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Many Cyber-Physical Systems (CPS) have timing constraints that must be met by the cyber components
(software and the network) to ensure safety. It is a tedious job to check if a CPS meets its timing requirement
especially when they are distributed and the software and/or the underlying computing platforms are complex.
Furthermore, the system design is brittle since a timing failure can still happen e.g., network failure, soft error
bit flip, etc. In this paper, we propose a new design methodology called Plan B where timing constraints of the
CPS are monitored at the runtime, and a proper backup routine is executed when a timing failure happens
to ensure safety. We provide a model on how to express the desired timing behavior using a set of timing
constructs in a C/C++ code and how to efficiently monitor them at the runtime. We showcase the effectiveness
of our approach by conducting experiments on three case studies: 1) the full software stack for autonomous
driving (Apollo), 2) a multi-agent system with 1/10th scale model robots, and 3) a quadrotor for search and
rescue application. We show that the system remains safe and stable even when intentional faults are injected
to cause a timing failure. We also demonstrate that the system can achieve graceful degradation when a less
extreme timing failure happens.

1 INTRODUCTION

Cyber-Physical Systems (CPS) are commonly referred to as the integration of software components
(cyber) interacting with physical processes [1]. Pacemakers, drones, autonomous vehicles, and
smart cities are few examples of CPS ranging from small to very large. There are many CPS that
are time-sensitive, where it is important for the software to generate not only the “right values”
but also “at the right time” since a late response from the software may be as fatal as a wrong
output [2].

To simplify the design of time-sensitive CPS, one of the earliest steps is to analyze the behavior
of the whole system. To do so, a model is considered for the physical process (e.g., differential
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equations) and the software components (e.g., finite state machine) of the CPS, and then, a set of
timing constraints are determined that must be satisfied by the implementation [3]. For example,
from early analysis of a vehicle’s kinematics, the delay from detecting an obstacle to applying the
brake should be no more than a deadline, say 500 ms, in order to operate an autonomous vehicle
safely at a certain speed. Once timing constraints are set, then it is the software engineers’ job
to select a proper platform and develop the software such that the timing constraints are always
met. This assumption — that the timing constraint will be always met — helps the CPS developers,
as they only need to think about the system functionality. They do not have to think about what
happens when a timing constraint is not met. A few unexpected reasons for timing failure include
network delay, a bug in the code, soft error [4], and aging. This paper takes the position that such a
hard abstraction (assuming that all timing constraints will be met) is not effective anymore and
leads to inflexible designs.

A number of CPS design methodologies like Ptides[5], and Giotto[6] exist that take the CPS
system specification and design the CPS that is guaranteed to meet its timing constraints. Such
approaches, however, require the calculation and use of Worst-Case Execution Time (WCET) of
program routines/tasks [7]. While it was possible to estimate the WCET for small pieces of software
that are executed on simple hardware, today, both the size of the CPS software, and the complexity
of CPS hardware have increased dramatically. For instance, the Waymo Autonomous Vehicle’s
software comprises more than 100 million lines of code [8], and the platform consists of A multi-core
CPU and a GPU with multiple cache levels. The WCET estimate for such large applications that
run on such complex hardware will either be impractically pessimistic or unsafe [9]. In addition,
any modification to the software/hardware invalidates previous timing analysis, which makes the
system design re-iteration a tedious job.

To address this issue, we take the stance that timing constraints may fail, and a scalable way to
design time-sensitive CPS is to urge programmers to not only specify what happens when a timing
constraint is met, but also what happens when it is not met.

In this paper, we make three contributions:

e We introduce a design methodology called Plan B to develop time-sensitive CPS resilient to
timing failures. With proper backup routines, a safe design can be achieved by just knowing
the WCET of backup routines, instead of estimating the WCET for the whole software. In
addition, more flexible designs can be developed that meet their timing requirements "most
of the time" and when a timing requirement fails —~which happens rarely- the system remains
safe through the execution of a fail-safe backup routine. In addition, the developed system
can gracefully degrade and operate at lower rates instead of completely shutting down the
system when timing violations are tolerable. This feature enables designers to renegotiate
timing contracts at the runtime to tune the performance of the system.

e We propose a set of timing APIs for C++ language that can be used by the programmers to
express the desired timing behavior of the application in the code. Using our API, we urge
programmers to envision fail-safe backup routines as a part of the program, which will be
executed when timing failures happen. The proposed API also includes specifying timing
constraints among nodes of a distributed system.

e We also propose an efficient monitoring mechanism to check the timing requirements of
the system at the runtime. The proposed “virtual timer” can be employed when the selected
platform has a limited number of hardware timers. Furthermore, we provide study the
implementation of distributed timing constraints and practical considerations like time
synchronization.
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We apply Plan B’s methodology to three case studies: 1) A complex application - the software
stack of Apollo[10], which is an open-source platform for autonomous driving (tested in a co-
simulation with the LGSVL simulator), 2) A distributed system - an automated intersection system
with 1/10 scale model miniature AVs where a set of distributed timing constraints must be met to
ensure the safety of AVs, 3) A quadcopter that should enter a house through a window for disaster
response (simulated in Matlab). We showcased that CPS can be designed more reliably where there
is no need to accurately estimate the WCET and our approach can achieve both safety and higher
performance compared to static and measurement-based values. First and foremost, we showed
that the pessimism in the design of safety-critical CPS can be reduced while safety guarantees are
provided. For example, in one of the case studies, we were able to achieve 1.83X higher performance
compared to the case where WCET is determined pessimistically, at the cost of infrequent execution
of backup routines (0.1% of the times). Results from our experiments show the resiliency of our
approach against timing failures with the help of backup routines. To show the resiliency of our
approach to timing failure, we intentionally injected faults to cause a timing violation. Compared to
the conventional approaches —where a backup routine is not envisioned-, the plan B approach was
able to avoid accident/instability. We also show the flexibility of our approach to achieve graceful
degradation. Results show that the system can operate at a lower performance when an intermittent
timing failure happens instead of completely shutting down the system.

2 RELATED WORKS

Researchers have broadly studied the WCET estimation in the literature [7, 11-15]. There are two
main approaches to estimate the WCET of the software: static timing analysis and measurement-
based approaches. Static methods estimate the WCET based on the structural information of the
software. In a search process, the path in the software that corresponds to the longest execution time
is sought [16] and the WCET is calculated accordingly. Since caches have the most contribution in
WCET computation, a cache model is considered to have a more accurate estimation [17]. However,
due to the complexity of the actual hardware (many levels of caching, out-of-order execution, etc.)
and software (many lines of code, OS calls, etc.), timing models are simplified, which result in an
inaccurate WCET estimation. Although static methods may be able to find a safe bound on the
execution time of a program, they usually overestimate the WCET, therefore, provide pessimistic
WCET values.

In measurement-based WCET approaches [12, 18], the program is executed for different sets of
input and its execution time is measured. Then, the longest execution time is considered as the
WCET of the program. To be confident, a 20% safety margin is added to the longest observed value
to account for cases that are not covered. Researchers have also developed probabilistic WCET
(pWCET) approaches to estimate the WCET [19-21] where a probability distribution function is fit
to the measured execution times and the WCET is provided with a confidence value e.g., 99.9%.
Measurement-based techniques and probabilistic approach, however, underestimate the WCET
and the calculated WCET using these methods is not safe. This is because the code and the system
cannot be tested for all possible inputs and states. To help researchers estimate the WCET, many
WCET analysis tools are developed. aiT [22], Bound-T [23], and RapiTime [24] are a few examples
of such tools. Uppaal[25] is a model checker tool that supports WCET analysis.

Assuming the WCET is known for a number of programs that run on the same platform, the
Worst-case Response Time (WCRT) [13] of a task is calculated by determining how many times
it may be preempted by other high priority tasks in the worst-case. WCET and WCRT are used
to perform a schedulability analysis. Based on the data dependency between tasks, end-to-end
analysis is done to estimate the Worst-case End-to-End Delay (WCE2ED) [26, 27].
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Simplex architecture [28] uses a similar concept to design safety-critical systems. In the Simplex
approach, a simpler subsystem is designed to take over when a fault (timing error, OS crash, no
output, voltage fault, etc.) happens. Compared to Simplex, Plan B is mainly focused on timing
violations and supports distributed systems.

3 BACKUP ROUTINE BASED EXECUTION

In this section, we first present the key idea for the design methodology of the Plan B approach
and then, present a motivating example to benefit from backup routines for graceful degradation.

3.1 Key Idea of Backup Routine-based Execution of Time-sensitive Applications

We have developed the Plan B framework based on the premise that a timing constraint may fail
(despite WCET analysis) and the designer should envision what should happen when a timing
violation occurs. In Plan B, a monitoring mechanism is developed to check if timing constraints are
met at the runtime and if not, execute a backup routine. By timely execution of a proper backup
routine, the safety of the system could be guaranteed. Since designing a proper backup routine
depends on the model of the system, backup routines vary from one application to another.

In many time-sensitive applications, the software is very large and the hardware is heterogeneous
and has a complex architecture, which makes WCET estimation a difficult process. Unlike existing
methods that try to estimate the WCET using static and measurement-based methods, the Plan-
B approach does not require estimating the WCET because the execution of the software can
be bounded by an upper bound. Typically, the distribution of the execution time is similar to
the histogram depicted in Figure 1. Let us assume that the histogram in Figure 10 belongs to an

Measurement-based Static
WCET Estimate WCET Estimate
Actual
WCET
Execution time
(ms)

450 650 1800

Frequency

Fig. 1. Histogram of the execution time of the AV software and estimated WCET using static and measurement-
based approaches.

Autonomous Vehicle (AV). An important timing constraint for an AV is that “the delay from sensing
to actuation should be less than a threshold”. The AV should be able to detect an obstacle and slow
down when needed in a timely manner. Let us assume that the actual WCET of the whole software
is 650 ms, and the estimated WCET by a measurement-based approach and a static approach is 450
ms and 1800 ms, respectively. If the system is designed based on the static WCET (1800 ms), the
vehicle should drive very slowly to ensure it does not hit an obstacle, which is very conservative. If
the system is designed based on the measurement-based WCET (450 ms), we cannot guarantee its
safety since the AV’s execution time can exceed 450 ms and it hits an obstacle.

As the first step in Plan-B’s design methodology, we need to find a reasonable upper bound for
the execution time. A practical way that is used is to consider the measurement-based WCET plus
10% buffer as the upper bound. Let us assume the upper bound is considered to be 500 ms. The next
step is to envision a backup routine such that if the backup routine is executed in a timely manner,
the AV remains in a safe state. A simple backup routine for this application is to apply the full brake.
We set the deadline for delivery of the backup routine to be 500 ms. Since this backup routine is
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very simple and comprises only a few lines of code, it is easy to accurately estimate its WCET. For
this example, we assume the WCET of the backup routine (Cgg) to be 10 ms. If the backup routine
is executed within 500 - 10 = 490 ms of the sensing, even in the worst-case scenario, the brake
signal is delivered within the set deadline (500 ms). Based on this design, it is guaranteed that the
AV never hits its front vehicle and will stop safely even if a timing failure happens. However, the
AV’s behavior is more conservative since it stops whenever there is a timing failure regardless of
the presence or absence of an obstacle. Figure 2 shows an overview of Plan B’s execution model for
our AV example.

Deadline

sensing Executing the -

backup routine Cpr = 10ms

Fig. 2. By on-time execution of a safe backup routine, the vehicle remains in a safe state.

3.2 Graceful Degradation using Backup Routine-based Execution

The Plan B approach allows for bounding the execution time of a program by defining an alternative
path (backup routine), which enables a number of capabilities. First and foremost, the system will
be more resilient because even if a timing failure happens —due to an unexpected issue such as
aging, soft error, or bug in the code— the system remains safe. Secondly, the design can become
flexible to timing failure. Instead of having timing constraints with fixed deadlines, the deadlines
can be adaptively set depending on the state of the system. Normally, the deadlines for a system are
set while accounting for the worst-case scenario e.g., the maximum braking distance of the vehicle
—which corresponds to the maximum velocity of the vehicle. However, when driving at a lower
velocity, the timing constraints can be relaxed. In a flexible design, when a timing constraint is not
met, the system can be reconfigured to operate at a lower rate (e.g., drive at a slower speed) and
gracefully degrade instead of a harsh action (e.g., applying the full brake or completely terminating
the operation). Recalling the AV example, one can derive a relationship between the deadline for
executing the backup routine and the maximum speed at which the AV should drive. We assume
the AV is following the two-second rule and its the dynamics are modeled using the following
equations:

p=uv
at) = u(t - p) @

u(t) =K(pg(t) +2*0v+c—p)
where p is the longitudinal position of the AV, v is the velocity, c is a constant safety barrier, a is the
acceleration, u is the control input (applied as throttle or brake), ¢ is time, p is the response time of
the software (from sensing to actuation) and py is the longitudinal position of the front vehicle. The
control input is designed such that the AV maintains a distance equal to 2 seconds from its front
vehicle plus some constant c. Since the acceleration rate and velocity of a vehicle are bounded, we
consider a bound on the acceleration a € [amin, Amax] and velocity v € [0, 945 ]. Considering the
delay-free model (p = 0), the stop distance of the AV is calculated as dssop = 2|”—2m| If the response

am
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Backup_Routine () {
if (v_prev > 4)
v_r = v_prev % 0.7;
else
v_r = 0;
TC.deadline = lookupTable(v_r);
}
Listing 1. A flexible backup routine
is delayed, the traveled distance will be d;,, = 2|av—n2un| + po + 0.5,y p? in the worst-case as the

AV may be accelerating while processing the sensed data. Substituting the maintained distance
2 % v+ ¢, we can find a relationship between p and o:

2
204+c¢c >

+ po + 0.5amax p* (2)
2|amin|

For this example, we use following parameters: d,;, = —4.5, Gmax = 2.6, and ¢ = 4.5. Figure 3
shows the relationship between the AV’s velocity and the response time of the autonomous driving
software. The area highlighted as “unsafe” means the AV is in an unsafe state and may hit its front
vehicle if the front vehicle stops suddenly while the green area indicates that the AV can apply the
brake in time and it is physically impossible to hit its front vehicle even if the front vehicle stops
suddenly. Let us assume the AV is initially set to drive at 16 m/s (about 30 mph). A possible backup

20 pr—
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Fig. 3. Relationship between the velocity of the AV and response time of the software. When a fault happens,
the backup routine is executed periodically (every 200 ms) and each time the reference velocity is reduced by
70%.

routine to achieve graceful degradation is to reduce the velocity by 30% and re-adjust the deadline
(see listing 1).

The initial deadline is set to 200 ms. When a timing failure happens, the reference velocity is set
to 16°0.7 = 11.2 m/s. We assume that the response time of the controller is fast and for simplicity,
the AV slows down at -4.5 m/s?. At 11.2 m/s the AV is able to tolerate a delay of up to 0.71 s and still
be safe. The new deadline (0.71 s) is computed from a lookup table that represents the relationship
between velocity and deadline as indicated in Equation 2. If another timing failure happens (the
deadline is greater than 0.71 s), the backup routine is executed again. For all velocities greater than
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4 m/s, the backup routine ensures that the AV remains in the green zone by reducing the velocity
by 30 %. If another timing failure happens, the backup routine is executed again and the deadline
value is updated. Similarly, when the timing goes back to normal (delay is 0.2 s), the system can
recover and operate at the nominal velocity (16 m/s).

3.3 System Model

Let us assume that our application has n timing constraints. Without loss of generality, all timing
constraints can be simplified to an end-to-end latency constraint. For instance, the timing constraint
“the period of executing a function should be 100 ms” can be re-written as “the end-to-end latency
between two function calls should be 100 ms”. We assume that for each timing constraint, a safe
backup routine exists such that if the backup routine is executed within the timing constraint’s
deadline, the system remains in a safe state. We represent timing constraints of an application as a
set:

TC = {TC, TC,, ..., TCy} 3)

where each timing constraint is a tuple: TC; :=< C;, T; >, where C; is the WCET of the backup
routine i and T; the execution period of the backup routine i. The execution period of a backup
routine, T;, depends on how frequently the timing constraint is assigned/specified, Trc. For timing
constraints that are assigned aperiodically, we consider a lower bound on T;. Since multiple timing
constraints may be specified, there will be multiple backup routines associated with them. To make
the execution deterministic, a priority value is assigned to each backup routine by the programmer.
Without loss of generality, we assume that the priority of the backup routine i is i and a lower
number indicates a higher priority. We do not explicitly model the task model for the normal
execution of the software since the priority of all backup routines is higher than tasks for normal
execution and the safety-related timing requirements are defined for backup routine and not normal
routines.
Assume that dynamics of the CPS are modeled as follows:

X = f(x(8),u(t =T (1))
4)
{y = g(x(1)
where x C R" represents the vector of the system state, u is the vector control inputs, y is the vector
of measured states, and T is the sensing to actuation delay related to the software’s execution time.
It should be noted that T is not constant and depends on the execution of the software. When a
timing failure happens and a backup routine is executed, the control inputs are changed. Therefore,
we use hybrid automata [29] to model the complete behavior of the system. Figure 4 shows the
overview of the complete system model. In this model, the software is represented using two

Xo
Uo

Normal Mode Backup Mode

* = fx(6),u)

* = f(x(®),ult-T1))
y=g(x®)

y=g(x®)

"~

T<d

Fig. 4. The complete system (physical dynamics and software abstraction) is modeled using a hybrid automa-
ton to verify if the unsafe set is reached.
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discrete states (normal mode and backup mode). The initial state and input are specified with xo, u.
Initially, the system operates in the normal mode. When the execution time or sensing to actuation
delay (T'(2)) is greater than the set deadline, the state machine transitions to the backup mode
where the backup routine (u*) is applied to the system.

DEFINITION 1. Safe backup routine: Given x, is the initial state of the system at time ty, and X,
is the set of the unsafe states, the backup routine u* is a called safe if by applying u* to the system,
states of the system never reach the unsafe set, i.e, x(t) ¢ X,,.

One can use Control Barrier Function (CBF) [30-32] to determine control inputs (backup routine)
that are proved to be safe. Alternatively, verification tools can be utilized to check if a backup
routine is safe. In existing verification tools [33, 34], an assertion is specified that describes the
unsafe set, x,.

For simplicity, we set the deadline for the execution of the backup routine to be the same as
the deadline for the original timing constraint (normal mode). Since the execution of the backup
routine itself takes some time, the backup routine should be executed a bit earlier. Assume a timing
constraint (indexed as i) is specified at time ¢ = 0, and its deadline is at t = d;, the activation time
of the backup routine (dli;R) can be calculated as:

ng = di —Ci

In most cases, backup routines are very small (have no more than few lines of code). As a result,
when the WCET of the backup routine can be estimated using static approaches, which results
in much less pessimistic values compared to the case where static analysis is done for the whole
program.

3.4 Safety Proof of a Proposed Backup Routine

Our approach is useful only if the proposed backup routine is proved to be safe when applied
in time. We can develop the safety proof in different ways, depending on the system model. For
a system with a deterministic model and input, one can simulate the system and check if the
backup routine is safe (e.g. using Matlab Stateflow tool). For a system with a non-deterministic
set of initial state and input, verification tools like Flow™ [33] can be employed. Here, we provide
the proof for the aforementioned example in subsection 3.2 by simulation. We first define the
initial set X, = [0 16 36.5 0] meaning that the ego vehicle is at p = 0 driving at 16 m/s and
its front vehicle is 20 + ¢ = 36.5m away and is already stopped. The unsafe set is defined as
X = {X|dist(X(1),X(3)) < 0.5}, representing cases where the distance between vehicles is less
than 0.5 m. We want to show that even if the sensing to actuation delay is infinite, the distance
between vehicles remains greater than 0.5 m. The ego AV continues driving at 16 m/s for 0.2 s ( the
first deadline) and after that, it reduces its velocity to 12.8 m/s Since the maximum deceleration is
-4.5 m/s?, it takes about 0.7 s to reach 12.8. Since the second deadline for the velocity at 12.8 m/s is
0.6, the backup routine is executed one more time and the velocity of the ego AV is set to 10.2 m/s.
Figure 5.left shows the position, velocity, and the set deadline for the vehicle when a safe backup
routine (slow down by 70%) is applied. The ego AV does not hit its front vehicle located at 36.5
since the final position value is 36. The set delay and reference velocity are shown in Figure 5. Note
that for a similar backup routine that reduces the velocity by 80%, a safety guarantee cannot be
achieved. Figure 5.left shows the position, velocity, and the set deadline for the vehicle when an
unsafe backup routine (slow down by 80%) is applied.
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Fig. 5. The trace for the worst-case scenario where consecutive timing failures happen. Left) The backup
routine (slow down by 70%) is safe and the AV is able to stop safely. Right) The backup routine (slow down by
80%) is unsafe and the AV is unable to stop safely.

3.5 Handling Multiple Backup Routines

Although rare, there can be cases where multiple timing constraints are specified and they are
violated at the same time or the execution of their backup routine has an overlap. In such cases, low
priority backup routines are blocked by high priority ones, and therefore, their finish time will be
late. As a result, we need to calculate the WCRT for each backup routine and use it for computing
the firing time of the backup routine. Figure 6 shows a scenario where 3 timing constraints are
violated at the same time.

dpr3 W3
T T
1 d3 1 ! ‘3
i T ;i/'
] L
Start I Deadline
dpry ' wy
1 d 1 ! [
Start "I Deadiine
1
dpri I
r 1!
-
Start Deadline

Fig. 6. A scenario where three timing constraints are violated at the same time and the execution of backup
routines overlaps.

To make sure all backup routines will finish their execution before their deadline, we use WCRT
(w) instead of WCET to determine the activation time of the backup routine:

dBRZd—W
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Assuming fixed-priority scheduling for the execution of backup routines, one can calculate the
WCRT of the backup routine i using conventional approaches [13] as:

Wi
w; =¢;+ Z - |

jehp(i)t *J

hp(i) represents the set of all backup routines that have a higher priority than backup routine i
and are expected to be executed on the same machine as backup routine i.

3.6 False Positives

It should be noted that there can be cases where the execution of the original code is between 490
and 500, which is fine and there is no need for the execution of the backup routine but the backup
routine is executed. Measurement-based WCET analysis is helpful to determine a reasonable upper
bound for the execution time of the software (e.g. 500 ms in this example) which will be used to
ensure that the timing requirement will be mostly met e.g., 99.9% of the times and when it is not
met, e.g., 0.1% of the times, the backup routine is executed. By correctly adjusting the upper bound,
the rate of false positives can be reduced.

The rate of “false positives” —when the execution time of the software falls between dgg and d-
is usually low since the size of backup routines is small relative to the whole program. However,
the WCRT of low-priority backup routines increases with defining more timing constraints and
the rate of false positives increases too. First of all, this issue happens very rarely. If the rate of a
timing failure and execution of a backup routine is low, simultaneous timing failures are very rare.

3.7 Handling Distributed Timing Constraints

Plan B allows for building distributed systems with end-to-end timing constraints among nodes. In
the general form, two computing nodes collaborate to monitor a distributed timing constraint. since
this collaboration happens by means of communicating over the network, long network delays can
disrupt on-time monitoring of an end-to-end timing constraint. To tackle this issue, we convert all
aperiodic end-to-end latency constraints into periodic ones where the period is set to be the same
as the threshold for the end-to-end latency constraint.

Assume a distributed latency between events el and e2, specified on nodes N1 and N2. The
monitoring mechanism on the first node (N1) sends the deadline timestamp to the second node
(N2) in a periodic manner. On the receiver side, the monitoring mechanism receives the deadline
timestamp and locally monitors the timing constraint. If the deadline timestamp is not received
within the deadline (d’), the backup routine will be executed.

In Plan B’s approach for distributed timing constraints, the first node computes a deadline and
converts it to the UTC format and the destination converts it back to a local deadline. As a result,
nodes should synchronize their local clocks periodically so that they have the same notion of time.
The period of the clock synchronization depends on the frequency variations of the node’s clock
(oscillator).

Let us consider a platooning scenario where multiple AVs drive together to get better fuel
efficiency by reducing air resistance. The front AV sends the intended action (slow down or speed
up) and desired velocity to its rear AVs and they adjust the velocity accordingly. To ensure the
safety of AVs, the latency from the front AV sending its information to the rear AVs should be less
than a threshold. The backup routine for each AV is to slow down periodically until the timing
constraint is met similar to Listing 1. The monitoring mechanism on each AV sets a timeout for
receiving the deadline timestamp.
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In the next section, we explain how programmers can specify timing constraints and correspond-
ing backup routines in the code and how it’s implemented such that on-time delivery of backup
routines is guaranteed.

4 PROPOSED TIMING API FOR C/C++ LANGUAGE

In this section, we introduce PlanB’s timing constructs which are developed for the C/C++ language.
In our approach, timing constraints are defined as exceptions that can be caught by a runtime
monitoring mechanism. A set of timing constructs is provided to specify a timing constraint as
a part of the program. In our approach, timing constraints are specified using events. An event
corresponds to a line in the code and is annotated using the _recordEvent (eventName)
construct, where eventName indicates the name of the event. Let us consider a simple C program
for an embedded control system shown in Listing 2 where the goal is to read data from the sensor,
perform some computations on the sensed data and then actuate based on the result.

1 while (1) {
2 data = sense();
3 result = compute (data);

-~

actuate (result);

5}

Listing 2. A sample snippet of code for reading data from sensor performing some computation and then
actuating

We use this example to explain the specification of different timing constraints in the code.

4.1 Latency Constraint

Let us assume that the latency from the sensing to actuation in the example shown in Listing 2
should be less than 100ms —e.g. to ensure the quality of service. To specify such a timing constraint,
programmers can define two events, one before the sensing and one after the actuation, and define
a latency constraint as it is shown in Listing 3. In general, three types of latency constraints can
be defined, where the latency among two events should be less than, greater than, or equal to a
value. Note that for the equal case, programmers should know how much tolerance is acceptable
because achieving an exact latency is not feasible and then specify it in terms of two conditions: a
greater than and a less than case. Listing 3 shows the modified version of code in Listing 2 where
two events (el and e2) are annotated and a latency constraint is specified. p is the priority for the
execution of the corresponding backup routine. The priority value should be known since multiple
timing violations can happen simultaneously.

1 while (1) {

2 data = sense();

3 _try{

4 _recordEvent (el) ;

5 result = compute (data) ;
6 _recordEvent (e2) ;

7 }

8 _catch(_latency(el,e2,100) > 100000 , p){
9 BR();

10 }

11 actuate (result);

12 }

Listing 3. Annotating a latency timing constraint inside the code to check if the sensing to actuation latency
is less than 100 ms
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Programmers can place a backup routine inside the catch segment in order to specify what
happens when the latency timing constraint is not met. The less than case can be defined similarly
by modifying the condition for the timing exception.

4.2 Period Constraint

Period constraint specifies that the occurrence period of an event to be less/greater than a or equal
to threshold. Programmers may want to make sure that the period of execution of a task/function
is less than, greater than or equal to a value. Let’s assume that we want the executing period of the
compute () function in the Listing 2 to be equal to 10 ms + 1 ms. This timing constraint can be
specified by defining an event inside the compute () function and then specifying two period
constraints to specify the desired range as it is shown in Listing 4.

while (1) {
data = sense();
result = compute (data);

actuate (result);

int compute (int data) {
_try{
_recordEvent (e3) ;

}
_catch(_period(e3,100) > 11000, 1) {
BR();

}
_catch(_period(e3,100) < 9000, 2){
BR();

Listing 4. Timing constructs are added for checking the execution period of the compute () function

Based on the allowed tolerance (1 ms) the desired range for an acceptable period is between 9ms to
11 ms. If the period is out of this range, a backup routine (BR () ) is executed.

4.3 Re-using Events for Multiple Timing Constraints

Sometimes, programmers may want to specify multiple timing constraints for a code. This can be
done by using multiple cat ch constructs. The code in Listing 5 shows a case where a latency and
a period constraints are specified together. The latency of the compute function should be less
than 100 ms and its period should be less than 200 ms. p1 and p2 are the priorities for execution
of the first and second backup routines, respectively which are specified by the programmer.

while (1) {
data = sense();
result = compute (data);

actuate (result);

int compute (int data) {
_try{
_recordEvent (el) ;
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11 _recordEvent (e2) ;

12 }

13 _catch(_latency(el,e2,100) > 100000, 1) {
14 BR1();

15 }

16 _catch(_period(el,100) > 200000, 2) {

17 BR2 () ;

19 }

Listing 5. Specification of multiple timing constraints and resue of events in two separate timing constructs

Using a separate catch construct for each timing constraint allows programmers to specify a
separate backup routine when a timing constraint is not met. Also, the programmer can reuse an
event (e.g. el in this example) for specifying different timing constraints.

4.4 Distributed End-to-end Latency

Some CPS are distributed by nature (e.g. drone swarm) and some have a distributed computing
platform that includes multiple embedded devices communicating with each other. In such systems,
programmers may want to specify end-to-end timing constraints among devices. Let us consider
an example of a distributed CPS with two devices, where device 1 collects the data from a sensor,
does some pre-processing, and sends the result to device 2. Upon receiving the result, device 2
performs some more processing and then performs an actuation. Note that the communication is
synchronous and receive is blocking (not returned until the data is received). For this example, one
may define a timing constraint as: “The latency from sensing at device 1 to actuation at device 2
should be less than 500 ms”. Listing 6 and 7 show the code for device 1 and 2, respectively.

1 while (1) {

2 _try{

3 _recordEvent (el) ;

4 data = sense();

5 result = compute (data);

6 send (result) ;

7 }

8 _catch (_ackTimeout (el1,100), 1000000, 1) {
9 BR1();

Listing 6. Timing constructs are added for specification of a distributed latency constraint between two
points in separate programs - device 1

1 while (1) {

2 _try{

3 data = receive();

4 result = compute (data);
5 actuate (result);

_recordEvent (e2) ;

=N

}
_catch(_distLatency(el,e2,100) > 500000, 1) {
9 BR2 () ;

® N
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}

Listing 7. Timing constructs are added for specification of a distributed latency constraint between two
points in separate programs - device 2

In order to implement the monitoring mechanism for an end-to-end timing constraint, device 1
sends the deadline to device 2, and device 2 locally sets up a timer to monitor the timing constraint.
Monitoring of a distributed timing constraint can be impacted by network delay, especially if
the deadline timestamp is sent over wireless communication. As a result, the timestamp may be
delivered to the receiver very late or not being delivered at all. To detect excessive network delays,
the receiver is configured to send back an acknowledge (ack) message to the sender upon receiving
the deadline timestamp. The sender waits for the ack message to ensure the deadline timestamp
was delivered on time. If the ack is not received after a deadline, the specified backup routine will
be executed. In addition, clock synchronization and timestamp translation need to be implemented
so that devices have the same notion of time because the deadline timestamps are captured by local
clocks and will be used by another device. More details are provided in the implementation section.

4.5 Distributed Simultaneity

A simultaneity timing constraint can be specified to make sure a set of events happen at the same
time —with a small tolerance. Let us assume that the same program as Listing 8 is running on
three devices. It is desired to perform sensing simultaneously with 1 ms tolerance. We annotate a
simultaneity timing constraint on the event set E1.

while (1) {

_try{
_recordEvent (E1) ;
data = sense();
result = compute (data) ;
sendToServer (result)

}

_catch(_simultaneity(E1,100), 1) {
BR1();

}
_catch (_ackTimeout (E1,100), 2){
BR2 () ;

Listing 8. Timing constructs are added for specification of a simultaneity timing constraint

To implement this timing constraint, all three devices capture a timestamp before sensing and
broadcast it. Upon receiving timestamps of other devices, they verify that if the timing constraint
is met by checking if the time difference between the earliest and the latest timestamps is less than
the specified tolerance (1 ms). This timing constraint also requires maintaining a minimum level of
time synchronization and timestamp translation which is explained in the next section.

We have listed PlanB’s timing constructs in Table 1. Note that try constructs cannot be nested
and are used to hint the compiler where events are defined. Programmers should define a priority
value to specify the execution order of backup routines when multiple timing failures happen.
Having fixed priority values makes the execution behavior more deterministic compared to dynamic
priority values. The priority value is a number greater than zero. Smaller values correspond to
higher priorities and two timing exceptions cannot have the same priority.
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Construct Functionality

Indicates the body of the program

where events are defined.

Indicates the exception that should

_catch (exception, priority){ | be caught, backup routine to be ex-
} ecuted and the execution priority

of the backup routine.

Annotate an event in the code la-

beled as e.

_try{ ... }

_recordEvent (e)

Specifies a latency timing con-
straint between two events el and
e2 (less than, greater than, or equal
to d seconds). € defines the accept-
able tolerance of the timing con-
straint.

The desired occurrence period of
the event e should be less than,
greater than or equal to T with a
tolerance of e.

_latency(el,e2,e) ><=d

_period(e,e) ><=T

Similar to the local latency con-
straint but events el and e2 are de-
fined in programs running on sep-
arate devices.

_distLatency(el,e2,e) ><=d

Specifies a timeout for sending the
_ackTimeout (el, €) deadline timestamp of a distributed
latency constraint.

All events in the event set E (event
set E is defined on distributed de-
vice) should be simultaneous with
a tolerance of €.

_simultaneity (E,e€)

Table 1. PlanB Timing Constructs and their Functionalities

5 PROPOSED IMPLEMENTATION FOR EFFICIENT EXECUTION

In this section, we provide more detail for implementation of the introduced timing constructs. A
naive way to monitor a timing constraint is to take timestamps at event annotation locations and
perform a simple check on the values of timestamps to see if the timing constraint is met. However,
the detection time of the timing failure can be unbounded (e.g., when the program never reaches the
location of the second event). Since we are interested in the timely detection of a timing violation,
we get help from hardware timers for monitoring. A timer is activated using _startTimer (TC)
and stopped using _stopTimer (TC). Upon expiration of the timer, _timerExpired (TC) is
called automatically by the interrupt handler that is attached to the timer. TC is a st ruct variable
that represents a timing constraint, which includes the deadline for the constraint, name of the
corresponding backup routine, timing constraint’s ID, a timestamp value, and the state of the timing
constraint (being active or inactive). Each timing constraint has a tolerance value (¢) to indicate
how much inaccuracy is acceptable when being monitored since perfect monitoring is not feasible.
We consider three error sources for monitoring: 1) monitoring error (ey), 2) implementation error
(er), and 3) synchronization error (es). Monitoring error depends on the resolution of the captured
timestamp and implementation error depends on the time it takes to set up/re-configure a timer
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and the ISR’s response time upon expiration of a timer. Synchronization error is considered for
distributed timing constraints only (_distLatency and _simultaneity) and depends on
the synchronization level among devices. To verify that the monitoring system is suitable, the
following constraint is checked:

eqy+er+es <e (5)

5.1 Latency Constraint

As discussed in the previous section, latency timing constraints are of two types, less than or
greater than (the equal case should be annotated as a less than case and a greater than case).
For a greater than timing constraint (e.g latency (el,e2) > 100 ms), a single-shot timer is
started at the annotation location of the first event and it is stopped at the annotation location of
the second event. If the timer is expired before reaching the second event, the timing constraint
is violated and the specified backup routine should be executed (it will be added to the backup
routine queue (BRQ) and will be executed). The activation time of the backup routine is set to
99 ms assuming the WCRT of the backup routine BR is 1 ms (100 - 1 = 99 ms) according to
TC.activationTime = TC.deadline — TC.WCET. The code in Listing 9 shows the generated code
for the latency example from the previous section (Listing 3).

TCl.activationTime = 0.099;
TCl.priority = 1;
Jmp_buf buf;
actuate_t gResult;
while (1) {

data = sense();

if (setjmp (buf)) {

result = gResult;

lelse(
_startTimer (TC1);
result = compute (data);

_stopTimer (TC1);
}

actuate (result);

void BR() {
gResult = backupRoutine () ;

void _timerExpired (TC1l) {
_BRQManager (BR, TCl.priority);
longjmp (buf, 1) ;

Listing 9. Implementation for a maximum end-to-end latency constraint

When the BRQ is empty and the first BR is added, the BR is being executed as a separate thread
using pthread_create (). The parent thread (_ BROManager () ) will wait for the BR to finish
its execution (while (lisEmpty(BRQ)). As a result the control is not given back to the main loop
until the BR execution is finished and the gResult value is updated. In our scheme, backup routines
are executed based on their priority values and in series (no two backup routines are executed in
parallel) to make WCRT calculation of backup routines less conservative. When a high priority
backup routine is added to the BRQ (backup routine queue), the BRQ manager places it at the
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head of the queue, suspends the low priority backup routine by sending a suspend signal to it
(pthread_kill (BR1, signal) )and executes the high priority backup routine. In the signal
handler of all backup routines, the thread is either paused (using pause () ) or resumed depending
on the received signal. After executing the high priority backup routine, the BRQ is updated
(removing the high priority backup routine) and the queue manager sends a resume signal to the
low priority backup routine to resume the execution. The BRQ manager also utilizes a mutex to
ensure that two threads or itself (when a backup routine finishes its execution) do not access the
queue at the same time. We assume the update time of the queue is negligible and ignore it in the
WCRT computation.

If the compute (data) method has dynamic memory allocation, more effort is needed to avoid
possible memory leak due to jumps. Either the memory leak should be detected manually (e.g.,
using a flag) and it is deallocated after the jump (after 1f set jump (buf)) or a fixed global
memory space is allocated for the compute(data) function and reused. Additionally, non-atomic
data structures must be treated as corrupted when the longjmp occurs as they may be left in an
inconsistent state.

For a less than timing constraint (e.g latency (el,e2) < 100 ms), a timer is started at the
annotation location of the first event and the variable TC . active is set to true. Upon expiration of
the timer, the variable TC.active is set to false. We assume that the WCRT of the backup routine
is 1 ms. If the program reaches the annotation location of the second event and the TC.active
variable is still true, the timing constraint is violated and the backup routine is added to the BRQ
to be executed. In Listing 10, we show the generated the code for the latency example from the
previous section (Listing 3) when the timing constraint condition is greater than 100 ms instead of
less than 100 ms.

1 TCl.activationTime = 0.099;
2 TCl.priority = 1;

3 jmp_buf buf;

4 actuate_t gResult;

5 while (1) {

6 if (setjmp (buf)) {

7 actuate (gResult) ;

8 }else(

9 _startTimer (TC1l) ;

10 TCl.active = TRUE;

11 data = sense();

12 result = compute (data);
13 actuate (result);

14 if (TCl.active = TRUE) {}
15 _stopTimer (TC1) ;

16 _BRQManager (BR(), TCl.priority);
17 longjmp (buf, 1) ;

22 void _timerExpired () {
23 TCl.active = FALSE;
24}

25

26 void BR() {
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27 gResult = backupRoutine () ;
28 }

Listing 10. Implementation for a minimum end-to-end latency constraint

5.2 Period Constraint

A period timing constraint can be implemented as a repetitive latency timing constraint. The code
in Listing 11 is the generated code for the Listing 4. The _firstIteration variable is used to
skip the first instantiating of the stopTimer and after that, the timer is used to check the latency
between every two consecutive execution of the program. We assume the WCRT of the backup
routines is negligible.

1 TCl.activationTime = 0.011;
2 TC2.activationTime = 0.009;
TCl.priority = 1;

oW

TC2.priority = 2;

5

Jmp_buf buf;

N

actuate_t gResult;

7 while (1) {

8 data = sense();

9 result = compute (data);
10 actuate (result);

13 _firstIteration = TRUE
14 int compute (int data) {

15 if (setjmp (buf)) {

16 return gResult;

17 lelse(

18 if (_firstIteration == FALSE) {
19 _stopTimer (TC1);

20 if (TC2.active == TRUE) {
21 _stopTimer (TC2) ;

22 _BRQManager (BR(), TC2.priority);
23 longjmp (buf, 1) ;

24 }

25 }

26 _firstIteration = FALSE;

27 _startTimer (TC1);

28 _startTimer (TC2);

29 TC2.active = TRUE;

30

31 return result;

32 }

33}

34

35 void _timerExpired (TC1) {

36 _BRQManager (BR(), TCl.priority);
37 longjmp (buf, 1);

38 }

39

40 void _timerExpired(TC2) {
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TC2.active = FALSE;

void BR() {
gResult = backupRoutine () ;

Listing 11. Implementation for an equal period constraint

Two timers are started at the annotation location of the event and stopped in the next iteration.
The desired period (10 ms + 1 ms) is converted into an upper (0.011 ms) and a lower (0.009 ms)
bound for the timers. If the period is less than 0.009 ms, TC2 is violated and if it is greater than
0.011, TC1 is violated. Note that the backup routine for both cases is the same and, TC1 and TC2
cannot be violated at the same time.

5.3 End-to-end Distributed Constraint

As mentioned in subsection 4.4, implementing a distributed latency constraint is done by capturing
a timestamp on the first device, calculating the deadline timestamp, sending the deadline to the
second device, and setting up a timer locally on the second device based on the received deadline.
Not all end-to-end constraints are periodic and the second device doesn’t know when to expect a
deadline from the first device. This can be problematic when the network delay is large and the
deadline arrives late or not arrives at all. To make sure excessive network delays can be detected,
the second device is set to send back an acknowledgment to the sender device. If the sender doesn’t
receive the ack in time, it executes a backup routine. We consider a worst-case round-trip delay
(WCRTD) —from sending the timestamp to receiving the acknowledge- to set the deadline for
receiving the ack message. To maintain clock accuracy among devices, the _clockSync () is
called periodically to perform clock synchronization. The following equation shows the relationship
between period of clock synchronization in seconds (Ts), clock’s frequency drift in part per million
format (e,pm) and the accuracy of the synchronization method (6).

es = min(Js, Tseppm X 107%) (6)

For clock synchronization, a repetitive timer with a fixed period is set to execute the function
_periodic () function. In general, devices can synchronize their clock using Network Time
Protocol (NTP) [35], Precision Time Protocol (PTP) [36] or GPS. For this paper, we use a simplified
version of NTP since PTP requires dedicated hardware and GPS is not always available. The value
of § for NTP, GPS, and PTP is 1 ms, 40 ns, and 10 ns, respectively. _local2global (ts) and
_global2local (ts) functions are also inserted to convert a local timestamp into a global one
and vice versa. Listings 12 and 13 show the generated code for the distributed latency constraint
example (Listing 6 and 7) presented in the previous section. For this example, we set the WCRTD
to be 300 ms.

TCl.activationTime = 0.3; // WCRTD = 300 ms
0.5; // 500 ms

TC2.activationTime
TCl.priority = 1;
Jmp_buf buf;
msg_t gResult;
while (1) {
if (setjmp (buf)) {
send (gResult) ;
lelse(
ts = _local2global (now + TC2.deadline)
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_sendTS (ts);
_startTimer (TC1);

data = sense();

result = compute (data);
send (result) ;

void _ackReceived (TC1) {
_stopTimer (TC1);

void _timerExpired (TC1l) {
_BRQManager (BR1 (), TCl.priority);
longjmp (buf) ;

void _periodic () {
_clockSync () ;

void BR1 () {
gresult = backupRoutinel () ;

M. Khayatian, et al.

Listing 12. Implementation for a distributed latency constraint - device 1

TC2.priority = 1;
actuate_t gResult;
Jmp_buf buf;
while (1) {
if (setjmp (buf)) {
actuate (gResult) ;

} else {
data = receive();
result = compute (data);

actuate (result) ;
_stopTimer (TC2) ;

void _tsReceived (TC2) {
TC2.deadline = _global2local (TC2.ts - now);
_startTimer (TC2) ;
_sendAck (TC1) ;

void _timerExpired (TC2) {
_BRQManager (BR2 (), TC2.priority);
longjmp (buf, 1);

void _periodic () {

, Vol. 1, No. 1, Article . Publication date: February 2022.



27
28
29
30
31
32

RTINS [

© o =

21
22
23
24
25
26
27
28
29
30
31
32
33

Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures

_clockSync () ;

void BR2 () {
gResult

21

backupRoutine2 () ;

Listing 13. Implementation for a distributed latency constraint - device 2

At the annotation location of the first event, device 1 converts and sends the deadline to device 2,
and then starts a timer locally. A callback (_deadlineReceived ()) is set up in device 2’s code
to receive the sent timestamp (using an interrupt handler), perform timestamp translation, start a
timer, and send back an ack to the sender. On the sender side, a callback (_ackReceived ())is
set up to receive the ack (using an interrupt handler) and stop the timer. If the timer expires before
receiving the ack, the backupRoutinel () is executed on the sender device. On the receiver
side, the backupRoutine?2 () is executed if the timer expires.

5.4 Simultaneity Constraint

The code in Listing 14 shows the implementation code for the program in Listing 8.

float ts([3];

i = 0;

n = 0;

TCl.priority = 1;

TC2.priority = 2;

TCl.activationTime = 0.3; // WCRTD = 300 ms

Jmp_buf buf;
msg_t gResult;
while (1) {

if

(setjmp (buf)) {

sendToServer (gResult) ;

lelse(
ts[i]

_sendTS (t

local2global (now) ;
s);

_startTimer (TC1);

data
result

sense () ;

compute (data) ;

sendToServer (result) ;

void _tsReceived (TC1) {

i++;
ts[i]
_sendAck () ;
if (1 == 2){
if

longjmp (buf,

= _global2local (TCl.ts);

(!_verifySimultaneityLevel (ts,0.001)) {
_BRQManager (BR1 (),

TCl.priority);
1);
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Fig. 7. Overview of the runtime management system for initiation of a timing constraint using timers,
performing network communications and clock synchronization (when needed) and achieving deterministic
execution of backup routines based on the specified priorities.

34
35 void _ackReceived (TC2) {

36 n++;

37 if (n==3){

38 _stopTimer (TC2) ;
39 n=0;

40 }

41 }

42
43 void _timerExpired(TC2) {

44 _BRQManager (BR2 (), TC2.priority);
45 longjmp (buf, 1);
46}

47

48 void _periodic () {

49 _clockSync () ;

50 }

51

52 void BRI1 () {

53 gResult = backupRoutinel () ;
54}

55

56 void BR2 () {

57 gResult = backupRoutine2();
58 }

Listing 14. Implementation for a simultaneity timing constraint - device 1-3

Each device takes a timestamp before sensing and broadcast it. After receiving a timestamp,

5.5 Virtual Timers

Since a platform may not have enough hardware timers available to independently implement the
timing monitoring, we propose an efficient mechanism where multiple timers are implemented
using a queue that maintains a list of timing constraints sorted based on their deadlines, and a
timer is used to count the timing constraint that is at the head of the queue (with the earliest
deadline). We refer to this queue as Timing Constraint Queue (TCQ). Figure 7 shows the overview
of PlanB’s runtime monitoring mechanism. When the _startTimer () is called, the queue is
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updated to insert the new deadline. If the head of the queue is changed, the timer value is reset
and the values of existing deadlines are update. The algorithm 1 shows the pseudo-code for the
_startTimer ().

Algorithm 1: _StartTimer(TC)
1 if TC.deadline < TCQ[0].deadline then

2 elapsedTime = getTimerValue();
3 TCQ.shiftFrom(0);

4 TCQ[0] = TC;

5 else

6 for (i=1; i<=length(TCQ); i++) do
7 if TC.deadline < TCQ[i].deadline then
8 TCQ.shiftFrom(i);

9 TCQli] = TC;

10 break;

11 end
12 end
13 end
14 TCOM();

When _stopTimer (TC) is called or the timer is expired (_t imerExpired (TC)), the value
of deadlines is updated and the timer is armed again with the deadline of the queue’s head. Algo-
rithm 2 shows the pseudo-code for the _stopTimer (TC) and _timerExpired (TC).

Algorithm 2: _StopTimer(TC) and _timerExpired(TC)

1 for (i=1; i<=length(TCQ); i++) do

2 ‘ TCQ[i].deadline = TCQ[i].deadline - TCQ[0].deadline;
3 end

+ TCQ[o0] = [];

5 TCQMJ();

It is possible to allocate more than a timer for the implementation of timing constraints on the
TCQ. If n timers are available on a platform, the first n elements on the queue are assigned to
existing timers.

If two timers expire at the same time or the interval for the execution of their corresponding
backup routine overlaps, the one with higher priority should be executed first. To achieve this
functionality, we use another queue called Backup Routine Queue (BRQ) that holds all the backup
routines to be executed. Upon violation of a timing constraint, its backup routine is added to the
BRQ. The BRQ is managed by the Backup Routine Queue Manager (BRQM) based on the priority
values of backup routines. BRQM ensures that all backup routines are sorted based on their priority
(from high to low) when a backup routine is added or removed and executes the backup routine at
the head of the BRQ (highest priority). It may be possible to execute multiple backup routines at
the same time, but it requires more information about their data dependency and is not considered
in this paper. When the timing constraint is distributed, the sender device passes the deadline and
the receiver’s address to the network send block, which is responsible for TCP communication. For
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Fig. 8. Overview of the code transformation from source code with annotated timing constructs to C/C++
codes that can be compiled with existing compilers (e.g. gcc).

receiving the timestamp and the ack, a non-blocking receive is implemented in network receive
and network ack blocks. The synchronization block performs the clock synchronization and uses
the highest desired accuracy for timekeeping.

5.6 Code Transformation

We developed a checker that acts as a source-to-source transformer. Our checker gets the source
code(s) that are annotated in C/C++ and checks the consistency of events and throws an error if
there are redundant events. In addition, our checker generates the code for creation, configuration
and deletion of timers (See appendix). We use Portable Operating System Interface (POSIX) library
for timer and signal configuration. Figure 8 shows an overview of our source-to-source checker.
Initially, the parser check for syntax error and then extracts timing constraints and events that are
involved. Then, checks if there are distributed timing constraints and if yes, it add the code to send
the timestamps and perform clock synchronization. Finally the generated code should be compiled
(e.g., using g++) to get the binary.

For POSIX-based code generation, we use timer_create () and timer_settime () func-
tions to create and start a timer. We use sigevent and sigaction to define a signal event and
attach it to the timer and also to specify the handler function that is linked to the signal action. We
use, real-time signals (RTSIG) —-numbered from 32 to 64 in our implementation. We use the TCP
socket functions to implement the message passing between devices of a distributed system. The
periodic () function for synchronizing the clock is called at the fixed rate by setting up a timer
at the beginning of the program. We use NTP clock synchronization [35] in our implementation. For
platforms without POSIX support, we need to use hardware-dependent functions depending on the
platform. Usually, in MCUs timers and interrupts are set by directly writing into the corresponding
registers. Currently, our API only supports the ESP8266 board and uses the Ticker library for
configuring timers and interrupts. For TCP communication, we use the ESP8266WiFi library.
After compilation and code transformation, the code for POSIX based implementation is compiled
with gcc (version 7.3.0) with —1rt flag. The code for ESP8266 is compiled with Arduino IDE,
which uses the Xtensa 1x106 toolchain.
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Fig. 9. A screenshot of Apollo [10] and LG [37] simulator in Shalun map.

6 EXPERIMENTS

6.1 Case Study I: Applying Plan B to a Complex Application - Autonomous Vehicle Full
Software Stack

We use Plan B to re-design Apollo[10], an open-source software for self-driving cars. We show
that higher performances are achieved when the system is designed using Plan B while the safety
of the AV is guaranteed. According to the architecture of Apollo software, the sensed data is first
processed by the perception module and then, passed to the prediction, planning, and control
modules. Finally, the data is given to the CAN Bus Chassis module which is responsible to send the
actuation commands to the ECU.

6.1.1 Testbed Information. We used Apollo together with the LG simulator to perform software-in-
the-loop (SIL) simulations. Details on how to install and bridge LGSVL with Apollo can be found
here!. Due to the intensity of computation, we ran the LGSVL simulator on a Desktop machine
and the Apollo on a Ubuntu laptop. The LG simulator was downloaded from ? as a standalone
simulator and executed on a Desktop computer with Intel Core i7-6700 CPU 3.4 GHz, 16 GB of
memory, 128 MB Intel HD Graphics plus 8121 MB shared system memory, and a 64-bit Windows 10
OS. We used the Apollo v3.0 [10] and ran it on a high-performance laptop with Intel Core i7-7700
HQ CPU 2.8 GHz, 16 GB of memory, GeForce GTX 1060 PCIe/SSE2 (6 GB) and a 64-bit Ubuntu
18.04.3 LTS OS. The bridge between Apollo and LGSVL simulator is established by running the
rosbridge. sh inside the docker. The control panel of Apollo can be accessed from a browser
at localhost : 8888. The selected vehicle for experiments is a Jaguar XE 2015 and the map for
the experiment is Shalun, the Taiwan Car Lab Testing Facility located in Tainan, Taiwan. Figure 9
shows an overview of Apollo’s control panel (Dreamview) and the LG simulator in the Shalun map.
To spawn the ego AV (controlled by the Apollo software) and other NPC agents such as pedestrians
and vehicles at the desired location, we used LGSVL’s python API 3. After enabling the Localization,
Perception, Planning, Prediction, Routing, and Control modules, the AV starts driving.

Thttps://github.com/lgsvl/apollo-3.0
Zhttps://github.com/lgsvl/simulator/releases/
Shttps://www.svlsimulator.com/docs/python-api/python-api/
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6.1.2  Safety-based Timing Constraints. Based on the specification of Apollo software, the end-to-
end delay from sensing to actuation should be less than 1.5 s and the maximum allowed velocity is
15 m/s (33 mph). We measured the end-to-end delay of the Apollo software for 1000 executions by
inserting a probe that captures a timestamp when the data is collected from the sensors and another
one when the actuation signals are given to the CANbus module. Outputs from the execution of
the backup routine are published directly to the CANbus topics, overriding the messages that are
generated by the control module. The backup routine for cases where the end-to-end delay exceeds
the requirement (1.5s) is to stop the vehicle. There are three control commands that are generated
by the backup routine: brake = 100%, throttle = 0%, set_speed = 0. The other backup routine is to
slow down by 70% where the set_speed is dynamically written to and the throttle and brake values
are computed based on a simple PID controller as throttle = max(a, 0) and brake = min(a, 0), where
the desired acceleration value is computed by a simple PID controller as: a = kp«xe+kj*e;+kp *ep.
e = v, — v is the error between the set_speed and actual velocity of the vehicle, e; is the integral
error and ep is the derivative error.

Figure 10 shows the histogram of the end-to-end delay values for Apollo software and the newly
set threshold (1.5 s). As it is shown in Figure 10, the measurement-based WCEZ2ED for sensing-

200
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150 Th haold with h dWCE2ED
>' o ornura v vaocTcuivwuLolLu
]
g 97.1% coverage 3
\
S 100 .
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Perception-to-control latency (s)

Fig. 10. Histogram of the end-to-end delay from perception to control for the Apollo software.

to-actuation (the longest observed execution time) is 2.8s and a statically calculated WCE2ED is
expected to be much larger. As a result, the AV software (with the current platform) does not meet
the timing constraint of 1.5 s. If we apply the Plan B approach to bound the execution time by 1.5 s,
the system is guaranteed to be safe and executes the backup routine if the delay when more than
1.5 s. For the case where the deadline is 1.5 s, the rate of timing violation is 0.6%. It should be noted
that when the backup routine is slowing down by 70%, the initial end-to-end timing constraint is
relaxed and the rate of timing violation is reduced even more. Another benefit is that by changing
the end-to-end delay threshold, the operating point of the vehicle can change. For instance, if the
threshold is set to be 1.2 s as indicated by a black arrow on Figure 10, the vehicle can drive at a
higher velocity (40 mph) but the rate of timing violations is increased (3.2%).

We statically overestimated the WCET of the backup routine to be 5 ms. Apollo source code
has more than 500,000 lines of code, which is almost 2000 times larger than the size of the backup
routine (24 lines). This highlights the benefit of Plan B in avoiding the pessimism of static WCET
analysis for the whole software.

To further showcase the robustness of our approach, we injected faults on the Apollo software
by inserting delay() functions with random duration at random locations in the code in order to
intentionally cause a timing failure. We ran the Apollo software for 1 hour and injected 200 faults
where 12 of them could have resulted in an accident. Thanks to the Plan B approach, no accidents
were observed when a timing failure occurs.
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6.2 Case Study IlI: Resilient and Flexible Design of an Automated Intersection of AVs
using Plan B

We used Plan B to build a 1/10 scale intersection of AVs.

6.2.1 Testbed Information. Our 1/10th scale model AVs are built on Traxxas chassis, are 50cm long
and 30 cm wide, and can drive up to 3.5 m/s. An ESP8266 NodeMCU v3 board is used to control the
steering angle and velocity of the vehicle. The ESP8266 also gets data from an HC-SR04 ultrasonic
sensor to maintain a safe distance from the front vehicle. ESP8266 boards communicate with each
other through a shared Wi-Fi network. A set of trackers are installed on each vehicle and an
OptiTrack system is used to determine the location and orientation of vehicles through high-speed
cameras. We used mocap_optitrack ROS (Robot Operating System) library to read the 2D
position and heading angle of vehicles from the OptiTrack system. A MATLAB script was written
to create a ROS node and pass the pose data to vehicles through the TCP protocol over the Wi-Fi
network (2.4GHz). Figure 11 shows an overview of the intersection. A demo of the intersection can
be found here*. The pose data is broadcast every 20 ms. AVs follow the predefined waypoints to

Fig. 11. Our signal-free intersection with 1/10 scale model autonomous vehicles. Vehicles use V2V communi-
cation to come up with a consensus about who crosses first, who crosses second and so on.

enter the intersection, and once they leave the intersection, they make a U-turn and return to the
intersection. The decision to whether turn left, right, or go straight is made randomly after making
the U-turn.

6.2.2 Safety-related Timing Constraints. To safely operate vehicles at the intersection, a number of
timing constraints (including some distributed timing constraints) must be met which are listed in
Table 2.

We have also defined the safe backup routine for timing violations. In order to show our approach
is resilient against unforeseen timing failures, we ran the intersection and applied two types of
fault that cause timing violations. First, we inserted a delay_ms() function to a random place in
the vehicle’s code. The delay has a random activation time #4, and a random duration between 1
and 1000 ms. Secondly, we conducted a cyberattack on the Wi-Fi network that is used by AVs to
resembles a jamming attack. The cyberattack was done using the ESP Deauther 2.0 [38] software
where a malicious agent disconnects one or more vehicles from the network persistently by sending
a deauthentication packet to the server on behalf of the vehicle. Figure 12 shows the overview of
applied faults on the intersection management system for violating the safety timing constraints.

“https://www.youtube.com/watch?v=Q0tPS6uNTeE
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# | Type | Name Description Backup Routine
To ensure the vehicle always maintains a safe
1|78 Obstacle Avoidance | distance from its front vehicle, the latency from | Slow down and stop
S sensors to actuator should be less than 20 ms.
To make sure the vehicle does not drive out of
. . road boundaries, the latency from reading ori- | Change PID gains
Track ;
3 Waypoint Tracking entation and position of the vehicle to actuation | of the controllers
should be less than 40 ms.
5 Vehicle-to-Vehicle The latency from one V.ehicle S(.ending its in.f(? to | Reduce the. refer-
4|3 Communication another vehicle receiving the info and writing | ence velocity by
a to the DC motor should be less than 200 ms. 20%
= L The latency from sending a deadline timestamp | Reduce the refer-
8] Communication .. «  1» i
51 A Ack to receiving the “ack” should be less than 200 | ence velocity by
ms. 20%
Clock Synchroniza- | The latency between two clock synchronization .
6 . Force time sync
tion should be less than 66s.

Table 2. The list of timing constraints for the autonomous intersection case study and possible backup routine
to be executed upon failure of timing requirements.

obstacleAvoidance()

{

delay_ms(rand)

|
|
1
} 1 4
1 Hacker /4‘
waypointTracking() 1
{ 1
. |
’ I
|
1
|
I
1

Deauthentlcatlon <<

delay_ms(rand) |mempp

WiFiCommunicate() F i F ‘ ' l

{
(b)

s (@)

Fig. 12. Faults are injected to induce a timing failure: a) a delay function with arbitrary duration is randomly
inserted in the vehicle’s code, b) deauthentication attack is done to disconnect vehicles from the Wi-Fi
network.

We ran the intersection (with the vehicle’s original code) for 1 hour and assigned random
velocities to vehicles. We injected 200 faults and 68 accidents were observed. We modified the
vehicle code according to Plan B’s methodology and added backup routines listed Table 2. We
repeated the previous experiment and injected the same number of faults. In this experiment, all
vehicles reacted promptly when a fault was injected and no accident happened.

For system tuning and redesign, we measured the actual end-to-end delay of all timing constraints
in Table 2 for 3000 executions, again by capturing timestamps at different locations in the code. We
set the threshold for vehicle-to-vehicle timing constraint to be greater than 97.7% of all observed
latencies and for obstacle avoidance timing constraint, we set the threshold to be greater than 99.7%
of all observed latencies. We have depicted the histogram of actual delays for obstacle avoidance
delay and inter-vehicle communication latency in Figure 13. Using the newly adopted thresholds,
AVs can drive up to 3 m/s while safety is guaranteed. However, if the system was designed based on
conventional approaches, the max velocity of AVs was limited to 1 m/s. Let us assume the WCE2ED
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Fig. 13. Top- histogram of the inter-vehicle end-to-end delay. Bottom- histogram of the vehicle’s obstacle
avoidance delay. The original deadline, newly set threshold after the redesign and actual measurement-based
WCE2ED are also shown.

for the inter-vehicle communication is equal to the measurement-based value, i.e., WCE2ED = 563
ms. By selecting the threshold of 140 ms, vehicles at the intersection can drive almost 3 times faster.
In this case, the backup routines (stopping the AVs) are invoked more frequently but the rate is low
(0.3%).

6.3 Case study IlI: Resilient and Flexible Control of a Quadcopter using Plan B
We simulated the behavior of a quadcopter that its dynamics are modeled using following equation
[39]:
X = w(sin ¢ siny + cos ¢ cos ¢ sin ) — v(cos ¢ sinyy — cos ¢ sin ¢ sin 0) + u cos Y cos 0
y = v(cos P cosy + sin ¢ sin i sin @) — w(cos ¢ sinyy — cos ¢ sin sin 0) + u cos 0 sin
h=wcos¢cosf —usin +vcos 6 sin
u=ro—qw—gsinf
0=pw—ru+gcosfsing
\{vzqu—pv—F/m+gcos¢sin9 @)
¢ = p +rcosptand = qsin ptand
0 =gqcos¢—rsing
) = rcos¢/cos @ +qsin¢/cos 0
P =14/l +qr(Jy — J2)/Jx
g=ro/Jy+pr(Jx—J)/Jy
F=1y/L+pqUx = Jy) /e
where x and y are the latitude and longitude of the quadcopter, & is the height, u, v, w are the
linear velocity towards x, y, and z axes, respectively. @, 0, i are the orientation of the quadcopter,
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30

20

Fig. 14. An overview view of the attitude of the simulated drone for entering a house through a window
(depicted in red).

and p, g, r are the angular velocities over x, y, and z axes, respectively. m is the mass of the drone
and Jy, Jy, and J; are the moment of inertia over x, y, and z axes. The defined mission for the drone
is to take off, reach 20 m of altitude and enter a 1 m x 1 m square window. The size of the drone is
40 cm x 40 cm x 20 cm.

Je> Jy Jo | m | g | ki| ky | ks, kg, kin | Ky, ks, kia | ks, ko | ke, k1o
0.012 002 [ 1498 | 1|05 1 0.5 0.05 0.1
Table 3. Parameters of the simulated drone.

The following PD (Proportional and Derivative) controllers are used to control the location and
orientation of the drone over the z-axis ():

F=mg—K(ki(h—h,) +kyw)
75 = K(=ksdp — kap — ks(y — yr) — ko)
19 = K(—k70 — ksq + ko(x — x;) + k1ou)
Ty = K(—kn(‘// - Wr) — ki2r)

where ki, ks, ..., k12 are positive constants (gains) and K is a constant multiplier that is modified in

the backup routine.
If the propeller speed of motors are wy, w,, w3 and wy, the desired speed can be calculated as:

(®)

w§ =F[4b - 19/2bl — 7y /4d
w3 =F[4b —14/2bl + Ty /4d
w5 =F[4b+19/2bl — 7 /4d
wi =F[4b+14/2bl + 1y /4d

©)

where b is the trust factor, d is the drag factor and [ is the distance between the center of the
quadrotor and the center of the propeller.
Figure 14 shows the simulated drone in Matlab and its location at different moments.
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The goal for the drone is to enter the house through the designated window (depicted in red)
when the delay is variable. The drone start from [0,0,0] at time t=0 and the intermediate reference
points are [20,0,0] at t=2.5, [20,0,5] at t=5, [20,10,5] at t=6 and [20,15,5] at t=8.

If the delay from the IMU (Inertial Measurement Unit) to ESC (Electronic Speed Controller) is
more than a threshold, the drone either becomes unstable and crashes or cannot finish the designated
mission and hits the boundary of the window. We have depicted the relationship between the
controller’s delay and variation in the gains of the PD controllers in Figure 15. The orange dot

Relationship between sensor-to-actuator
delay and the controller gain (k)

23
24
1.9
z17
15
8 1.3
14
0.9
07
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15 20 25 30 35 40 45
End-to-end delay (ms)

Fig. 15. Relationship between controller’s delay and controller’s gain, k (see equation 8). The orange dot show
the nominal operating point of the drone.

represents the nominal operating point of the quadcopter where K = 1.8 and the corresponding
deadline for the controller is 20 ms.

7 CONCLUSION

In this paper, we present a novel design methodology for time-sensitive CPS called Plan B that allows
CPS designers to specify what happens if a timing constraint is not met. using online monitoring
of timing requirements at the runtime, timing violations can be detected and backup routines can
be executed on-time in order to maintain safety. Plan B also relaxes the timing constraints of the
system by renegotiating timing contracts to achieve graceful degradation instead of a complete
shutdown. We have evaluated our approach on two real case studies, a 1/10 scale model intersection
of AVs and the software of Apollo for autonomous driving together with the LG simulator. Despite
injecting faults to cause timing failures, both systems were able to maintain safety through the
execution of backup routines. Future improvements can be done by developing an API for different
programming languages.
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A APPENDIX 1 - SAMPLE CODES
Here we present some sample codes for start timer, stop timer, timer expired, and TCP scoket
initialization.

1 void timerInit ()

2 {

3 sa.sa_flags = SA_SIGINFO;

4 sa.sa_sigaction = handler;
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17
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

32

if (sigaction(SIG, &sa, NULL) == -1)

errExit ("sigaction");
sev.sigev_notify = SIGEV_SIGNAL;
sev.sigev_signo = SIG;

sev.sigev_value.sival_ptr = &timerid;

if (timer_create (CLOCKID, é&sev, &timerid)

errExit ("timer_create");
Q.length = 0;

M. Khayatian, et al.

== 71)

Listing 15. Timer initialization and signal attachment

static void handler (int sig, siginfo_t =si,
_expired();

void =xuc) {

Listing 16. Handler for timer expiration signal

void _startTimer (TC TCI)
{

if (Q.length == 0)

{
Q.IDs[0] = TCI.ID;
Q.deadlines[0] = TCI.deadline;

Q.length = 1;

else

timer_gettime (timerid, &its);

long long timerValue = its.it_value.tv_nsec + its.it_value.tv_sec

* 1000000000;

long long dt = Q.deadlines[0]

if (printLOG == 1)
{

- timerValue;

printf ("current _time_elapsed _is_%11d\n", dt);

}

for (int i = 0; i < Q.length; i++)
{ // update deadlines
Q.deadlines[i] = Q.deadlines[i] - dt;
}
int inserted = 0;
for (int i = 0; i < Q.length; i++)

{ // insert new TC in the Queue
if (TCI.deadline < Q.deadlines[i] && inserted == 0)

{
for (int j
{

Q.length; j >= 1i; j—-)

Q.IDs[j + 1] = Q.IDs[]jl;
Q.deadlines[j + 1] = Q.deadlines[]];
}
Q.IDs[i] = TCI.ID;

Q.deadlines[i] =

inserted =
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Q.length++;

break;
}
}
if (inserted == 0)
{ // if it's the last element
Q.IDs[Q.length] = TCI.ID;
Q.deadlines[Q.length] = TCI.deadline;
inserted = 1;
Q.length++;
}
}
freq_nanosecs = Q.deadlines[0]; // last element of the queue...
its.it_value.tv_sec = freqg_nanosecs / 1000000000;
its.it_value.tv_nsec = freg nanosecs % 1000000000;
its.it_interval.tv_sec = its.it_value.tv_sec;
its.it_interval.tv_nsec = its.it_value.tv_nsec;
if (timer_settime (timerid, 0, &its, NULL) == -1)

errExit ("timer_settime");

timer_gettime (timerid, &its);

long long timerValueF = its.it_value.tv_nsec + its.it_value.tv_sec =

1000000000;
timer_gettime (timerid, &its);

timerValueF = its.it_value.tv_nsec + its.it_value.tv_sec * 1000000000;

Listing 17. Start Timer

void _stopTimer (TC TCI)

{
int TCLocation = -1;
timer_gettime (timerid, &its);

long long timerValue = its.it_value.tv_nsec + its.it_value.tv_sec =
1000000000;
long long dt = Q.deadlines[0] - timerValue;

for (int i = 0; i < Q.length; i++)
{ // update deadlines
Q.deadlines[i] = Q.deadlines[i] - dt;
}
for (int i = 0; i < Q.length; i++)
{

if (TCI.ID == Q.IDs[i])
{
TCLocation = i;
break;
}
}
if (TCLocation == -1)

{ // was not found, it's already expired
// do nothing
if (printLOG == 1)

33
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printf ("IC_not_found...\n");

else

if (TCLocation == Q.length - 1)

{ // last element
Q.IDs[TCLocation] = -1;
Q.deadlines[TCLocation] = -1;

Q.length--;

else

for (int i = TCLocation; i < Q.length - 1;

{
Q.IDs[i] = Q.IDs[i + 11;

Q.deadlines[i] = Q.deadlines([i + 1];

}
Q.length--;

if (Q.length > 0)
{

freqg nanosecs = Q.deadlines[0];

its.it_value.tv_sec = freq nanosecs / 1000000000;

its.it_value.tv_nsec = freqg nanosecs % 1000000000;
its.it_interval.tv_sec = its.it_value.tv_sec;
its.it_interval.tv_nsec = its.it_value.tv_nsec;

if (timer_settime (timerid, 0, &its, NULL)

errExit ("timer_settime");

else

its.it_value.tv_sec = 0;

its.it_value.tv_nsec = 0;
its.it_interval.tv_sec = its.it_value.tv_sec;
its.it_interval.tv_nsec = its.it_value.tv_nsec;

if (timer_settime (timerid, 0, &its, NULL)

errExit ("timer_settime");

Listing 18. Stop Timer

void _expired()

{
TC TCI;
TCI.ID = Q.IDs[0];
TCI.deadline = Q.deadlines[0];

int TCLocation = -1;
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i++)



30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
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timer_gettime (timerid, &its);
long long dt = Q.deadlines[0];

for (int i = 1; i < Q.length; i++)
{ // update deadlines
Q.deadlines[1] = Q.deadlines[i] - dt;

for (int i = 0; i < Q.length; i++)
{

if (TCI.ID == Q.IDs[i])
{
TCLocation = i;
break;
}
}
if (TCLocation == -1)

{ // was not found, it's already expired
// do nothing
printf ("TC_not_found...\n");

else

if (TCLocation == Q.length - 1)

{ // last element
Q.IDs[TCLocation] = -1;
Q.deadlines[TCLocation] = -1;

Q.length-—-;

else

for (int i = TCLocation; i < Q.length - 1;

{
Q.IDs[i] = Q.IDs[i + 1];

Q.deadlines[i] = Q.deadlines[i + 1];

}
Q.length--;

if (Q.length > 0)
{

freq nanosecs = Q.deadlines[0];

its.it_value.tv_sec = freq nanosecs / 1000000000;

its.it_value.tv_nsec = freq _nanosecs % 1000000000;
its.it_interval.tv_sec = its.it_value.tv_sec;
its.it_interval.tv_nsec = its.it_value.tv_nsec;

if (timer_settime (timerid, 0, &its, NULL) =
errExit ("timer_settime");

else

35
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61
62
63
64
65
66
67
68
69
70
71
72
73

1

oW

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36

int

{

TCP_.
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its.it_value.tv_sec = 0;

its.it_value.tv_nsec = 0;

its.it_interval.tv_sec = its.it_value.tv_sec;
its.it_interval.tv_nsec = its.it_value.tv_nsec;
if (timer_settime (timerid, 0, &its, NULL) == -1)

errExit ("timer_settime");

if (TCI.ID == 1)

backupRoutine2 () ;

Listing 19. Timer Expired

ServerInitialize ()

int server_fd;
struct sockaddr_in address;
int opt = 1;

int addrlen = sizeof (address);

char buffer[1024] = {0};

char xhello = "Hello_from_server";

if ((server_fd = socket (AF_INET, SOCK_STREAM, 0)) == 0)

{
perror ("socket failed");
exit (EXIT_FAILURE) ;

if (setsockopt (server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt,
sizeof (opt)))

perror ("setsockopt") ;

exit (EXIT_FAILURE) ;
}
address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY;
address.sin_port = htons (PORT) ;

if (bind(server_fd, (struct sockaddr ) &address, sizeof (address)) < 0)
{
perror ("bind_failed");
exit (EXIT_FAILURE) ;
}
if (listen(server_fd, 3) < 0)
{
perror ("listen");
exit (EXIT_FAILURE) ;
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35 if ((socketl = accept (server_fd, (struct sockaddr x)&address, (socklen_t
*) &addrlen)) < 0)
36 {

37 perror ("accept");

38 exit (EXIT_FAILURE) ;

39 }

40 if (fcntl (socketl, F_SETFL, fcntl (socketl, F_GETFL) | O_NONBLOCK) < 0)
41 {

42 printf ("TCP_error\n");

43 }

44 return socketl;

45 }

Listing 20. TCP Server Initialization

1 int TCP_ClientInitialize()
2 {

3 struct sockaddr_in serv_addr;

4 char xhello = "Hello from_client";

5 char buffer[1024] = {0};

6 if ((socketl = socket (AF_INET, SOCK_STREAM, 0)) < 0)

7 {

8 printf ("\n_Socket_creation_error_\n");

9 return -1;

10 }

11

12 serv_addr.sin_family = AF_INET;

13 serv_addr.sin_port = htons (PORT);

14

15 if (inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr) <= 0)

16 {

17 printf ("\nInvalid_address_Address,_not _supported_\n");

18 return -1;

19 }

20

21 if (connect (socketl, (struct sockaddr *)é&serv_addr, sizeof (serv_addr)) <
0)

22 {

23 printf ("\nConnection_Failed_\n");

24 return -1;

25 }

26 if (fcntl (socketl, F_SETFL, fcntl (socketl, F_GETFL) | O_NONBLOCK) < 0)

27 {

28 printf ("TCP_Error\n");

29 }

30

31 return socketl;

32}

Listing 21. TCP Client Initialization
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