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Abstract

In some data sets, it may be the case that a portion of the extreme observations is
missing. This might arise in cases where the extreme observations are just not avail-
able or are imprecisely measured. For example, considering human lifetimes, a topic
of recent interest, birth certificates of centenarians may not even exist and many
such individuals may not even be included in the data sets that are currently avail-
able. In essence, one does not have a clear record of the largest lifetimes of human
populations. If there are missing extreme observations, then the assessment of risk
can be severely underestimated resulting in rare events occurring more often than
originally thought. In concrete terms, this may mean a 500 year flood is in fact a
100 (or even a 20) year flood. In this paper, we present methods for estimating the
number of missing extremes together with the tail index associated with tail heavi-
ness of the data. Ignoring one or the other can severely impact the estimation of risk.
Our estimates are based on the HEWE (Hill estimate without extremes) of the tail
index that adjusts for missing extremes. Based on a functional convergence of this
process to a limit process, we consider an asymptotic likelihood-based procedure for
estimating both the number of missing extremes and the tail index. We derive the
asymptotic distribution of the resulting estimates. By artificially removing segments
of extremes in the data, this methodology can be used for assessing the reliability of
the underlying assumptions that are imposed on the data.
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1 Introduction

For modeling heavy-tailed data, the typical operating assumption is that the tails of
the common distribution function F are regularly varying. That is,

F(1x)
F(@)

- X" (1.1)

ast — oo for all x > 0, where @ > 0 and F(¢) = 1 — F(¢) is the survival function. The
tail index @ which governs how heavy the tail is, with smaller @ indicating heavier
tails, is often the key parameter of interest in applications. The ratio in (1.1) corre-
sponds to the risk probability of P(X > tx|X > 1) ~ x~* for large t and x > 1. In fact,
the generalized Pareto distribution (GPD), for heavy-tailed distributions essentially
originates from this equation:

PX>t1+0X>0)~0+x"7 x>0 (1.2)

where y = 1/a > 0is known as the shape parameter.'
The most commonly used estimator of y is the Hill estimator defined by

k
1
H, (k) = z Z log X ;) — 10g X(y1),
P

where Xy > X5 > -+ 2 X, are the order statistics of an independent and identi-
cally distributed (iid) sample X, X,, ..., X, ~ F. See Hill (1975) and Drees et al.
(2000) for further discussion on this estimator. The Hill estimator is weakly consist-
ent for estimating y provided the number of order statistics k = k(n) used in estimat-
ing y satisfies, k - oo and k/n — 0 as n — oo (see for example de Haan and Ferreira
2006.)

The principal goal of this research is to provide estimates of y and the number of
missing extremes in the case when some of the extreme values in the data are miss-
ing. As noted in Zou et al. (2019), if some of the extremes in the sample are missing
and this is ignored in an estimation procedure, then the tails of the distribution will
be underestimated, i.e., they will appear to be lighter than they really are. In terms of
risk calculations such as estimating large quantiles, these would be severely underes-
timated if the estimate of y is too small. With missing extremes, the plot of the Hill
estimate as a function of the number k of upper order statistics tends to be increasing
and much smoother than without the missing values.

In Zou et al. (2019), the in-degree distribution from a snapshot on October 19,
2012 of the social network Google+ was examined. The Google+ data, which was
owned and operated by Google, consisted of 76,438,791 nodes (registered users)
and 1,442,504,499 edges (directed connections). The in-degree of each user is the
number of other users following the user. The degree distributions in natural and

! The general form of the GPD that combines light- and heavy-tailed cases has a similar form, see
de Haan and Ferreira (2006).
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Handling missing extremes in tail estimation

social networks are often heavy-tailed (see Newman 2010). Based on the analysis
in Zou et al. (2019), it was estimated that around 150 extreme in-degree values were
missing, which raises the question of whether these values were excluded from the
Google+ data set provided to the researchers.

In addition to detecting possible manipulation of data, being aware of the pos-
sibility of missing extremes, and developing tools for modeling and analyzing
data in the presence of missing extremes, is important in a variety of fields. This
includes analysis of natural disasters such as earthquakes, forest fires and floods
for which extreme values might be missing due to difficulty in data collection and
in an actuarial science context where claims of extremely large amounts might be
covered by a reinsurance company and not included in the claims total (Embre-
chts et al. 1997; Benchaira et al. 2016). In short, some of the extremes may be
just under-reported.

This research builds on the work in Zou et al. (2019), in which an adjusted Hill
estimator, called the Hill Estimator Without Extremes (HEWE) is defined that allows
for the possibility of missing extreme observations. The HEWE estimator, H,,(-) is
a process on (0, o) that, suitably normalized, converges in law to a Gaussian pro-
cess G(-) whose covariance function depends on the shape parameter y, and on 6, a
parameter related to the number of missing extremes. By approximating the distri-
bution of (H,(6,), ..., H,(8,,)) for m distinct 8 values, by the distribution of the limit-
ing process, i.e., the distribution of (G(6,), ..., G(8,,)), one can use an approximate
likelihood procedure to estimate y and 6. The main contribution of this paper is to
develop rigorous statistical procedures to estimate these parameters and investigate
the properties of the resulting estimators. Only a heuristic estimation procedure was
used in Zou et al. (2019), but the ideas from that paper, in particular, the strong
approximation results are used in the present paper.

We suggest two implementations of this estimation procedure. The first uses a
fixed number of points 6 in which the Hill estimator is evaluated. In the second,
where we assume that the observations come from a Pareto sample, the number of
points increases to infinity with the sample size. For both estimators we show con-
sistency and asymptotic normality. The key to proving our results for the first imple-
mentation of the procedure is the strong approximation of the HEWE process H,,(-)
derived in Zou et al. (2019).

A limitation in our modeling framework is that we assume that a consecutive
block of the largest observations is missing. A more realistic assumption is that the
missing extremes are not necessarily consecutive. A graphical method grounded on
our theory for estimating the number of missing extremes is given in Sect. 5.2. The
basic idea is to artificially remove a number of extremes from the observed data. If
enough extremes have been removed, then we will have a consecutive number of the
largest observations missing so we can apply our method. The graphical procedure
will help us identify the number of extremes to artificially remove from the data in
order to perform this second stage estimation.
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It is important to note that our work is related to existing literature on modifica-
tions of the Hill estimator (including, potentially, removing a part of the upper order
statistics from the sample) in order to improve the performance of the estimator; see
e.g., the recent optimality result established in this direction by Bhattacharya et al.
(2019). The setup and the emphasis in our work are, of course, different. It remains
to be investigated whether it is possible to implement the idea of robustifying the
Hill estimator in the context of missing extremes.

In another direction, our model formulation shares some commonalities with
work (see, e.g., Aban et al. 2006; Beirlant et al. 2016, 2017) in the case the data
come from a class of truncated Pareto distributions. The truncation is modeled via
an unknown threshold parameter. Maximum likelihood estimators are then derived
for the threshold parameter and the tail index. In our case, we do not have a notion
of a threshold. A closely related, but slightly different formulation, considers obser-
vations that are heavy-tailed but subject to right censoring. In this context, the
observed data consists of the minimum of two random variables, the measured vari-
able X and a censoring variable C, which are assumed to be independent. Assum-
ing X has heavy-tails, the goal is to estimate the tail index based on observations
Z; = min{X;, C;} and 6; = Iy ., 1 =1,...,n. See Einmahl et al. (2008); Worms and
Worms (2014) and Stupfler (20 16) for further details. Unlike our setting, one knows
which data values, and hence the number of observations, in the sample that are
incomplete.

The paper is organized as follows. In Sect. 2, we provide some background on the
HEWE process H,(-). In Sect. 3 we describe an approximate asymptotic maximum
likelihood estimation procedure of the parameters y and 6 based on the HEWE pro-
cess, in the case when the Hill estimator is evaluated at a fixed number of points,
and establish its consistency and asymptotic normality. In the case when the obser-
vations are drawn the Pareto distribution, we describe, in Sect. 4, another estima-
tion procedure, not directly based on the HEWE process, when the number of points
increases to infinity. Section 5 illustrates the methodology via a simulation study. In
Sect. 6, we apply our methodology to three data sets: the well-known Danish fire-
insurance claim data, the Google+ data, and a NOAA data set consisting of insur-
ance costs associated with climate and natural disasters in the U.S. The proofs of the
results in Sects. 3 and 4 are contained in the Appendix.

2 Preliminaries

In this section we formulate a framework for estimating the shape parameter and
the number of missing extremes, if any. The setup is somewhat unconventional, so
we will explain it in detail. The starting point is the assumption that the observa-
tions form a part of a larger sample from which a certain number of largest observa-
tions may have been removed. Neither the original sample size nor the number of
removed observations (if any) are assumed to be known, but their difference is the
observed number of the remaining observations. The absolute number of removed
observations may potentially be large, but still a small fraction of the large original
sample size. We now describe how we incorporate these unknowns in our setup.
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Handling missing extremes in tail estimation

We assume that the original (partially unobserved) sample is a sequence
X, ..., X, of iid random variables with distribution function F satisfying the reg-
ular variation condition (1.1). We remind the reader that the overall number 7 is
not known. If X(;) > X5 > -+ > X,,, denotes the order statistics of the original
sample, then a certain number of the largest of them may have been removed.
The number of removed observations (if any) is not known (and deciding whether
or not observations have been removed and, if so, estimating the number of the
removed observations, is of interest to us). We find it convenient to fix the order
of magnitude of the potentially removed part of the sample as a sequence of inte-
gers k, — oo with k,/n — 0. This allows us to describe the unknown number of
the removed number of the upper order statistics as |6k, | for an unknown 6 > 0,
which becomes the object of estimation. Note that we allow 6 = 0, which cor-
responds to the case where no extremes are missing. We view § as a parameter
associated with the number of removed order statistics (in the scale of (k,)) that
we wish to estimate. This leads to a semiparametric model with a two-dimen-
sional parameter (6, @) to be estimated. We would like to emphasize that the
choice of the sequence (k,) is inevitably arbitrary, but, at least in theory, our setup
makes the choice of this sequence less crucial due to the presence of the param-
eter 6: changing k, corresponds to a multiplicative change of 6. A second impor-
tant point is that our chosen notation (k,) is the same as the common notation for
the number of order statistics used in the standard Hill estimator for the expo-
nent of regular variation. However, even though the Hill estimator forms a part
of our estimation procedure, the number of order statistics used there is far more
involved than simply k,, as we will see momentarily.

With the notation having been set up as above, the observed sample size
becomes n — |6k, |, and the observations themselves are simply (an unordered
version of) the collection X |5 |11y, X(sk |42 -+ »X(w- This allows us to define,
following (Zou et al. 2019), a stochastic process we call “the Hill estimator with-
out extremes process”, or the HEWE process, as the functional Hill process based
on |0k, | of the upper order statistics of the observations. In the notation we have
established, the HEWE process is

H,©0) = ﬁ Z}f?J log X5k, 1+ = 108 X5k, 1+ 101, ] +1) € 2 1/, .1
0, 0 < 1/k,.

Note that the same sequence (k,,) is used when parameterizing the number of missing

extremes and in the definition of the HEWE process. It is clear that k,, is not playing

the role of the number of upper order statistics in the Hill estimator. As before, due

to the functional nature of the process, the choice of the sequence (k,) should not

matter, at least in theory.

The HEWE process depends, implicitly, on the unknown value of 6 (which is
the key parameter to be estimated). Occasionally, when we want to emphasize
this dependence, we will use the notation H,(0;6) instead of H,,(6).

In Zou et al. (2019), a strong approximation to H,(-) was established under a
second-order regular variation. This condition, which is given in the Appendix
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(see (7.1)) quantifies the rate of convergence in (1.1). Pareto distributions with
tail index a > 0 (F(x) = x~® for x > 1 and zero otherwise) should be viewed as
satisfying this condition when the function A in the denominator in the left hand
side of (7.1) vanishes. In this case (7.2) is automatically satisfied with 4 = 0.

We now state the key result (Theorem 2.1(b)) in Zou et al. (2019) that is the
basis for our procedures to estimate the shape parameter and the number of the
missing extremes, i.e. y and 6.

Theorem 1 Assume that the second-order condition (7.1) holds. Let k, — oo be such
that k,/n — 0 and that (7.2) holds for some A € R. Then

Vi, (Hn(-;& - m(-)) — b () = 1Gs()

weakly in D(0, 00), where

1, 5-0

0 _{ 1= (8/6)log ((6/5)+1), 5> 0, 2.2)
1 520

bs ,(0) ={ 100500511y 1 N 23
©/8)1-p)p  (5+0)° s

and Gg(-) is a centered Gaussian process with the following representation. Denot-
ing by W the standard Brownian motion,

1[5
Gys(0) = 5/ (1-6/x)dW(x), 6 >0.
5

The process G4(+) has continuous sample paths and a covariance function given by

1 0,10, 5(0,70,)
Lo, A0, — 2510 <1+—1 -)+—1 D | 550,
Cov(G4(0)),G5(0,)) = elelrz 1At g 3 @)
R §=0.
(2.4)

3 An algorithm for estimating y and 6
Throughout this section we fix points 0 < §; < --- < 6,,. According to Theorem 1

the random vector H, = (H,(0,), ---,H,(0,,))’ has, for large n, an approximately
Gaussian likelihood given by
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km k abs \T
LT C——
Qx> (2,41 272 " VK

Ab
. <Hn — &Y — 5’p> } ,
’ z

where X, ; is the covariance matrix of the Gaussian vector (G4(6,), -+, G5(6,,))",
g5 = (g5(0)),...,85(0,)), and bs, = (b;,(6,), ... ’bﬁ,p(em))/’ with gs(-) and by,
given in (2.2) and (2.3), respectively. Since we are interested in estimating y and 6,
while p and A are nuisance parameters, we devised a procedure that estimates the
parameters of interested while assuming that 4 = 0. Note that this eliminates the
nuisance parameter p as well and leads to a significant simplification in calculations.
We will show that the resulting estimators are still consistent and asymptotically
normal even if the true value of A is different from 0. That is, we will maximize the
“pseudo-likelihood” function given by

km k,
s, 5 P { = 5= ga) 2, 5(H, - gm}. (3.2)
m,o

In order to facilitate analysis of the pseudo-likelihood function, we transform the H,,
and g;. Set 0, = 0, and let

T, =H,(0)—(0,_,/0)H,(0,_)), hs; = 85, — (91'—1/9,')85,[—1’ i=1..,m,

with g5, = g5(6,), where T,,; = H,(0,) and hs; = g5,. Put T, =(T,,,...,T,,) and
h; = (hyy, ..., hy,,). After some algebraic manipulations, the -2log(pseudo-likelihood)
corresponding to (3.2) can be written in the form

3.

m

i k, -
L,(y.8) := C+2mlogy — Y logw,; + % Y 05T —vhs),  (33)
j i=1

i=1

where

B 1/(1/9,.—9,._1/93) 5=0
Y7 / (v(o,./a) —(0,_,/6,)(6,_, /5)) 5>0

w

2log(l +x) 1
x2 x(x+1)

v(x) =i

and C is a constant independent of y and &; see (11) in Zou et al. (2019).

We now separate the notation for the unknown true parameters y, and 6, in the
observed sample from the optimization variables which we continue denoting by
yand 6. Let Y, =(Y,,....Y,,) = yo‘lTn\/k_n —h;, \/k_n This random vector con-
verges weakly to a Gaussian vector with independent components such that, in the
limit,
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the ith component is N ( l/lb; i ,1 /a’iﬁo) , (3.4)
where
N 0;_1 .
b§ i =b; ,(0) — 71750,,;(9[—1)’ i=1,..,m; (3.5)

see Zou et al. (2019). Then the -2log(pseudo-likelihood) becomes

L,(y,6) =C+2mlogy — z log , 5
i=1

1 m
_22 ,5<}’0 ni (yhéz y()hls t)\/_>

Since C is independent of y and &, we ignore this term and optimize the function

L,(y.8) =2mlogy — Y logw,;
i=1

i,6< \/_(Yhaz oha ¥ )2-

(3.6)

Ms

+ L
y? 4

I
—

The main result of this section, Theorem 3.1 below, proves the consistency and the
asymptotic normality of the estimators obtained by minimizing the function L,. It
applies only in the case when ¢, > 0, i.e. when some extremes are missing. One
can interpret the case when no extremes are missing as corresponding to a small but
positive value of §,. We will assume that the true value of the parameters, (. o),
belong to the interior @° of a known compact set ® = [m;, M,] X [m,, M,] C (0, o0)?,
and compute our estimator via

(7,0) = arg [in L,(y.6). (3.7)

Note that the observations only enter L,(y, 6) through the vector T, so that the opti-
mization in (3.7) does not depend explicitly on y, and &,,. Rather these true param-
eters only play a role in deriving the limiting properties of L,(y, 6).

The following quantities will be used in the statement of our main results. Let

U P dy = Y o s o (38)
i=1

o>
3
Il
M
RS
T Mg

Theorem 3.1 Assume that the second-order condition (7.1) holds. Let k, — oo be
such that k,/n — 0 and that (7.2) holds for some A € R. Suppose that 6, > 0, that
(79-6p) € ©°, and let m > 2 be fixed. Then the optimization problem (3.7) has a
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unique solution (7, 8) with probability increasing to 1 as n — oo. This solution is a
weakly consistent estimator of (y,, 6,), and

(x/k—n@ =700 V(6 = 50>) = N(ﬁr;,la, F,?) (3.9)

as n — oo, where in the notation of (3.8),

by dy Y5Cm Yolm
r, = Cﬁ :) and I != icy—ojfn - bmm“m‘dﬁ« , (3.10)
o " byCp—d% by, —d2
anda = (a,,a,)" with
m m
a; =290 Y w5 ks by Lo @ =207 A Y s s By (B

i=1 i=1

A part of the claim of Theorem 3.1 is the non-singularity of the matrix I",,,
which we will establish below. It is interesting to compare the performance of the
estimator 7 of the shape parameter given in the theorem with the limiting variance
of the plain Hill estimator of the shape parameter. Of course, the Hill estimator
is only consistent when there are no missing extremes, i.e. when 6, = 0, whereas
Theorem 3.1 only applies in the case 6, > 0. However, the comparison is instruc-
tive if one takes the limiting distribution in Theorem 3.1 and considers the situa-
tion when 6, — 0. It would not be surprising to expect a loss in efficiency, in the
sense that having to estimate both y and 6 may lead to higher bias and/or higher
variance of the estimator of the shape parameter from Theorem 3.1 in compari-
son with the Hill estimator which does not need to estimate 6. However, it turns
that there is no loss of efficiency, after all. We have the following proposition.

Proposition 3.1 Suppose that 6, > 0 and let m > 2 be fixed. Then the matrix I',, is
invertible and, as 6, | 0, the parameters of the Gaussian limit of \/k_,,(f/ — ¥o) satisfy

i~ —9!7"
m 1
the mean converges to _
1-p 0,-0,
; (3.12)
the variance converges to 0 .
gm - 01

Recall that under the assumptions(7.1) and (7.2) the Hill estimator of y satisfies

Vi (H, (k) = 79) = N(A/(1 = p).72) ; (3.13)

see e.g. Theorem 3.2.5 in de Haan and Ferreira (2006).

The significance of (3.12) becomes clear when we let 6,, = 1 and choose 6,
close to 0, in which case the bias and the variance become the same as those in
(3.13).
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The proof of Theorem 3.1 (including the invertibility of the matrix I',,) will
follow from a sequence of lemmas, whose proofs are given in the Appendix. We
start with the asymptotic behavior of the gradient of the function L, evaluated at
the true values of the parameters.

Lemma 3.1 Suppose that 6, > 0 and let m > 2 be fixed. Then

0L, (70> 39) 0oL, (10, 6
< 1La(vo o)’ L L (vo 0)> =>N<—a,4Fm>.
k, vk,

Next, we address the asymptotic behavior of the Hessian matrix

PLy(7,6) 0,05L,(1,5)
— 15n 1Y2%n
Ty, 8) = [alasz 8) 0L,(r.6)

(3.14)

of the function L, evaluated at any weakly consistent estimator of the true values.

P
Lemma 3.2 Juppose that 6, >0 and let m > 2 be fixed. If (7,6)—(yy,0y) then
k="M, (7,8)—2T,,.

The next lemma proves the weak consistency of our estimator.

Lemma 3.3 Suppose that 6, > 0 and let m > 2 be fixed. Then the optimization prob-
lem (3.7) has a unique solution (¥, 0) with probability increasing to 1 as n — oo and
AP
(ys 5).)(3/09 60) .

Proof of Theorem 3.1 The Taylor expansion of the gradient of L, around the true val-
ues of the parameter tells us that

<01L,,<f,3> aQLn@,S))T:(aILn(yo,éo) aszao))T
Hn(?vg) A &
(}/—J/O’(S_(SO)T

\/k_n

for some (7, 5) between (7, 6) and (79, 69)- By Lemma 3.3, with probability increas-
ing to 1, the infimum in (3.7) is achieved in the interior of the set ®, and on that
event (0,L,(7,6),0,L,(7,6))" = (0,0)7. Therefore, the relation

_<01Ln(7’0a50) aan(70’50)>T _ H,(7,6)

also holds on an event whose probability increases to 1. Lemma 3.3, also implies

+

(G = 70,6 = 89"

_ P
that (7, 6)— (¥, 6y), so the claim of the theorem follows from Lemmas 3.1 and 3.2.
O
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4 Estimating Y and § in a Pareto sample

In this section we assume that the observations X, X,, ... follow the Pareto distribution
F(x) = x~ for x > 1. In this case the exact distribution of the order statistics is avail-
able, so we will not need to rely as much on the asymptotic normality of H, in Theo-
rem 1. Unlike the algorithm of the previous section, we will now use k, equally spaced
points 6, = € +i/k,, 1 <i <k, for some e > 0.

Let, once again, X, > X5, > -+ > X, be the order statistics from the sample

Xy, ...,X,. Then
d Sn+1 ! Sn+l !
Xiqys-ees X y) = — ] .| = )
() (s

see e.g. Corollary 1.6.9 of Reiss (1989). Here §; = Z;zl Ej, with (Ej) iid standard

exponential random variables. It follows that the HEWE process satisfies

&
y % ”Jl <Stak,,J+wmk,,J+1>.
), 1

og
Lei,nkn.] i=1 S[5knJ+i

(H, (0,0, i=1....k,) = =1,k

n |

Since El* =:ilog(S,,,/S;)). i=1,...,n, are also iid standard exponential random
variables, a bit of algebra shows that

) L6k, +10,,k, ) 6k |
(Hy0,,), i=1,....k,) = Oyk > <1— n >E i=1,.. k|
L in nl i=| 6k, | +1

l

Denote now ¢&;, = H,(0;,) — 0;_,,k,|H,0,_;,)/10;,k,], i=1,....k, and set

6y, = 0. Since for any i > 2 we have |, ,k, | — |0,_; ,k,] = 1, it follows that

n

(5 i=2 k ) 4 yEt5k71J+[9i,rzknJ i=2 k A1
in° - g e Ry ) — LéknJ + Lei’nk”J’ - DR R . ( . )

We wish to perform an MLE procedure based on the joint density of (&, ,, ..., & ,).
The joint density of (&, ,,, ..., & ,) can be read off from (4.1). Since these random
variables are independent of ff’n, we will construct a mixed likelihood function
by combining the exact joint density of (&, ..., &, ,) with the asymptotic normal
density for &, given in (3.2) with m =1 and 0, =”01’n. We simplify the resulting
expression by dropping the rounding (replacing |6k, | by 6k, and |6, .k, | by 0, ,k, as
needed). Taking the logarithm of the result multiplied by —2 gives us the following
function of y and 6 (a pseudo-log-likelihood function, modulo additive constants not

depending on y or §), to be optimized:
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k

2 5+,
L,(r.8) =2logy ~ loga, ; 2 Y log (—= )
, L %
i=2
. o k 4.2)
nwl,é n -
+ 7(§l,n - yg&,l)z + v 2(6 + ei,n)gi,n .
i=2

As in the previous section, we separate the notation for the unknown true parameters
Yo and &, from the optimization variables y and 6. Denote n, = y,; lg 1n \/k_n — 85,1 \/k_n
and Z;, =k, (6, +0,,)&;,,/ 7o, and notice that these independent random variables
satisfy n,=N(0, 1 /o, 5 ) and each Z;,, converges to a standard exponential random
variable. With this notation the function to be minimized becomes

kn
L,(y,8) =2k,logy —logw, 5 —2 )" log(6 +0,,)
i=2
W15

2
+ 7(7’0% = Vk,(rgs1 = 70850,1)) (4.3)
2o & (6+6,,)Z;,
Y i=D 50 + ei,n .
As in the previous section we will assume that the true value of the
parameters, (y,y,dy), belong to the interior ®° of a known compact set
O =[m;,M,]Xx[m,,M,] C (0, )%, and compute our estimator via (3.7), this time

using L, in (4.3).
The following is the main result of this section.

Theorem 4.1 Suppose that the sample X,,X,, ... is drawn from the Pareto distribu-
tion. Let k,, — oo be such that k, /n — 0. Suppose that 6, > 0, that (y,, 6,) € ©°, and
let 9, =€+i/k, 1<i<k, for some € > 0. Then the optimization problem (3.7)
has a unique solution (7, 6) with probability increasing to 1 as n — 0. This solution
is a weakly consistent estimator of (y,, &), and

<\/k_n(? —70): V(6 - 60)> :»N(o, F;,‘)

where

v —yo‘llog<1 + 1/(60+e)>

I =F1+ 1 ) _
- 10g<1+1/(50+£)> 6o +€) 6y +e+1)

4.4)

and Ty is as in (3.10) withm = 1 and 0, = €. The matrix I _ is invertible with
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|7 e+ G+ o716y + e+ 1)) y()(—dl +log(1 +1/(6, + e)))

r'=a
o=y log(1+1/5, + &) ) by +1

) s

where A = (by + 1)(c; + (8g + &)1y + £ + 1)7!) — (d; —log (1 + 1/(5, +£)))2.

The structure of proof of Theorem 4.1 is nearly identical to that of Theo-
rem 3.1, with Lemmas 3.1-3.3 replaced by their counterparts, Lemmas 4.1-4.3.
Once again, we start with the asymptotic behavior of the gradient of the function
L, evaluated at the true values of the parameters.

Lemma4.1 Suppose 6, > 0and 6, = € +i/k,,1 <i <k,. Then
O,L,(r0:89) 5L, (¢, 6
< 1L,(vo o)’ L L (ro 0)) :>N<0,4Foo>.
VE vk

As before, we proceed with the asymptotic behavior of the Hessian matrix (3.14)
of the function L, evaluated at a weakly consistent estimator of the true values.

Lemma 4.2 Suppose that 6)>0 and let 0;,=¢e+i/k, i=1,..k. If
(7,0)—=(ro, 6y) then k' M., (7, 6)—2T .

The final lemma, once again, proves the weak consistency.

Lemma 4.3 Suppose that 6, > 0 and let 0,, = e +i/k,,i=1,...,k,. Then the opti-
mization problem (3.7) has a unique solution (¥, 6) with probability increasing to 1
asn — oo and

. P
(7.0)— (¥, 60)-

Proof of Theorem 4.1 One can use an argument identical to that in the proof of Theo-
rem 3.1, hence only the invertibility of I', needs to be shown. Since I'; is nonnega-
tive definite, we only have to check that the second matrix in I', has a positive deter-
minant. However, by Jensen’s inequality,

2
(50+£)_1(60+£+1)_1—<log(1+ L ))

oyt e

I+e 1 I+¢ 1 2
= — —( d> >0,
/5 6y + 12 / Gyt x

as required. a

Remark 4.1 1t is elementary to check that the entry in the upper left corner of the
matrix F;l converges, as 6, — 0, to yg. This is the same somewhat surprising lack of
efficiency lost we have seen in Proposition 3.1.
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Table 1 Pareto distribution, n = 5000, k,, = 200

8o <§a Ya Ps 4. 5; s Ps, 1,
Mean (sd) Mean (sd) Corr (asy) Mean (sd) Mean (sd) Corr (asy)

0.1 0.113(0.057) 1.015(0.143) 0.858 (0.829) 0.104 (0.049)  1.006 (0.129)  0.841 (0.796)
0.2 0.222(0.104) 1.025(0.187) 0.915(0.894) 0.207 (0.096) 1.010(0.177)  0.915 (0.878)
0.5 0.547(0.285) 1.040(0.309) 0.965 (0.956) 0.515(0.254) 1.014 (0.282) 0.962 (0.951)

Table 2 Fréchet distribution, n = 5000, k,, = 200

S 5, Ya P57, A 2 P55,
Mean (sd) Mean (sd) Corr (asy) Mean (sd) Mean (sd) Corr (asy)

0.1  0.106 (0.050) 0.992 (0.130) 0.829 (0.829) 0.101 (0.045) 0.988 (0.122)  0.826 (0.796)
0.2 0.208 (0.094) 0.993 (0.176)  0.906 (0.894)  0.196 (0.085) 0.981 (0.165)  0.904 (0.878)
0.5 0.535(0.287) 1.011(0.300) 0.961 (0.956) 0.502 (0.252) 0.985(0.274) 0.961 (0.951)

5 Simulation results
5.1 Estimation of 6 and ¥y

In this section, we compare the performance of the estimation procedures described
in Sects. 3 and 4 on simulated data. As a test data set, we generate n = 5000 obser-
vations from a Pareto distribution (F(x) =1 —1/x, x > 1) and from a standard Fré-
chet distribution (F(x) = exp{—x~'},x > 0). For each distribution, we considered
three cases corresponding to removing the largest 20, 40, and 100 extremes, respec-
tively, from the data. We chose k, = 200 in all cases so that the resulting parameter
of interest is then 6 = 0.1,0.2,0.5 corresponding to the three scenarios. In theory,
the choice of k, does not matter. In practice we have tried a variety of difference
choices of k, and they generally worked well in terms of estimating the number of
missing extremes except for the situation when £, is not sufficiently larger than the
number of missing extremes. Fine tuning the choice of k, in practice is the subject of
future research. For the estimation method of Sect. 3, we chose m = 10 distinct 8’s
with 0, =i/10,i =1, ..., 10, and minimized the pseudo-likelihood function given in
(3.3) with respect to 6 and y. This was repeated 1000 times and the summary statis-
tics (means and standard deviations) are given in Tables 1 (Pareto) and 2 (Fréchet)
corresponding to the columns labeled &, and 7,. Notice that both the bias and stand-
ard deviation of §, increase with 6, where the latter increases at a rate that is roughly
proportionally to &,

We also used the estimation procedure of Sect. 4 (m = k,, € = 1/200) in which
the objective function in (4.2) was minimized. This procedure was applied to the
same Pareto and Fréchet generated data as before, even though, in theory, the
method was introduced only for Pareto samples. The results are also summarized in
Tables 1 and 2 using the labels 4, and 7,. The bias for &, is considerably smaller than
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that for §, in most cases (even in the Fréchet samples). The standard deviations were
also a bit smaller in all cases. On the other hand the biases for y;, were similar to
those for 7, but in all cases the standard deviation was a touch smaller. This may not
be too surprising since these estimates are based on more 6;. The asymptotic stand-
ard deviations for the two estimates using m = 10 and m = k, can be computed using
the formulae in (3.10) and (4.4), respectively, and are all smaller than their finite
sample counterparts. For example, in the Pareto case for 5:1 the asymptotic standard
errors for 6, = 0.1,0.2,0.5 were 0.047, 0.083, 0.219, respectively.

It is worth emphasizing again that the two estimation procedures based on m = 10
and m = k,, generally performed well for the Fréchet case even though our theory for
m = k,, is not directly applicable to this case. Interestingly, the biases and standard
deviations were generally smaller in the Fréchet case in comparison with the Pareto
case, across the range of parameter values and the two estimation procedures. The
histograms of the estimates leading to 5a in Table 2 corresponding to 6, = 0.1 and
0.5 are displayed in Fig. 1. The asymptotic normal density function (in red) is over-
layed on the histograms. These are a very good approximation in the ¢, = 0.1 case,
while there is a slight bias in the § = .05 case. Notice the long right tails of the his-
tograms, which are absent in the normal densities. This is more pronounced in the
6y = 0.5 case, which is due in part to having fewer of the most extreme observations
to estimate tail parameters.

Tables 1 and 2 also contain two additional columns showing correlations (both
sample and asymptotic based on (3.10) and (4.4)) between 5; and y, and between
5b and y,,. There is good agreement between the sample and asymptotic correlations
and all are large (close to 1). That means that in the two-dimensional optimization
likelihood procedure moderate errors in estimating y, lead to significant errors in
estimating 6, because of the large standard errors of the estimates of §,. It turns out,
however, that fixing y, the one-dimensional likelihood optimization procedures for 6
has less variability and is, moreover, fairly robust to a mild misspecification of y. We
exploit this fact in the sequel.

We repeated the same simulation analysis for two other distributions: the folded
Cauchy (y = 1) and the standard Lévy distribution (y = 2). The results were quite
similar to those for the Pareto and Fréchet distributions.

5.2 Graphical methods for estimating the number of missing extremes

Although our estimation procedure assumes that §yk, of the largest extremes are
missing, in practice, it might be more likely that missing extremes, if any exist, do
not occur consecutively from the largest. Our method can still be used to estimate
the total number of missing extremes. For example if there are 10 missing extremes
scattered among the largest 50, we can artificially remove the largest 40 extremes
from the data set. The altered data set can then be viewed as having 50 consecutive
missing extremes and our estimation procedure for estimating the number of miss-
ing extremes is applicable. If the resulting estimate is near 50, as it should be, then
since we know that 40 have been artificially removed, we would be able to recover

@ Springer



H. Xu et al.

[ (] [
W B /N
o _z
g _
> | > 3 | I
C [e] C A
@ o - @
3 — 3
o o
o 8 -
L [T
o _|
o _| 0
w
S o
[ | I | | | | T | | 1
00 01 02 03 04 08 10 12 14 16 18
A A
Oa Ta
[en]
g _
) 8 )
(=) _
g _
o™~
2 ||
o ©
=3
z 1 z I
C C
g 5 ( k g g |
o o - o ~
o - o
L L
= 5 7
o Jl o
[ | | T | | | 1 [ | | | | | |
0.0 1.0 2.0 30 05 10 15 20 25 30 35
Q A
Oa Ta

Fig. 1 Histogram for estimates in Table 2 for the Fréchet simulation and its related asymptotic normal
density (in red) corresponding to 6, = 0.1 (top) and §, = 0.5 (bottom), colour figure online

an estimate of the number of original missing extremes, even when non-consecutive.
We use a graphical procedure to give an idea of how this works.

For a given data set with §,k, missing observations among the largest (5, + 6" )k,,,
we remove for each i =1,2,...,k,, the i largest observations (this corresponds
to 6 = i/k,) from the observed data and produce estimates 5. Now if the missing
extremes are all consecutive, i.e., 57 = 0, then the plot of 5 vs. & should look approx-
imately linear for 6 > 0. On the other hand, if the missing extremes are not con-
secutive, then by removing §'k, extremes from the data, we obtain a data set with
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Fig.2 Estimated number of missing extremes for samples from Pareto and Fréchet distributions with
n = 5000, k,, = 200, y, = 1, colour figure online

(8 + 6"k, consecutive missing extremes. So the plot of 5 vs. 6 should look approx-
imately linear with slope 1 for 6 > §7. In particular for § < &' the plot may look
very nonlinear depending on the configuration of the 6,k, missing extremes. Unfor-
tunately, since 6 is unknown, it needs to be estimated. The shape of the plots of &
vs. & provides a clue on how to estimate 6. Namely, we pick off the threshold for
which the plot of 5 vs. § becomes approximately linear for & larger than that thresh-
old and the slope of the linear piece should be near 1. This value is then identified
as 6" and the difference 6 — &' is then an estimate of &,. Once we have estimated
s%, if desired, we can remove the largest 57k, observations and re-apply our estima-
tion procedure to provide updated estimates of o, and y,. This approach involves a
reasonable amount of user judgment. Automation of this approach is the subject of
future research.

We illustrate this procedure with several simulation examples under three differ-
ent scenarios: (i) no missing extremes, (ii) the upper oyk, are missing and (iii) the
oyk, missing extremes are not consecutive upper extremes. The setup for this simula-
tion is similar to that of Sect. 5.1. Samples of size n = 5000 are generated from both
Pareto and Fréchet distributions with index a = 1.0. In all cases, we take k, = 200
and begin by maximizing the bivariate likelithood to obtain initial estimates of &,
and, more importantly, y,. The method of Sect. 3 is used throughout.

(i) no missing extremes. In this case, no extremes have been removed from the
simulated data so that §, = 0. The estimates of 6, and y,, using the method of Sect. 3
with m = 10 are near 0 and 0.912 in the Pareto case, and 0.001 and 0.904 in the Fré-
chet case. In order to test our estimation procedure, for each 6, = i/k,, i =1, ... ,k,,
we remove the upper i extremes of the simulated data set and then compute 55, by
minimizing the objective function (3.6) for fixed values of y =.9,1.0, 1.1, 1.2 using
the altered data, i.e., with the appropriate number of extremes removed. (As men-
tioned above, we avoid here maximizing the bivariate likelihood and, at the same
time, check the robustness of the univariate likelihood maximization to a mild mis-
specification of y.) In Fig. 2 we plot 6 vs. & for each of the the four choices of y for
the Pareto sample (left panel) and the Fréchet sample (right panel). Notice that each
of the four curves are approximately linear with intercept 0, strongly suggesting that
6y = 0. The red line (corresponding to the true y = 1) has the slope closest to 1.

(ii) the upper 6,k, extremes are missing. For this simulation, we take 6, = .25
so that 50 largest observations are removed from the samples described in (i).
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Fig.3 Estimated number of missing extremes for samples from Pareto and Fréchet distributions with the
50 largest observations removed. n = 5000, k,, = 200, y, = 1
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Fig.4 Estimated number of missing extremes and tail index for samples from Pareto and Fréchet distri-
butions, with 50 observations among the largest 100, removed. n = 5000, k, = 200, y, = 1, colour figure
online

The estimates of 6, and y, are 0.145 and 0.769 for the Pareto case and 0.431 and
1.122 for the Fréchet case. The same style plots as those in Fig. 2 are displayed
in Fig. 3. The reader should keep in mind that now the horizontal axis for 6 cor-
responds to 6k, extreme observations missing from the observed data (in addition
to the 50 largest removed from the originally generated data). The plots of & vs
o0 are again nearly linear for the four values of y, with the red line (y = 1) having
slope closest to 1, and the corresponding intercept value close to the true 5, = .25.

(iii) the 5)k, missing extremes are not consecutive. For this simulation, we
again take 6, = .25, but this time the 50 missing extremes are randomly selected
from among the 100 largest observations. The estimate of §, is near 0 and the esti-
mate of y, is 0.774 in the Pareto case, while the estimates of 6, and y, are 0.004
and 0.789 in the Fréchet case. For this scenario 6" = 50/200 = .25 so that after
removing another 50 extremes from the observed data, we have all 100 of the top
extremes removed. The corresponding plots displayed in Fig. 4 now have a differ-
ent look. They are essentially connected segments with nodes around § just over
.1 and just over .2 for both the Pareto and Fréchet cases, respectively. Notice that
locations of these nodes are robust to the choice of y; each of the 4 curves have
nodes at approximately the same horizontal location. On the Pareto plot we would
estimate 6 to be around .24, which is near the true 6" of .25. The third segment
of the red curve (corresponding to the true y = 1), from .24 to 1, has the slope
closest to 1. For this curve the value at .24 is .63. This gives us an estimate of o
as .63 — .24 = 39. A similar analysis for the Fréchet case gives us an estimate of
6" = .22 with corresponding value on the red curve of .54. The estimate of &, is
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Fig.5 Estimated number of Danish Fire Insurance
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then .54 — .22 = .32. So in both cases, we retrieve reasonable (though not perfect)
estimates of 6, = .25.

6 Applications

In this section, we apply the methodology described in Sects. 5.1 and 5.2 to sev-
eral real data sets. The goal here is to estimate the shape parameter y, in addi-
tion to &, and 87, where §yk,, is the number of missing extremes among the largest
(8" + 6y)k,, extremes. Of course if our estimate is 67 = 0, we declare that missing
extremes, if any, are consecutive. Once again, the estimation method of Sect. 3 is
used throughout.

6.1 Danish fire insurance

The Danish Fire Insurance data set is a standard example used in extreme value the-
ory. It is a part of the R-statistics package and consists of 2492 large Danish fire
insurance claims from January 1, 1980 to December 31, 1990. Using k, = 50 and
m = 10, the estimate of ¢ is near 0 and the estimate of y,, is 0.565. Next we explore
the possibility of some missing (not necessarily consecutive) extremes by applying
the methodology in Sect. 5.2 with 4 values of y based on the initial estimate. The
resulting plots of 6 vs & for four different values of y are displayed in Fig. 5. All of
these plots look roughly linear without any obvious nodes, with the intercepts close
to 0. Hence we estimate " = 0 = 30. The blue curve appears to have the slope clos-
est to 1, so we estimate 7, to be around .7. This corresponds to an estimate of a of
1/.7 = 1.43. This is in the range of other estimates in the literature for « for this data
set (see Resnick 1997, 2007).

6.2 Google+

The second example consists of the in-degrees values from 76,438,791 nodes in a
snapshot of the Google+ social network that was explored in Zou et al. (2019). They
concluded that around 150 consecutive largest extremes were missing. Using k,, = 500,
the methodology of Sect. 3 gives initial estimates of &, and y, as .327 and 1.418,
respectively, so that the number of missing extremes would be .327#500=163. This
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estimate is consistent with the number of missing found in Zou et al. (2019). Unfortu-
nately, our estimate of y, does not produce reasonable plots as described in Sect. 5.2,
so upon further experimentation we settled on a different range of y and construct
plots of 6 by removing the largest observations for four values of y = 3,3.5,4,4.5.
The resulting plots are displayed in Fig. 6. Using the methodology of Sect. 5.2, we
would estimate 5t to be near 0.036, and the red curve appears to have slope closest
to 1. We therefore estimate y, to be close to 3.5. The value of the red curve corre-
sponding to 67 is 1.38, so we estimate §, as 1.38 — .036 = 1.344. That corresponds
to 1.344 % 500 = 672 missing extremes among 1.38%500= 690 largest extremes. We
now remove the additional .036 * 500 = 18 largest values in the data set and re-plot
in Fig. 7, the curves corresponding to the 4 values of y above. Note that all curves are
roughly linear and that the red curve (y = 3.5) has the slope closest to 1.

6.3 Natural and climate disasters in the U.S. from 1980-2019

This data, which can be accessed from http://ncdc.noaa.gov/billions/, was assembled
by the National Oceanic and Atmospheric Administration (NOAA). They identify
258 costly natural and climatic events such as wild fires, hurricanes, flooding, earth-
quakes, droughts, tornadoes, and severe storms during the period from January 1980
through December 2019. This data set represents the financial costs in billions of
2019 US dollars associated with these events. More details about the data set can
be found in Smith and Katz (2013). While one should always exercise caution in
applying extreme value theory to small data sets, we nevertheless apply our methods
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Fig.8 Weather and climate Natural and Climate Disasters in the U.S. from 1980-2019
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in this case with k,, = 30. The initial estimates of 6, and y,, are .08 and 1.349, respec-
tively. This would lead to an estimate of 0.08 * 30 = 2.4 missing extremes. Since
there are no truly missing extremes (every disaster event has a recorded value), we
interpret missingness as being reflective of some extremes being underreported. As
done previously, we explore the possibility that there are non-consecutive missing
extremes among of a fraction of the largest observations. To this end, we construct
plots of & by removing largest observations for four values of y=13,14,15,16.
The resulting plots are in Fig. 8. As in Sect. 5.2, the estimate &' is near 0.667, and
the red curve has the slope closest to 1 in the last part of the plot. We therefore esti-
mate ¥, to be near 1.4. The value of the red curve at 67 is 1.193, so we estimate &
as 1.193 — 0.667 = 0.526, corresponding to 16 missing extremes. Now re-estimating
8, and y, for the observed data with the additional 5k, = 0.667 * 30 = 20 extreme
observations removed, we obtain 6, = 1.193 and 7, = 1.718. So our final estimate
of 6, would be 1.193 — 0.667 = 0.526. This corresponds to 0.526 * 30 = 16 miss-
ing observations among the 1.193 % 30 = 36 largest extremes. After having removed
36 — 16 = 20 largest values from the data set and re-plotting the curves correspond-
ing to the four value of y above, we see the results in Fig. 9. The curves are roughly
linear, with the red curve having the slope closest to 1.

Appendix
Second-order regular variation

Second-order regular variation can be thought of as a way to quantify the vanishing
difference between the left hand side and the right hand side of (1.1). It assumes that
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there is p < 0 and a positive or negative function A that is regularly varying with
exponent p and lim A(t) = 0, such that for x > 0,

1—00

log U(tx) — log U(¢) — y log x 21, <0,
m = P
1—00 A(@)

.1
logx p=0, 7.1

where U(t) = F~(1 — 1/t) and F* is the generalized inverse of F; see e.g. de Haan
and Ferreira (2006).

The results of this paper assume that the sequence (k,,) used to define our estima-
tors satisfies

lim v/k,A(m/k,) = A (7.2)

for some A € R. Since k, — oo, condition (7.2) implies that n/k, — oo.

Distributions that satisfy the second-order condition include the Student’s ¢,, sta-
ble, and Fréchet distributions; see, e.g. Drees (1998) and Drees et al. (2000). In fact,
any distribution with F(x) = X% + cx7 (1 + o(1)) as x — oo, where ¢; > 0,
¢, #0, @ > 0 and p < 0, satisfies the second-order condition with the indicated val-
ues of a and p (de Haan and Ferreira 2006).

Proofs
In this section we present the proofs of the results in the earlier parts of the paper.

Proof of Lemma 3.1 Since

2 m 2 m
alL (7/0750) 7_0 - 7/_0 4 w; 60 ni 150h50l ni
and
— l 5
AL, (Yor 89) = — Z "+Z @, Y, 2\/_260,50 Yo
the claim of the lemma follows from (3.4). O

Proof of Lemma 3.2 We proceed as in the proof of Lemma 3.1, except now one needs
to take second derivatives. For example, elementary calculations give us
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2L, (7.5) 2k 6r 12? Z’"
AU 0 0
k— = E ; w; 5(}'h51 Ohéo,i)Yni

n n i=1

6 - 2 8%
= Z @;5(Vhs; = vohs, )" + =N Z @, 5hs; Y

3

8 2
5 w; shsi(Yhs; = vohs, ) + = 7 Z @; gh -
i= i=1

—_

Using (3.4) and the fact that (7, 5)—»(;/0, 0y) we see that

L7, 5) P 2 T 2b,,
T — i Vs — 2
kn }’02 i=1 0 %t 73
The other terms of the Hessian matrix can be handled in a similar manner. O

Proof of Lemma 3.3 Denote
L(y,8)=y7* 2 ; 5(vhs; — Vohao,i)za (y,0) € 0.

Since we can write

2mlogy 1 « % < 2
L,(y.6)/k, =——— — ko ; ogw; s + T g;mi,éYm'
m

m

1
w; 5(rhs; — vohs, )Y, + ﬁ Z w; 5(rhs; — Vohao,i)zs

= i=1

we have
L,(y,0)
! —L(y,5>’
(7,6)€0 n
< sup Zmlogy _ ZIOga) + sup Za) Y2
) kn oo |72k, w0
+ sup ; 5(rhs; — vohs, )Y,
.)€ 1 y24/k, lzz‘ v

by (3.4), since we know that, by assumption, y, w; 5 and h&i are bounded away from
0 and infinity on ©.

Clearly, the point (¥, 8,) is a minimizer of the function y*L. Furthermore, it is
elementary to check that the Hessian matrix of y2L at that point is equal to 2y r,.
We will see in the proof of Proposition 3.1 below that the matrix I',, is 1nvert1ble,
hence the point (y,, §,) is the unique minimizer of the function yzL, hence also of
the function L. The uniform convergence in probability of the function L, /k, to the
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function L implies that any minimizer of the former function converges in probabil-
ity to the unique minimizer of the limit function. Hence the statement of the lemma.
O

Proof of Proposition 3.1 Introduce functions of x > 0
I5(x) = X /(x + ), my(x) = x*v(x/5)/8 = x — 25 log(1 + x/8) + 6x/(x + §),

so that

Wis, = 9?/(’”50(9;) - mﬁo(ai—l))’ 86, = (méo(ei) + 150(95))/291"
ggo’[ = (m50(0,-) - 150(9,-))/25091-, i=1,...,m.

Therefore we can write

_ ™3, O) + 25 6) 1 Em‘, (5,(0) = 15,0,))°
m = 4 4 & my (0) —ms 0,

_mg 0,) =215 (6, ) (45,00 — 150(95-1))2

" 46; 458 l_zl mg, (0;) = mg (0,_))

ms,On) 1 (45,0 = 15 (0,»_1))

d, = .
45, 48, 2 My, (0) —my (0,_))

i=1

We now show that the matrix I',, is invertible. A direct computation shows that

(15,60 — 15, 0._)°
(9) mgo(gi_l)

482y, — d2) = m; (6, )Z ~ 150,

It is easy to check that the functions /; and ms are increasing on (0, 00), so that for
any i > 1,15 (6;) — 5 (6;_;) > 0 and m; (6;) — ms (6;_;) > 0. Further, by the Cauchy-
Schwarz inequality,

150(9) 15()(01'—1))2 - “ (lé()(ei) - lé()(ei_l))z
o ¥ e Gy~ & "0 =) 25 G G

i=1 i=1 i=1

m
i=

2
Z( Z (lﬁg(9i) - lﬁg(ai—l))> = lgo(em)’

1
and the equality holds if and only if

150(91) _ 150(92) - 150(01) _ _ 150(9,”) - lao(em—l)
ms (0)) ~ ms (6y) —my (0)) T my (6,) —m; (0,_p)

The latter requirement is equivalent to
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LO)  O) 10,

ms (0 mg(6)  ms (6,

(7.3)

so invertibility of I, will follow once we show that (7.3) cannot hold. If we put

L5, ot () I

oK) =: mgo(x) — lgo(x) = mgu(X) - m )

then Q(0) = 0 and

250x2

(X + 8y)(x + 25>

L@ (1Y) .
O(x) = 2 0\ 715,00 <

for any x > 0. Since lgﬂ (x) > 0, we conclude that the function / 50 x)/m 5 (x) is strictly

0'(x) = <0, x>0,

which implies that

decreasing on the positive half line, and so (7.3) cannot hold. Hence the matrix I',, is
invertible.
It is elementary to check that, as 6, — O,

b, =0, c,~ 07" (logsy)*, d,— logs,. (7.4)

Substituting this into (3.10) shows convergence of the variance in (3.12).
Similarly, it is elementary to check that, as 6, — 0,

224 il 24 o
a, - lprO 07", a, ~ 1—_py0 0,"logé, . (7.5)

Substituting (7.4) and (7.5) into (3.10) and (3.11) proves convergence of the mean in
(3.12). O

Proof of Lemma 4.1 By (4.3),

— k
o,L (¥ 5)—2_]%_%_2 k"a) gs 1M 222
1=n\70> Y0 Yo Yo Yo 1,605 6y,17In 0 & in
and
w’15 : ’

0,L, (v, 8y) = — —— — +o
" @y 5 ,Zz' 6y +0;, Loo
b g
_ ’ in

2 \Y kna)l,tsggéo,lnn +2 ; 50 + 95,,, .
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Since

2
( yow‘»‘*o‘g,‘sf)""”) = N(0,4I),

_Zwl"sogﬁo,lnﬂ

the claim of the lemma will follow once we show that

_k;l/z}/()_l Z{%Z(ZA _ 1)>
_ip ek, = N(0,T,),
< kn Z’ =2 6y+0;,, ( O)

where I';; is the second matrix in the right hand side of (4.4). By (4.1) we only need
to prove that

—1/2 —1 Z k(89 +0;,) ( * 1)
i=2 [8,k,1+[0,,,k,1 \ 160k, 1+10;,k,]

k—l/2 Z G (E* ’ ) => N(O, Fo) . (7.6)

! =2 [80k, 110,k ]\ 180k, 1O,k ]
Since the covariance matrix of the random vector in the left hand side of (7.6) con-
verges to I, only the Lyapunov condition needs to be checked for an application
of the central limit theorem. The latter can be performed component-wise and is
elementary when taking, for instance, the 4th powers of the terms. O

Proof of Lemma 4.2 Once again, computing the second derivatives, we obtain, for
example,

92L 6z g) 2 6w :
2L, (7 1.5 .
AT o 24 S (i~ V735, 1)

8“’1 585.1 - 2
- (Yoﬂn = Vk, (7851 — V085O,1)> + Tzwl,Sgél
734 / 7 \

4y0 Z 6+ 0:.)Z; ,
=~ 60+9

Clearly, the second and the third terms in the right hand side are 0,(1) as n — co.
Furthermore,

2 2 2 2 . .
- - -5, .._26’)1,55’%,1 - —2a)1,50g§0’1 in probability,
14 % 70

and by computing the mean and the variance we see that

G+0,)Z, 4

470
2;4 8y + 0., )

in probability. Therefore,
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9L, (7. 6) S22 e
Th TR e

in probability, and the limit is the appropriate entry in the matrix 2I" . The other
terms of the Hessian matrix can be handled in a similar manner. O

Proof of Lemma 4.3 We proceed as in the proof of Lemma 3.3. Denote now

L(y, ) 210gy+ ” —2(1&sy — Yo8s,1)’

1+€ 2 1+e
—2/ 1og(5+x)dx+ﬁ/ 0% i,
. v Je Og+x

where @ 5 is defined as @, 5 and g; | is defined as g5, both with 8, = ¢. Since we
can write
k,
1
L,(y.8)/k, =2logy - ~log; ; - Z log(8 + 6;,,) !

n ” i=2

152
k

2700)1 @5
2\/_ (785,1 — Y085, )My + Y—Z(Yé’a,l - 70350,1)2

2}/0 & (6 + gi,n)Zi,n
Yk,, i=2 60 + ei,n

it follows that

L (y,6
sup [F29 L(y,a)’
(v,0)€® n
W5 D5 -
< sup | ——=(rgs1 — Y0850,1)2 —— (&1 — 70850,1)2
.00 | Y Y

2
1 Y0 ®P1s 2yy0
+ sup |——logw, s+ 0 2010

n
oeo | ky Tk, T 24k,

kn 1+
+ sup kg D log(d +6,,) -2 / log(8 + x) dx
2 I3
k,

(Y851 = Y085,.1)Mn

(7.0)€0 | Ry 3=

dx

+ sup
5o | Tk, & Y

20 5 Gy T [ s
. Op+x

It is clear that the first three terms in the right hand side vanish as n — o0. The same
is true for the last term in the right hand side because we can bound the latter by
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2yy6 1 & Zi, / e
sup [——||— ) —— — dx
roeel v k, = 6y+0;, Jo 6p+x
K
2 Q. 7. I+e
+ sup ﬁ‘lz__/ X ol
roeel v k, = 6+6,, Jo Sp+x

It is clear that both suprema are finite, while by computing once again the means and
the variances we see that the two differences converge to zero in probability.

Clearly, the point (y,, 6,) is a minimizer of the function 67)1’5)/_2(7575’0 - yogéoyl)z.
Let us denote the remaining part of the function L(y, ) by L,(y, 6). To check that the
point (¥, 8,) is a unique minimizer of the latter function, note that for a fixed value
of 6 the unique minimizer of L, (-, 6) is the point

I+¢
o6+x
6) = dx.
7(8) }’0/E 50+xx

Since, up to 6-independent terms,

1+¢ 1+
L,(y(6),6) =log </ 6+x dx>—/ 10g<5+x>dx,
. Op+x . Op+x

which vanishes for 6 = ¢, and is strictly positive by Jensen’s inequality for 6 # &,
we see that 6 = §, and y = y(6, = ¥, is the unique minimizer of L; and, hence, also
of L.

As before, the uniform convergence of L, /k, to L implies now that any minimizer
of the former function convergence in probability to (y,, 6;). Lemma 4.2 and the fact
that I, is invertible mean that, with probability converging to 1, the minimizer of L,
is unique. O
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