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Abstract

Design of nanoscale structures with desired optical properties is a key task for
nanophotonics. Here, the correlative relationship between local nanoparticle geometries and
their plasmonic responses is established using encoder-decoder neural networks. In the
im2spec network, the relationship between local particle geometries and local spectra is
established via encoding the observed geometries to a small number of latent variables and
subsequently decoding into plasmonic spectra; in the spec2im network, the relationship is
reversed. Surprisingly, these reduced descriptions allow high-veracity predictions oflocal
responses based on geometries for fixed compositions and surface chemical states. Analysis
ofthe latent space distributions and the corresponding decoded and closest (in latent space)
encoded images yields insight into the generative mechanisms of plasmonic interactions in the
nanoparticle arrays. Ultimately, this approach creates a path toward determining
configurations that yield the spectrum closest to the desired one, paving the way for stochastic

design of nanoplasmonic structures.
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1. Introduction

Localized surface plasmon resonances (LSPRs) are collective oscillations ofthe free
charge in nanostructures that concentrate electromagnetic energy and enable the enhancement
of wave-matter interaction as well as the manipulation oflight at nanometer length-scales.
Moreover, plasmon resonances are highly influenced by sample geometry and local dielectric
environment, which enables the application ofbiological and chemical sensing. FI State-of-
the-art nanoscale synthesis is required to exploit the characteristics of plasmon resonances!? °|
which creates the opportunity to rationally design extremely complex systems with a
plasmonic response tailored to accentuate specific phenomena such as engineered electric
permittivities”] and even cancer detection and treatment.!§] Finally, the need for light sources
localized well below the wavelength of light for quantum applications and optical circuit
elements!910] has given rise to extensive research efforts in this direction.

For highly ordered systems, such as precise lithographically patterned arrays, various
effective structure-property relationships can be established through macroscopic experiments
and simulations. For example, specially engineered arrays can be designed to produce specific
effective properties not found in nature, e g., negative refractive index metamaterials.!1112]
However, in these cases, the detection volume significantly exceeds the characteristic plasmon
size. Additionally, highly ordered nano-assembly systems are yet prone to structural defects,
such as voids, gaps, and edges. It follows that for disordered systems containing multiple local
geometries and morphologies, macroscopic techniques can only sample the ensemble
averages and effective responses, and therefore any localized behavior is missed. Analysis of
disordered assemblies has been mostly overlooked in such wide-area nanoparticle ensembles,
as analysis remains a difficult challenge since robust tools need to be further matured in
deconvolving spectral complexities. Furthermore, the randomness ofthe disorder necessitates
extensive sampling ofthe various inhomogeneities to truly ascertain an accurate
representation ofthe true nanoscale response and makes direct simulation ofall possible types
of disorder impractical.

The need to access local effects in plasmonic systems has driven significant interest in
nanoscale spectroscopy techniques, one ofthe most powerful of which is electron energy-loss
spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Here, the
electron beam acts as a white light source in which the high-energy electrons couple to the
plasmonic material, which manifests as a loss ofthe electron energy at the available plasmon
modes,!13] yielding detectable peaks in the low-loss region of EEL spectrum. As the electron

beam can be about the diameter of'a single atom, this makes the electron microscope uniquely
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suited to study the nanoscale spatial behavior of plasmon excitations.[l4 16] However, the small
probe of STEM means that only a small field-of-view can be sampled efficiently per STEM-
EELS experiment, preventing high throughput analysis of systems with large random
variation in heterogeneity. As an alternative to direct spectral analysis, if structure-property
relationships can be determined unambiguously, one could use the structure as determined
through imaging analysis to determine the spectral response. This would be highly beneficial
since dwell times in spectroscopy are generally in the hundreds (ifnot thousands) of
milliseconds, while efficient structural imaging can be achieved with dwell times in the
microsecond and even nanosecond regimes.[l7]

High-veracity prediction, however, ofthe local structure-property relationships is
limited. Even in well-defined systems, calculations ofnon-local plasmonic responses are
hindered by the computational complexity of predictive theory. In real systems, the presence
of surface layers and adsorbates can result in a large number of poorly understood and weakly
controlled variables. In fact, the very factors that enabled high sensitivity of nanoplasmonic
structures to external stimuli severely complicate predictions ofthese behaviors. Moreover,
the non-local collective response observed in many-particle plasmonic systems conceals
physical mechanisms even further. This in turn brings an issue whether the mechanisms
guiding the emergence ofthe plasmonic response can be understood and controlled, both in
terms ofthe fundamental generative mechanisms and predictive models that can establish
whether structures with required properties can be created. Thus, there exists an inherent need
for a data-driven predictive methodology to empirically establish structure-property
relationships in real complex plasmonic systems and enable rigorous high-throughput
analysis.

Here, we explore a machine-learning (ML) approach for the exploration of
nanoplasmonic structures based on developing parsimonious correlative laws between the
local structure and plasmon response. This approach establishes the relationship between
observed EEL spectra and semi-local particle geometries within a given materials system by
using an autoencoder (AE) network and can be used to predict plasmonic responses in similar
systems. The inverse problem, in which particle geometries are predicted from the observed
spectra, is considerably more ill-defined. We propose that the areas where the correlative
relationships between the observed particle geometries and spectra have the strongest
deviations can serve as indicators for the manifestation of potentially new physical

phenomena.
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2. Results

Here, we examine self-assembled monolayers of fluorine and tin doped indium oxide
(FT:10) nanocrystal arrays.[1§] The geometry and the plasmonic response can be tuned by
changing the dopant incorporation, allowing a controllable free carrier concentration. As a
result, the FT:10 particles can either possess either a cubic or spheroidal geometry with
diameters between 10 and 20 nm, as well as possessing native plasmon frequencies ranging
from the near- to mid-infrared (IR). As compared to noble metal plasmonic nanoparticles with
visible range LSPR located near the intraband transition loss region, doped metal oxide IR
LSPR is far from the band edge loss.[19-20] This class of doped metal oxide nanocrystal with
plasmon resonance located in the IR gifts a spectrally ideal particle pixel element for EELS
analysis as the electron energy loss will be purely plasmonic, eliminating further complexity
ofintraband or band edge losses in ML analysis. Critically, while the self-assembled
structures are nominally periodic, the colloidal synthesis process introduces a high degree of
localized disorder in the particle size and shape variation, missing particles (defects), and
holes, cracks, and edges in the self-assembled films. As a result, understanding the nanoscale
response of the system requires the nanoscale resolution of a technique like STEM-EELS to
account for this heterogeneity. To feasibly detect the IR plasmonic response, the electron
beam is passed through a pre-specimen monochromator, which reduces the elastic scattering
background in the IR and improves energy resolution.”] In these measurements, we utilize an
energy resolution of-40 meV, which allows us to observe the plasmonic excitations without
significant instrumental broadening.

The hyperspectral EELS datasets used for these analyses are called spectrum images
(Sis), which are obtained by rastering the beam through a region-of-interest and recording a
full EEL spectrum at each probe position, resulting in a three-dimensional dataset with two-
spatial dimensions and one spectral dimension. An SI ofa heterogeneous FTTO array is
shown in Figure 1. The dark-field image ofthe array is shown in Figure la, which shows that
while the array is mostly regular, a hole (or defect) in the array as well as the edge ofthe film
are present, both providing strong aspects of heterogeneity in the film. We show spectra from
four selected regions in the SI (RI-the center of a particle, R2-the gap between particles, R3-
the hole in the array, and R4-the area outside the array), and plot the averaged spectra at those
locations in Figure Ib. There are three prominent features in the EELS response: a dominant
peak at -500 meV, a subpeak at -750 meV, and a small peak at -900 meV, however we note

that both the relative intensities as well as the frequencies ofthese peaks change significantly
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from position to position. These localized changes demonstrate that heterogeneity provides a
localized impact on the plasmonic structure.

To gain further insight and explore the plasmonic behavior in the nanoparticle array in
a less biased approach, the dimensionality ofthe 3D EELS data cube can be reduced used
using linear unmixing methods. These methods in general decompose the hyperspectral
dataset into components with a spatial abundance map and a spectral endmember, such that
the linear combination of each component’s endmembers weighted by their abundance
reproduces the original dataset. There are numerous such unmixing techniques, but one
method that tends to work well for EELS datasets is non-negative matrix factorization
(NMF).[22] The NMF decomposition is chosen due to the non-negativity constraint, which
generally results in more physical spectral and spatial components for a counting spectroscopy
such as EELS. A simplistic 4-component NMF deconvolution is shown in Figure lc-j, with
the abundance maps shown in (c-f) and the corresponding spectral endmembers in (g-j).

While the spatial abundance maps very nicely highlight the different regions of
heterogeneity in the array (particles, gaps, hole, edge/outside), the corresponding endmembers
clearly have multiple plasmonic peaks per component, indicating that we have not fully
separated the different mechanisms in the plasmonic response - in other words, the electron
beam excites all plasmon modes, some of which unavoidably occur in the same location in
space. This result follows naturally for heterogeneous quasi-periodic structures such as the
FT:1O arrays. The periodicity and intra-particle coupling induce an overarching response in
the array, thus the primary influence of heterogeneity is to modify this overarching plasmonic
behavior locally as opposed to providing a distinct new one. This effect is replicated in the
NMF decomposition, where component | captures the overall dominant response ofthe
structure, while the higher order components capture the local modifications to that response
due to the various structural features. Another important aspect captured by the NMF
decomposition in Figure | is the different degrees of localization. For instance, the first two
components are highly delocalized extending well into the hole in the array and for tens of nm
outside ofthe array, meanwhile the other two components correspond to signal that is highly
localized to the individual nanoparticles themselves and do not extend more than a few nm
outside ofthe edge ofthe cube. As a result, in order to accurately represent the response of
the system, the predictive ability of any ML network must be able to reproduce the
frequencies, intensities, and localization ofthe complex plasmonic response in the FT:10

arrays.
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Figure 1. Spectral analysis, (a) HAADF-STEM image of nanoparticle array, (b) EEL spectra
from selected locations (denoted by squares in (a)), (¢-j) First four NMF components, (c-f)

component abundance maps (g-j) component spectral endmembers.

2.1. Encoder-decoder neural networks

The number of particles involved in complex heterogeneous systems, such as the ones
shown in Figure 1, is too high for effective direct calculation, necessitating an empirical data-
driven approach. We note that numerical methods can indeed solve for the response of single
or few particle systems, or even complicated nanostructures;!23] however, due to the large
degree of'variability in particle size, gaps, defects, periodicity, etc., it is difficult to account for
these and to therefore have knowledge ofthe dielectric function for which to use in
simulation. In our approach, we utilize deep learning networks trained only on the
experimentally acquired data to empirically derive the relationship between local structure and
local plasmonic response without theoretical predictions. To establish local structure-property

relationships, we train an encoder-decoder network to extract a set of latent variables that
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connects spatial descriptors to spectral descriptors, where the spatial descriptors are sub-
images ofthe structure surrounding a specific pixel in the SI, and the spectral descriptors are
the EEL spectra from the SI at that specific pixel. We create networks to establish the
correlative relationship between the spatial descriptors and spectral descriptors, ultimately in
order to predict the spectral response given a spatial predictor, as well as the inverse
prediction. These networks are called Imlspec and Spec2im, respectively. In both cases, the
analysis workflow includes (i) analysis of latent space distributions, (ii) forward prediction
from the latent space, comparison with the ground truth, and visualization ofthe error maps,

and (iii) back-projection from the latent space (to the closest experimentally observed point).

HAADF
— im2spec speclim
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Figure 2. Prediction workflow using autoencoder architecture. Spectrum image is separated
into small windows with a corresponding single associated spectrum from the center ofthe
window. These pairs are sent to one ofthe encoder-decoder networks, where a portion ofthe
pairs are used as training sets, and the remaining are used for testing. Prediction ofthe
spectrum or image is performed and compared to the ground truth representation. The
simultaneously acquired and therefore registered HAADF signal is used as the structural data

to indicate sample geometry.
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The overall workflow for the proposed approach is illustrated in Figure 2. The Sl is
analyzed to yield a feature/target set made from the local sub-images centered at specific
locations and EEL spectra corresponding to the center ofthe sub-image. In the im2spec
network,the images are the features and the spectra are the targets. In the spec2im network,
the spectra are the features and images are the targets. Both im2spec and spec2im networks
are based on an encoder-decoder architecture, i.e., the feature set is compressed through the
set ofthe classical convolutional layers (2D for image data, ID for spectral data) to a latent
layer and subsequently “decompressed” to the target set via spatial pyramids of dilated
convolutions. This approach both establishes the correlative relationship between the feature
and target sets and allows exploration of'the variability ofthe observed behaviors via low-
dimensional representations in the latent space ofthe network filtering out the non-essential
details. The im2spec and spec2im networks are implemented here via the PyTorch deep
learning library. The schematic ofthe im2spec network is shown with more details in
Supplementary Figure SI, with specific methodologies explained in the Methods section.

Since the particles are colloidally synthesized, we expect their size and composition to
be nearly identical, where the primary differences between particles will be structural shape
and faceting. This suggests there should be a well-defined relationship between the local
configurations ofthe particles and the associated plasmonic response. In general, the details
for larger separations from the chosen pixel location become progressively less important,
however, it should be noted that some delocalized responses can be relatively strong and there
may be appreciable spectral strength even far from the chosen location (e g., outside field of
view), hence this must be taken into account. Even if such a relationship does exist, it is not
necessarily guaranteed that it is observable, since the observations can also be affected by the
latent variables (e g., different contaminations or surface states for different particles and
variations in particle morphologies), observational biases (configuration of imaging system
and its variability across the image plane), and noise limits. Nevertheless, the exploratory data
analysis in Figure | shows that the abundance maps in the NMF components clearly depicts
the presence of different structural features: particles, edges and holes in the particle arrays,
etc. The spatial localization ofthe plasmon features is generally considered to be delocalized
and, when probed by electron beam, decays according to a modified Bessel function ofthe
second kinddl$! Nonetheless, as was alluded to previously, the extent of localization differs by
roughly an order of magnitude when comparing single or few particle responses to coupled
array modes - that is to say, the predictability is susceptible to the degree oflocalization and

must also be carefully considered.
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Based on these considerations, we aim to explore whether local plasmonic properties
can be predicted based on the local system geometry. The classical approach to this problem
is based on predictive theory, where the plasmonic property ofthe system is calculated based
on approximated materials constants and the latter are refined to maximize theory-experiment
matching. Thus, a refined generative model can then be used for the prediction of plasmonic
properties in any material configuration and opens a pathway for predictive design ofthe
structures with responses closest to the ones desired. This approach, however, requires well-
defined high-veracity models. Factors such as the presence of surface dielectric layers due to
specific adsorption, chemisorption, or contamination can invalidate the model and limit its
range of applicability (e g., the model will possess predictive power for specific materials
configuration but may fail beyond it, for example, for different surface states).

Here, we explore an alternative approach for the establishing the relationship between
local structure and local plasmonic spectra based on machine learning (ML), i.e., establishing
the correlative relationship between the particle geometry in the vicinity ofthe chosen spatial
point and plasmonic spectra at the same point. While not having the predictive power of a
generative model, such an approach is expected to be valid for in-distribution observations
and will thus benefit from larger data sets assuming the absence of observational bias
variability (i.e., relevant spectral features depend only on material and location but not on the
specific microscope parameters). Compared to generative models, this approach relies only on
the observed configurations, and does not necessitate an in-depth knowledge of'the material’s
structure or generative physical behaviors, thus providing a counterpart for classical physical
approaches. This methodology can potentially be applied to any arbitrary system to derive
structure-property relationships (provided such a relationship exists), both for systems that are
too complex to treat theoretically and even in novel materials and geometries where no proven

physical model has been established.
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2.1.1 Imlspec network analysis

Encoder Decoder
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Figure 3. Im2spec network. The im2spec network is trained using the HAADF spatial
descriptors and corresponding spectral descriptors. Here, features are sub-images while targets
are spectra. The latent space is a compressed information space, which contains features
significant within the feature array. When training with two latent dimensions, the latent space
can be visualized as a grid in 2D in either an image or spectrum representation, by either
back-projecting or forward-projecting from the latent space, respectively. ‘Conv’ denotes a
convolutional layer with kernel size of 3 activated by a leaky rectified linear unit with a
negative slope of 0.1, ‘d’ is the dilation rate, and ‘Dense’ stands for a fully-connected layer
whose number of neurons is equal to the number of latent dimensions. Mean squared error
(MSB) is shown for using two and ten latent dimensions, 2L and 10L respectively. Note that
while errors for two latent variables show clear spatial structure, the error does not exceed
10%. For 10 latent variables, MSB does not exceed 4% and almost spatially uniform,
suggesting that the imlspec network successfully encodes structure-property relationships.

Note that the training for 2B and 10B was performed separately.

The analysis with the im2spec network is shown in Figure 3 where the images were

parsed into 2714 sub-images with each sub-image containing 16x16 pixels in size. The spectra
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were used at original resolution, and to isolate plasmon-specific spectra, post-processing was
performed to remove the zero-loss peak (ZLP) and the phonon signal arising from the silicon
nitride support membrane. The encoder-decoder architecture used here, compressing the
images to latent variables, (image) —»(l atent), and then decompressing them into spectra,
(latent) — (spectra), allows for analysis ofthe data in the latent space. In classical
autoencoders where the feature and target space are the same, this is accomplished by the
determining the variability ofthe data in the latent space, i.e. finding the maximum and
minimum values oflatent parameters  creating the uniformly spaced grid of points in the
latent space, and projecting this grid onto the feature space. This representation is particularly
convenient for two latent parameters, where the feature evolution in the latent space can be
represented as a grid image.

To adapt this approach for the encoder-decoder architectures used here, we note that
for the decoder part ofthe network the same approach can be used. However, a similar
analysis can be extended for the encoder part ofthe network, where we back-project the point
in the latent space by finding the feature (or average of several features) closest to the selected
point. In other words, to back-project the point | i, 2 , Ln from the n-dimensional latent
space into the original feature space, (feature) <— (I atent), we find images where
projection to the latent space is closest to the selected point. Note that in this manner only
physically realizable features (or their averages) are visualized as compared to the (I atent)
< (target), projection where the latent point can come from an unpopulated part ofthe
latent space. Similarly, the veracity ofback-projection can be ascertained from a comparison
ofthe dispersions (or other measures of variability) in the feature space vs. latent space, i.e.,
whether closely located points in the latent space back-project to the closest points in the
feature space.

The back-projected features for the im2spec network for two latent variables for a
uniform grid in latent space are illustrated in Figure 3. Note that the adjacent locations in the
latent space correspond to similar morphologies ofthe sub-images, and dissimilar
morphologies correspond to well-separated parts ofthe latent space. For example, the bottom
right part ofthe back-projected image representation in Figure 3 corresponds to different
separations from the particle corner, while the top-right region corresponds to different beam
positions in the dense part ofthe film. In this way, the two latent features that were extracted
by the network are visualized in a 2D grid. Note that we can specify a different number of
latent dimensions when utilizing the autoencoder network, but only the case oftwo latent

features can be represented in a two-dimensional space.
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Additional insight into the veracity ofthe im2spec conversion can be derived from
analysis ofthe prediction error. For this, the mean square error between the predicted and
actual spectra is calculated and plotted in the original image plane. In this analysis, of interest
is the absolute value ofthe mean square error (MSB), and spatial localization ofthe MSB
signal. The data in Figure 3 suggest that for two latent variables the prediction error can be on
the of order of 10%, but clearly shows the spatial structures associated with the edges. This
behavior illustrates that two latent variables are insufficient to encode all the correlative
relationships in this system, and that there is a difference between the physical mechanisms
operating at the edges and in the volume of'the film. In comparison, the error surface for 10
latent variables shows errors on the order of only several percent with almost uniform spatial
distribution, suggesting that this encoding is sufficient to build a correlative model universally

applicable for these data.

Prediction (2L) Prediction (2L)
Prediction (10L) Prediction (10L)

Energy loss (eV) Energy loss (eV)

Ground truth Ground truth
Prediction (2L) Prediction (2L)
Prediction (10U Prediction (10L)

0.2 0.4 0.6 0.8 1.0
Energy loss (eV} Energy loss (eV)

Figure 4. Spectral predictions with imlspec network applied to cubic plasmon array system.
Red crosshair indicates from where the spectra are taken, (a) Depicts behavior in a void, (b)
on a particle, (¢) in an interparticle gap, and (d) in an interparticle gap near an edge. Note that
(b) is only case in which the highest energy feature near 0.9 eV is observable since this is a
bulk plasmon mode. The im/spec network accurately predicts this weak bulk feature when the

number of latent dimensions is sufficient.
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Finally, a comparison ofthe predicted and observed spectra for several locations are
shown in Figure 4. Here, we highlight regions from the SI showing different aspects of
nanoscale disorder: one region from a hole in the array (a), one located on a particle within the
array (b), one from regular part ofthe array in an interparticle gap (c), and one located in an
interparticle gap near an edge (d). For each region, we show the sub-image used as the input
into the im2spec network, as well as the spectra both taken directly from the central pixel of
the subregion in the SI, as indicated by the red crosshair, as well as the imlspec predictions
trained with both 2 and 10 latent space variables (2L and 10L, respectively). We note the
network has never encountered these particular sub-images previously, as it was trained on a
different portion ofthe data cube. In all circumstances, the 10L im2spec network both
qualitative and quantitatively reproduces the ground-truth spectrum solely from the local
configuration of particles, demonstrating the capability of directly retrieving structure-
property relationships from this data-driven approach. The importance ofusing a high-
dimensional latent space is also observed as there are serious quantitative discrepancies that

appear in the 2L network that are not observed in the 10 L network.

2.1.2 Spec2im network analysis
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Figure 5. Spec2im network. The spec2im network is trained in a similar way to im2spec, also
using the HAADF spatial descriptors and corresponding spectral descriptors, but with features
and targets exchanged. The latent space is a compressed information space, which contains
features significant within the feature array. When training with two latent dimensions, the
latent space can be visualized as a grid in 2D in either a spectrum or an image representation,
by either back-projecting or forward-projecting from the latent space, respectively. ‘Conv’
denotes a convolutional layer with kernel size of3 activated by a leaky rectified linear unit
with a negative slope of 0.1, ‘d’ is the dilation rate, and ‘Dense’ stands for a fully-connected
layer whose number of neurons is equal to the number oflatent dimensions. Mean squared

error (MSB) is shown for using two and ten latent dimensions, 2L and 10L respectively.

A similar approach can be explored to establish the relationship between the spectra
and images, as realized in the spec2im network. The structure ofthe spec2im is similar to that
ofim2spec as shown in Figure 3, with the interchanged encoder and decoder architectures.
The latent space representations corresponding to a uniform grid in latent space projected to
image space, (I atent) —»(image), is shown in Figure 5. Note that the latent space clearly
clusters possible particle configurations, by virtue of the fact that individual tiles in the latent
spaces show a variety of particles positions which exist in similar regions ofthe 2D space. In
fact, detailed analysis ofthe reconstructed images across the latent space clearly illustrates
that the autoencoder disentangles particle shape representations, with consistent and smooth
changes ofparticle shapes across selected dimensions.

The structure ofthe spatial error maps is shown in Figure 5. Note that while in this
case we generally expect high prediction errors (due to the rotation uncertainty), the
reconstruction is surprisingly good. The average reconstruction error is 15.8% for 2D latent
space and 12.7% for 10D latent space. The errors are higher in the vicinity ofthe edges, as
expected. For a lower resolution image where the sub-image size is larger than effective
particle size, the quality of prediction is considerably higher since the latent variables can
encode relevant details, as shown in Supplementary Figure S2. Calculation ofthe cross
correlation coefficient and the MSB between the structural HAADF-STEM image and the
error maps in Figures 3 and 5 reveals that with increasing number of latent dimensions,
generally more features are matched in the error maps to their corresponding structural
HAADF image, as is indicated by both a decreased MSB and an increased and more positive
correlation coefficient which is observed in Supplementary Figure S3. This indicates that

there are regions where the correlative relationship between structure and plasmonic
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properties is better defined. The higher dimensional latent space therefore encodes these
features better and we are able to assess an appropriate number of latent dimensions from the
preceding analysis. These regions are potentially of physical exploratory interest. Note
however, that continuing to increase number of latent dimensions does have diminishing
returns, also seen in Supplementary Figure S3. In fact, most ofthe data can be well-
represented with only two latent dimensions, which has the benefit that it can be projected

into a 2D space for visualization, and potentially evoke a better intuitive understanding.

Test Spectra 2L Prediction 10L Prediction Ground Truth

m \VVd

m 0.5

Energy loss (eV)

Figure 6. Geometric predictions with spec2im network. Predictions ofthe local images from
spectra trained using two and ten latent dimensions (a-d) illustrating slightly different
behaviors - voids, gaps, and edges. These structure-property relationships are evidently

encoded in the high dimensional latent space. Note the test spectra are not arbitrary - they
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have a direct correspondence to the real system (ground truth sub-images) but have never

been directly encountered by the network.

Several examples ofimage predictions from spectra are shown in Figure 6 (a-d). Note
that while the exact morphology cannot be reproduced, general morphology including larger
scale heterogeneity such as the edge ofthe array and the hole in the array is reproduced
remarkably well. Not only does the spec2im network predict the existence ofthese features, it
unexpectedly and rather astonishingly predicts in several cases in the same rotational
orientation and areal fraction as in the ground truth sub-image. However, one possible
explanation for this is a slight specimen tilt, which may allow different plasmon features to be
detected that depend on rotation. The ability to procure such features in the case ofthe
inherently delocalized plasmon should not be understated - it is remarkable that general
correlative behaviors can be learned from local sampling. This strongly establishes the ability
ofthe encoder-decoder networks to generate reliable structure-property relationships from

highly localized sampling.

3. Conclusion

To summarize, we illustrate a ML-based workflow to establish the correlative
relationships between nanoparticle configurations in the proximity ofa chosen spatial location
and the associated plasmonic spectra. This approach is complementary to that based on
generative modeling. While the model requires detailed knowledge ofthe system composition
to generalize for unobserved configurations, the proposed im2spec and spec2im networks
allow for predictions of samples drawn from similar distributions and can generalize the
structure property relationships without prior knowledge or observational biases. We expect
the features learned in the latent spaces to be transferable between data sets assuming
observational conditions are the same, i.e., train network with one data set, and predict using a
new one. Of course, constraints surround this expectation, namely, particle size and
concentrations should not deviate far from those in the data set used in training.

With careful experimentation, the derived correlative relationships can be treated as
universal, and used as a basis for the refinement ofthe generative theoretical models, for
example via Bayesian optimization in the latent space or simply generating the structure-
spectrum pairs. For non-universal cases (i.e. dependent on microscope setting, indicative of

the presence of observational biases or latent variables), a similar analysis can be used to
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establish variability and possible behaviors and anomalies within the image (or set of images
obtained under similar conditions), allowing for qualitative or at least semiqualitative
explorations ofrelevant physical behaviors comparable to standard unmixing methodologies
which also do not account for phenomena outside ofthe region ofinterest. In both cases, the
knowledge of possible structure-property relationships allows to establish the range of
possible responses within a given materials system. Also, regions with large deviations
indicate the presence of something unusual or exciting - likely worth pursuing further.
Perhaps more importantly, fundamentally new opportunities can be presented for cases
where the particles can be manipulated either globally (e g., via chemical functionalization) or
especially locally (e g., ex-situ via scanning probe microscopy, or in-situ via an electron
beam). In this case, the knowledge of correlative structure property relationships from
im2spec and spec2im networks will allow the creation of structures with desired properties.
These approaches can include several iterative steps when we learn laws, make structures,

then refine those laws to design what we want.

4. Experimental Section/Methods

Materials'.

Indium (III) acetate (In(ac)3, 99.99%), Tin (IV) acetate (Sn(ac)4), Oleic acid (OA, 90%,
technical grade), Oleyl alcohol (01A1, 85%, technical grade) were purchased from Sigma-
Aldrich. Tin (IV) fluoride (SnF4, 99%) was purchased from Alfa Aesar, Hexane (99.9%),
Isopropyl alcohol (99.5%, Certified ACS), were purchased from Fisher Chemical. All

chemicals were used as received without any further purification.

Fluorine Doped Indium Tin Oxide (FT:10, I''Sn:In303) Nanoparticle Synthesis:

All synthesis procedures are undertaken by employing standard Schlenk line techniques using
a modification of previously reported methods for continuous slow injection synthesis of
indium oxide nanoparticles20. 29,46 In(ac)} 1342.97 mg (4.6 mmol), SnF4 48.68 mg (5%,
0.25 mmol), Sn(ac)4 53.23 mg (3%, 0.15 mol), and oleic acid (10 ml) are loaded in a three-
neck round-bottom flask in a N2-filled glove box. The precursors are stirred with a magnetic
bar at 600 rpm and degassed under vacuum at 120 °C for 15 min. The injection solution is
added at rate of 0.2 ml/min, into 13 ml of oleyl alcohol maintained at 290 °C vented with a

19-gauge needle under inert N2 gas flow. The reaction mixture turns blue a few minutes into
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the injection. Subsequently, growth is terminated by removal ofthe heating mantle and cooled
by blowing air on the three-neck flask vessel. The nanoparticles are dispersed in hexane, then
isopropyl alcohol antisolvent is added and the mixture is centrifuged at 7500 rpm for 10 min.
The washing procedure is repeated 3 times and the nanoparticles are redispersed in 10 ml of
hexane. The resultant nanoparticle dispersion is centrifuged at 2000 rpm for 3 min to remove
non-dispersible aggregates and the supernatant is collected as the nanoparticle stock sample.
For spherical particle sample, concentration series of 10 % Sn(ac)4 doped F,Sn:In203
nanoparticle was synthesized by controlling the Sn(ac)4 to In(ac)} molar precursor ratio, while
SnF4 was maintained at 5% molar ratio, keeping other reaction parameters identical.
Monolayer nanocrystal arrays were deposited onto a SiN TEM grid via Teflon trough liquid-
air interface self-assembly.[20] Native surface ligands were removed from the nanocrystal

assembled array by TEM grid Ar plasma cleaning for 15 min.

Imaging and spectroscopy.

A monochromated aberration-corrected NION microscope was operated at an accelerating
voltage of 60 kV, with a probe current on the order of20 pA, and a convergence angle of 30
mrad. The full width half maximum of'the zero loss peak (ZLP) after monochromation was
~40 meV, with the potential to be reduced to as low as 5 meV, however this was kept higher
to maintain a high signal to noise ratio. Pixel dwell times for spectrum images were 100 ms.
The sample pressure is kept at a stable 10"9 Torr and is especially important for longer dwell
times to minimize contamination ofthe sample, which can have a significant impact on the
plasmon response. Post processing to remove the zero-loss peak and the phonon signal arising
from the silicon nitride support membrane was performed by fitting a two-term exponential

power law to the zero-loss peak, and truncating the energy axis below 200 meV, respectively.

Autoencoder network details'.

The im2spec and spec2im networks are implemented here via the PyTorch deep learning
library. The features are passed through multiple convolutional layers and a fully connected
(“dense”) layer to create a latent representation, which is then used to generate a target output
via a spatial pyramid of dilated convolutions. We note that using a simpler decoder network
(e g. with the same structure as the encoder) also works but results in a lower prediction
accuracy. The spec2im has a similar structure. Compared to im2spec, the difference is that we
use the average pooling prior to the convolutional block to reduce the length of input vector

by a factor of 16 and add two up-sampling layers before the dilated block in the decoder to
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help with the decompression oflatent features. The mean squared error loss was optimized
using the Adam optimization technique!25! with a learning rate 0f0.001 for both neural

networks.

Data and materials availability.

The data and analysis tools used in this manuscript have been available at: https://git.io/JTIRbN

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.
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Predictability of localized plasmonic responses in nanoparticle assemblies
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Encoder-decoder network
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Figure SI. Full network architecture, showing both im2spec and spec2im. Assessment is
performed by MSB in real space and will depend on number of latent dimensions chosen. The

latent space itself can be analyzed by clustering methods to highlight dominant features.
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HAADF

Im2spec network Spec2im network

Figure S2. Network performance on data acquired at lower number of pixels per particle, (a)
HAADF-STEM image; results for im2spec network shown in (b-d); (e-g) spec2im network
results. (b,e) Show back-projection from latent space into an image representation, while

(c,d,f,g) portray error maps for specified number of latent dimensions.
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Number Latent Dimensions Number Latent Dimensions

Figure S3. Im2spec schematic and error dependence on latent variables, (a) Schematics of
im2spec neural network. ‘Conv’ denotes a convolutional layer with kernel size of 3 activated
by a leaky rectified linear unit with a negative slope of 0.1, ‘d’ is the dilation rate, and ‘Dense’
stands for a fully-connected layer whose number of neurons is equal to the number of latent
dimensions, (b) Effect of number of latent dimensions on the predictability by calculating
correlation coefficient and mean squared errors (MSB) between error maps of the higher
resolution and their corresponding structural ADF image. The correlation coefficient trends
toward an improved correlation, as well as a decreased MSB, with an increase in number of
latent dimensions for both im2spec and spec2im networks. Note, however, that diminishing

returns are encountered for large number oflatent dimensions.
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