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Abstract

Design of nanoscale structures with desired optical properties is a key task for 

nanophotonics. Here, the correlative relationship between local nanoparticle geometries and 

their plasmonic responses is established using encoder-decoder neural networks. In the 

im2spec network, the relationship between local particle geometries and local spectra is 

established via encoding the observed geometries to a small number of latent variables and 

subsequently decoding into plasmonic spectra; in the spec2im network, the relationship is 

reversed. Surprisingly, these reduced descriptions allow high-veracity predictions of local 

responses based on geometries for fixed compositions and surface chemical states. Analysis 

of the latent space distributions and the corresponding decoded and closest (in latent space) 

encoded images yields insight into the generative mechanisms of plasmonic interactions in the 

nanoparticle arrays. Ultimately, this approach creates a path toward determining 

configurations that yield the spectrum closest to the desired one, paving the way for stochastic 

design of nanoplasmonic structures.
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1. Introduction

Localized surface plasmon resonances (LSPRs) are collective oscillations of the free 

charge in nanostructures that concentrate electromagnetic energy and enable the enhancement 

of wave-matter interaction as well as the manipulation of light at nanometer length-scales. 

Moreover, plasmon resonances are highly influenced by sample geometry and local dielectric 

environment, which enables the application of biological and chemical sensing. FI State-of- 

the-art nanoscale synthesis is required to exploit the characteristics of plasmon resonances!2 °] 

which creates the opportunity to rationally design extremely complex systems with a 

plasmonic response tailored to accentuate specific phenomena such as engineered electric 

permittivities^] and even cancer detection and treatment.!8] Finally, the need for light sources 

localized well below the wavelength of light for quantum applications and optical circuit 

elements!910] has given rise to extensive research efforts in this direction.

For highly ordered systems, such as precise lithographically patterned arrays, various 

effective structure-property relationships can be established through macroscopic experiments 

and simulations. For example, specially engineered arrays can be designed to produce specific 

effective properties not found in nature, e g., negative refractive index metamaterials.!1112] 

However, in these cases, the detection volume significantly exceeds the characteristic plasmon 

size. Additionally, highly ordered nano-assembly systems are yet prone to structural defects, 

such as voids, gaps, and edges. It follows that for disordered systems containing multiple local 

geometries and morphologies, macroscopic techniques can only sample the ensemble 

averages and effective responses, and therefore any localized behavior is missed. Analysis of 

disordered assemblies has been mostly overlooked in such wide-area nanoparticle ensembles, 

as analysis remains a difficult challenge since robust tools need to be further matured in 

deconvolving spectral complexities. Furthermore, the randomness of the disorder necessitates 

extensive sampling of the various inhomogeneities to truly ascertain an accurate 

representation of the true nanoscale response and makes direct simulation of all possible types 

of disorder impractical.

The need to access local effects in plasmonic systems has driven significant interest in 

nanoscale spectroscopy techniques, one of the most powerful of which is electron energy-loss 

spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Here, the 

electron beam acts as a white light source in which the high-energy electrons couple to the 

plasmonic material, which manifests as a loss of the electron energy at the available plasmon 

modes,!13] yielding detectable peaks in the low-loss region of EEL spectrum. As the electron 

beam can be about the diameter of a single atom, this makes the electron microscope uniquely
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suited to study the nanoscale spatial behavior of plasm on excitations.[14_16] However, the small 

probe of STEM means that only a small field-of-view can be sampled efficiently per STEM- 

EELS experiment, preventing high throughput analysis of systems with large random 

variation in heterogeneity. As an alternative to direct spectral analysis, if structure-property 

relationships can be determined unambiguously, one could use the structure as determined 

through imaging analysis to determine the spectral response. This would be highly beneficial 

since dwell times in spectroscopy are generally in the hundreds (if not thousands) of 

milliseconds, while efficient structural imaging can be achieved with dwell times in the 

microsecond and even nanosecond regimes.[17]

High-veracity prediction, however, of the local structure-property relationships is 

limited. Even in well-defined systems, calculations of non-local plasmonic responses are 

hindered by the computational complexity of predictive theory. In real systems, the presence 

of surface layers and adsorbates can result in a large number of poorly understood and weakly 

controlled variables. In fact, the very factors that enabled high sensitivity of nanoplasmonic 

structures to external stimuli severely complicate predictions of these behaviors. Moreover, 

the non-local collective response observed in many-particle plasmonic systems conceals 

physical mechanisms even further. This in turn brings an issue whether the mechanisms 

guiding the emergence of the plasmonic response can be understood and controlled, both in 

terms of the fundamental generative mechanisms and predictive models that can establish 

whether structures with required properties can be created. Thus, there exists an inherent need 

for a data-driven predictive methodology to empirically establish structure-property 

relationships in real complex plasmonic systems and enable rigorous high-throughput 

analysis.

Here, we explore a machine-learning (ML) approach for the exploration of 

nanoplasmonic structures based on developing parsimonious correlative laws between the 

local structure and plasmon response. This approach establishes the relationship between 

observed EEL spectra and semi-local particle geometries within a given materials system by 

using an autoencoder (AE) network and can be used to predict plasmonic responses in similar 

systems. The inverse problem, in which particle geometries are predicted from the observed 

spectra, is considerably more ill-defined. We propose that the areas where the correlative 

relationships between the observed particle geometries and spectra have the strongest 

deviations can serve as indicators for the manifestation of potentially new physical 

phenomena.
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2. Results
Here, we examine self-assembled monolayers of fluorine and tin doped indium oxide 

(FT:IO) nanocrystal arrays.[18] The geometry and the plasmonic response can be tuned by 

changing the dopant incorporation, allowing a controllable free carrier concentration. As a 

result, the FT:IO particles can either possess either a cubic or spheroidal geometry with 

diameters between 10 and 20 nm, as well as possessing native plasm on frequencies ranging 

from the near- to mid-infrared (IR). As compared to noble metal plasmonic nanoparticles with 

visible range LSPR located near the intraband transition loss region, doped metal oxide IR 

LSPR is far from the band edge loss.[19-20] This class of doped metal oxide nanocrystal with 

plasmon resonance located in the IR gifts a spectrally ideal particle pixel element for EELS 

analysis as the electron energy loss will be purely plasmonic, eliminating further complexity 

of intraband or band edge losses in ML analysis. Critically, while the self-assembled 

structures are nominally periodic, the colloidal synthesis process introduces a high degree of 

localized disorder in the particle size and shape variation, missing particles (defects), and 

holes, cracks, and edges in the self-assembled films. As a result, understanding the nanoscale 

response of the system requires the nanoscale resolution of a technique like STEM-EELS to 

account for this heterogeneity. To feasibly detect the IR plasmonic response, the electron 

beam is passed through a pre-specimen monochromator, which reduces the elastic scattering 

background in the IR and improves energy resolution.^] In these measurements, we utilize an 

energy resolution of -40 meV, which allows us to observe the plasmonic excitations without 

significant instrumental broadening.

The hyperspectral EELS datasets used for these analyses are called spectrum images 

(Sis), which are obtained by rastering the beam through a region-of-interest and recording a 

full EEL spectrum at each probe position, resulting in a three-dimensional dataset with two- 

spatial dimensions and one spectral dimension. An SI of a heterogeneous FTTO array is 

shown in Figure 1. The dark-field image of the array is shown in Figure la, which shows that 

while the array is mostly regular, a hole (or defect) in the array as well as the edge of the film 

are present, both providing strong aspects of heterogeneity in the film. We show spectra from 

four selected regions in the SI (Rl-the center of a particle, R2-the gap between particles, R3- 

the hole in the array, and R4-the area outside the array), and plot the averaged spectra at those 

locations in Figure lb. There are three prominent features in the EELS response: a dominant 

peak at -500 meV, a subpeak at -750 meV, and a small peak at -900 meV, however we note 

that both the relative intensities as well as the frequencies of these peaks change significantly
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from position to position. These localized changes demonstrate that heterogeneity provides a 

localized impact on the plasmonic structure.

To gain further insight and explore the plasmonic behavior in the nanoparticle array in 

a less biased approach, the dimensionality of the 3D EELS data cube can be reduced used 

using linear unmixing methods. These methods in general decompose the hyperspectral 

dataset into components with a spatial abundance map and a spectral endmember, such that 

the linear combination of each component’s endmembers weighted by their abundance 

reproduces the original dataset. There are numerous such unmixing techniques, but one 

method that tends to work well for EELS datasets is non-negative matrix factorization 

(NMF).[221 The NMF decomposition is chosen due to the non-negativity constraint, which 

generally results in more physical spectral and spatial components for a counting spectroscopy 

such as EELS. A simplistic 4-component NMF deconvolution is shown in Figure lc-j, with 

the abundance maps shown in (c-f) and the corresponding spectral endmembers in (g-j).

While the spatial abundance maps very nicely highlight the different regions of 

heterogeneity in the array (particles, gaps, hole, edge/outside), the corresponding endmembers 

clearly have multiple plasmonic peaks per component, indicating that we have not fully 

separated the different mechanisms in the plasmonic response - in other words, the electron 

beam excites all plasmon modes, some of which unavoidably occur in the same location in 

space. This result follows naturally for heterogeneous quasi-periodic structures such as the 

FT:IO arrays. The periodicity and intra-particle coupling induce an overarching response in 

the array, thus the primary influence of heterogeneity is to modify this overarching plasmonic 

behavior locally as opposed to providing a distinct new one. This effect is replicated in the 

NMF decomposition, where component 1 captures the overall dominant response of the 

structure, while the higher order components capture the local modifications to that response 

due to the various structural features. Another important aspect captured by the NMF 

decomposition in Figure 1 is the different degrees of localization. For instance, the first two 

components are highly delocalized extending well into the hole in the array and for tens of nm 

outside of the array, meanwhile the other two components correspond to signal that is highly 

localized to the individual nanoparticles themselves and do not extend more than a few nm 

outside of the edge of the cube. As a result, in order to accurately represent the response of 

the system, the predictive ability of any ML network must be able to reproduce the 

frequencies, intensities, and localization of the complex plasmonic response in the FT:IO 

arrays.
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Figure 1. Spectral analysis, (a) HAADF-STEM image of nanoparticle array, (b) EEL spectra 

from selected locations (denoted by squares in (a)), (c-j) First four NMF components, (c-f) 
component abundance maps (g-j) component spectral endmembers.

2.1. Encoder-decoder neural networks

The number of particles involved in complex heterogeneous systems, such as the ones 

shown in Figure 1, is too high for effective direct calculation, necessitating an empirical data- 

driven approach. We note that numerical methods can indeed solve for the response of single 

or few particle systems, or even complicated nanostructures;!23] however, due to the large 

degree of variability in particle size, gaps, defects, periodicity, etc., it is difficult to account for 

these and to therefore have knowledge of the dielectric function for which to use in 

simulation. In our approach, we utilize deep learning networks trained only on the 

experimentally acquired data to empirically derive the relationship between local structure and 

local plasmonic response without theoretical predictions. To establish local structure-property 

relationships, we train an encoder-decoder network to extract a set of latent variables that
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connects spatial descriptors to spectral descriptors, where the spatial descriptors are sub­

images of the structure surrounding a specific pixel in the SI, and the spectral descriptors are 

the EEL spectra from the SI at that specific pixel. We create networks to establish the 

correlative relationship between the spatial descriptors and spectral descriptors, ultimately in 

order to predict the spectral response given a spatial predictor, as well as the inverse 

prediction. These networks are called Imlspec and Spec2im, respectively. In both cases, the 

analysis workflow includes (i) analysis of latent space distributions, (ii) forward prediction 

from the latent space, comparison with the ground truth, and visualization of the error maps, 

and (iii) back-projection from the latent space (to the closest experimentally observed point).
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Figure 2. Prediction workflow using autoencoder architecture. Spectrum image is separated 

into small windows with a corresponding single associated spectrum from the center of the 

window. These pairs are sent to one of the encoder-decoder networks, where a portion of the 

pairs are used as training sets, and the remaining are used for testing. Prediction of the 

spectrum or image is performed and compared to the ground truth representation. The 

simultaneously acquired and therefore registered HAADF signal is used as the structural data 

to indicate sample geometry.
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The overall workflow for the proposed approach is illustrated in Figure 2. The SI is 

analyzed to yield a feature/target set made from the local sub-images centered at specific 

locations and EEL spectra corresponding to the center of the sub-image. In the im2spec 

network,the images are the features and the spectra are the targets. In the spec2im network, 

the spectra are the features and images are the targets. Both im2spec and spec2im networks 

are based on an encoder-decoder architecture, i.e., the feature set is compressed through the 

set of the classical convolutional layers (2D for image data, ID for spectral data) to a latent 

layer and subsequently “decompressed” to the target set via spatial pyramids of dilated 

convolutions. This approach both establishes the correlative relationship between the feature 

and target sets and allows exploration of the variability of the observed behaviors via low­

dimensional representations in the latent space of the network filtering out the non-essential 

details. The im2spec and spec2im networks are implemented here via the PyTorch deep 

learning library. The schematic of the im2spec network is shown with more details in 

Supplementary Figure SI, with specific methodologies explained in the Methods section.

Since the particles are colloidally synthesized, we expect their size and composition to 

be nearly identical, where the primary differences between particles will be structural shape 

and faceting. This suggests there should be a well-defined relationship between the local 

configurations of the particles and the associated plasmonic response. In general, the details 

for larger separations from the chosen pixel location become progressively less important, 

however, it should be noted that some delocalized responses can be relatively strong and there 

may be appreciable spectral strength even far from the chosen location (e g., outside field of 

view), hence this must be taken into account. Even if such a relationship does exist, it is not 

necessarily guaranteed that it is observable, since the observations can also be affected by the 

latent variables (e g., different contaminations or surface states for different particles and 

variations in particle morphologies), observational biases (configuration of imaging system 

and its variability across the image plane), and noise limits. Nevertheless, the exploratory data 

analysis in Figure 1 shows that the abundance maps in the NMF components clearly depicts 

the presence of different structural features: particles, edges and holes in the particle arrays, 

etc. The spatial localization of the plasmon features is generally considered to be delocalized 

and, when probed by electron beam, decays according to a modified Bessel function of the 

second kindd15! Nonetheless, as was alluded to previously, the extent of localization differs by 

roughly an order of magnitude when comparing single or few particle responses to coupled 

array modes - that is to say, the predictability is susceptible to the degree of localization and 

must also be carefully considered.
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Based on these considerations, we aim to explore whether local plasmonic properties 

can be predicted based on the local system geometry. The classical approach to this problem 

is based on predictive theory, where the plasmonic property of the system is calculated based 

on approximated materials constants and the latter are refined to maximize theory-experiment 

matching. Thus, a refined generative model can then be used for the prediction of plasmonic 

properties in any material configuration and opens a pathway for predictive design of the 

structures with responses closest to the ones desired. This approach, however, requires well- 

defined high-veracity models. Factors such as the presence of surface dielectric layers due to 

specific adsorption, chemisorption, or contamination can invalidate the model and limit its 

range of applicability (e g., the model will possess predictive power for specific materials 

configuration but may fail beyond it, for example, for different surface states).

Here, we explore an alternative approach for the establishing the relationship between 

local structure and local plasmonic spectra based on machine learning (ML), i.e., establishing 

the correlative relationship between the particle geometry in the vicinity of the chosen spatial 

point and plasmonic spectra at the same point. While not having the predictive power of a 

generative model, such an approach is expected to be valid for in-distribution observations 

and will thus benefit from larger data sets assuming the absence of observational bias 

variability (i.e., relevant spectral features depend only on material and location but not on the 

specific microscope parameters). Compared to generative models, this approach relies only on 

the observed configurations, and does not necessitate an in-depth knowledge of the material’s 

structure or generative physical behaviors, thus providing a counterpart for classical physical 

approaches. This methodology can potentially be applied to any arbitrary system to derive 

structure-property relationships (provided such a relationship exists), both for systems that are 

too complex to treat theoretically and even in novel materials and geometries where no proven 

physical model has been established.
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2.1.1 Imlspec network analysis
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Figure 3. Im2spec network. The im2spec network is trained using the HAADF spatial 

descriptors and corresponding spectral descriptors. Here, features are sub-images while targets 

are spectra. The latent space is a compressed information space, which contains features 

significant within the feature array. When training with two latent dimensions, the latent space 

can be visualized as a grid in 2D in either an image or spectrum representation, by either 

back-projecting or forward-projecting from the latent space, respectively. ‘Conv’ denotes a 

convolutional layer with kernel size of 3 activated by a leaky rectified linear unit with a 

negative slope of 0.1, ‘d’ is the dilation rate, and ‘Dense’ stands for a fully-connected layer 

whose number of neurons is equal to the number of latent dimensions. Mean squared error 

(MSB) is shown for using two and ten latent dimensions, 2L and 10L respectively. Note that 

while errors for two latent variables show clear spatial structure, the error does not exceed 

10%. For 10 latent variables, MSB does not exceed 4% and almost spatially uniform, 

suggesting that the imlspec network successfully encodes structure-property relationships. 

Note that the training for 2B and 10B was performed separately.

The analysis with the im2spec network is shown in Figure 3 where the images were 

parsed into 2714 sub-images with each sub-image containing 16x16 pixels in size. The spectra
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were used at original resolution, and to isolate plasmon-specific spectra, post-processing was 

performed to remove the zero-loss peak (ZLP) and the phonon signal arising from the silicon 

nitride support membrane. The encoder-decoder architecture used here, compressing the 

images to latent variables, (i mage) —»(I atent), and then decompressing them into spectra,

(I atent) —» (spectra), allows for analysis of the data in the latent space. In classical 

autoencoders where the feature and target space are the same, this is accomplished by the 

determining the variability of the data in the latent space, i.e. finding the maximum and 

minimum values of latent parameters creating the uniformly spaced grid of points in the 

latent space, and projecting this grid onto the feature space. This representation is particularly 

convenient for two latent parameters, where the feature evolution in the latent space can be 

represented as a grid image.

To adapt this approach for the encoder-decoder architectures used here, we note that 

for the decoder part of the network the same approach can be used. However, a similar 

analysis can be extended for the encoder part of the network, where we back-project the point 

in the latent space by finding the feature (or average of several features) closest to the selected 

point. In other words, to back-project the point |_i, |_2 , Ln from the n-dimensional latent

space into the original feature space, (feature) <— (I atent), we find images where 

projection to the latent space is closest to the selected point. Note that in this manner only 

physically realizable features (or their averages) are visualized as compared to the (I atent) 
<— (target), projection where the latent point can come from an unpopulated part of the 

latent space. Similarly, the veracity of back-projection can be ascertained from a comparison 

of the dispersions (or other measures of variability) in the feature space vs. latent space, i.e., 

whether closely located points in the latent space back-project to the closest points in the 

feature space.

The back-projected features for the im2spec network for two latent variables for a 

uniform grid in latent space are illustrated in Figure 3. Note that the adjacent locations in the 

latent space correspond to similar morphologies of the sub-images, and dissimilar 

morphologies correspond to well-separated parts of the latent space. For example, the bottom 

right part of the back-projected image representation in Figure 3 corresponds to different 

separations from the particle corner, while the top-right region corresponds to different beam 

positions in the dense part of the film. In this way, the two latent features that were extracted 

by the network are visualized in a 2D grid. Note that we can specify a different number of 

latent dimensions when utilizing the autoencoder network, but only the case of two latent 

features can be represented in a two-dimensional space.
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Additional insight into the veracity of the im2spec conversion can be derived from 

analysis of the prediction error. For this, the mean square error between the predicted and 

actual spectra is calculated and plotted in the original image plane. In this analysis, of interest 

is the absolute value of the mean square error (MSB), and spatial localization of the MSB 

signal. The data in Figure 3 suggest that for two latent variables the prediction error can be on 

the of order of 10%, but clearly shows the spatial structures associated with the edges. This 

behavior illustrates that two latent variables are insufficient to encode all the correlative 

relationships in this system, and that there is a difference between the physical mechanisms 

operating at the edges and in the volume of the film. In comparison, the error surface for 10 

latent variables shows errors on the order of only several percent with almost uniform spatial 

distribution, suggesting that this encoding is sufficient to build a correlative model universally 

applicable for these data.
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Figure 4. Spectral predictions with imlspec network applied to cubic plasmon array system. 

Red crosshair indicates from where the spectra are taken, (a) Depicts behavior in a void, (b) 
on a particle, (c) in an interparticle gap, and (d) in an interparticle gap near an edge. Note that 

(b) is only case in which the highest energy feature near 0.9 eV is observable since this is a 

bulk plasmon mode. The imlspec network accurately predicts this weak bulk feature when the 

number of latent dimensions is sufficient.
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Finally, a comparison of the predicted and observed spectra for several locations are 

shown in Figure 4. Here, we highlight regions from the SI showing different aspects of 

nanoscale disorder: one region from a hole in the array (a), one located on a particle within the 

array (b), one from regular part of the array in an interparticle gap (c), and one located in an 

interparticle gap near an edge (d). For each region, we show the sub-image used as the input 

into the im2spec network, as well as the spectra both taken directly from the central pixel of 

the subregion in the SI, as indicated by the red crosshair, as well as the imlspec predictions 

trained with both 2 and 10 latent space variables (2L and 10L, respectively). We note the 

network has never encountered these particular sub-images previously, as it was trained on a 

different portion of the data cube. In all circumstances, the 10L im2spec network both 

qualitative and quantitatively reproduces the ground-truth spectrum solely from the local 

configuration of particles, demonstrating the capability of directly retrieving structure- 

property relationships from this data-driven approach. The importance of using a high­

dimensional latent space is also observed as there are serious quantitative discrepancies that 

appear in the 2L network that are not observed in the 10 L network.

2.1.2 Spec2im network analysis
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Figure 5. Spec2im network. The spec2im network is trained in a similar way to im2spec, also 

using the HAADF spatial descriptors and corresponding spectral descriptors, but with features 

and targets exchanged. The latent space is a compressed information space, which contains 

features significant within the feature array. When training with two latent dimensions, the 

latent space can be visualized as a grid in 2D in either a spectrum or an image representation, 

by either back-projecting or forward-projecting from the latent space, respectively. ‘Conv’ 

denotes a convolutional layer with kernel size of 3 activated by a leaky rectified linear unit 

with a negative slope of 0.1, ‘d’ is the dilation rate, and ‘Dense’ stands for a fully-connected 

layer whose number of neurons is equal to the number of latent dimensions. Mean squared 

error (MSB) is shown for using two and ten latent dimensions, 2L and 10L respectively.

A similar approach can be explored to establish the relationship between the spectra 

and images, as realized in the spec2im network. The structure of the spec2im is similar to that 

of im2spec as shown in Figure 3, with the interchanged encoder and decoder architectures.

The latent space representations corresponding to a uniform grid in latent space projected to 

image space, (I atent) —»(i mage), is shown in Figure 5. Note that the latent space clearly 

clusters possible particle configurations, by virtue of the fact that individual tiles in the latent 

spaces show a variety of particles positions which exist in similar regions of the 2D space. In 

fact, detailed analysis of the reconstructed images across the latent space clearly illustrates 

that the autoencoder disentangles particle shape representations, with consistent and smooth 

changes of particle shapes across selected dimensions.

The structure of the spatial error maps is shown in Figure 5. Note that while in this 

case we generally expect high prediction errors (due to the rotation uncertainty), the 

reconstruction is surprisingly good. The average reconstruction error is 15.8% for 2D latent 

space and 12.7% for 10D latent space. The errors are higher in the vicinity of the edges, as 

expected. For a lower resolution image where the sub-image size is larger than effective 

particle size, the quality of prediction is considerably higher since the latent variables can 

encode relevant details, as shown in Supplementary Figure S2. Calculation of the cross 

correlation coefficient and the MSB between the structural HAADF-STEM image and the 

error maps in Figures 3 and 5 reveals that with increasing number of latent dimensions, 

generally more features are matched in the error maps to their corresponding structural 

HAADF image, as is indicated by both a decreased MSB and an increased and more positive 

correlation coefficient which is observed in Supplementary Figure S3. This indicates that 

there are regions where the correlative relationship between structure and plasmonic
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properties is better defined. The higher dimensional latent space therefore encodes these 

features better and we are able to assess an appropriate number of latent dimensions from the 

preceding analysis. These regions are potentially of physical exploratory interest. Note 

however, that continuing to increase number of latent dimensions does have diminishing 

returns, also seen in Supplementary Figure S3. In fact, most of the data can be well- 

represented with only two latent dimensions, which has the benefit that it can be projected 

into a 2D space for visualization, and potentially evoke a better intuitive understanding.

Wl LEY-VCH

Test Spectra 2L Prediction 10L Prediction Ground Truth

■ Vd

m 0.5

Energy loss (eV)

Figure 6. Geometric predictions with spec2im network. Predictions of the local images from 

spectra trained using two and ten latent dimensions (a-d) illustrating slightly different 

behaviors - voids, gaps, and edges. These structure-property relationships are evidently 

encoded in the high dimensional latent space. Note the test spectra are not arbitrary - they
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have a direct correspondence to the real system (ground truth sub-images) but have never 

been directly encountered by the network.

Several examples of image predictions from spectra are shown in Figure 6 (a-d). Note 

that while the exact morphology cannot be reproduced, general morphology including larger 

scale heterogeneity such as the edge of the array and the hole in the array is reproduced 

remarkably well. Not only does the spec2im network predict the existence of these features, it 

unexpectedly and rather astonishingly predicts in several cases in the same rotational 

orientation and areal fraction as in the ground truth sub-image. However, one possible 

explanation for this is a slight specimen tilt, which may allow different plasmon features to be 

detected that depend on rotation. The ability to procure such features in the case of the 

inherently delocalized plasmon should not be understated - it is remarkable that general 

correlative behaviors can be learned from local sampling. This strongly establishes the ability 

of the encoder-decoder networks to generate reliable structure-property relationships from 

highly localized sampling.

3. Conclusion

To summarize, we illustrate a ML-based workflow to establish the correlative 

relationships between nanoparticle configurations in the proximity of a chosen spatial location 

and the associated plasmonic spectra. This approach is complementary to that based on 

generative modeling. While the model requires detailed knowledge of the system composition 

to generalize for unobserved configurations, the proposed im2spec and spec2im networks 

allow for predictions of samples drawn from similar distributions and can generalize the 

structure property relationships without prior knowledge or observational biases. We expect 

the features learned in the latent spaces to be transferable between data sets assuming 

observational conditions are the same, i.e., train network with one data set, and predict using a 

new one. Of course, constraints surround this expectation, namely, particle size and 

concentrations should not deviate far from those in the data set used in training.

With careful experimentation, the derived correlative relationships can be treated as 

universal, and used as a basis for the refinement of the generative theoretical models, for 

example via Bayesian optimization in the latent space or simply generating the structure- 

spectrum pairs. For non-universal cases (i.e. dependent on microscope setting, indicative of 

the presence of observational biases or latent variables), a similar analysis can be used to
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establish variability and possible behaviors and anomalies within the image (or set of images 

obtained under similar conditions), allowing for qualitative or at least semiqualitative 

explorations of relevant physical behaviors comparable to standard unmixing methodologies 

which also do not account for phenomena outside of the region of interest. In both cases, the 

knowledge of possible structure-property relationships allows to establish the range of 

possible responses within a given materials system. Also, regions with large deviations 

indicate the presence of something unusual or exciting - likely worth pursuing further.

Perhaps more importantly, fundamentally new opportunities can be presented for cases 

where the particles can be manipulated either globally (e g., via chemical functionalization) or 

especially locally (e g., ex-situ via scanning probe microscopy, or in-situ via an electron 

beam). In this case, the knowledge of correlative structure property relationships from 

im2spec and spec2im networks will allow the creation of structures with desired properties. 

These approaches can include several iterative steps when we learn laws, make structures, 

then refine those laws to design what we want.

WlLEY-VCH

4. Experimental Section/Methods

Materials'.

Indium (III) acetate (In(ac)3, 99.99%), Tin (IV) acetate (Sn(ac)4), Oleic acid (OA, 90%, 

technical grade), Oleyl alcohol (01A1, 85%, technical grade) were purchased from Sigma- 

Aldrich. Tin (IV) fluoride (SnF4, 99%) was purchased from Alfa Aesar, Hexane (99.9%), 

Isopropyl alcohol (99.5%, Certified ACS), were purchased from Fisher Chemical. All 

chemicals were used as received without any further purification.

Fluorine Doped Indium Tin Oxide (FT: 10, I'\Sn:In303) Nanoparticle Synthesis:

All synthesis procedures are undertaken by employing standard Schlenk line techniques using 

a modification of previously reported methods for continuous slow injection synthesis of 

indium oxide nanoparticles20. 29,46 In(ac)3 1342.97 mg (4.6 mmol), SnF4 48.68 mg (5%, 

0.25 mmol), Sn(ac)4 53.23 mg (3%, 0.15 mol), and oleic acid (10 ml) are loaded in a three- 

neck round-bottom flask in a N2-filled glove box. The precursors are stirred with a magnetic 

bar at 600 rpm and degassed under vacuum at 120 °C for 15 min. The injection solution is 

added at rate of 0.2 ml/min, into 13 ml of oleyl alcohol maintained at 290 °C vented with a 

19-gauge needle under inert N2 gas flow. The reaction mixture turns blue a few minutes into
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the injection. Subsequently, growth is terminated by removal of the heating mantle and cooled 

by blowing air on the three-neck flask vessel. The nanoparticles are dispersed in hexane, then 

isopropyl alcohol anti solvent is added and the mixture is centrifuged at 7500 rpm for 10 min. 

The washing procedure is repeated 3 times and the nanoparticles are redispersed in 10 ml of 

hexane. The resultant nanoparticle dispersion is centrifuged at 2000 rpm for 3 min to remove 

non-dispersible aggregates and the supernatant is collected as the nanoparticle stock sample. 

For spherical particle sample, concentration series of 10 % Sn(ac)4 doped F,Sn:In203 

nanoparticle was synthesized by controlling the Sn(ac)4 to In(ac)3 molar precursor ratio, while 

SnF4 was maintained at 5% molar ratio, keeping other reaction parameters identical. 

Monolayer nanocrystal arrays were deposited onto a SiN TEM grid via Teflon trough liquid- 

air interface self-assembly.[20] Native surface ligands were removed from the nanocrystal 

assembled array by TEM grid Ar plasma cleaning for 15 min.

Imaging and spectroscopy.

A monochromated aberration-corrected NION microscope was operated at an accelerating 

voltage of 60 kV, with a probe current on the order of 20 pA, and a convergence angle of 30 

mrad. The full width half maximum of the zero loss peak (ZLP) after monochromation was 

~40 meV, with the potential to be reduced to as low as 5 meV, however this was kept higher 

to maintain a high signal to noise ratio. Pixel dwell times for spectrum images were 100 ms. 

The sample pressure is kept at a stable 10"9 Torr and is especially important for longer dwell 

times to minimize contamination of the sample, which can have a significant impact on the 

plasmon response. Post processing to remove the zero-loss peak and the phonon signal arising 

from the silicon nitride support membrane was performed by fitting a two-term exponential 

power law to the zero-loss peak, and truncating the energy axis below 200 meV, respectively.

Autoencoder network details'.

The im2spec and spec2im networks are implemented here via the PyTorch deep learning 

library. The features are passed through multiple convolutional layers and a fully connected 

(“dense”) layer to create a latent representation, which is then used to generate a target output 

via a spatial pyramid of dilated convolutions. We note that using a simpler decoder network 

(e g. with the same structure as the encoder) also works but results in a lower prediction 

accuracy. The spec2im has a similar structure. Compared to im2spec, the difference is that we 

use the average pooling prior to the convolutional block to reduce the length of input vector 

by a factor of 16 and add two up-sampling layers before the dilated block in the decoder to
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help with the decompression of latent features. The mean squared error loss was optimized 

using the Adam optimization technique!25! with a learning rate of 0.001 for both neural 

networks.

Data and materials availability.

The data and analysis tools used in this manuscript have been available at: https://git.io/JTJRbN

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.
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Supporting Information

Predictability of localized plasmonic responses in nanoparticle assemblies

Kevin M. Roccapri ore,* Maxim Ziatdinov, Shin Hum Cho, Jordan A. Hachtel, and Sergei V. 

Kalinin*

im2$pec

Encoder-decoder network

tJ7 ' A.

3 x

Encoder-decoder network

spec2im

Figure SI. Full network architecture, showing both im2spec and spec2im. Assessment is 

performed by MSB in real space and will depend on number of latent dimensions chosen. The 

latent space itself can be analyzed by clustering methods to highlight dominant features.
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HAADF

Im2spec network Spec2im network

Figure S2. Network performance on data acquired at lower number of pixels per particle, (a) 
HAADF-STEM image; results for im2spec network shown in (b-d); (e-g) spec2im network 

results. (b,e) Show back-projection from latent space into an image representation, while 

(c,d,f,g) portray error maps for specified number of latent dimensions.
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Number Latent Dimensions Number Latent Dimensions

Figure S3. Im2spec schematic and error dependence on latent variables, (a) Schematics of 

im2spec neural network. ‘Conv’ denotes a convolutional layer with kernel size of 3 activated 

by a leaky rectified linear unit with a negative slope of 0.1, ‘d’ is the dilation rate, and ‘Dense’ 

stands for a fully-connected layer whose number of neurons is equal to the number of latent 

dimensions, (b) Effect of number of latent dimensions on the predictability by calculating 

correlation coefficient and mean squared errors (MSB) between error maps of the higher 

resolution and their corresponding structural ADF image. The correlation coefficient trends 

toward an improved correlation, as well as a decreased MSB, with an increase in number of 

latent dimensions for both im2spec and spec2im networks. Note, however, that diminishing 

returns are encountered for large number of latent dimensions.
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