nonrecurring values through memory and shows

how it degrades the performance. The alternative of manag-

ing variables through separate RFs results in poor register

utilization and increases the code size. This paper advocates

for managing them effectively in a single nonrotating RF and

presents URECA, a local unified RF as a novel and efficient

solution. Its RF configuration allows storing a different number

of recurring and nonrecurring values; register reservation is

done by the compiler unique to the loop requirement. After

evaluating the technique along with prior works, we conclude

Fig. 8. Managing all variables in the unified RF reduces register requirement
significantly as compared to CGRA managing the variables in separate RFs.

that URECA improves acceleration capability of CGRAs by

1.74x at 32% reduced energy usage. Our co-design efficiently

manages variables in single RF than other existing solutions.

ACKNOWLEDGMENT

This work was partially supported by funding from the NSF

grants CCF 1723476, 1055094 (CAREER), and CNS 1525855.

REFERENCES

[1] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating
compute-intensive applications with gpus and fpgas,” in Application
Specific Processors, 2008. SASP 2008. Symposium on. IEEE, 2008.

[2] B. Mei, M. Berekovic, and J. Mignolet, “Adres & dresc: Architecture and
compiler for coarse-grain reconfigurable processors,” Fine-and coarse-
grain reconfigurable computing, pp. 255–297, 2007.

[3] T. Oh, B. Egger, H. Park, and S. Mahlke, “Recurrence cycle aware
modulo scheduling for coarse-grained reconfigurable architectures,” in
ACM Sigplan Notices, vol. 44, no. 7. ACM, 2009, pp. 21–30.

[4] B. Egger et al., “A space-and energy-efficient code compres-
sion/decompression technique for coarse-grained reconfigurable archi-
tectures,” in Proceedings of the 2017 International Symposium on Code
Generation and Optimization. IEEE Press, 2017, pp. 197–209.

[5] B. R. Rau, “Iterative modulo scheduling: An algorithm for software
pipelining loops,” in Proceedings of the 27th annual international
symposium on Microarchitecture. ACM, 1994, pp. 63–74.

[6] H.-S. Kim, M. Ahn, J. A. Stratton, and W.-m. W. Hwu, “Design eval-
uation of opencl compiler framework for coarse-grained reconfigurable
arrays,” in Field-Programmable Technology (FPT), 2012 International
Conference on. IEEE, 2012, pp. 313–320.

[7] H. Lee, D. Nguyen, and J. Lee, “Optimizing stream program perfor-
mance on cgra-based systems,” in Proceedings of the 52nd Annual
Design Automation Conference. ACM, 2015, p. 110.

[8] G. Dimitroulakos, N. Kostaras, M. D. Galanis, and C. E. Goutis, “Com-
piler assisted architectural exploration framework for coarse grained
reconfigurable arrays,” The Journal of Supercomputing, vol. 48, 2009.

[9] M. Hamzeh, A. Shrivastava, and S. Vrudhula, “Regimap: register-
aware application mapping on coarse-grained reconfigurable architec-
tures (cgras),” in Proceedings of the 50th Annual Design Automation
Conference. ACM, 2013, p. 18.

[10] M. Guthaus et al., “Mibench: A free, commercially representative
embedded benchmark suite,” in WWC, 2001.

[11] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in CGO, 2004, pp. 75–86.

[12] B. Van Essen, R. Panda, A. Wood, C. Ebeling, and S. Hauck, “Man-
aging short-lived and long-lived values in coarse-grained reconfigurable
arrays,” in Field Programmable Logic and Applications (FPL), 2010
International Conference on. IEEE, 2010, pp. 380–387.

[13] P. Theocharis and B. D. Sutter, “A bimodal scheduler for coarse-grained
reconfigurable arrays,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 13, no. 2, p. 15, 2016.

[14] Z. Kwok and S. J. Wilton, “Register file architecture optimization in
a coarse-grained reconfigurable architecture,” in Field-Programmable
Custom Computing Machines, 2005. FCCM 2005. 13th Annual IEEE
Symposium on. IEEE, 2005, pp. 35–44.

[15] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[16] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, “Hycube: A cgra
with reconfigurable single-cycle multi-hop interconnect,” in Proceedings
of the 54th Annual Design Automation Conference 2017. ACM, 2017.

1086 Design, Automation And Test in Europe (DATE 2018)

Authorized licensed use limited to: ASU Library. Downloaded on April 18,2022 at 17:16:45 UTC from IEEE Xplore. Restrictions apply.

