Cooperative Driving of Connected Autonomous Vehicles Using
Responsibility-Sensitive Safety (RSS) Rules

Mohammad Khayatian!, Mohammadreza Mehrabian!, Harshith Allamsetti?, Kai-Wei Liu?, Po-Yu

Huang®, Chung-Wei Lin®, Aviral Shrivastava'
1 Arizona State University, ZWestern Digital, 3National Taiwan University

ABSTRACT

Connected Autonomous Vehicles (CAVs) are expected to enable
reliable and efficient transportation systems. Most motion planning
algorithms for multi-agent systems are not completely safe because
they implicitly assume that all vehicles/agents will execute the
expected plan with a small error. This assumption, however, is hard
to keep for CAVs since they may have to slow down (e.g., to yield to
a jaywalker) or are forced to stop (e.g. break down), sometimes even
without a notice. Responsibility-Sensitive Safety (RSS) defines a set
of safety rules for each driving scenario to ensure that a vehicle
will not cause an accident irrespective of other vehicles’ behavior.
RSS rules, however, are hard to evaluate for merge, intersection,
and unstructured road scenarios. In addition, deadlock situations
can happen that are not considered by the RSS. In this paper, we
propose a generic version of RSS rules for CAVs that can be applied
to any driving scenario. We integrate the proposed RSS rules with
the CAV’s motion planning algorithm to enable cooperative driving
of CAVs. Our approach can also detect and resolve deadlocks in a
decentralized manner. We have conducted experiments to verify
that a CAV does not cause an accident no matter when other CAVs
slow down or stop. We also showcase our deadlock detection and
resolution mechanism. Finally, we compare the average velocity
and fuel consumption of vehicles when they drive autonomously
but not connected with the case that they are connected.

CCS CONCEPTS

- Computer systems organization — Robotic autonomy.

KEYWORDS

Connected Autonomous Vehicles, City-Wide Traffic Management,
Intelligent Transportation Systems

1 INTRODUCTION

Autonomous Vehicles (AVs) have the potential to make transporta-
tion safer by reducing the number of accidents that are caused due
to human error. When AVs become connected (which are referred
to as Connected Autonomous Vehicles (CAVs)), they can further
improve road safety by sharing their information with each other
such as position, velocity, future plans, etc. In addition, CAVs are
projected to improve fuel consumption, travel time, and passenger
comfort through cooperative driving.

Achieving cooperative behaviors among robots is typically stud-
ied under multi-agent motion planning in the robotics domain [1, 2].
In the Intelligent Transportation Systems (ITS) domain, many tech-
niques [3] are proposed where CAVs share their information with
each other (through V2V) or the infrastructure (through V2I) to

perform traffic management at intersections [4-7], or merge points
[8-10].

In general, existing motion planning algorithms and traffic man-
agement techniques consider a safety buffer around each vehicle
to cover for uncertainties in the localization and trajectory track-
ing, and then a reference trajectory is determined. A trajectory
is considered to be safe if the safety buffer of a vehicle does not
overlap with obstacles or other vehicles’ safety buffer at any point
in time. While reasonable, this definition may not provide absolute
safety because it implicitly assumes that all vehicles will follow the
expected plan (with small errors that are within the safety buffer).
However, any disruption in the plan can result in an accident. For
example, consider a scenario when two vehicles are driving on a
street, one behind the other. If the front vehicle suddenly stops for
any unplanned reason (e.g. yielding to a jaywalker), then the rear
vehicle may hit the front car. In common driving parlance — the
rear vehicle should not tail-gate the front vehicle.

Responsibility-Sensitive Safety (RSS) approach [11] from Mobil-
eye+Intel addresses the safety issue from the legal/blame perspec-
tive and allows vehicles that have the right-of-the-way according
to the rules of the road to change their plans. RSS proposes a set
of safety rules such that if a vehicle abides by these rules, then it
cannot be blamed for an accident. In the scenario that is mentioned
above, RSS rules are used to determine the minimum distance at
which the rear vehicle should follow the front one so that it will be
able to stop without causing an accident even in the worst-case sce-
nario. RSS uses a lane-based coordinate system to define lateral and
longitudinal distances between vehicles depending on the driving
scenario. The main shortcoming of RSS is that it is scenario-based
and not all scenarios can be evaluated intuitively because longitu-
dinal and lateral distances are vague for merges, intersections, and
unstructured roads where lane markings are not provided. The first
contribution of this paper is to provide a trajectory-based defini-
tion for RSS rules, that works in all situations, including merges,
intersections, and unstructured roads.

When CAVs interact with each other, they may face a dead-
lock situation where they yield to each other for an indefinite
time. Researchers have proposed methods to detect and resolve
deadlocks at intersections [6, 12, 13] and roundabouts [14]. In ex-
isting approaches, the intersection/roundabout area is divided into
a grid of zones, and vehicles that intend to occupy the same zone
are said to have a conflict. Then, the dependencies between CAVs
(who should enter a conflict zone first and who enters second) are
represented with a directed graph, and deadlocks are resolved by
removing cycles in the graph. One of the limitations of existing
approaches is that they use fixed grid of zones to detect conflicts
between vehicles and the size of each zone affects the efficiency
of the conflict detection algorithm since using coarse grids makes

the schedule pessimistic and using fine grids increases the number
of checks. Furthermore, in existing approaches, the dependency
graph is computed individually by each CAV, which is extremely
inefficient because the same computing is done redundantly and
the overhead grows as the number of vehicles increases. As the
second contribution of this paper, we propose an efficient and de-
centralized approach to detect and resolve deadlock where each
CAV determines only its own conflicts.

In this paper, we present a cooperative driving and deadlock
resolution approach for CAVs. Instead of a lane-based coordinate
system, we use future trajectories of CAVs to represent their con-
flicts, which can be applied to any road geometries and situations.
Inspired by the RSS legal/blame perspective, we develop a new set
of safety rules for CAVs to guarantee that no accidents happen if
CAVs abide by proposed RSS rules. We also provide an efficient
and decentralized deadlock detection and resolution algorithm for
CAVs. The integration of the proposed RSS safety rules and dead-
lock resolution algorithms with motion planning is also provided.
Results from conducting experiments on our realistic simulator
—that considers vehicle dynamics and network delay— demonstrate
that all CAVs remain safe even if one or more CAVs slow down or
stop at any point in time. We evaluate the efficiency of our approach
by comparing the average travel time of CAVs with a case that ve-
hicles are autonomous but not connected. Finally, we showcase our
deadlock resolution mechanism for an intersection scenario.

2 RELATED WORK

In the ITS domain, many researchers have proposed methods to
cooperatively manage CAVs at intersections [3-7, 15-18], round-
abouts [19], ramp-merging [8-10], performing cooperative lane
changing [20, 21], forming platooning in highways [22, 23]. Such
approaches can only be applied to a specific scenario and do not
scale. There have been a number of cooperative approaches that
are not scenario-based. In the method proposed by During et al.
[24, 25], the ego CAV first determines a set of possible maneuvers
that can resolve the conflict and then, select the one that has the
lowest cost. The cost is determined based on energy consumption,
time of maneuver, and driving comfort. In another work, Chen et
al. [26] proposed a cooperative driving algorithm where the driv-
ing information of neighboring CAVs is obtained and the desired
velocity is predicted using a Recursive Neural Network (RNN). A
motion planner is developed using the predicted velocity using a
fuzzy path-following controller. These approaches, however, do
not consider cases where a CAV is unable to perform the desired
maneuver/follow the assigned trajectory.

In the robotics domain, many researchers have focused on multi-
agent motion planning algorithms problem [1, 2]. In general, co-
operative motion planning algorithms can be categorized as dis-
tributed [27] and centralized [28]. In distributed approaches, each
agent computes a path such that it avoids obstacles and other agents
while in centralized approaches, a central planner (could be on each
agent) computes the plan for all agents by exploring the whole
design space. In general, distributed approaches are more popular
as they require less computation and more resilient to changes in
the plan or uncertainty. Existing motion planning algorithms for
multi-agent systems and traffic management approaches for CAVs

provide safety proofs based on the assumption that all agents stick
to their plan or error is small. In the real world, CAVs may have
to slow down and stop due to unforeseen reasons e.g. a CAV may
break down. As a result, existing techniques are not absolutely safe
for CAVs.

In 2017, researchers from Mobileye proposed a set of rules called
RSS [11], which determines the minimum distance that an AV must
maintain from other vehicles in order to remain safe and not being
blamed for an accident. RSS rules consider the worst-case scenario
for other vehicles and the ego vehicle (during the response time) to
provide safety guarantees. RSS rules have been used to develop a
monitoring system [29] and are implemented in the Carla simulator.
In [5], researchers have proposed to use surveillance cameras [30]
to check for rogue cars at the intersection and provide safety con-
sidering the worst-case scenario similar to RSS.

The main issue with RSS is that it uses a lane-based coordinate
system and safety rules are defined based on longitudinal (towards
the lane) and lateral (perpendicular to the lane) distances, which
is hard to evaluate for intersections, merges or unstructured road
scenarios where no road markings are present. In addition, RSS rules
do not consider the interaction among other CAVs and therefore,
cannot detect cases where a deadlock happens.

Researchers have proposed algorithms to detect and resolve
deadlocks at intersections [6, 12], roundabouts [14] and network of
intersections[13]. In such approaches, a set of pre-defined zones is
used to represent the occupancy of CAVs. Next, a wait-for graph
is created to represent dependency between vehicles for entering
conflict zones, and deadlocks are identified by detecting cycles in
the graph. However, using fixed conflict zones to detect a conflict
and perform deadlock resolution is either inefficient (for coarse
zones) or compute-intensive (for fine zones). Furthermore, existing
approaches do not consider vehicle dynamics when resolving a
deadlock and assume that a deadlock is resolved in one-shot. While
in reality, it takes some time for CAVs to slow down/speed up and
resolve a deadlock.

3 GENERIC FORMULATION OF RSS RULES

In this section, we introduce a trajectory-based formulation for RSS
rules. The advantage of this approach is that the rules are generic
and can be applied to all cases, including unstructured roads.

Given the future paths of CAVs are known, each CAV can deter-
mine the set of conflict zone C. A conflict zone, C; C C is defined
as a convex contour that includes a subset of two CAVs’ future path
(FP) where the distance between the future paths is less than a
threshold, d;},. Since two CAVs may have more than one conflict,
only consecutive edges that have a distance of less than d;j, are
considered to be a part of the same conflict zone. The midpoints
of the edges are used to calculate the distance between two edges
from two future paths. To specify the boundaries of a conflict zone,
midpoints of first and last edges are used.

Based on the road geometry and rules of the road, every pair of
CAVs can determine who has the advantage to enter the conflict
zone first and who has the disadvantage. For simplicity, we assume
the CAV with the earlier arrival time has the advantage. Without
loss of generality, we assume that one of the CAVs has the advantage
and the other one has disadvantage. We represent the distance of

the CAV with the advantage from the beginning of the conflict

zone and from the end of the conflict zone with d? _andd4
egin end

respectively. Similarly, we represent the distance of the CAV with

disadvantage from the beginning of the conflict zone with dbD -
egin
A dA
begin’ “end
and dbD . are shown. We assume that Equation (1) represents the
egin

Figures 1, 2, and 3 show different scenario where the d

dynamics of each CAV. We assume the following vehicle dynamics
for the CAV.
x = vcos(¢p);

g = vsin(p) "
¢ = T tan(y);
0 =a,

where x and y represents the position of the ego CAV in Carte-
sian coordinates, ¢ is the CAV’s heading angle from the x-axis,
v and a are linear velocity and acceleration of the CAV respec-
tively, L is CAV’s wheelbase distance and ¢ is steering angle of
front wheels with respect to the heading of the CAV. In order to
make the model more realistic, we consider an upper bound and a
lower bound on the acceleration rate and steering angle of a CAV
as: a € [amin, @max] and ¥ € [Ymin, Ymax]| where amax and amin
are the maximum acceleration and deceleration rates and Ypmax
and Yy ipn are the maximum and minimum steering angles of the
vehicle.

For simplicity, the trajectory of each CAV is projected onto its
path and represented with the double-integrator model. As a result,
the stop distance of the CAV with advantage is calculated as:

dA %

stop =

@)

2|abrake| .
We assume that each CAV broadcast its information every T mil-
liseconds and the worst-case end-to-end delay (p) is 2T Taking into
account the delay, the worst-case stop distance of the CAV with
disadvantage is calculated as:

(vp + aaccp)*
[2aprakel

dsDtop =upp+ %QACCPZ + (©))
The first two terms (vpp and %a Accp?) indicate that the CAV with
disadvantage may be accelerating in the worst-case scenario while
waiting for broadcast information from the CAV with advantage. If
the distance of the CAV with advantage form the end of the con-
flict zone is greater or equal to the stop distance of the CAV with
advantage (dfn = dft o p)’ there is a possibility that it may slow
down and stop inside the conflict zone and block the CAV with
the disadvantage. Otherwise, there is no conflict. Accordingly, we
define the modified RSS rule as:

DEFINITION 1. General RSS Rule: Given the entering order of
CAVs to a conflict zone is known, the minimum safe distance to main-
fain from the conflict zone (d?AFE)for the CAV with disadvantage
1s:

D _ JA VLa+VLp e JA A .
d?AFE — dstop dscenurio + 2 ’ lfdend > dstop’
0, otherwise.

©

and)
dSDAFE > uvpp + EaACCPZ- (5)

where dfcenario is the scenario-dependent distance that the CAV with
advantage travels inside the conflict zone, and VL4 and VLp are
the vehicle length for the vehicle with advantage and disadvantage,

respectively.

Since the distance values are calculated based on the center of
CAVs, the term % is added. To make sure the travelled
distance during the response time of the CAV with disadvantage is
not greater than the safe distance, the second Equation 5 should be
satisfied too.

LEMMA 3.1. If the CAV with disadvantage always maintains a
distance of at least d?AFE from its conflict zone, it will not hit the
CAV with advantage even if it changes its plan and decelerates at any
point in time.

Proor. If the distance of the CAV with the advantage from the
end of the conflict zone is smaller than its stop distance, dfn q <
dA

stop’
at a rate of smaller than or equal to ap, 4k If the distance of the
CAV with the advantage from the end of the conflict zone is greater
than its stop distance, d‘:n q> d?, op- it may stop inside the conflict
zone if it decelerates. In this case, the CAV with disadvantage will
be notified after p milliseconds in the worst-case scenario. If the
CAV with disadvantage accelerates at a rate of smaller than or equal
to agcc during this time interval (p) and then decelerates at a rate
of apyqkes its stop distance will be equal to dgop (Equation (3))
and it will not enter the conflict zone and no accident will happen.
For scenarios where the scenario-dependent distance is not zero,

f‘c enario > 0 (same lane and merge), the paths of the CAVs overlap

and if the CAV with advantage decelerates, it will allow the CAV

A
scenario

and still be safe. As a result, the required safe distance is d

A
scenario’

it will stop outside of the conflict zone even if it decelerates

with disadvantage to travel through the conflict zone by d

stop —
m}

Next, we study a few case studies and show how the safe RSS
distance is calculated for each scenario.

3.1 Same Lane

Let us consider a scenario where two CAVs are driving in the same
lane as depicted in Figure 1. The front CAV has the advantage since

A
d?top dstop

Rear Front

Figure 1: An example of a same lane scenario with two CAVs.
The front CAV has the advantage and its distance from the
conflict zone is zero. The conflict zone is highlighted in or-
ange.

its arrival time at the conflict zone is smaller than the rear CAV.

Since the paths of the front CAV overlaps with the path of rear
CAV, d4 =d which means the front CAV travels d4

A
scenario stop’ stop
meters inside the conflict zone before a complete stop and the rear

CAV has d?t op Meters more to stop. According to Equation (4), the
D

required safe distance for the rear CAV (dg o p
the conflict zone/front CAV is:

) to maintain from

VLp +VL

D D A D A

dSarg = dstap - dstop + -

dg op and d?t op AT€ calculated according to Equations (2) and (3).

3.2 Intersection

Now, let us consider a scenario where two CAVs approach an inter-
section and their future path crosses inside the intersection area as
it is depicted in Figure 2. We assume the arrival time of the green

A -
dsmp -\ "~

Advantage déna

Conflict
zone

D
dstop

Disadvantage

Figure 2: A scenario with two CAVs approaching an inter-
section and their future path intersect. It is safe to enter the
conflict zone after the other CAV leaves conflict zone.

CAV to be earlier than the blue CAV and therefore, it has the ad-
vantage. If the green CAV stops anywhere inside the conflict zone,
it’s not safe for the blue CAV to enter the conflict zone. Therefore,
the scenario-dependent distance is zero, d?c enario = 0- As a result,
we have:

b, + YkatVlo - ipgd > g4

d?AFE _ { stop stop’
0, otherwise.
If the distance of the green CAV from the end of the conflict zone
is smaller than its stop distance, even in the worst-case (if it decel-
erates at the maximum rate), it will stop outside the conflict zone
and does not cause a conflict for the blue CAV. In this case, there
will be no conflicts and d?AFE =0.

3.3 Merge

Next, we consider a merge scenario where two CAVs merge into
the same lane as it is shown in Figure 3. Without loss of generality,
we assume one of the CAVs (green one) has the advantage and
the other CAV has disadvantage respectively. In this scenario, the
scenario-dependent distance is

0 if dyop < dmerge;

A enario =1 .
scenario A A £ JA
dstop - dmerge)’ lfdstop 2 dmerge,

(6)

) end (]
: d;)‘qgrge :
! o ,i _____ :
—— - = ~
E i N ‘l }

~ Conflict
Zone

Figure 3: A scenario where two CAVs are expected to be
merged into the same lane. The CAV with earlier arrival
time has the advantage.

where d4 ,, ge is the distance of the CAV with advantage from
the merging point, which is indicated in Figure 3. As a result, the
blue CAV must maintain a minimum distance of

A —dA VLD+VLA

D D .
dSarg = dstop — min(0, dstop merge) + 2

from the conflict zone. Note that once the blue CAV reaches the
merge point, the dfc enario 18 changed. The lateral case in the origi-
nal RSS rules (two CAVs driving on adjacent lanes) can be modeled
like a merging case. If any of the CAVs attempts to merge into the
other CAV’s lane, it is only allowed if the created conflict zone is

far enough from the other CAV i.e. at least dpqx-

4 COOPERATIVE DRIVING OF CAVS

In this section, we first present the algorithm that runs on each
CAV assuming no deadlock situation happens. In the next section,
we explain the deadlock resolution algorithm.

4.1 Main Algorithm

Given the initial position and final destination of a CAV are known,
the motionPlanner uses the world’s map to determine the shortest
route (R) that connects CAV’s current position to the destination.
We assume at least one feasible path exists that connects CAV’s
current location to its destination. The map, M(N, E), is a directed
graph where N is the set of nodes (waypoints) and E is the set of
edges (connections between waypoints). Each edge has a weight,
w, which indicates the minimum travel time for that segment of
the road. In our algorithm, we assume the ego CAV’s computation
time and communication time are bounded by T.

In a periodic manner, each CAV broadcasts its ID, position, ve-
locity, timestamp, and its future path (FP), which is an array of
x-y coordinates. We assume that all CAVs synchronize their clock
using GPS so that timestamps are captured with clocks that have
almost the same notion of time. When the CAV receives the in-
formation of other CAVs, it checks if their paths intersect or the
distance between their paths is less than a threshold. If so, the
CAV computes a set of conflict zones (C). For each conflict zone,
the CAV determines which vehicle has the advantage to enter the
conflict zone first based on who is expected to reach the conflicting
zone first. To detect possible deadlocks, the CAV computes a graph
called Partial Dependency Graph (PDG), which represents the de-
pendency among other CAVs and itself (who should yield to who

Algorithm 1: CAVs algorithm

while has not reached the destination do
FP = compute_future_path();
CAV_info = [x, y, v, ts, FP, ID];
broadcast(CAV_info);
others_info = receive_other_CAVs_info();
for each member of other_CAVs_info do
[C, PDG] = find_conflict_zones(CAV _info,
others_info);
end
broadcast(PDG);
others_PDG = receive_other_PDGs();
CDG = construct_ CDG(PDG, other_PDGs);
C = deadlock_resolution(C, CDG);
if ego CAV has disadvantage over a conflict zone then
‘ [EP, velocity] = motion_planner(C, Map);
end
motionController(FP, Velocity);

end

over a conflict zone). Next, the CAV broadcasts the computed PDG,
and after receiving other CAVs PDG, it constructs the Complete
Dependency Graph (CDG) to detect and resolve possible deadlocks.
Finally, if the CAV has disadvantage over a conflict zone, it com-
putes a safe velocity so that it always maintains a safe distance from
that conflict zone. Based on the determined velocity, the weight
of some of the edges are updated to reflect the presence of other
CAVs and to make sure a safe distance is always maintained from
the conflict zone. Then, the motion planner runs the shortest path
algorithm again to check if a shorter path exists that does not cause
a new conflict. Finally, the motion controller uses a subset of future
waypoints and velocities of corresponding edges to determine the
desired velocity and control inputs (steering angle and acceleration)
for the CAV. Alg. 1 shows the pseudo-code of our algorithm that
is executed on each CAV. To have a better understanding of our
algorithm, we have depicted different components of our approach
and their relationship in Figure 4. Next, we will focus on explaining
the functionality of each component of the algorithm.

4.2 Future Path Computation
Each CAV broadcasts its ID, position (x, y), velocity (v), and the cor-

responding timestamp (ts) as well as its future path ((x1, y1), ..., (Xn, yn))-

Assuming the CAV’s motion controller is tuned to have a short set-
tling time, the CAV will track its path with a negligible error. As a
result, we represent the future position of the CAV with a subset of
its expected route (R). Given R € M(N, E) is the route of the CAV,
the future path of the CAV, FP C R is calculated as follows which
consists from n points:

FP = {(Xi,yi) €R '(’Z:’:’ \/(xi —xi1)? + (yi — yi—l)z) < dmax}9
i=2

™

Other CAVs’

DG PDGs
Map Construction V2V Module
(5)
Other CAVs'
Map CDG Future
Graph PDG Trajectories
Motion Dead!ock Conflict Zone
Detection & .
Planner Resolution Setof Detection
(4.4) Updated Set Lo (4.3)
h (5) Conflict
of Conflict Zones (C)
Zones (C)
Waypoints and Velocities Future Path CAV's Future Path
Computation
(4.2)

Throttle, Brake, ((s)) T\/ehicle State

Motion and Steering
Controller p———>
(4.5)

Figure 4: Overview of our approach. Details of each compo-
nent —except V2X module and map- are explained later.

where dpqx is the fixed length of the future path calculated as:

dmax = Vmax(p + tp). 8)
p represents the worst-case end-to-end delay from one CAV captur-
ing its information and broadcasting it, to another CAV’s actuation
based on the received information (see Figure 5) and ¢}, is the worst-

case brake time which can be calculated as t;, = ‘az;’"“: I Figure 5
raxke

shows the execution profile of our algorithm on two CAVs (i and
J). Let us assume that CAVs i and j have a conflict and CAV i (top)
has the advantage. If CAV i slows down due to any reason right
after sensing and broadcasting its info, the CAV j will not be noti-
fied until receiving the next broadcast. As a result, the worst-case
end-to-end delay (p) is bounded by 2T as depicted in Figure 5. By

worst-case end-to-end delay
A

Sensing lActuation

CAV;

Figure 5: CAVs perform computation and communication in
a synchronized manner. The worst-case sensing to actuation
delay corresponds to the case that CAV; breaks down right
after sensing,.

computing the dp,qx based on the worst-case info sharing delay
and worst-case braking time, we ensure that for the first time that
two CAVs detect that they have a conflict, the CAV with the disad-
vantage have enough distance to safely stop without entering the
conflict zone, even in the worst-case scenario.

4.3 Conflict Zone Detection

Despite existing approaches that use fixed conflict zones, we use
CAV’s expected trajectory to detect a conflict zone. As mentioned

before, CAVs’ future paths (FP) are used to represents their expected
future position. First, CAVs computes the distance between the
mid point of edges on their path. All contiguous edges that have
a distance less than d;j are considered to be a part of the same
conflict zone. Two CAVs may have multiple conflicts on their path
as depicted in Figure 6. Each conflict zone C; is a data structure

Conflict
Zone 1 >

“Conflict
Zone 2

Figure 6: An example of two CAVs with arbitrary paths and
two conflict zones. The conflict zone includes parts of the
CAV path (waypoints) where the distance between paths of
CAVs is less than a threshold.

that includes waypoints that are inside the conflict zones, distance
of CAVs from the the beginning and end of the conflict zone, their
expected arrival time at the conflict zone (Equation 9) and the ID
of the CAV that has the advantage. We compute the arrival time
assuming the CAV drives at a constant velocity.
i
begin

TOA; = s)

(i
where déegin is the distance of the CAV i from the conflict zone

and v; is the velocity of the CAV i. Since the algorithm is executed
periodically (every T ms), the value of TOA; is updated as the
velocity of the CAV changes. If a CAV is stopped inside a conflict
zone, its arrival time is set to zero. By default, the CAV with the
earliest arrival time will have the advantage unless it is changed to
resolve a deadlock (explained in the next section) or the other CAV
has a priority (e.g. opposite direction). If two CAVs have the same
arrival time, the CAV with the lower ID will have the advantage to
break the tie. In addition, if the difference between the arrival times
of two CAVs is within the accuracy of the clock synchronization (+
10 nanoseconds for GPS), they use CAVs ID to determine who has
the advantage.

4.4 Motion Planner

If a CAV has disadvantage over a conflict zone, it first checks if
an alternative path exists such that it avoids all the conflicts. If
such a path exists, the CAV selects that path and if not, the CAV
calculates a safe velocity (vs 4AFg) to be maintained so that the CAV
is always safe. The safe velocity, vsAFg, is determined based on
the minimum safe distance that the ego CAV must maintain from
the conflict zone given that other CAV —which has the advantage—
may slow down at any point in time and stop inside the conflict
zone.

Maximum Safe Velocity: For each segment of the road that
has a distance of d¢ from the conflict zone, the maximum safe
velocity is computed using Equation (10).

—(2paacc + 2lap,akel) + VA

5 (10)

USAFE =

where A = 4(a2bmke+2aACCPabrake_aACC/)zabrake_ZdC 19prakel)-
Equation (10) is determined by solving Equation (3) for vp when
the distance from the conflict zone is d¢. d¢ can be calculated using
Equation (13). Equation (10) ensures that the CAV with disadvan-
tage has always a minimum distance of dSD opp from the conflict
zone.

Once the safe velocity is determined for each conflict zone (C;),
the motion planner updates weights of the map M(N, E), to account
for the presence of other CAVs and generates safe velocities for
the motion controller. To account for the presence of other CAVs,
the motion planner determines, U the set of all edges (e;) that are
connected to waypoints that are on the future path of other CAVs

U = {e; € E|e; € connected(FP)}, (11)

where connected(FP) is the set of all edges that are connected to
waypoints in the set FP. To account for the safe RSS distance, the
motion planner determines Up, the set of all edges that are con-
nected to the waypoints that are on the future path of the CAV with
disadvantage (FPp) and are either a member of the conflict zone

set (C) or within the safe distance (d

SDAFE) of the conflict zone.

Up ={e; € Ele; € connected(FPg)}, (12)

where connected(FPg) is the set of all edges that are connected to
waypoints in the set FPg. Figure 7 shows a merge scenario and
CAV’s future paths. Weights of all edges connected to nodes that
are on the path of the CAV with advantage (depicted in green) and
all edges that are on the path of the ego CAV and are either within
the safe distance of or inside the conflict zone are updated. The set
Up and U are highlighted on the path of CAVs. The subset of future

Conflict
Zone
‘ @-’...-....'w?..‘.‘w...;.....;l._._.p{
Advantage o e
o - :
N M
U
. Updated
" U Weights

D

Figure 7: Weights of the edges on the path of the other CAV
and edges on path of the ego CAV are updated to account for
the presence of other CAVs as well as the conflict zone and
the required safe distance.

point, FPC, is determined as:
FPg = {n; € N|n; € FPp and n; € C or n; € within(Cj)}

within(Cj) is the set of all waypoints that where their distance from
the conflict zone j is less than dsarg. To calculate the distance
between two waypoints, we use the following equation:

N
distance = Z \/(x,- - xi—1)? + (yi —yi-1)?, (13)
i=2

where N is the number of waypoints including the first and last way-
points. Finally, weights of each edge in set U and Up are updated
based on their distance from the conflict zone using Equation (10):

l

wi=——, (14)
USAFE
where i refers to each segment of the road, [is the length of the
corresponding edge and o' urg is the safe velocity calculated for
each segment of the road (edge). Since the weight of an edge may
be updated multiple times —as it may be involved in more than
one conflict-, the maximum weight is considered (the slowest safe
velocity) for an edge. If the safe velocity (vsafg is equal to zero,
instead of infinity, the weight is set to be a large constant number.

After updating the weights, the motion planner uses the Dijk-
stra algorithm to find the shortest path to the destination. The
summation of weights (3, w;) from the source to the destination
corresponds to the travel duration.

4.5 Motion Controller

The motion controller uses the future waypoints and safe velocities
to calculate the reference heading angle 6, and the safe velocity
Upes for the CAV. For the desired heading angle (0,.5), the motion
controller selects a look-ahead point similar to the pure pursuit
algorithm [31] and calculates the bearing angle from its current
location (x, y) to the look-ahead point:

Orey = atan2(x = x1.y - yy) (15)

where x; and y; correspond to the x-y coordinate of the look-ahead
point. We assume that each vehicle has an initial desired velocity
of vy and never drives faster than that. The motion controller uses
the weight of the next edge to determine the reference velocity
(Vrer = 1‘411_11) If the calculated velocity is greater than CAV’s initial
desired velocity (vy), it sets the reference velocity to be vy. If the
reference velocity is close to zero, (v < €), it is set to zero. Once the
reference heading and velocity are calculated, they are passed to
two Proportional Integral Derivative (PID) controllers to calculate
the steering angle and acceleration for the vehicle:

Y = kpeg + k[/@@ +kpég;
a= kl’Jev + k}fev + k’Déw

(16)

where kp, ky, kp and kp, kj, k[, are constant (controller gains) that
are tuned to achieve a fast response while the overshoot is small
(short settling time), eg = 6, — 0 and e, = vsAFg — v, and é, and
ég are the derivative of e;, and ey, respectively.

5 DEADLOCK DETECTION AND
RESOLUTION

In order to detect and resolve deadlocks, all CAVs create a directed
graph called the dependency graph. Nodes of the dependency graph
are vehicle IDs and edges indicate that if a CAV is yielding to
another CAV over a conflict zone. There will be a directed edge
from node V; to node V; if CAV V; is yielding to the CAV V; over a
conflict zone. Since a CAV determines only the conflicts between
itself and other CAVs —and not the conflicts between other CAVs,
the constructed dependency graph is not complete. We refer to the
dependency graph of each CAV as the “partial dependency graph”

YUmin | Ymax | Omin | Amax lﬁmin ‘;pmax T P
0% | 23% | 8% | 5% | —Zrad | Frad | 0.1s | 0.2s
s s

Table 1: Parameters of the CAVs for simulation.

or PDG. To compute the complete graph, each CAV broadcasts its
PDG to inform other CAVs about its conflict zones with other CAVs
and to receive other CAVs’ PDG. From the received PDGs of other
CAVs and the PDG of the ego CAV, the complete dependency graph
(CDQG) is constructed. To build the CDG, the PDG is incrementally
updated by adding nodes and edges for each received PDG. Finally,
all edges between two nodes are merged into one. Figure 9 shows a
scenario with 5 CAVs that have determined their PDG and the final
consensual CDG.

After constructing the CDG, each CAV checks if the CDG has
a cycle. We use the Depth-First Search (DFS) algorithm to detect
cycles. If a deadlock is detected, each CAV calculates a score for
each CAV that is involved in the cycle based on its average time of
arrival at corresponding conflict zones. If a CAV has m conflicts, its
score is calculated as:

- X TOA;
m

where TOA; is the time of arrival of the CAV at its ith conflict zone.
We select the CAV with the least average time of arrival to have
the advantage over all of its conflict zones because on average, it
can reach its conflict zone earlier than others. We refer to this CAV
as the leader. Once the leader is determined, the direction of all
incoming edges to the leader’s node is reversed. If two CAVs have
the same score, the CAV with the lower ID number will be selected
as the leader. Since there can be more than one cycle in a graph,
this process is repeated until all cycles are removed.

s

LEMMA 5.1. If the CDG has no cycles, then there is no deadlock
involving the ego CAV.

ProOF. Once the CDG is modified to be acyclic, there is no path
(set of sequential edges) starting at node Veg, that eventually loops
back to node Vg4, again, which means the ego CAV never yields to
other CAVs that are yielding to the ego CAV and therefore, there is
no deadlock involving the ego CAV. O

It takes some time to resolve a deadlock due to the vehicle’s
dynamic —~CAVs cannot change their velocity and expected arrival
time instantly. As a result, CAVs may face the same deadline again
when they compute the CDG after T. It can be shown that the
result of deadlock resolution will be the same (the same CAV will
be selected as the leader) until the deadlock is resolved. Since the
leader has the least average time of arrival in the first iteration, it
does not yield to any other CAV while other CAVs involved in the
deadlock slow down to yield to at least one CAV. Therefore, the
average time of arrival of the leader will be less than other CAVs in
the second iteration and so on.

6 EXPERIMENTAL RESULT

We evaluated our algorithm on a simulator that is developed in
Matlab. We created a tool in Python to automatically extract a

v=140-10=17

VE150:]D=4 11.0-[p=18

[v=15.0-IDF 10

| A
=70.4-ID =R -0 -
\ v=104-1D= g_

=t =10=20

o 200 400 600 800 1000 1200 1400 1600 1800

Figure 8: A snapshot of a map retrieved from the OpenStreetMap (left), its corresponding directed graph in MATLAB (middle)
and a scenario with randomly spawned vehicles on the map (Right).

Figure 9: Each CAV determines and broadcasts its PDG. After
receiving other CAVs’ PDG, CAVs construct the CDG and can
resolve deadlocks.

desired map from the OpenStreetMap! (OSM format) and then
generate the world map graph for it. Once the map is generated, a
driving scenario is created where initial position and velocity and
the destination of CAVs are randomly selected. We used differential
equations represented in (1) to model vehicle’s dynamics. The size
of each vehicle is 5x2 m, the lane width is 5 m and the distance
between waypoints of the map is 0.5 m. Gains of the controller for
both heading and velocity control are Kp = 5 and Kp = 0.1. Other
parameters of the vehicle are listed in Table 1. CAVs communication
delay is modeled by queuing the broadcast packets. In Figure 8, a
randomly generated map from openStreetMap, its corresponding
map graph and a random scenario with 20 CAVs are depicted.

6.1 Safety Evaluation

To demonstrate the safety of the proposed algorithm, we created a
merge and an intersection scenario where two CAVs have a conflict
on their future path as it is depicted in Figure 10.

To verify that CAVs are always safe, we force the CAV with
the advantage to suddenly decelerate at different times. We show
that no accident will happen regardless of the deceleration time
and CAVs maintain a minimum safe distance of 5 meters. Using

!https://www.openstreetmap.org/

1.
=

<
n
©
S
S
0
™

[
[
e —

—

<

b

5

S

u

~

7 s e 10 10 120 130 140 150 160 170 %0 100 10 120 10 140 10 160

Figure 10: An Intersection and a merge scenario are created.
The CAV with advantage suddenly decelerates and stops.

brute-force testing, the deceleration time of the CAV with the ad-
vantage varies in a 30-second interval with a 0.1 s increment that
includes critical times that stops inside the conflict zone. Figures 11
and 12 show the distance between CAVs for the intersection and
merge scenarios, respectively. In the intersection scenario, the CAV

40 -
30
E
8 N 1111/
i # 1/
5% N NN
B S0, —'!-'5‘-\-‘-‘-*—!'5'2';/
ke ; -
° N\ 7 A—\\\ -/
10 SN
X/ \\\\V/////
X
2.

T ——

2 0 20 40

1 100
Deceleration Time (s)

60 80
Simulation Time (s)

Figure 11: Brute-force evaluation of an intersection scenario.
CAVs distance is always greater than a threshold regardless
of the deceleration time of the CAV with the advantage —if it
stops before entering the conflict zone (dark green), inside
the conflict zone (yellow), or after the conflict zone (blue).

with the advantage may stop before, inside, or after the conflict

zone where distances between CAVs are depicted in dark green,
yellow, and blue colors, respectively. For cases that the CAV with
advantage stops before or after the conflict zone, the CAV with
disadvantage continues while in cases that the CAV with advantage
stops inside the conflict zone, the CAV with advantage slows down
and stops (depicted in yellow). In the merge scenario, the conflict

Distance (m)
= = N
o (9] o
1 1 1

o
!

0<m
3 80 100

60
Deceleration Time (s) ' 0 20 40 simulation Time (s)

Figure 12: Merge scenario - CAVs distance remains greater
than a threshold for all cases where the CAV with advantage
stops before entering the merge (Yellow) or after the merge
(dark green).

zone moves with the CAV with the advantage after it reaches the
merging point. As a result, the CAV with the advantage either stops
before the conflict zone or inside it. For cases that the CAV with
the advantage stops before the merging point, the CAV with the
advantage continues and enters the merge (depicted in dark green)
and for the rest of the cases, the CAV with the disadvantage slows
down and stops (depicted in yellow).

6.2 Deadlock Resolution Demonstration

To evaluate our deadlock detection and resolution approach, we
created a deadlock situation at the intersection (Figure 13). The
right part of Figure 13 shows the CCG for the scenario. We fixed the

L
“,’_7,
-~

—
~ T
-

E
— 10 O
:

Figure 13: A deadlock scenario where 4 CAVs approach the
intersection with same velocity (left) and the corresponding
CDG (right).

paths of CAVs to make a left turn at the intersection while having
the same distance from the intersection and the same velocity. We
simulated CAVs’ behavior with and with our deadlock detection.
Figure 14 shows the velocities of CAVs for both cases. For the case
that no deadlock resolution is done, CAVs slow down to yield to

other CAVs and eventually stop and will wait forever. For the case
with deadlock resolution, CAVs slow down at first but speed up
when their conflict zone is cleared. We can observe that after 7s,

Velocity (m/s)
(o]

Figure 14: Velocity profiles of CAVs with and without dead-
lock resolution for the scenario in Figure 13

all CAVs reach their desired velocity (10m/s) while in no deadlock
detection case, their velocity converges to zero.

6.3 Efficiency Evaluation

To evaluate the efficiency of our approach, we compared the perfor-
mance of our approach with the case that vehicles are autonomous
but not connected. For the non-connected case, the intersections
are managed by stop signs and all other conflicts among CAVs are
handled by the AV’s perception system e.g. adaptive cruise control
(ACC) system. We extracted a map from the OpenStreetMap (Fig-
ure 8) and simulated three scenarios, i) light traffic with 5 vehicles,
ii) moderate traffic with 10 vehicles, and iii) heavy traffic with 20
vehicles being present at the same time. When a vehicle exits the
map boundary, a new vehicle is spawned. We measured the average
velocities of CAVs and reported them in Table 2. We also computed
the fuel consumption of CAVs using the following model [32] and
reported them in Table 2:

0, if P > 0;
f= { fi . (17)

3600 + P1PT + P2aPp, otherwise,
where Pr = min(Ppqx, Pc + Pr) is the total tractive power (kW),
Pc = biv + by is the cruise component of total power (kW),
Py = Ie% is the inertia component of the total power (kW), f; =
888.8mL/h is the instantaneous fuel consumption rate (mL/s), P qx
is the maximum engine power (kW), m is the vehicle mass, a and v
are the instantaneous acceleration and velocity, b1 is rolling resis-
tant factor (kN), and b, is the aerodynamic drag factor (kN/(m/s)?),
P1 and B, are the efficiency factors for non-accelerating and accel-
erating cases.

With the help of shared information, CAVs not only drive at
higher velocities, they drive smoother than non-connected case
because they slow down and stop less frequently and therefore,
their fuel consumption is less than the connected case.

7 CONCLUSION AND FUTURE WORKS

In this paper, a new definition is introduced for the RSS rules that
can be applied to any scenario, and CAVs’ safety is ensured by

Light Moderate Heavy

Traffic Traffic Traffic
AVs | CAVs | AVs | CAVs | AVs | CAVs
Avg Vel. 10.51 | 11.55 | 1091 | 11.83 | 11.21 | 11.96
Avg Fuel Con. | 1.271 | 0.495 | 1.089 | 0.479 | 1.017 | 0.485

Table 2: Comparing the average velocity (m/s) and fuel
consumption (mL/s) of vehicles when they navigate au-
tonomously (non-connected) and cooperatively (connected).

considering the worst-case scenario. Next, we presented a coopera-
tive driving algorithm for CAVs based on proposed RSS rules. Our
algorithm can also detect and resolve deadlocks in a distributed
manner. The correctness of our approach is verified by conducting
experiments using our simulator. Future works include taking into
account various fault models (e.g. the network delay is larger than
T or a CAV is unable to communicate, a CAV is being compromised
and lies about its position and/or its future trajectory, etc.) with the
help of infrastructure (e.g. installed cameras).

8 ACKNOWLEDGEMENT

This work was partially supported by funding from NIST Award
70NANB19H144, and by National Science Foundation grants CNS
1525855 and CPS 1645578. This work was also partially supported by
MOE and MOST in Taiwan under Grant Numbers NTU-109V0901,
MOST-109-2636-E-002-022, and MOST-110-2636-E-002-026.

REFERENCES

[1] MG Mohanan and Ambuja Salgoankar. A survey of robotic motion planning in
dynamic environments. Robotics and Autonomous Systems, 100:171-185, 2018.
Federico Rossi, Saptarshi Bandyopadhyay, Michael Wolf, and Marco Pavone.
Review of multi-agent algorithms for collective behavior: a structural taxonomy.
IFAC-PapersOnlLine, 51(12):112-117, 2018.

[3] Mohammad Khayatian, Mohammadreza Mehrabian, Edward Andert, Rachel

Dedinsky, Sarthake Choudhary, Yingyan Lou, and Aviral Shirvastava. A survey on

intersection management of connected autonomous vehicles. ACM Transactions

on Cyber-Physical Systems, 4(4):1-27, 2020.

Bowen Zheng, Chung-Wei Lin, Shinichi Shiraishi, and Qi Zhu. Design and

analysis of delay-tolerant intelligent intersection management. ACM Transactions

on Cyber-Physical Systems, 4(1):1-27, 2019.

[5] Mohammad Khayatian, Rachel Dedinsky, Sarthake Choudhary, Mohammadreza
Mehrabian, and Aviral Shrivastava. R 2 im-robust and resilient intersection
management of connected autonomous vehicles. 2020.

[6] Yi-Ting Lin, Hsiang Hsu, Shang-Chien Lin, Chung-Wei Lin, Iris Hui-Ru Jiang, and
Changliu Liu. Graph-based modeling, scheduling, and verification for intersection
management of intelligent vehicles. ACM Transactions on Embedded Computing
Systems (TECS), 18(5s):1-21, 2019.

[7] Mohammad Khayatian, Yingyan Lou, Mohammadreza Mehrabian, and Aviral
Shirvastava. Crossroads+ a time-aware approach for intersection management
of connected autonomous vehicles. ACM Transactions on Cyber-Physical Systems,
4(2):1-28, 2019.

[8] Xiao-Yun Lu and J Karl Hedrick. Longitudinal control algorithm for automated
vehicle merging. International Journal of Control, 76(2):193-202, 2003.

[9] Jackeline Rios-Torres and Andreas A Malikopoulos. Automated and cooperative

vehicle merging at highway on-ramps. Transactions on Intelligent Transportation

Systems, 18(4):780-789, 2016.

Shunsuke Aoki and Ragunathan Rajkumar. A merging protocol for self-driving

vehicles. In 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems

(ICCPS), pages 219-228. IEEE, 2017.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a formal model

of safe and scalable self-driving cars. arXiv preprint arXiv:1708.06374, 2017.

Changliu Liu, Chung-Wei Lin, Shinichi Shiraishi, and Masayoshi Tomizuka. Dis-

tributed conflict resolution for connected autonomous vehicles. IEEE Transactions

on Intelligent Vehicles, 3(1):18-29, 2017.

Florent Perronnet, Jocelyn Buisson, Alexandre Lombard, Abdeljalil Abbas-Turki,

Mourad Ahmane, and Abdellah El Moudni. Deadlock prevention of self-driving

2

[4

o

[10]

[11

[12]

(13

[14]

[18

[19

[20

[21

[22]

[23

[24]

™~
2

[26

[27

[28

(30]

[31

[32

vehicles in a network of intersections. IEEE Transactions on Intelligent Trans-
portation Systems, 20(11):4219-4233, 2019.

Reza Azimi, Gaurav Bhatia, Ragunathan Raj Rajkumar, and Priyantha Mudalige.
Stip: Spatio-temporal intersection protocols for autonomous vehicles. In ICCPS’14:
ACM/IEEE 5th International Conference on Cyber-Physical Systems (with CPS Week
2014), pages 1-12. IEEE Computer Society, 2014.

Mohammad Khayatian, Mohammadreza Mehrabian, and Aviral Shrivastava. Rim:
Robust intersection management for connected autonomous vehicles. In Real-
Time Systems Symposium, pages 35-44. IEEE, 2018.

Edward Andert, Mohammad Khayatian, and Aviral Shrivastava. Crossroads:
Time-sensitive autonomous intersection management technique. In Proceedings
of the 54th Annual Design Automation Conference 2017, page 50. ACM, 2017.
Masoud Bashiri and Cody H Fleming. A platoon-based intersection management
system for autonomous vehicles. In 2017 IEEE Intelligent Vehicles Symposium (IV),
pages 667-672. IEEE, 2017.

Rachel Dedinsky, Mohammad Khayatian, Mohammadreza Mehrabian, and Aviral
Shrivastava. A dependable detection mechanism for intersection management
of connected autonomous vehicles (interactive presentation). In Workshop on
Autonomous Systems Design (ASD 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

Lejla Banjanovic-Mehmedovic et al. Autonomous vehicle-to-vehicle (v2v) de-
cision making in roundabout using game theory. Int. J. Adv. Comput. Sci. Appl,
7:292-298, 2016.

Bai Li, Yue Zhang, Youmin Zhang, and Ning Jia. Cooperative lane change mo-
tion planning of connected and automated vehicles: A stepwise computational
framework. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 334-338. IEEE,
2018.

Jianqiang Nie, Jian Zhang, Wanting Ding, Xia Wan, Xiaoxuan Chen, and Bin
Ran. Decentralized cooperative lane-changing decision-making for connected
autonomous vehicles. IEEE Access, 4:9413-9420, 2016.

Pedro Fernandes and Urbano Nunes. Platooning of autonomous vehicles with
intervehicle communications in sumo traffic simulator. In 13th International IEEE
Conference on Intelligent Transportation Systems, pages 1313-1318. IEEE, 2010.
Siyuan Gong, Anye Zhou, and Srinivas Peeta. Cooperative adaptive cruise
control for a platoon of connected and autonomous vehicles considering dynamic
information flow topology. Transportation Research Record, 2673(10):185-198,
2019.

Michael Duering and Patrick Pascheka. Cooperative decentralized decision mak-
ing for conflict resolution among autonomous agents. In International Symposium
on Innovations in Intelligent Systems and Applications, pages 154-161. IEEE, 2014.
Michael During and Karsten Lemmer. Cooperative maneuver planning for co-
operative driving. IEEE Intelligent Transportation Systems Magazine, 8(3):8-22,
2016.

Yimin Chen, Chao Lu, and Wenbo Chu. A cooperative driving strategy based on
velocity prediction for connected vehicles with robust path-following control.
IEEE Internet of Things Journal, 2020.

Kostas E Bekris, Konstantinos I Tsianos, and Lydia E Kavraki. A decentralized
planner that guarantees the safety of communicating vehicles with complex dy-
namics that replan online. In 2007 IEEE/RS7 International Conference on Intelligent
Robots and Systems, pages 3784-3790. IEEE, 2007.

Jufeng Peng and Srinivas Akella. Coordinating multiple robots with kinodynamic
constraints along specified paths. The International Journal of Robotics Research,
24(4):295-310, 2005.

Mohammad Hekmatnejad et al. Encoding and monitoring responsibility sensitive
safety rules for automated vehicles in signal temporal logic. In 17th ACM-IEEE
Conference on Formal Methods and Models for System Design, pages 1-11, 2019.
Mohammad Farhadi, Mehdi Ghasemi, Sarma Vrudhula, and Yezhou Yang. En-
abling incremental knowledge transfer for object detection at the edge. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 396-397, 2020.

R Craig Coulter. Implementation of the pure pursuit path tracking algorithm.
Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.
Rahmi Akgelik, Robin Smit, and Mark Besley. Calibrating fuel consumption and
emission models for modern vehicles. In IPENZ transportation group conference,
Rotorua, New Zealand, 2012.

	Abstract
	1 Introduction
	2 Related Work
	3 Generic Formulation of RSS Rules
	3.1 Same Lane
	3.2 Intersection
	3.3 Merge

	4 Cooperative Driving of CAVs
	4.1 Main Algorithm
	4.2 Future Path Computation
	4.3 Conflict Zone Detection
	4.4 Motion Planner
	4.5 Motion Controller

	5 Deadlock Detection and Resolution
	6 Experimental Result
	6.1 Safety Evaluation
	6.2 Deadlock Resolution Demonstration
	6.3 Efficiency Evaluation

	7 Conclusion and Future Works
	8 Acknowledgement
	References

