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Abstract
In some data sets, it may be the case that a portion of the extreme observations is 
missing. This might arise in cases where the extreme observations are just not avail-
able or are imprecisely measured. For example, considering human lifetimes, a topic 
of recent interest, birth certificates of centenarians may not even exist and many 
such individuals may not even be included in the data sets that are currently avail-
able. In essence, one does not have a clear record of the largest lifetimes of human 
populations. If there are missing extreme observations, then the assessment of risk 
can be severely underestimated resulting in rare events occurring more often than 
originally thought. In concrete terms, this may mean a 500 year flood is in fact a 
100 (or even a 20) year flood. In this paper, we present methods for estimating the 
number of missing extremes together with the tail index associated with tail heavi-
ness of the data. Ignoring one or the other can severely impact the estimation of risk. 
Our estimates are based on the HEWE (Hill estimate without extremes) of the tail 
index that adjusts for missing extremes. Based on a functional convergence of this 
process to a limit process, we consider an asymptotic likelihood-based procedure for 
estimating both the number of missing extremes and the tail index. We derive the 
asymptotic distribution of the resulting estimates. By artificially removing segments 
of extremes in the data, this methodology can be used for assessing the reliability of 
the underlying assumptions that are imposed on the data.
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1  Introduction

For modeling heavy-tailed data, the typical operating assumption is that the tails of 
the common distribution function F are regularly varying. That is,

as t → ∞ for all x > 0 , where 𝛼 > 0 and F̄(t) = 1 − F(t) is the survival function. The 
tail index � which governs how heavy the tail is, with smaller � indicating heavier 
tails, is often the key parameter of interest in applications. The ratio in (1.1) corre-
sponds to the risk probability of P(X > tx|X > t) ∼ x−𝛼 for large t and x ≥ 1 . In fact, 
the generalized Pareto distribution (GPD), for heavy-tailed distributions essentially 
originates from this equation:

where 𝛾 = 1∕𝛼 > 0 is known as the shape parameter.1
The most commonly used estimator of � is the Hill estimator defined by

where X(1) ≥ X(2) ≥ ⋯ ≥ X(n) are the order statistics of an independent and identi-
cally distributed (iid) sample X1,X2,… ,Xn ∼ F . See Hill (1975) and Drees et  al. 
(2000) for further discussion on this estimator. The Hill estimator is weakly consist-
ent for estimating � provided the number of order statistics k = k(n) used in estimat-
ing � satisfies, k → ∞ and k∕n → 0 as n → ∞ (see for example de Haan and Ferreira 
2006.)

The principal goal of this research is to provide estimates of � and the number of 
missing extremes in the case when some of the extreme values in the data are miss-
ing. As noted in Zou et al. (2019), if some of the extremes in the sample are missing 
and this is ignored in an estimation procedure, then the tails of the distribution will 
be underestimated, i.e., they will appear to be lighter than they really are. In terms of 
risk calculations such as estimating large quantiles, these would be severely underes-
timated if the estimate of � is too small. With missing extremes, the plot of the Hill 
estimate as a function of the number k of upper order statistics tends to be increasing 
and much smoother than without the missing values.

In Zou et al. (2019), the in-degree distribution from a snapshot on October 19, 
2012 of the social network Google+ was examined. The Google+ data, which was 
owned and operated by Google, consisted of 76,438,791 nodes (registered users) 
and 1,442,504,499 edges (directed connections). The in-degree of each user is the 
number of other users following the user. The degree distributions in natural and 

(1.1)
F̄(tx)

F̄(t)
→ x−𝛼

(1.2)P(X > t(1 + x)|X > t) ∼ (1 + x)−1∕𝛾 x ≥ 0

Hn(k) =
1

k

k∑
i=1

logX(i) − logX(k+1),

1  The general form of the GPD that combines light- and heavy-tailed cases has a similar form, see 
de Haan and Ferreira (2006).
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social networks are often heavy-tailed (see Newman 2010). Based on the analysis 
in Zou et al. (2019), it was estimated that around 150 extreme in-degree values were 
missing, which raises the question of whether these values were excluded from the 
Google+ data set provided to the researchers.

In addition to detecting possible manipulation of data, being aware of the pos-
sibility of missing extremes, and developing tools for modeling and analyzing 
data in the presence of missing extremes, is important in a variety of fields. This 
includes analysis of natural disasters such as earthquakes, forest fires and floods 
for which extreme values might be missing due to difficulty in data collection and 
in an actuarial science context where claims of extremely large amounts might be 
covered by a reinsurance company and not included in the claims total (Embre-
chts et  al. 1997; Benchaira et  al. 2016). In short, some of the extremes may be 
just under-reported.

This research builds on the work in Zou et al. (2019), in which an adjusted Hill 
estimator, called the Hill Estimator Without Extremes (HEWE) is defined that allows 
for the possibility of missing extreme observations. The HEWE estimator, Hn(⋅) is 
a process on (0,∞) that, suitably normalized, converges in law to a Gaussian pro-
cess G(⋅) whose covariance function depends on the shape parameter � , and on � , a 
parameter related to the number of missing extremes. By approximating the distri-
bution of (Hn(�1),… ,Hn(�m)) for m distinct � values, by the distribution of the limit-
ing process, i.e., the distribution of (G(�1),… ,G(�m)) , one can use an approximate 
likelihood procedure to estimate � and � . The main contribution of this paper is to 
develop rigorous statistical procedures to estimate these parameters and investigate 
the properties of the resulting estimators. Only a heuristic estimation procedure was 
used in Zou et  al. (2019), but the ideas from that paper, in particular, the strong 
approximation results are used in the present paper.

We suggest two implementations of this estimation procedure. The first uses a 
fixed number of points � in which the Hill estimator is evaluated. In the second, 
where we assume that the observations come from a Pareto sample, the number of 
points increases to infinity with the sample size. For both estimators we show con-
sistency and asymptotic normality. The key to proving our results for the first imple-
mentation of the procedure is the strong approximation of the HEWE process Hn(⋅) 
derived in Zou et al. (2019).

A limitation in our modeling framework is that we assume that a consecutive 
block of the largest observations is missing. A more realistic assumption is that the 
missing extremes are not necessarily consecutive. A graphical method grounded on 
our theory for estimating the number of missing extremes is given in Sect. 5.2. The 
basic idea is to artificially remove a number of extremes from the observed data. If 
enough extremes have been removed, then we will have a consecutive number of the 
largest observations missing so we can apply our method. The graphical procedure 
will help us identify the number of extremes to artificially remove from the data in 
order to perform this second stage estimation.
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It is important to note that our work is related to existing literature on modifica-
tions of the Hill estimator (including, potentially, removing a part of the upper order 
statistics from the sample) in order to improve the performance of the estimator; see 
e.g., the recent optimality result established in this direction by Bhattacharya et al. 
(2019). The setup and the emphasis in our work are, of course, different. It remains 
to be investigated whether it is possible to implement the idea of robustifying the 
Hill estimator in the context of missing extremes.

In another direction, our model formulation shares some commonalities with 
work (see, e.g., Aban et  al. 2006; Beirlant et  al. 2016, 2017) in the case the data 
come from a class of truncated Pareto distributions. The truncation is modeled via 
an unknown threshold parameter. Maximum likelihood estimators are then derived 
for the threshold parameter and the tail index. In our case, we do not have a notion 
of a threshold. A closely related, but slightly different formulation, considers obser-
vations that are heavy-tailed but subject to right censoring. In this context, the 
observed data consists of the minimum of two random variables, the measured vari-
able X and a censoring variable C, which are assumed to be independent. Assum-
ing X has heavy-tails, the goal is to estimate the tail index based on observations 
Zi = min{Xi,Ci} and �i = IXi≤Ci

 , i = 1,… , n . See Einmahl et al. (2008); Worms and 
Worms (2014) and Stupfler (2016) for further details. Unlike our setting, one knows 
which data values, and hence the number of observations, in the sample that are 
incomplete.

The paper is organized as follows. In Sect. 2, we provide some background on the 
HEWE process Hn(⋅) . In Sect. 3 we describe an approximate asymptotic maximum 
likelihood estimation procedure of the parameters � and � based on the HEWE pro-
cess, in the case when the Hill estimator is evaluated at a fixed number of points, 
and establish its consistency and asymptotic normality. In the case when the obser-
vations are drawn the Pareto distribution, we describe, in Sect.  4, another estima-
tion procedure, not directly based on the HEWE process, when the number of points 
increases to infinity. Section 5 illustrates the methodology via a simulation study. In 
Sect. 6, we apply our methodology to three data sets: the well-known Danish fire-
insurance claim data, the Google+ data, and a NOAA data set consisting of insur-
ance costs associated with climate and natural disasters in the U.S. The proofs of the 
results in Sects. 3 and 4 are contained in the Appendix.

2 � Preliminaries

In this section we formulate a framework for estimating the shape parameter and 
the number of missing extremes, if any. The setup is somewhat unconventional, so 
we will explain it in detail. The starting point is the assumption that the observa-
tions form a part of a larger sample from which a certain number of largest observa-
tions may have been removed. Neither the original sample size nor the number of 
removed observations (if any) are assumed to be known, but their difference is the 
observed number of the remaining observations. The absolute number of removed 
observations may potentially be large, but still a small fraction of the large original 
sample size. We now describe how we incorporate these unknowns in our setup.
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We assume that the original (partially unobserved) sample is a sequence 
X1,… ,Xn of iid random variables with distribution function F satisfying the reg-
ular variation condition (1.1). We remind the reader that the overall number n is 
not known. If X(1) ≥ X(2) ≥ ⋯ ≥ X(n) denotes the order statistics of the original 
sample, then a certain number of the largest of them may have been removed. 
The number of removed observations (if any) is not known (and deciding whether 
or not observations have been removed and, if so, estimating the number of the 
removed observations, is of interest to us). We find it convenient to fix the order 
of magnitude of the potentially removed part of the sample as a sequence of inte-
gers kn → ∞ with kn∕n → 0 . This allows us to describe the unknown number of 
the removed number of the upper order statistics as ⌊�kn⌋ for an unknown � ≥ 0 , 
which becomes the object of estimation. Note that we allow � = 0 , which cor-
responds to the case where no extremes are missing. We view � as a parameter 
associated with the number of removed order statistics (in the scale of (kn) ) that 
we wish to estimate. This leads to a semiparametric model with a two-dimen-
sional parameter (�, �) to be estimated. We would like to emphasize that the 
choice of the sequence (kn) is inevitably arbitrary, but, at least in theory, our setup 
makes the choice of this sequence less crucial due to the presence of the param-
eter � : changing kn corresponds to a multiplicative change of � . A second impor-
tant point is that our chosen notation (kn) is the same as the common notation for 
the number of order statistics used in the standard Hill estimator for the expo-
nent of regular variation. However, even though the Hill estimator forms a part 
of our estimation procedure, the number of order statistics used there is far more 
involved than simply kn , as we will see momentarily.

With the notation having been set up as above, the observed sample size 
becomes n − ⌊�kn⌋ , and the observations themselves are simply (an unordered 
version of) the collection X(⌊�kn⌋+1),X(⌊�kn⌋+2),… ,X(n) . This allows us to define, 
following (Zou et al. 2019), a stochastic process we call “the Hill estimator with-
out extremes process”, or the HEWE process, as the functional Hill process based 
on ⌊�kn⌋ of the upper order statistics of the observations. In the notation we have 
established, the HEWE process is

Note that the same sequence (kn) is used when parameterizing the number of missing 
extremes and in the definition of the HEWE process. It is clear that kn is not playing 
the role of the number of upper order statistics in the Hill estimator. As before, due 
to the functional nature of the process, the choice of the sequence (kn) should not 
matter, at least in theory.

The HEWE process depends, implicitly, on the unknown value of � (which is 
the key parameter to be estimated). Occasionally, when we want to emphasize 
this dependence, we will use the notation Hn(�;�) instead of Hn(�).

In Zou et al. (2019), a strong approximation to Hn(⋅) was established under a 
second-order regular variation. This condition, which is given in the Appendix 

(2.1)Hn(𝜃) =

�
1

⌊𝜃kn⌋
∑⌊𝜃kn⌋

i=1
logX(⌊𝛿kn⌋+i) − logX(⌊𝛿kn⌋+⌊𝜃kn⌋+1), 𝜃 ≥ 1∕kn,

0, 𝜃 < 1∕kn.
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(see (7.1)) quantifies the rate of convergence in (1.1). Pareto distributions with 
tail index 𝛼 > 0 ( F̄(x) = x−𝛼 for x ≥ 1 and zero otherwise) should be viewed as 
satisfying this condition when the function A in the denominator in the left hand 
side of (7.1) vanishes. In this case (7.2) is automatically satisfied with � = 0.

We now state the key result (Theorem 2.1(b)) in Zou et al. (2019) that is the 
basis for our procedures to estimate the shape parameter and the number of the 
missing extremes, i.e. � and �.

Theorem 1  Assume that the second-order condition (7.1) holds. Let kn → ∞ be such 
that kn∕n → 0 and that (7.2) holds for some � ∈ ℝ . Then

weakly in D(0,∞) , where

and G�(⋅) is a centered Gaussian process with the following representation. Denot-
ing by W the standard Brownian motion,

The process G�(⋅) has continuous sample paths and a covariance function given by

3 � An algorithm for estimating 
 and ı

Throughout this section we fix points 0 < 𝜃1 < ⋯ < 𝜃m . According to Theorem 1 
the random vector �n = (Hn(�1),⋯ ,Hn(�m))

� has, for large n, an approximately 
Gaussian likelihood given by

√
kn

�
Hn(⋅;�) − �g�(⋅)

�
− �b�,�(⋅) ⇒ �G�(⋅)

(2.2)g𝛿(𝜃) =

{
1, 𝛿 = 0,

1 − (𝛿∕𝜃) log
(
(𝜃∕𝛿) + 1

)
, 𝛿 > 0,

(2.3)b𝛿,𝜌(𝜃) =

{
1

1−𝜌

1

𝜃𝜌
, 𝛿 = 0,

1+(𝜃∕𝛿)𝜌−(𝜃∕𝛿+1)𝜌

(𝜃∕𝛿)(1−𝜌)𝜌

1

(𝛿+𝜃)𝜌
, 𝛿 > 0,

G𝛿(𝜃) =
1

𝜃 ∫
𝛿+𝜃

𝛿

(1 − 𝛿∕x)dW(x), 𝜃 > 0 .

(2.4)

Cov
�
G𝛿(𝜃1),G𝛿(𝜃2)

�
=

⎧⎪⎨⎪⎩

1

𝜃1𝜃2

�
𝜃1 ∧ 𝜃2 − 2𝛿 log

�
1 +

𝜃1∧𝜃2

𝛿

�
+

𝛿(𝜃1∧𝜃2)

𝛿+(𝜃1∧𝜃2)

�
, 𝛿 > 0,

1

𝜃1∨𝜃2
, 𝛿 = 0.
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where Σm,� is the covariance matrix of the Gaussian vector (G�(�1),⋯ ,G�(�m))
T , 

�� = (g�(�1),… , g�(�m))
� , and ��,� = (b�,�(�1),… , b�,�(�m))

� , with g�(⋅) and b�,� 
given in (2.2) and (2.3), respectively. Since we are interested in estimating � and � , 
while � and � are nuisance parameters, we devised a procedure that estimates the 
parameters of interested while assuming that � = 0 . Note that this eliminates the 
nuisance parameter � as well and leads to a significant simplification in calculations. 
We will show that the resulting estimators are still consistent and asymptotically 
normal even if the true value of � is different from 0. That is, we will maximize the 
“pseudo-likelihood” function given by

In order to facilitate analysis of the pseudo-likelihood function, we transform the �n 
and �� . Set �0 = 0 , and let

with g�,i = g�(�i) , where Tn1 = Hn(�1) and h�1 = g�,1 . Put �n = (Tn1,… , Tnm)
� and 

�� = (h�1,… , h�m)
� . After some algebraic manipulations, the -2log(pseudo-likelihood) 

corresponding to (3.2) can be written in the form

where

and C is a constant independent of � and � ; see (11) in Zou et al. (2019).
We now separate the notation for the unknown true parameters �0 and �0 in the 

observed sample from the optimization variables which we continue denoting by 
� and � . Let �n = (Yn1,… , Ynm) = �−1

0
�n

√
kn − ��0

√
kn . This random vector con-

verges weakly to a Gaussian vector with independent components such that, in the 
limit,

(3.1)

�
km
n

(2�)m�2m�Σm,��
exp

�
−

kn

2�2

�
�n − ��� −

���,�√
kn

�T

Σ−1
m,�

�
�n − ��� −

���,�√
kn

��
,

(3.2)

√
km
n

(2�)M�2m|Σm,�|
exp

{
−

kn

2�2
(�n − ���)

TΣ−1
m,�

(�n − ���)

}
.

Tni = Hn(�i) − (�i−1∕�i)Hn(�i−1), h�i = g�,i − (�i−1∕�i)g�,i−1, i = 1,… ,m ,

(3.3)L̃n(𝛾 , 𝛿) ∶= C + 2m log 𝛾 −

m∑
i=1

log𝜔i,𝛿 +
kn

𝛾2

m∑
i=1

𝜔i,𝛿(Tni − 𝛾h𝛿i)
2,

𝜔i,𝛿 =

⎧
⎪⎨⎪⎩

1
��

1∕𝜃i − 𝜃i−1∕𝜃
2
i

�
𝛿 = 0

𝛿

��
v(𝜃i∕𝛿) − (𝜃i−1∕𝜃i)

2v(𝜃i−1∕𝛿)
�

𝛿 > 0
,

v(x) =
1

x
−

2 log(1 + x)

x2
+

1

x(x + 1)
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where

see Zou et al. (2019). Then the -2log(pseudo-likelihood) becomes

Since C is independent of � and � , we ignore this term and optimize the function

The main result of this section, Theorem 3.1 below, proves the consistency and the 
asymptotic normality of the estimators obtained by minimizing the function Ln . It 
applies only in the case when 𝛿0 > 0 , i.e. when some extremes are missing. One 
can interpret the case when no extremes are missing as corresponding to a small but 
positive value of �0 . We will assume that the true value of the parameters, (�0, �0) , 
belong to the interior Θo of a known compact set Θ = [m1,M1] × [m2,M2] ⊂ (0,∞)2 , 
and compute our estimator via

Note that the observations only enter Ln(� , �) through the vector �n so that the opti-
mization in (3.7) does not depend explicitly on �0 and �0 . Rather these true param-
eters only play a role in deriving the limiting properties of Ln(� , �).

The following quantities will be used in the statement of our main results. Let

where h�
�0,i

=
dh�,i

d�
|�=�0.

Theorem  3.1  Assume that the second-order condition (7.1) holds. Let kn → ∞ be 
such that kn∕n → 0 and that (7.2) holds for some � ∈ ℝ . Suppose that 𝛿0 > 0 , that 
(�0, �0) ∈ Θo , and let m ≥ 2 be fixed. Then the optimization problem (3.7) has a 

(3.4)the ith component is N
(
�−1
0
�b∗

�0,�,i
, 1∕�i,�0

)
,

(3.5)b∗
�0,�,i

= b�0,�(�i) −
�i−1

�i
b�0,�(�i−1), i = 1,… ,m ;

L̃n(𝛾 , 𝛿) =C + 2m log 𝛾 −

m�
i=1

log𝜔i,𝛿

+
1

𝛾2

m�
i=1

𝜔i,𝛿

�
𝛾0Yni − (𝛾h𝛿i − 𝛾0h𝛿0i)

√
kn

�2

.

(3.6)

Ln(� , �) =2m log � −

m�
i=1

log�i,�

+
1

�2

m�
i=1

�i,�

�
�0Yni −

√
kn(�h�i − �0h�0,i)

�2

.

(3.7)(𝛾̂ , 𝛿) = arg min
(𝛾 ,𝛿)∈Θ

Ln(𝛾 , 𝛿) .

(3.8)bm =

m∑
i=1

�i,�0
h2
�0,i

, cm =

m∑
i=1

�i,�0
(h�

�0,i
)2, dm =

m∑
i=1

�i,�0
h�0,ih

�
�0,i

.
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unique solution (𝛾̂ , 𝛿) with probability increasing to 1 as n → ∞ . This solution is a 
weakly consistent estimator of (�0, �0) , and

as n → ∞ , where in the notation of (3.8),

and � = (a1, a2)
T with

A part of the claim of Theorem  3.1 is the non-singularity of the matrix Γm , 
which we will establish below. It is interesting to compare the performance of the 
estimator 𝛾̂ of the shape parameter given in the theorem with the limiting variance 
of the plain Hill estimator of the shape parameter. Of course, the Hill estimator 
is only consistent when there are no missing extremes, i.e. when �0 = 0 , whereas 
Theorem  3.1 only applies in the case 𝛿0 > 0 . However, the comparison is instruc-
tive if one takes the limiting distribution in Theorem  3.1 and considers the situa-
tion when �0 → 0 . It would not be surprising to expect a loss in efficiency, in the 
sense that having to estimate both � and � may lead to higher bias and/or higher 
variance of the estimator of the shape parameter from Theorem  3.1 in compari-
son with the Hill estimator which does not need to estimate � . However, it turns 
that there is no loss of efficiency, after all. We have the following proposition.

Proposition 3.1  Suppose that 𝛿0 > 0 and let m ≥ 2 be fixed. Then the matrix Γm is 
invertible and, as �0 ↓ 0 , the parameters of the Gaussian limit of 

√
kn(𝛾̂ − 𝛾0) satisfy

Recall that under the assumptions(7.1) and (7.2) the Hill estimator of � satisfies

see e.g. Theorem 3.2.5 in de Haan and Ferreira (2006).
The significance of (3.12) becomes clear when we let �m = 1 and choose �0 

close to 0, in which case the bias and the variance become the same as those in 
(3.13).

(3.9)
�√

kn(𝛾̂ − 𝛾0),
√
kn(𝛿 − 𝛿0)

�
⇒ N

�
.5Γ−1

m
�,Γ−1

m

�

(3.10)Γm =

⎡
⎢⎢⎣

bm

�2
0

dm

�0
dm

�0
cm

⎤
⎥⎥⎦

and Γ−1
m

=

⎡
⎢⎢⎣

�2
0
cm

bmcm−d
2
m

−
�0dm

bmcm−d
2
m

−
�0dm

bmcm−d
2
m

bm

bmcm−d
2
m

⎤
⎥⎥⎦
,

(3.11)a1 = 2�0
−2�

m∑
i=1

�i,�0
h�0,ib

∗
�0,�,i

, a2 = 2�0
−1�

m∑
i=1

�i,�0
h�
�0,i

b∗
�0,�,i

.

(3.12)
the mean converges to

�

1 − �

�1−�
m

− �
1−�

1

�m − �1
,

the variance converges to
�2
0

�m − �1
.

(3.13)
√
kn(Hn(kn) − �0) ⇒ N

�
�∕(1 − �), �2

0

�
;
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The proof of Theorem  3.1 (including the invertibility of the matrix Γm ) will 
follow from a sequence of lemmas, whose proofs are given in the Appendix. We 
start with the asymptotic behavior of the gradient of the function Ln evaluated at 
the true values of the parameters.

Lemma 3.1  Suppose that 𝛿0 > 0 and let m ≥ 2 be fixed. Then

Next, we address the asymptotic behavior of the Hessian matrix

of the function Ln evaluated at any weakly consistent estimator of the true values.

Lemma 3.2  Suppose that 𝛿0 > 0 and let m ≥ 2 be fixed. If (𝛾̃ , 𝛿)
P
−→(𝛾0, 𝛿0) then 

k−1
n
Hn(𝛾̃ , 𝛿)

P
−→2Γm.

The next lemma proves the weak consistency of our estimator.

Lemma 3.3  Suppose that 𝛿0 > 0 and let m ≥ 2 be fixed. Then the optimization prob-
lem (3.7) has a unique solution (𝛾̂ , 𝛿) with probability increasing to 1 as n → ∞ and

Proof of Theorem 3.1  The Taylor expansion of the gradient of Ln around the true val-
ues of the parameter tells us that

for some (𝛾̄ , 𝛿) between (𝛾̂ , 𝛿) and (�0, �0) . By Lemma 3.3, with probability increas-
ing to 1, the infimum in (3.7) is achieved in the interior of the set Θ , and on that 
event (𝜕1Ln(𝛾̂ , 𝛿), 𝜕2Ln(𝛾̂ , 𝛿))T = (0, 0)T . Therefore, the relation

also holds on an event whose probability increases to 1. Lemma 3.3, also implies 
that (𝛾̄ , 𝛿)

P
−→(𝛾0, 𝛿0) , so the claim of the theorem follows from Lemmas 3.1 and 3.2. 	

� ◻

�
�1Ln(�0, �0)√

kn

,
�2Ln(�0, �0)√

kn

�
⇒ N

�
− �, 4Γm

�
.

(3.14)Hn(� , �) =

[
�2
1
Ln(� , �) �1�2Ln(� , �)

�1�2Ln(� , �) �2
2
Ln(� , �)

]

(𝛾̂ , 𝛿)
P
−→(𝛾0, 𝛿0) .

�
𝜕1Ln(𝛾̂ , 𝛿)√

kn

,
𝜕2Ln(𝛾̂ , 𝛿)√

kn

�T

=

�
𝜕1Ln(𝛾0, 𝛿0)√

kn

,
𝜕2Ln(𝛾0, 𝛿0)√

kn

�T

+
Hn(𝛾̄ , 𝛿)√

kn

(𝛾̂ − 𝛾0, 𝛿 − 𝛿0)
T

−

�
𝜕1Ln(𝛾0, 𝛿0)√

kn

,
𝜕2Ln(𝛾0, 𝛿0)√

kn

�T

=
Hn(𝛾̄ , 𝛿)√

kn

(𝛾̂ − 𝛾0, 𝛿 − 𝛿0)
T
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4 � Estimating 
 and ı in a Pareto sample

In this section we assume that the observations X1,X2,… follow the Pareto distribution 
F̄(x) = x−𝛼 for x ≥ 1 . In this case the exact distribution of the order statistics is avail-
able, so we will not need to rely as much on the asymptotic normality of Hn in Theo-
rem 1. Unlike the algorithm of the previous section, we will now use kn equally spaced 
points �i,n = � + i∕kn , 1 ≤ i ≤ kn , for some 𝜀 > 0.

Let, once again, X(1) > X(2) > ⋯ > X(n) be the order statistics from the sample 
X1,… ,Xn . Then

see e.g. Corollary 1.6.9 of Reiss (1989). Here Si =
∑i

j=1
Ej , with (Ej) iid standard 

exponential random variables. It follows that the HEWE process satisfies

Since E∗
i
=∶ i log(Si+1∕Si), i = 1,… , n , are also iid standard exponential random 

variables, a bit of algebra shows that

Denote now �i,n = Hn(�i,n) − ⌊�i−1,nkn⌋Hn(�i−1,n)∕⌊�i,nkn⌋ , i = 1,… , kn and set 
�0,n = 0 . Since for any i ≥ 2 we have ⌊�i,nkn⌋ − ⌊�i−1,nkn⌋ = 1 , it follows that

We wish to perform an MLE procedure based on the joint density of (�1,n,… , �kn,n) . 
The joint density of (�2,n,… , �kn,n) can be read off from (4.1). Since these random 
variables are independent of �1,n , we will construct a mixed likelihood function 
by combining the exact joint density of (�2,n,… , �kn,n) with the asymptotic normal 
density for �1,n given in (3.2) with m = 1 and �1 = �1,n . We simplify the resulting 
expression by dropping the rounding (replacing ⌊�kn⌋ by �kn and ⌊�i,nkn⌋ by �i,nkn as 
needed). Taking the logarithm of the result multiplied by −2 gives us the following 
function of � and � (a pseudo-log-likelihood function, modulo additive constants not 
depending on � or � ), to be optimized:

(X(1),… ,X(n))
d
=

((
Sn+1

S1

)�

,… ,

(
Sn+1

Sn

)�)
,

�
Hn(�i,n), i = 1,… , kn

� d
=

⎛
⎜⎜⎝

�

⌊�i,nkn⌋
⌊�i,nkn⌋�
i=1

log
�S⌊�kn⌋+⌊�i,nkn⌋+1

S⌊�kn⌋+i

�
, i = 1,… , kn

⎞
⎟⎟⎠
.

�
Hn(�i,n), i = 1,… , kn

� d
=

⎛⎜⎜⎝
�

⌊�i,nkn⌋
⌊�kn⌋+⌊�i,nkn⌋�
i=⌊�kn⌋+1

�
1 −

⌊�kn⌋
i

�
E∗
i
, i = 1,… , kn

⎞⎟⎟⎠
.

(4.1)
�
�i,n, i = 2,… , kn

� d
=

�
�E∗

⌊�kn⌋+⌊�i,nkn⌋
⌊�kn⌋ + ⌊�i,nkn⌋ , i = 2,… , kn

�
.
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As in the previous section, we separate the notation for the unknown true parameters 
�0 and �0 from the optimization variables � and � . Denote �n = �−1

0
�1,n

√
kn − g�0,1

√
kn 

and Zi,n = kn(�0 + �i,n)�i,n∕�0 , and notice that these independent random variables 
satisfy �n

d

⇒N(0, 1∕�1,�0
) and each Zi,n converges to a standard exponential random 

variable. With this notation the function to be minimized becomes

As in the previous section we will assume that the true value of the 
parameters, (�0, �0) , belong to the interior Θo of a known compact set 
Θ = [m1,M1] × [m2,M2] ⊂ (0,∞)2 , and compute our estimator via (3.7), this time 
using Ln in (4.3).

The following is the main result of this section.

Theorem 4.1  Suppose that the sample X1,X2,… is drawn from the Pareto distribu-
tion. Let kn → ∞ be such that kn∕n → 0 . Suppose that 𝛿0 > 0 , that (�0, �0) ∈ Θo , and 
let �i,n = � + i∕kn , 1 ≤ i ≤ kn for some 𝜀 > 0 . Then the optimization problem (3.7) 
has a unique solution (𝛾̂ , 𝛿) with probability increasing to 1 as n → ∞ . This solution 
is a weakly consistent estimator of (�0, �0) , and

where

and Γ1 is as in (3.10) with m = 1 and �1 = � . The matrix Γ∞ is invertible with

(4.2)

Ln(� , �) = 2 log � − log�1,� − 2

kn∑
i=2

log
(� + �i,n

�

)

+
kn�1,�

�2
(�1,n − �g�,1)

2 +
2kn

�

kn∑
i=2

(� + �i,n)�i,n .

(4.3)

Ln(� , �) =2kn log � − log�1,� − 2

kn�
i=2

log(� + �i,n)

+
�1,�

�2

�
�0�n −

√
kn(�g�,1 − �0g�0,1)

�2

+
2�0

�

kn�
i=2

(� + �i,n)Zi,n

�0 + �i,n
.

�√
kn(𝛾̂ − 𝛾0),

√
kn(𝛿 − 𝛿0)

�
⇒N

�
0,Γ−1

∞

�

(4.4)Γ∞ = Γ1 +

⎡⎢⎢⎣
�−2
0

− �−1
0

log
�
1 + 1∕(�0 + �)

�

−�−1
0

log
�
1 + 1∕(�0 + �)

�
(�0 + �)−1(�0 + � + 1)−1

⎤⎥⎥⎦
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where Δ = (b1 + 1)
(
c1 + (�0 + �)−1(�0 + � + 1)−1

)
−
(
d1 − log

(
1 + 1∕(�0 + �)

))2.

The structure of proof of Theorem  4.1 is nearly identical to that of Theo-
rem 3.1, with Lemmas 3.1-3.3 replaced by their counterparts, Lemmas 4.1–4.3. 
Once again, we start with the asymptotic behavior of the gradient of the function 
Ln evaluated at the true values of the parameters.

Lemma 4.1  Suppose 𝛿0 > 0 and �i,n = � + i∕kn , 1 ≤ i ≤ kn . Then

As before, we proceed with the asymptotic behavior of the Hessian matrix (3.14) 
of the function Ln evaluated at a weakly consistent estimator of the true values.

Lemma 4.2  Suppose that 𝛿0 > 0 and let �i,n = � + i∕kn , i = 1,… , kn . If 
(𝛾̃ , 𝛿)

P
−→(𝛾0, 𝛿0) then k−1

n
Hn(𝛾̃ , 𝛿)

P
−→2Γ∞.

The final lemma, once again, proves the weak consistency.

Lemma 4.3  Suppose that 𝛿0 > 0 and let �i,n = � + i∕kn , i = 1,… , kn . Then the opti-
mization problem (3.7) has a unique solution (𝛾̂ , 𝛿) with probability increasing to 1 
as n → ∞ and

Proof of Theorem 4.1  One can use an argument identical to that in the proof of Theo-
rem  3.1, hence only the invertibility of Γ∞ needs to be shown. Since Γ1 is nonnega-
tive definite, we only have to check that the second matrix in Γ∞ has a positive deter-
minant. However, by Jensen’s inequality,

as required. 	�  ◻

Remark 4.1  It is elementary to check that the entry in the upper left corner of the 
matrix Γ−1

∞
 converges, as �0 → 0 , to �2

0
 . This is the same somewhat surprising lack of 

efficiency lost we have seen in Proposition 3.1.

Γ−1
∞

= Δ−1
⎡⎢⎢⎣
�2
0

�
c1 + (�0 + �)−1(�0 + � + 1)−1

�
�0

�
−d1 + log

�
1 + 1∕(�0 + �)

��

�0

�
−d1 log

�
1 + 1∕(�0 + �)

��
b1 + 1

⎤⎥⎥⎦
,

�
�1Ln(�0, �0)√

kn

,
�2Ln(�0, �0)√

kn

�
⇒ N

�
0, 4Γ∞

�
.

(𝛾̂ , 𝛿)
P
−→(𝛾0, 𝛿0).

(𝛿0 + 𝜀)−1(𝛿0 + 𝜀 + 1)−1 −

(
log

(
1 +

1

𝛿0 + 𝜀

))2

= ∫
1+𝜀

𝜀

1

(𝛿0 + x)2
dx −

(
∫

1+𝜀

𝜀

1

𝛿0 + x
dx
)2

> 0 ,
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5 � Simulation results

5.1 � Estimation of ı and 


In this section, we compare the performance of the estimation procedures described 
in Sects. 3 and 4 on simulated data. As a test data set, we generate n = 5000 obser-
vations from a Pareto distribution ( F(x) = 1 − 1∕x, x ≥ 1 ) and from a standard Fré-
chet distribution ( F(x) = exp{−x−1}, x ≥ 0 ). For each distribution, we considered 
three cases corresponding to removing the largest 20, 40, and 100 extremes, respec-
tively, from the data. We chose kn = 200 in all cases so that the resulting parameter 
of interest is then � = 0.1, 0.2, 0.5 corresponding to the three scenarios. In theory, 
the choice of kn does not matter. In practice we have tried a variety of difference 
choices of kn and they generally worked well in terms of estimating the number of 
missing extremes except for the situation when kn is not sufficiently larger than the 
number of missing extremes. Fine tuning the choice of kn in practice is the subject of 
future research. For the estimation method of Sect. 3, we chose m = 10 distinct � ’s 
with �i = i∕10 , i = 1,… , 10 , and minimized the pseudo-likelihood function given in 
(3.3) with respect to � and � . This was repeated 1000 times and the summary statis-
tics (means and standard deviations) are given in Tables 1 (Pareto) and  2 (Fréchet) 
corresponding to the columns labeled 𝛿a and 𝛾a . Notice that both the bias and stand-
ard deviation of 𝛿a increase with �0 where the latter increases at a rate that is roughly 
proportionally to �0.

We also used the estimation procedure of Sect. 4 ( m = kn, � = 1∕200 ) in which 
the objective function in (4.2) was minimized. This procedure was applied to the 
same Pareto and Fréchet generated data as before, even though, in theory, the 
method was introduced only for Pareto samples. The results are also summarized in 
Tables 1 and 2 using the labels 𝛿b and 𝛾b . The bias for 𝛿b is considerably smaller than 

Table 1   Pareto distribution, n = 5000, k
n
= 200

�0 𝛿
a

𝛾
a

𝜌𝛿
a
,𝛾̂
a

𝛿
b

𝛾
b

𝜌𝛿
b
,𝛾̂
b

Mean  (sd) Mean   (sd)   Corr   (asy)   Mean   (sd)   Mean   (sd)  Corr   (asy)  

0.1 0.113 (0.057) 1.015 (0.143) 0.858 (0.829) 0.104 (0.049) 1.006 (0.129) 0.841 (0.796)
0.2 0.222 (0.104) 1.025 (0.187) 0.915 (0.894) 0.207 (0.096) 1.010 (0.177) 0.915 (0.878)
0.5 0.547 (0.285) 1.040 (0.309) 0.965 (0.956) 0.515 (0.254) 1.014 (0.282) 0.962 (0.951)

Table 2   Fréchet distribution, n = 5000, k
n
= 200

�0 𝛿
a

𝛾
a

𝜌𝛿
a
,𝛾̂
a

𝛿
b

𝛾
b

𝜌𝛿
b
,𝛾̂
b

Mean   (sd)  Mean   (sd)  Corr   (asy)   Mean   (sd)  Mean   (sd)  Corr   (asy)  

0.1 0.106 (0.050) 0.992 (0.130) 0.829 (0.829) 0.101 (0.045) 0.988 (0.122) 0.826 (0.796)
0.2 0.208 (0.094) 0.993 (0.176) 0.906 (0.894) 0.196 (0.085) 0.981 (0.165) 0.904 (0.878)
0.5 0.535 (0.287) 1.011 (0.300) 0.961 (0.956) 0.502 (0.252) 0.985 (0.274) 0.961 (0.951)
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that for 𝛿a in most cases (even in the Fréchet samples). The standard deviations were 
also a bit smaller in all cases. On the other hand the biases for 𝛾b were similar to 
those for 𝛾a , but in all cases the standard deviation was a touch smaller. This may not 
be too surprising since these estimates are based on more �i . The asymptotic stand-
ard deviations for the two estimates using m = 10 and m = kn can be computed using 
the formulae in (3.10) and (4.4), respectively, and are all smaller than their finite 
sample counterparts. For example, in the Pareto case for 𝛿a the asymptotic standard 
errors for �0 = 0.1, 0.2, 0.5 were 0.047, 0.083, 0.219, respectively.

It is worth emphasizing again that the two estimation procedures based on m = 10 
and m = kn generally performed well for the Fréchet case even though our theory for 
m = kn is not directly applicable to this case. Interestingly, the biases and standard 
deviations were generally smaller in the Fréchet case in comparison with the Pareto 
case, across the range of parameter values and the two estimation procedures. The 
histograms of the estimates leading to 𝛿a in Table 2 corresponding to �0 = 0.1 and 
0.5 are displayed in Fig. 1. The asymptotic normal density function (in red) is over-
layed on the histograms. These are a very good approximation in the �0 = 0.1 case, 
while there is a slight bias in the � = .05 case. Notice the long right tails of the his-
tograms, which are absent in the normal densities. This is more pronounced in the 
�0 = 0.5 case, which is due in part to having fewer of the most extreme observations 
to estimate tail parameters.

Tables 1 and 2 also contain two additional columns showing correlations (both 
sample and asymptotic based on (3.10) and (4.4)) between 𝛿a and 𝛾a and between 
𝛿b and 𝛾b . There is good agreement between the sample and asymptotic correlations 
and all are large (close to 1). That means that in the two-dimensional optimization 
likelihood procedure moderate errors in estimating �0 lead to significant errors in 
estimating �0 because of the large standard errors of the estimates of �0 . It turns out, 
however, that fixing � , the one-dimensional likelihood optimization procedures for � 
has less variability and is, moreover, fairly robust to a mild misspecification of � . We 
exploit this fact in the sequel.

We repeated the same simulation analysis for two other distributions: the folded 
Cauchy ( � = 1 ) and the standard Lévy distribution ( � = 2 ). The results were quite 
similar to those for the Pareto and Fréchet distributions.

5.2 � Graphical methods for estimating the number of missing extremes

Although our estimation procedure assumes that �0kn of the largest extremes are 
missing, in practice, it might be more likely that missing extremes, if any exist, do 
not occur consecutively from the largest. Our method can still be used to estimate 
the total number of missing extremes. For example if there are 10 missing extremes 
scattered among the largest 50, we can artificially remove the largest 40 extremes 
from the data set. The altered data set can then be viewed as having 50 consecutive 
missing extremes and our estimation procedure for estimating the number of miss-
ing extremes is applicable. If the resulting estimate is near 50, as it should be, then 
since we know that 40 have been artificially removed, we would be able to recover 
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an estimate of the number of original missing extremes, even when non-consecutive. 
We use a graphical procedure to give an idea of how this works.

For a given data set with �0kn missing observations among the largest (�0 + �†)kn , 
we remove for each i = 1, 2,… , kn , the i largest observations (this corresponds 
to � = i∕kn ) from the observed data and produce estimates 𝛿 . Now if the missing 
extremes are all consecutive, i.e., �† = 0 , then the plot of 𝛿 vs. � should look approx-
imately linear for 𝛿 > 0 . On the other hand, if the missing extremes are not con-
secutive, then by removing �†kn extremes from the data, we obtain a data set with 

Fig. 1   Histogram for estimates in Table 2 for the Fréchet simulation and its related asymptotic normal 
density (in red) corresponding to �0 = 0.1 (top) and �0 = 0.5 (bottom), colour figure online
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(�0 + �†)kn consecutive missing extremes. So the plot of 𝛿 vs. � should look approx-
imately linear with slope 1 for 𝛿 > 𝛿† . In particular for 𝛿 < 𝛿† the plot may look 
very nonlinear depending on the configuration of the �0kn missing extremes. Unfor-
tunately, since �† is unknown, it needs to be estimated. The shape of the plots of 𝛿 
vs. � provides a clue on how to estimate �† . Namely, we pick off the threshold for 
which the plot of 𝛿 vs. � becomes approximately linear for � larger than that thresh-
old and the slope of the linear piece should be near 1. This value is then identified 
as �† and the difference 𝛿 − 𝛿† is then an estimate of �0 . Once we have estimated 
�† , if desired, we can remove the largest �†kn observations and re-apply our estima-
tion procedure to provide updated estimates of �0 and �0 . This approach involves a 
reasonable amount of user judgment. Automation of this approach is the subject of 
future research.

We illustrate this procedure with several simulation examples under three differ-
ent scenarios: (i) no missing extremes, (ii) the upper �0kn are missing and (iii) the 
�0kn missing extremes are not consecutive upper extremes. The setup for this simula-
tion is similar to that of Sect. 5.1. Samples of size n = 5000 are generated from both 
Pareto and Fréchet distributions with index � = 1.0 . In all cases, we take kn = 200 
and begin by maximizing the bivariate likelihood to obtain initial estimates of �0 
and, more importantly, �0 . The method of Sect. 3 is used throughout.

(i) no missing extremes. In this case, no extremes have been removed from the 
simulated data so that �0 = 0 . The estimates of �0 and �0 using the method of Sect. 3 
with m = 10 are near 0 and 0.912 in the Pareto case, and 0.001 and 0.904 in the Fré-
chet case. In order to test our estimation procedure, for each �i = i∕kn , i = 1,… , kn , 
we remove the upper i extremes of the simulated data set and then compute 𝛿i , by 
minimizing the objective function (3.6) for fixed values of � = .9, 1.0, 1.1, 1.2 using 
the altered data, i.e., with the appropriate number of extremes removed. (As men-
tioned above, we avoid here maximizing the bivariate likelihood and, at the same 
time, check the robustness of the univariate likelihood maximization to a mild mis-
specification of � .) In Fig. 2 we plot 𝛿 vs. � for each of the the four choices of � for 
the Pareto sample (left panel) and the Fréchet sample (right panel). Notice that each 
of the four curves are approximately linear with intercept 0, strongly suggesting that 
�0 = 0 . The red line (corresponding to the true � = 1 ) has the slope closest to 1.

(ii) the upper �0kn extremes are missing. For this simulation, we take �0 = .25 
so that 50 largest observations are removed from the samples described in (i). 

Fig. 2   Estimated number of missing extremes for samples from Pareto and Fréchet distributions with 
n = 5000 , k

n
= 200 , �0 = 1 , colour figure online
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The estimates of �0 and �0 are 0.145 and 0.769 for the Pareto case and 0.431 and 
1.122 for the Fréchet case. The same style plots as those in Fig. 2 are displayed 
in Fig. 3. The reader should keep in mind that now the horizontal axis for � cor-
responds to �kn extreme observations missing from the observed data (in addition 
to the 50 largest removed from the originally generated data). The plots of 𝛿 vs 
� are again nearly linear for the four values of � , with the red line ( � = 1 ) having 
slope closest to 1, and the corresponding intercept value close to the true �0 = .25.

(iii) the �0kn missing extremes are not consecutive. For this simulation, we 
again take �0 = .25 , but this time the 50 missing extremes are randomly selected 
from among the 100 largest observations. The estimate of �0 is near 0 and the esti-
mate of �0 is 0.774 in the Pareto case, while the estimates of �0 and �0 are 0.004 
and 0.789 in the Fréchet case. For this scenario �† = 50∕200 = .25 so that after 
removing another 50 extremes from the observed data, we have all 100 of the top 
extremes removed. The corresponding plots displayed in Fig. 4 now have a differ-
ent look. They are essentially connected segments with nodes around � just over 
.1 and just over .2 for both the Pareto and Fréchet cases, respectively. Notice that 
locations of these nodes are robust to the choice of � ; each of the 4 curves have 
nodes at approximately the same horizontal location. On the Pareto plot we would 
estimate �† to be around .24, which is near the true �† of .25. The third segment 
of the red curve (corresponding to the true � = 1 ), from .24 to 1, has the slope 
closest to 1. For this curve the value at .24 is .63. This gives us an estimate of �0 
as .63 − .24 = .39 . A similar analysis for the Fréchet case gives us an estimate of 
�† = .22 with corresponding value on the red curve of .54. The estimate of �0 is 

Fig. 3   Estimated number of missing extremes for samples from Pareto and Fréchet distributions with the 
50 largest observations removed. n = 5000 , k

n
= 200 , �0 = 1

Fig. 4   Estimated number of missing extremes and tail index for samples from Pareto and Fréchet distri-
butions, with 50 observations among the largest 100, removed. n = 5000 , k

n
= 200 , �0 = 1 , colour figure 

online
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then .54 − .22 = .32 . So in both cases, we retrieve reasonable (though not perfect) 
estimates of �0 = .25.

6 � Applications

In this section, we apply the methodology described in Sects.  5.1 and 5.2 to sev-
eral real data sets. The goal here is to estimate the shape parameter �0 in addi-
tion to �0 and �† , where �0kn is the number of missing extremes among the largest 
(�† + �0)kn extremes. Of course if our estimate is 𝛿† = 0 , we declare that missing 
extremes, if any, are consecutive. Once again, the estimation method of Sect. 3 is 
used throughout.

6.1 � Danish fire insurance

The Danish Fire Insurance data set is a standard example used in extreme value the-
ory. It is a part of the R-statistics package and consists of 2492 large Danish fire 
insurance claims from January 1, 1980 to December 31, 1990. Using kn = 50 and 
m = 10 , the estimate of �0 is near 0 and the estimate of �0 is 0.565. Next we explore 
the possibility of some missing (not necessarily consecutive) extremes by applying 
the methodology in Sect. 5.2 with 4 values of � based on the initial estimate. The 
resulting plots of 𝛿 vs � for four different values of � are displayed in Fig. 5. All of 
these plots look roughly linear without any obvious nodes, with the intercepts close 
to 0. Hence we estimate 𝛿† = 0 = 𝛿0 . The blue curve appears to have the slope clos-
est to 1, so we estimate 𝛾̂0 to be around .7. This corresponds to an estimate of � of 
1∕.7 = 1.43 . This is in the range of other estimates in the literature for � for this data 
set (see Resnick 1997, 2007).

6.2 � Google+

The second example consists of the in-degrees values from 76,438,791 nodes in a 
snapshot of the Google+ social network that was explored in Zou et al. (2019). They 
concluded that around 150 consecutive largest extremes were missing. Using kn = 500 , 
the methodology of Sect.  3 gives initial estimates of �0 and �0 as .327 and 1.418, 
respectively, so that the number of missing extremes would be .327*500=163. This 

Fig. 5   Estimated number of 
missing extremes for Danish fire 
insurance. n = 2492 , k

n
= 50
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estimate is consistent with the number of missing found in Zou et al. (2019). Unfortu-
nately, our estimate of �0 does not produce reasonable plots as described in Sect. 5.2, 
so upon further experimentation we settled on a different range of � and construct 
plots of 𝛿 by removing the largest observations for four values of � = 3, 3.5, 4, 4.5 . 
The resulting plots are displayed in Fig. 6. Using the methodology of Sect. 5.2, we 
would estimate 𝛿† to be near 0.036, and the red curve appears to have slope closest 
to 1. We therefore estimate �0 to be close to 3.5. The value of the red curve corre-
sponding to 𝛿† is 1.38, so we estimate �0 as 1.38 − .036 = 1.344 . That corresponds 
to 1.344 ∗ 500 = 672 missing extremes among 1.38*500= 690 largest extremes. We 
now remove the additional .036 ∗ 500 = 18 largest values in the data set and re-plot 
in Fig. 7, the curves corresponding to the 4 values of � above. Note that all curves are 
roughly linear and that the red curve ( � = 3.5 ) has the slope closest to 1.

6.3 � Natural and climate disasters in the U.S. from 1980–2019

This data, which can be accessed from http://​ncdc.​noaa.​gov/​billi​ons/, was assembled 
by the National Oceanic and Atmospheric Administration (NOAA). They identify 
258 costly natural and climatic events such as wild fires, hurricanes, flooding, earth-
quakes, droughts, tornadoes, and severe storms during the period from January 1980 
through December 2019. This data set represents the financial costs in billions of 
2019 US dollars associated with these events. More details about the data set can 
be found in Smith and Katz (2013). While one should always exercise caution in 
applying extreme value theory to small data sets, we nevertheless apply our methods 

Fig. 6   Estimated number of 
missing extremes for Google+ 
with k

n
= 500 , with 𝛿† = 0.036 

marked, colour figure online

Fig. 7   Estimated number of 
missing extremes for Google+ 
with the 18 largest observa-
tions removed, k

n
= 500 , colour 

figure online

http://ncdc.noaa.gov/billions/


1 3

Handling missing extremes in tail estimation﻿	

in this case with kn = 30 . The initial estimates of �0 and �0 are .08 and 1.349, respec-
tively. This would lead to an estimate of 0.08 ∗ 30 = 2.4 missing extremes. Since 
there are no truly missing extremes (every disaster event has a recorded value), we 
interpret missingness as being reflective of some extremes being underreported. As 
done previously, we explore the possibility that there are non-consecutive missing 
extremes among of a fraction of the largest observations. To this end, we construct 
plots of 𝛿 by removing largest observations for four values of � = 1.3, 1.4, 1.5, 1.6 . 
The resulting plots are in Fig. 8. As in Sect. 5.2, the estimate 𝛿† is near 0.667, and 
the red curve has the slope closest to 1 in the last part of the plot. We therefore esti-
mate �0 to be near 1.4. The value of the red curve at 𝛿† is 1.193, so we estimate �0 
as 1.193 − 0.667 = 0.526 , corresponding to 16 missing extremes. Now re-estimating 
�0 and �0 for the observed data with the additional 𝛿†kn = 0.667 ∗ 30 = 20 extreme 
observations removed, we obtain 𝛿0 = 1.193 and 𝛾̂0 = 1.718 . So our final estimate 
of �0 would be 1.193 − 0.667 = 0.526 . This corresponds to 0.526 ∗ 30 = 16 miss-
ing observations among the 1.193 ∗ 30 = 36 largest extremes. After having removed 
36 − 16 = 20 largest values from the data set and re-plotting the curves correspond-
ing to the four value of � above, we see the results in Fig. 9. The curves are roughly 
linear, with the red curve having the slope closest to 1.

Appendix

Second‑order regular variation

Second-order regular variation can be thought of as a way to quantify the vanishing 
difference between the left hand side and the right hand side of (1.1). It assumes that 

Fig. 8   Weather and climate 
disasters from 1980 to 2019. 
n = 258 , k

n
= 30 , colour figure 

online

Fig. 9   Weather and climate 
disasters from 1980 to 2019 
with 20 largest observations 
removed. n = 258 , k

n
= 30 , 

colour figure online



	 H. Xu et al.

1 3

there is � ≤ 0 and a positive or negative function A that is regularly varying with 
exponent � and limt→∞ A(t) = 0 , such that for x > 0,

where U(t) = F←(1 − 1∕t) and F← is the generalized inverse of F; see e.g. de Haan 
and Ferreira (2006).

The results of this paper assume that the sequence (kn) used to define our estima-
tors satisfies

for some � ∈ ℝ . Since kn → ∞ , condition (7.2) implies that n∕kn → ∞.
Distributions that satisfy the second-order condition include the Student’s t� , sta-

ble, and Fréchet distributions; see, e.g. Drees (1998) and Drees et al. (2000). In fact, 
any distribution with F̄(x) = c1x

−𝛼 + c2x
−𝛼+𝛼𝜌(1 + o(1)) as x → ∞ , where c1 > 0 , 

c2 ≠ 0 , 𝛼 > 0 and 𝜌 < 0 , satisfies the second-order condition with the indicated val-
ues of � and � (de Haan and Ferreira 2006).

Proofs

In this section we present the proofs of the results in the earlier parts of the paper.

Proof of Lemma 3.1  Since

and

the claim of the lemma follows from (3.4). 	�  ◻

Proof of Lemma 3.2  We proceed as in the proof of Lemma 3.1, except now one needs 
to take second derivatives. For example, elementary calculations give us

(7.1)lim
t→∞

logU(tx) − logU(t) − 𝛾 log x
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=

{
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Using (3.4) and the fact that (𝛾̃ , 𝛿)
P
−→(𝛾0, 𝛿0) we see that

The other terms of the Hessian matrix can be handled in a similar manner. 	�  ◻

Proof of Lemma 3.3  Denote

Since we can write

we have

by (3.4), since we know that, by assumption, � ,�i,� and h�,i are bounded away from 
0 and infinity on Θ.

Clearly, the point (�0, �0) is a minimizer of the function �2L . Furthermore, it is 
elementary to check that the Hessian matrix of �2L at that point is equal to 2�2

0
Γm . 

We will see in the proof of Proposition 3.1 below that the matrix Γm is invertible, 
hence the point (�0, �0) is the unique minimizer of the function �2L , hence also of 
the function L. The uniform convergence in probability of the function Ln∕kn to the 
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function L implies that any minimizer of the former function converges in probabil-
ity to the unique minimizer of the limit function. Hence the statement of the lemma. 	
� ◻

Proof of Proposition 3.1  Introduce functions of x > 0

so that

Therefore we can write

We now show that the matrix Γm is invertible. A direct computation shows that
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(𝜃i−1) > 0 . Further, by the Cauchy-
Schwarz inequality,
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so invertibility of Γm will follow once we show that (7.3) cannot hold. If we put

then Q(0) = 0 and

which implies that

for any x > 0 . Since l�
𝛿0
(x) > 0 , we conclude that the function l�0(x)∕m�0

(x) is strictly 
decreasing on the positive half line, and so (7.3) cannot hold. Hence the matrix Γm is 
invertible.

It is elementary to check that, as �0 → 0,

Substituting this into (3.10) shows convergence of the variance in (3.12).
Similarly, it is elementary to check that, as �0 → 0,

Substituting (7.4) and (7.5) into (3.10) and (3.11) proves convergence of the mean in 
(3.12). 	�  ◻

Proof of Lemma 4.1  By (4.3),
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Since

the claim of the lemma will follow once we show that

where Γ0 is the second matrix in the right hand side of (4.4). By (4.1) we only need 
to prove that

Since the covariance matrix of the random vector in the left hand side of (7.6) con-
verges to Γ0 , only the Lyapunov condition needs to be checked for an application 
of the central limit theorem. The latter can be performed component-wise and is 
elementary when taking, for instance, the 4th powers of the terms. 	�  ◻

Proof of Lemma 4.2  Once again, computing the second derivatives, we obtain, for 
example,
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Furthermore,
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in probability, and the limit is the appropriate entry in the matrix 2Γ∞ . The other 
terms of the Hessian matrix can be handled in a similar manner. 	�  ◻

Proof of Lemma 4.3  We proceed as in the proof of Lemma 3.3. Denote now

where 𝜔̃1,𝛿 is defined as �1,� and g̃𝛿,1 is defined as g�,1 , both with �1 = � . Since we 
can write

it follows that

It is clear that the first three terms in the right hand side vanish as n → ∞ . The same 
is true for the last term in the right hand side because we can bound the latter by
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− L(𝛾 , 𝛿)

����
≤ sup

(𝛾 ,𝛿)∈Θ

����
𝜔1,𝛿

𝛾2
(𝛾g𝛿,1 − 𝛾0g𝛿0,1)

2 −
𝜔̃1,𝛿

𝛾2
(𝛾 g̃𝛿,1 − 𝛾0g̃𝛿0,1)

2
����

+ sup
(𝛾 ,𝛿)∈Θ

������
−
1

kn
log𝜔1,𝛿 +

𝛾2
0
𝜔1,𝛿

𝛾2kn
𝜂2
n
−

2𝛾0𝜔1,𝛿

𝛾2
√
kn

(𝛾g𝛿,1 − 𝛾0g𝛿0,1)𝜂n

������
+ sup

(𝛾 ,𝛿)∈Θ

������
2

kn

kn�
i=2

log(𝛿 + 𝜃i,n) − 2�
1+𝜀

𝜀

log(𝛿 + x) dx

������
+ sup

(𝛾 ,𝛿)∈Θ

������
2𝛾0

𝛾kn

kn�
i=2

(𝛿 + 𝜃i,n)Zi,n

𝛿0 + 𝜃i,n
−

2𝛾0

𝛾 �
1+𝜀

𝜀

𝛿 + x

𝛿0 + x
dx

������
.
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It is clear that both suprema are finite, while by computing once again the means and 
the variances we see that the two differences converge to zero in probability.

Clearly, the point (�0, �0) is a minimizer of the function 𝜔̃1,𝛿𝛾
−2(𝛾 g̃𝛿,0 − 𝛾0g̃𝛿0,1)

2 . 
Let us denote the remaining part of the function L(� , �) by L1(� , �) . To check that the 
point (�0, �0) is a unique minimizer of the latter function, note that for a fixed value 
of � the unique minimizer of L1(⋅, �) is the point

Since, up to �-independent terms,

which vanishes for � = �0 and is strictly positive by Jensen’s inequality for � ≠ �0 , 
we see that � = �0 and � = �(�0 = �0 is the unique minimizer of L1 and, hence, also 
of L.

As before, the uniform convergence of Ln∕kn to L implies now that any minimizer 
of the former function convergence in probability to (�0, �0) . Lemma 4.2 and the fact 
that Γ∞ is invertible mean that, with probability converging to 1, the minimizer of Ln 
is unique. 	�  ◻
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