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Abstract

We present a model to explain the mechanism behind enantiomeric separation under either

shear flow or local rotational motion in a fluid. Local vorticity of the fluid imparts molec-

ular rotation that couples to translational motion, sending enantiomers in opposite directions.

Translation-rotation coupling of enantiomers is explored using the molecular hydrodynamic re-

sistance tensor, and a molecular equivalent of the pitch of a screw is introduced to describe the

degree of translation-rotation coupling. Molecular pitch is a structural feature of the molecules

and can be easily computed, allowing rapid estimation of the pitch of 85 drug-like molecules.

Simulations of model enantiomers in a range of fluids such as Λ- and ∆-[Ru(bpy)3]Cl2 in wa-

ter and (R, R)- and (S, S)-atorvastatin in methanol support predictions made using molecular

pitch values. A competition model and continuum drift diffusion equations are developed to

predict separation of realistic racemic mixtures. We find that enantiomeric separation on a

centimeter length scale can be achieved in hours, using experimentally-achievable vorticities.

Additionally, we find that certain achiral objects can also exhibit a non-zero molecular pitch.
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Introduction

Enantiomers of chiral molecules are non-superposable mirror images with the same structural for-

mula.1,2 In achiral environments, enantiomers have identical physical and chemical properties,

and this prevents separation by classical methods.2–4 For example, crystallization and filtration

(separation by solubility),5 distillation (separation by boiling point)5 and standard achiral chro-

matography (separation by interaction with a stationary phase and a solvent)5 are unable to resolve

enantiomers.

The current methods to resolve enantiomers are expensive and not universal.2–4,6 These meth-

ods typically require changes in synthetic pathways or separation in chiral environments. Synthetic

methods will often utilize acid-base reactions that form diastereomers, while subsequent reactions

will recover the pure enantiomers from the resolved diastereomers. This allows resolution of the

enantiomers via classical techniques due to distinct physical and chemical properties of intermedi-

ates.2–4

There has also been significant progress on separating enantiomers once they have been formed

by their primary synthetic reactions. In this case, the enantiomers can be resolved through chiral

environments. Chiral environments often involve chiral chromatography2,4,7 where enantiomers

have distinct intermolecular interactions with a chiral stationary phase or with a chiral solvent.2,4,7

In this paper, we develop an explanatory “screw” model for predicting the shear-flow separa-

tion of enantiomers using a set of hydrodynamic calculations on the structures of the molecules.

Although the fluid itself may be achiral, shear vorticity of the fluid introduces a dynamic chiral

environment that can induce separation. Shear vorticity is the rotation of an object induced by

a velocity gradient in a fluid undergoing shear flow.8,9 The potential separation of enantiomers

by achiral fluid flow was reported by Howard et al.10,11 Inside a rotating drum, Howard and co-

workers suspended dextro-tartaric acid crystals in Isopar H (isoparaffinic hydrocarbons), and ob-

served pure macroscopic enantiomers moving in specific directions depending on the Isopar H

flow.10

Howard et al.’s idea10,11 has been extended to separating biological and manufactured chiral
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objects (not molecules) at the mili,12,13 micro14–17 and nano18 scale. These observations contradict

a simple theoretical model of Tencer and Bielski,19 which suggests an impractical amount of time

required to resolve micro-scale or smaller chiral objects. With these experimental and theoretical

discrepancies, Hermans et al.20 have recently emphasized the necessity of theoretical studies at the

small scales, particularly on real molecules with all intermolecular interactions treated in a realistic

manner.

Formalism

We first describe how hydrodynamics enters molecular simulations. When a body is moving

through an implicit, dense fluid, we often adopt Langevin Dynamics (LD) to describe the motion

of the body,

mv̇(t) =−∇U−ξ v(t)+R(t) ,

where m and v are the mass and velocity of the body, ∇U is the gradient of the potential energy,

which provides the ‘system’ force on the body, and frictional forces (−ξ v) and random forces (R)

are present due to the interactions with the implicit fluid.

In a typical LD simulation, the frictional forces are modeled using Stokes’ law, ξ ≈ 6πησ ,

where η is the viscosity of the implicit fluid, and σ is the hydrodynamic radius of the body.21,22

Additionally, the friction and random forces are tied together by the second fluctuation–dissipation

theorem,

〈R(t) ·R(t ′)〉= 2kBT ξ δ (t− t ′) ,

where the random forces at different times are uncorrelated in the high friction limit.

To describe the motion of a complex rigid body, which has both linear and angular velocities,

we must broaden the Langevin approach to include both frictional forces and torques. These can
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be included through a resistance tensor,23,24

 F f

τ f

=−

 Ξtt Ξrt

Ξtr Ξrr


 v

ωb

 , (1)

that mediates the relationship among frictional force (F f ), torque (τ f ), velocity (v) and body-

fixed angular velocity (ωb). The resistance tensor is composed of 3× 3 blocks, where Ξtt is the

translational and Ξrr is the rotational resistance tensor, while Ξtr is the translation-rotation and

Ξrt = (Ξtr)
T is the rotation-translation coupling tensor.

If a fluid is moving past a body with velocity, v, the same resistance tensor in Eq. (1) also

governs the forces (and torques) experienced by the body, although the sign of the velocity is

reversed. Similarly, if the surrounding fluid is exhibiting a vortex flow, this same tensor will govern

torques (and forces) on the body. To illustrate this point, consider the ‘propeller’-shaped molecules,

Λ-tris(2,2’-bipyridine) ruthenium (II) and ∆-tris(2,2’-bipyridine) ruthenium (II) shown in Fig. 1.

If these molecules are placed in a moving fluid, they begin rotating in opposite directions in their

body-fixed frames. However, if the surrounding fluid is experiencing a vortex flow rotating around

the molecules, they will begin translating in opposite directions. It is exactly this property which

can be exploited to separate enantiomers.

Rotational motion in a fluid is not limited to portions of the fluid that are swirling around a

vortex line. It can also be observed in regions where a fluid is undergoing simple linear shear flow.

To measure local rotation in a fluid, we use vorticity,21,22,25,26

ω = ∇×v(r) , (2)

where v(r) is the local velocity field in the fluid, and ω 6= 0 indicates rotation.

For a rigid body, a general relationship between vorticity (ω) and angular velocity (ωb) is

known.22,25,26 A fluid flow with vorticity ω 6= 0 induces the rotation of the rigid body, which then

acquires an angular velocity ωb = ω/2.
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The Screw Model

A screw is a simple chiral object that couples rotation around one axis with displacement along

that axis. This displacement is perpendicular to the plane of rotation and is characterized by the

screw’s pitch (or lead). Here we define pitch (P) as the perpendicular distance advanced by a screw

in a 2π-revolution (See Fig. 1). In a lab-fixed frame, left- and right-handed screws have pitches

with the same magnitude, but with flipped signs, rotating in opposite directions to do the same

task.23,27–29

This concept can be easily extended to chiral molecules by considering the translation-rotation

coupling tensor in Eq. (1). In a medium which induces rotation of molecules (as in a vortex flow),

chiral molecules will translate in opposite directions. As a consequence, this asymmetry may

enable the resolution of the enantiomers.23,28

In the following sections, we develop a hydrodynamic framework to rapidly estimate molecular

pitches, as well a competition model for the separation of chiral molecules in solution. We note

that the molecules do not need to display screw-like geometries for this separation method to be

effective.

Calculation of the resistance tensor, Ξ, for arbitrary molecular geometries was pioneered by

Brenner,23 and significantly improved for Brownian dynamics simulations by Garcı́a de la Torre,

whose group introduced a “Rough Shell” approach using small, non-overlapping beads (or spheres)

to represent the molecular structure.24,30,31 Recent work has extended this model for Langevin

dynamics,32 and has allowed the use of overlapping beads.33 In the Supporting Information, we

develop more fully the calculation of the molecular resistance tensors, but we note here that this is

a straightforward calculation that requires only the positions and sizes of the atoms in a molecule,

and the viscosity of the surrounding fluid.

In Eq. (1), chiral molecules have contributions in the translation-rotation (Ξtr) and rotation-

translation (Ξrt) coupling tensor. Normally, these tensors depend on the origin of the coordinate

system, but at the center of resistance, they both become symmetric. For chiral molecules, the

eigenvalues of Ξtr have the same magnitudes, but flip signs for the two mirror images. Using
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P

 = 0.126 mm / rad
|P|
2π

 = 0.144 Å / rad
|P|
2π

P

Figure 1: The screw model assigns a pitch (P) to enantiomeric molecules based on rotational
invariants of the resistance tensor in Eq. (1). This is a direct analogy to the pitch of regular
screws. A typical wood screw might have a pitch measured in mm per radian of rotation, while the
[Ru(bpy)3]2+ ions have a pitch of 0.144 Å per radian of rotation. Screws are chiral objects, and a
full (2π) rotation of the enantiomeric screws (or molecules) will separate them by 2×|P|.
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rotational invariants for both Ξtr and Ξtt, we have developed the molecular equivalent of the pitch

for a screw or propeller travelling through a medium,

|P|
2π

=

√
∑i(λ

tr
i )

2

∑i(λ
tt
i )

2 (3)

where (λ tr
i ,λ

tt
i ) are the ith eigenvalues of the translation-rotation and translational resistance ten-

sors, respectively. Because λ tr
i and λ tt

i are linearly proportional to viscosity, the pitch in Eq. (3)

has no viscosity dependence, as it is a structural feature of the molecule.

We have calculated the pitch for a large range of common drug molecules34 which contain

chiral centers. Pitches for selected molecules are shown in table 1. Pitch data for 78 additional

chiral drug molecules is provided in the Supporting Information.

Table 1: Molecular pitches for some common enantiomeric molecules calculated using two
hydrodynamic models. The rough shell model used non-overlapping beads of radius 0.1
Å, while the overlapping bead model used atom-centered beads with van der Waals radii
appropriate for each atom. Molecular pitch values are reported in Å / rad. Pitch data on 78
additional molecules are provided in the Supporting Information.

Molecule Molecular Pitch, |P|/2π

Common Name Generic Name CAS Number Rough Shell Overlapping Bead Model
Aricept Donepezil 120014-06-4 0.212 0.267
Casodex Bicalutamide 90357-06-5 0.212 0.246
Lipitor Atorvastatin 124523-00-5 0.095 0.125
Nexium Esomeprazole 119141-88-7 0.124 0.145

Paxil Paroxetine 61869-08-7 0.125 0.159
Singulair Montelukast 158966-92-8 0.301 0.325

Zoloft Sertraline 79617-96-2 0.101 0.110

(Λ or ∆)-[Ru(bpy)3]2+ 50525-27-4 0.128 0.144
(S)-(-)-1,1’-binaphthyl-2,2’-diamine 18531-95-8 0.175 0.222
CHBrClF 593-98-6 0.0092 0.0129
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Molecular Simulations of Shear-Flow Separation of Enantiomers

To test the screw model, we have simulated the shear-flow separation of a set of chiral molecules,

including the tris(2,2’-bipyridine) ruthenium (II) enantiomers:35,36 Λ-[Ru(bpy)3]2+ and ∆-[Ru(bpy)3]2+

in both Lennard-Jones argon and SPC/E water37 solvents, with Cl– as the counterion. We also ex-

plored enantiomeric separation of the (R) and (S) enantiomers of 1,1’-binaphthyl-2,2’-diamine in

argon and benzene solvents, and separation of atorvastatin in methanol. As a final test of enan-

tiomeric separation, we studied a neat, racemic mixture of bromochlorofluoromethane, CHBrClF.

For argon solvents, simulations were done at 119.8 K, while for all other solvents, the simulations

were done at 298 K and 1 atm. The solvents were chosen because they are either simple monatomic

(LJ Argon), or common polar (SPC/E water and methanol), or non-polar (benzene) solvents.

All simulations were done in regions of linear, laminar shear flow, which was generated using

the velocity shearing and scaling variant of reverse nonequilibrium molecular dynamics (VSS-

RNEMD)38 in a simulation cell with periodic boundary conditions. Details of the simulation

parameters are provided in the Supporting Information.

RNEMD Momentum Flux  jz(px ) = shear stress (τzx 
)
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Figure 2: Left: Velocity shearing and scaling reverse non-equilibrium molecular dynamics (VSS-
RNEMD) imposes a momentum flux, jz(px) between two regions (orange and yellow). This is
equivalent to a shear stress, τzx. Right: the fluid responds by creating a velocity profile along the z-
axis. At low flux, the regions between the orange and yellow slabs (colorless regions) experience a
constant velocity gradient, and therefore a constant vorticity, +ωy or−ωy, which points in opposite
directions on either side of the simulation cell.
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Consider the orthorhombic, periodic simulation box in Fig. 2, where the blue circles represent

molecules (either solvent or solute). VSS-RNEMD38 is a simulation method which imposes an

unphysical momentum flux, jz(px), between the box’s orange and yellow regions. This momentum

flux is functionally equivalent to a shear stress, τzx on the system. For most fluids, Newton’s law

connects the shear stress to the shear viscosity,21,22,25,39

τzx = η

(
∂vx

∂ z

)
, (4)

where vx is the x-component of the fluid’s velocity that evolves in response to the shear stress.

Because simulation cells do not have real, solid slabs to pull, VSS-RNEMD38 employs a set

of velocity shearing and scaling moves on the atoms inside the orange and yellow regions (Fig. 2).

These moves are applied on a periodic basis and the size of the scaling or shearing moves is set

by the imposed momentum ( jz(px)) or kinetic energy flux. There are additional constraints on the

shearing and scaling variables that conserve kinetic energy as well as total linear momentum, so the

VSS-RNEMD moves explore (non-equilibrium) portions of the microcanonical (NVE) ensemble.

In practice, VSS-RNEMD can also be applied simultaneously with most constant temperature

(NVT) or pressure (NPT) integrators.

In a typical RNEMD simulation, the system responds to the momentum exchange between the

yellow and orange regions (Fig. 2) with a linear response in the colorless regions, where the system

response is recorded. For RNEMD simulations with momentum exchange, the system develops

two opposing velocity gradients between the exchange regions. In Fig. 2, the left region has a

positive and nearly constant vx gradient, while the right, has negative and nearly constant gradient.

Also in Fig. 2, we indicate that these two RNEMD regions correspond to regions of nearly constant

vorticity, ω = ∇× v, although the directions of ω are in opposition in the two RNEMD regions.

The vorticity on the left side of the simulation cell is a vector pointing along the positive y axis,

while on the right side, it points to the negative y axis. This feature allows us to explore how

enantiomers behave in regions of constant vorticity.
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In the lab-fixed frame, the opposing pitches of enantiomers in the same RNEMD region create

opposite thrusts that are perpendicular to the xz-rotation plane, allowing separation and resolution

of the enantiomers along the y-axis.23,28 As mentioned in above, this property is analogous to a

screw with left-hand threads and its mirror image (right-hand threads) in which the medium is

rotating around the screws.23,27–29

To measure the average separation of one enantiomer in the y-direction induced by shear vor-

ticity, we computed a mean y displacement,

〈δy(t)〉= 〈yi(t + τ)− yi(τ)〉i,τ (5)

for enantiomers i in the left region (one of the colorless regions in Fig. 2), and another 〈δy(t)〉 for

the same enantiomers in the right region. The correlations are averaged over initial times, τ , and

over the enantiomers that are present in the observation region. Note that molecules were included

in these correlation functions as long as they stayed in a region of constant vorticity, i.e., in only

one of the RNEMD regions. Observation was restarted for molecules which diffused to the other

side of the box.

The results of individual simulations, one with Λ-[Ru(bpy)3]2+ dissolved in liquid SPC/E

water37 solvent, and another simulation with ∆-[Ru(bpy)3]2+ dissolved in liquid SPC/E water37

solvent, show that these enantiomers migrate in opposite directions, according to their opposite

pitches (see Fig. 3). The counterion Cl– is also present in the [Ru(bpy)3]2+ simulations. Simula-

tion parameters and details of the force fields and boxes employed are provided in the Supporting

Information.
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Figure 3: In regions of positive vorticity, isolated Λ-[Ru(bpy)3]2+ and ∆-[Ru(bpy)3]2+ enantiomers
move in opposite directions from their initial positions. Molecules are included in the correlation
function as long as they stay in a region of constant vorticity. Observation of that molecule restarts
if it diffuses to the other side of the box. The approximate mean displacement can be estimated
from solution vorticity and the definition of pitch in Eq. (3).
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Pitch Values for Achiral Objects

From the mirror image property of the translation-rotation coupling tensor (Ξtr), we have also

discovered that achiral objects can also exhibit a non-zero molecular pitch. Indeed, any irregular,

asymmetric body has non-vanishing translation-rotation coupling, but only some achiral objects

can exhibit pitch as defined above. In the Supporting Information, we estimate the forward motion

for a few achiral objects that exhibit pitch. Using the molecular pitch definition in Eq. (3), we

predict very similar behavior to the experiments on ferromagnetic microparticle ‘swimmers’ that

were recently propelled through a stationary fluid using magnetic rotation by Cheang et al.40

Competition Between Enantiomers

Consider a solution with right-handed screws (R) and left-handed screws (S) rotating in the y-axis

under a constant revolution frequency. Since the screws are rigid bodies, their vorticity in the

y-axis (ωy) is twice their revolution frequency.22,25,26 In this solution, there will be competition

caused by perpendicular displacement of the screws: the R screws will begin to move and pull their

surroundings in the positive y-direction, while the S screws will pull in the negative y-direction.

A simple competition model uses the mole fractions of R and S to determine the resultant drift

velocities of the screws and the surrounding solution. Using the definition of pitch, we can express

the velocity of the solution,

vsolution = (xR− xS)

(
|P|
2π

)
πωy , (6)
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and the velocity of the enantiomers,

vR = vsolution + xR

(
|P|
2π

)
πωy (7)

vS = vsolution− xS

(
|P|
2π

)
πωy (8)

where xR =
nR

nR +nS +nsolvent
is the mole fraction of the R screws and xS is the mole fraction of the

S screws, and nM is the number of species M present in the local volume.

Considering the relative velocities of R and S, we can estimate the separation (d) between the

screws after a time interval (t):

d = |〈δyR(t)〉−〈δyS(t)〉|=
|P|
2π
·ωyπ t · (xR + xS) (9)

We can also arrive at three limits, depending on whether the solvent interferes with the enan-

tiomeric motion along y (see Fig. 4):

1. Isolated enantiomers: when the solvent and the screws do not interfere with each other. In

this case, xR→ 1 in regions dominated by R and xS→ 1 in regions dominated by S.

2. Non-interfering solvent: when the motion of the enantiomers depends only on the concen-

trations of the two enantiomers, so xR→
(

nR
nR+nS

)
and xS→

(
nS

nR+nS

)
.

3. Interfering solvent: when the solvent and the screws interfere with each other.

In Fig. 5, we apply the competition model developed here to the simulations of chiral molecules

and solvents. We note that the chiral molecules and solvents simulated in this work appear to exist

within the limits (1–3) of the competition model.
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Coupled Drift-Diffusion Equations for Enantiomeric Mixtures

We start with the one-dimensional drift-diffusion equation for a species M,41

∂cM

∂ t
= Dtt

∂ 2cM

∂y2 − vM
∂cM

∂y
(10)

where cM = cM (y, t) is the concentration of M as a function of the y-coordinate and the time t,

vM is the constant y-velocity of M, and Dtt is the translational diffusion coefficient, which can be

computed from the trace of its translational diffusion tensor.21,24,31 In the Supporting Information,

we develop more fully the calculation of the molecular diffusion tensors.

For a nearly incompressible system, such as an aqueous solution of enantiomers R and S, the

volume Vo and the number density, ρo =
nR +nS +nsolvent

Vo
are nearly constant. With a constant vor-

ticity, we can use Eq. (10) along with Eqs. (6)–(8) to combine our competition model with trans-

lational diffusion. This combination can be expressed in matrix form as coupled drift-diffusion

equations for the R and S enantiomers:

∂

∂ t

 cR

cS

= Dtt
∂ 2

∂y2

 cR

cS

− |P|ωy

2ρo

 2 −1

1 −2


 cR

cS

 ∂

∂y

 cR

cS

 (11)

Note that the other limits of the competition model, isolated enantiomers and non-interfering sol-

vents, can be obtained easily by rewriting ρo in terms of the density of the enantiomers instead of

the density of the solution, ρo =
nR +nS

Vo
.

Translational diffusion has the effect of mixing the enantiomers, opposing the shear-driven

separation. With Eq. (11) and with initial concentrations for the enantiomer R and S, we can

estimate the feasibility of the separation through the following variables: molecular pitch (P), a

property of the enantiomer itself; vorticity (ω), an experimental condition; density (ρo), a solution

property; and the translational diffusion coefficient (Dtt), a molecular property that varies with

temperature and solution viscosity.

In Fig. 6, we show the concentration profiles after injection of a racemic mixture into the center
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of a region of constant vorticity. On a timescale of hours, the vortex (shear) flow is predicted to

separate the two enantiomers on a centimeter length scale. In this figure, we have used parameters

that mimic drug-like enantiomeric molecules in a dense fluid.

tim
e 

(h
ou

rs
)

y (cm)
–5.5 +5.50

c(y, t) (mol/L)

0

1

0
7

14
21

cS(y, t)
cR(y, t)

Figure 6: Enantiomeric separation of a racemic mixture using vortex flow. A racemic mixture with
a Gaussian concentration profile is injected at y= 0 and t = 0. Under a vorticity, ω = 1.6×106 s−1,
and a translational diffusion constant, Dtt = 5×10−6 cm2 s−1, the two enantiomers separate on a
centimeter length scale in a few hours. Each successive curve is 30 minutes later than the curve
above. In this figure, the enantiomers have a molecular pitch, |P|/2π = 0.1 Å rad−1, and a solution
density, ρo = 100 mol/L.

In the Supporting Information, we show results for a wide range of translational diffusion

constants. For small Dtt, separation appears to be possible with sufficient solution vorticity. The

tradeoff between the solution and molecular properties on the right-hand side of Eq. (11) can be

expressed in a simple ratio,
|P|ωy

2ρoDtt
& 1 . (12)

Our drift-diffusion simulations indicate that when this ratio exceeds 1 L mol−1 cm−1, racemic

mixtures do eventually separate on a centimeter length scale. Further details on the drift-diffusion
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simulations are provided in the Supporting Information.

Discussion and Conclusions

Given the theory and numerical simulations described here, enantiomeric separation should be

possible when the ratio in Eq. (12) exceeds 1 L mol−1 cm−1. The majority of the drug-like enan-

tiomeric molecules studied here have |P|/2π on the order of 0.1 Å / rad. In table 2, taking ρo≈ 100

mol/L for a high density solution, we have estimated both the ratio in Eq. (12) and the required

separation time for molecules with a wide range of translational diffusion constants.

Table 2: Practical limits for vorticity-induced enantiomeric separation, using a number den-
sity, ρo = 100 mol L−1, and a molecular pitch, |P|/(2π) = 0.1 Å / rad. Translational diffusion
can make it impossible to separate enantiomers unless the vorticity is large enough to over-
come diffusive mixing. Note that large molecules in water (ρo ≈ 55.5 mol L−1) typically have
diffusion constants in the range:42 10−5−10−6 cm2 s−1.

Dtt (cm2 s−1) ωy (s−1)
|P|ωy
2ρoDtt

(L mol−1cm−1) Time required for separation (s)

5×10−4

1.6×104 10−3 No separation

1.6×105 10−2 No separation

1.6×106 10−1 No separation

1.6×107 1 103−104

1.6×108 101 102−103

5×10−5

1.6×104 10−2 No separation

1.6×105 10−1 No separation

1.6×106 1 104−105

1.6×107 101 103−104

1.6×108 102 102−103

5×10−6

1.6×104 10−1 No separation

1.6×105 1 105−106

1.6×106 101 104−105

1.6×107 102 103−104

1.6×108 103 102−103

For any relatively rigid enantiomeric molecule, the formalism presented here allows computa-

tion of the molecular pitch. Once a solvent is selected, both the number density and translational

19



diffusion constant can be estimated. All that remains, then, is to find a vorticity that would make

separation possible on the centimeter scale.

Because most molecules in water (ρo ≈ 55.5 mol L−1) typically have diffusion constants in the

range: 10−5− 10−6 cm2 s−1,42 it appears that vortex separation of enantiomers on a centimeter

scale should be experimentally achievable, even under conditions where the enantiomers are in

competition in a racemic mixture.

We note that although we have used shear flow as the source to rotate the chiral molecules and

achieve separation, it may be possible to use external forces to rotate the enantiomers. One example

would be to use a rotating field which couples to the electric dipole moment of the molecule.34,43,44

The separation mechanism in a fluid should follow the same theory developed here.

There are two aspects of this work which are ripe for future exploration. One involves the role

of molecular flexibility in vortex separation. Molecular flexibility makes pitch a dynamic property

of the molecule, and could yield nonlinear responses to constant-vortex flow. Predicting separation

of flexible molecules may be a simple matter of combining multiple pitch values from multiple

conformations, but we do not yet have the data to predict whether a dynamic pitch will enhance

or reduce vortex separation of enantiomers. A second aspect that merits further exploration is

the role of dynamic friction. Solvents which respond slowly to perturbations from the embedded

enantiomers may require the use of the generalized Langevin equation (GLE), which utilizes time-

dependent friction kernels that retain memory of previous perturbations in the fluid. This would

certainly complicate the picture of resistance tensors and molecular pitch. Further investigation of

how this would alter both the screw model and the separation dynamics are warranted.

Supporting Information Available

The supporting documentation contains hydrodynamic and Green-Kubo derivations of the resis-

tance and diffusion tensors, theoretical development of the overlapping bead and rough shell mod-

els for the resistance tensors, a version of the molecular pitch using diffusion tensors, screw model
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pitch predictions for 85 drug-like molecules, details and simulation parameters for the RNEMD

and coupled drift-diffusion simulations, and an examination of pitch values for certain achiral

molecules that naturally emerge from mirror image properties of the hydrodynamic tensors. A ac-

companying set of text files provide the rigid body molecular geometries and force field parameters

for all molecules (and solvents).
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Separation depends on
   • molecular pitch (P)
   • solution vorticity

 = 0.144 Å / rad|P|
2π
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