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1. Introduction

The novel coronavirus (covib-19) outbreak has drawn attention to the modeling of rare events such as pandemics
and natural disasters. How do we estimate the dynamic effects of disaster type shocks on economic variables? How do
we estimate the dynamic effects of economic shocks when the data are contaminated by rare events that do not have
economic origins? Should measures of disasters be modeled as exogenous? A difficulty in predicting the occurrence of
disasters and designing polices to mitigate their impact is that there are few such data points even over a long span. After
all, the CDC has only documented four influenza pandemics in the U.S. with deaths in excess of 100,000 over a 120 year
period starting in 1900." For natural disasters, the 12,000 deaths from the Galveston hurricane of 1900 remains a record,
with the 1200 deaths from Katrina coming in a distant second in terms of casualties. Worldwide, only seven earthquakes
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1 These are the Spanish flu in 1918 (675,000 US deaths), the H2N2 virus in 1957-58 (116,000 US deaths), H3N2 virus in 1968 (100,000 US

deaths), the HIN1 virus in 2009 (12,500 US deaths). Source https://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html.
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Fig. 1. Real cost of disasters: 1980:1-2019:12.

since 1500 were larger than 9 in magnitude,” and September 11 was the only terror attack on U.S. soil with more than
300 deaths, let alone 3000. Nonetheless, when a rare disaster strikes, it strikes in a ferocious manner as covip-19 reminds
us. Though these events have been intensely studied on a case by case basis, it is also of interest to study these events
over a long time span.> We apply standard time series methodology to analyze the dynamic effects of rare events by
modeling these events as being driven by heavy-tailed shocks.

To fix ideas, consider Fig. 1 which plots the real cost of 258 natural disasters over the period 1980:1-2019:12,
augmented to include 9/11.% The series is dominated by a few events with Hurricane Katrina in August 2005 being the
largest, accounting for 9.2% of total cost. This is followed by the four weeks in the summer of 2017 when Hurricane
Harvey contributed 7% in August, while Hurricanes Irma and Maria in September created a combined cost of 8%. These
are followed by 9/11 in 2001 and superstorm Sandy in October 2012, each contributing to about 5% of total costs. Another
measure of the cost of disasters is the number of lives lost. This series, while not plotted to conserve space, has spikes
that are even more extreme. Over the same time period, 49% of disaster-related deaths can be attributed to Hurricanes
Maria/Irma, 9/11, and Hurricane Katrina, with the heat wave of 1980 coming in fourth. Both series have features of a
heavy-tailed process, and we will subsequently use sample kurtosis as evidence of tail heaviness.

Heavy-tailed data pack a lot of information in a few observations. Because of its large variability, the dynamic effects
of disaster shocks should in principle be consistently estimable. Indeed, if all variables in a multivariate system have
heavy tails, we show below that the least squares estimator will converge at a fast rate of (%)1/ “ where « is the index
of the heavy-tailed shock and T is the sample size. Though the distribution theory is a bit nonstandard, the regression
framework is the same as the standard case when all variables have light tails. But while many macroeconomic time
series have excess kurtosis, they do not fit the characterization of heavy tails. For example, unemployment and industrial
production have kurtosis of less than 10, while the disaster series shown in Fig. 1 has kurtosis in excess of 70, and the
estimated tail index of approximately one suggests a distribution with infinite variance and possibly infinite mean.” Beare
and Toda (2020) analyzed covip-19 cases across US counties and finds that the right tail of the distribution has a Pareto
exponent close to one. This motivates a new multivariate framework in which finite and infinite variance shocks co-exist
in such a way that the economic variables can be affected by heavy-tailed shocks but not dominated by them.

Our point of departure is that the n primitive shocks u = (uq, ..., u,) are assumed to be mutually independent, a
condition stronger than the commonly used assumption of mutual orthogonality that is no longer meaningful when one
of the shocks has infinite variance. We develop a HL (‘heavy-light’) framework in which the coefficient estimates on the
infinite variance regressors are consistent at a rate of T'/*, still faster than the usual rate of ~/T. We then show that the

2 Source: https://en.wikipedia.org/wiki/Lists_of_earthquakes#Largest_earthquakes_by_magnitude.
3 For a review of methodologies used, see Botzen et al. (2019).

4 The series combines data from the National Oceanic and Atmospheric Administration and the Insurance Information Institute as explained
in Ludvigson et al. (2021a).

5 The method often used to estimate the tail index is due to Hill (1975).
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disaster shock series can be identified by the magnitude of its kurtosis and the sign of its impact effect. For estimation, we
perform an independent components analysis (ICA) based on distance covariance of the pre-whitened data, an approach
first suggested in Matteson and Tsay (2017) for finite variance data. Davis and Fernandes (2022) recently showed that the
procedure remains valid when a shock has infinite variance provided its mean is finite.

Prewhitening by singular value decomposition is often used to remove correlations prior to ICA estimation to focus
on the higher order signals. For SVAR applications, prewhitening by Choleski decomposition is more natural since it is
already used to identify mutually uncorrelated shocks with a recursive structure. We show that even though the variance
of the shocks may not exist, Choleski decomposition of the sample covariance remains valid. Furthermore, we show that
ICA will still recover the shocks in spite of sampling uncertainty in the VAR residuals. To assess the restrictions imposed
on the SVAR, we apply a permutation-based procedure to the distance covariance statistic as a test for independence
that is robust to infinite variance data. It complements other SVAR specification tests made possible by the independence
assumption, as discussed below.

The rest of the paper is structured as follows. Section 2 summarizes the key properties of heavy-tailed linear processes
and discusses the implications for VAR estimation. Section 3 presents the HL framework. Consistency and limiting behavior
of the least squares estimator for parameters in a VAR are shown. Identification, estimation via distance covariance, and
implementation of an independence test are then discussed. Section 4 uses simulations and three applications to assess
the properties of the proposed procedure. The Appendix contains background material on distance covariance as well as
proofs of the main results in Section 3.

2. Heavy-tailed linear processes

Disaster events are rare and heavy tails can be a useful characterization of their probabilistic structure. Well known
heavy-tailed distributions include the Student-t, F, Fréchet, as well as infinite variance stable and Pareto distributions.

Let F(x) = P(Z < x) for x € R be the distribution of an IID sequence of random variables {Z;,t = 0, =1, £2, ...}. Then
F has Pareto-like tails with tail index & > 0 if

XP(|Z] > x) - C, x— o0, (1)

where C is a finite and positive constant and ]P]f(’(éli"; — p € [0, 1] as x — oo. Examples include the Cauchy and Pareto

distributions. The Gaussian distribution has ‘thin’ tails that decay faster than an exponential and is not included in this
class. The results that follow can be extended to a more general condition on F called regular variation in which (1) is
replaced by

P(|Z] > sx)
P(|Z| > s)
The normalizing constants in such an extension become less explicit so we stick to the Pareto-like tail assumption for
tractability.
Let dip = inf{x : P(|Z] > x) < 1} be the (1 — 1)th quantile of F and dyy = inf{x : P(1ZZ;] > x) < T~}
be the corresponding quantile for the joint distribution of the product ZyZ;. Distributions with Pareto-like tails have
diy = TV*CV/*, Since 1 — F(dyy) = 1/T for continuous F, (1) implies

s — o0.

TP(|Z¢| > dirx) —> x %, asT — o0, (2)

for all x > 0. Similarly TP(|ZyZ;| > daorx) — x~* (see Davis and Resnick (1986)). The population moments of Z; satisfying
(1) are only defined up to order « since

ElZ|’ =00 §>a,
E|lZ| <oco § <a.

It is possible for the population variance to exist but the population kurtosis to be undefined. But even if the population
moments do not exist, the sample moments can still have well defined limits. If Z; has a Pareto-like tails with index
a € (1,2), Z? also has Pareto-like tails with index /2, and it holds that

_ _ _ = -y d
(dlrl ZtT=1(Zt — E2), d1T2 Zthl Z;, dy Zthl(Zf = Z)Zt-n — Z)) - (S“’ Sa /2,0, Sa~“) 3)

where Z = % ZL] Z; is the sample mean, and for h > 0, Sy, Sa/2,0, Se,n are stable random variables with exponents,
o, /2, and « respectively. Their joint distributions can be found in Davis and Resnick (1986).

To gain a sense of the tail properties of the data under investigation, we will make use of the fact that if Z; is an IID
Pareto sequence with tail index o = 1, then the sample kurtosis x4 has the property (see Cohen et al. (2020)) that

T 4
1 Z S
iy = Zt:l ¢ d Da/4

T (Ca Z2? Sip
The limit of kurtosis, scaled by the sample size, is a random variable between zero and one so the maximum kurtosis that
can be observed asymptotically is T. Tabulating the distribution for T = 500 and T = 1000 with o« = 1, we see that the
quantiles roughly double with T. Based on simulations, the values of these quantiles are an upper bound for @ € (1, 2).

(4)
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T 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%
500 37.9 47.55 58.8 77.9 2259 477.5 494/5 498.7 499.7
1000 76.8 95.4 119.0 151.7 445.6 952.8 987.4 996.8 999.4

As a point of reference, the disaster series shown in Fig. 1 has T = 480 and kurtosis of around 70, which is in the
lower 10th percentile.® The number of deaths series mentioned in the Introduction has kurtosis of 147 and is in the 30th
percentile. In contrast, the kurtosis a typical of macro economic time series is under 10, hence the theory for heavy tails
would be inappropriate. A multivariate system of time series with different tail properties thus necessitates a different
setup.

There is a large literature on robust and quantile estimation of the parameters in a linear model to guard against
extreme values which explicitly down-weights outliers. Blattberg and Sargent (1971) and Kadiyala (1972) show that
the least squares estimator is unbiased when the error in the regression model is drawn from a general symmetric
stable Paretian distribution, but it is not the best linear unbiased estimator. In the Cauchy case when o = 1, the best
linear unbiased estimator is y,/x; where x, = maij]-.7 A different viewpoint, also the one taken in this paper, is that
the extreme values are of interest.® Under this assumption and fixed regressors, Mikosch and de Vries (2013) provide
a finite sample analysis of the tail probabilities of the single equation CAPM estimates to understand why they vary
significantly across reported studies. We are interested in estimating dynamic causal effects in a multivariate setting
when the regressors are stochastic, and one of the primitive shocks has heavy tails.

2.1. Implications for VAR estimation

Consider n mean zero variables Y; = (Y1, ..., Yy;) represented by a VAR(p):
Ye =AY+ -+ AY i +oer,
where A(z) = I, — A1z — - - - — ApZ? is the matrix-valued AR polynomial. Provided that detA(z) # O for all z € C such that
lz] < 1, A(z)™! exists, the moving-average representation of the model is Y; = ®(L)e; where L is the lag operator, and

®(L) = A(L)~! with &g = I,. .
The standard OLS estimator A of A is characterized by (see (26) and (27))

T T -1
A—A= (Z e[Yt’_1> <Z Y[,1Yt’_l> :
t=1 t=1
These errors e; are mapped to a n x 1 vector of primitive shocks u; = (i1, ..., Uy) via a (time invariant) matrix B:
e = Bug,

where u; is usually assumed to be mean zero, mutually and serially uncorrelated and with X, = E[u.u;] being a diagonal
matrix. See, for example, Stock and Watson (2015) and Kilian and Lutkepohl (2017). The reduced form errors e; are usually
assumed to have ‘light tails’ which is possible only if u; has light tails. A model that satisfies these standard assumptions
will be referred to as the LL (light-light) hereafter. Under regularity conditions for least squares estimation, A is ~/T
consistent and asymptotically normal.

The modeling issues that arise when one of the primitive shocks in a SVAR has infinite variance are best understood
in the p = 1 and n = 2 case. Consider first a HH (heavy-heavy) model in which both shocks have heavy tails.

Lemma 1. Let {Z} be an IID sequence of random variables with Pareto-like tails (i.e., Eq. (1)) with index o € (0, 2) and
EZ; =0ifa > 1. Let

dir =T, dor = (T log T)"/*.
If the sequence of constants {;} are such that Zi_w le‘S < oo for some § € (0, @) U [0, 1], then

i. the process X; = Zf:"_oo YiZq_j exists with probability one and is strictly stationary.

ii. Let p(h) = ZtT;lh XeXe—n/ Z[T:] X2 be the sample autocorrelation at lag h > 0 and suppose that > > [j| [¥;]° < oo
for some § € (0, ) U [0, 1]. Then for o # 1,

T T—h
_ _ d
(d]T2 szs dz'r] thxt—h) — (Sa/Z,OaSa,h)
t=1 t=1

6 The distribution of S« can be approximated by simulating j =1, ...,]J times s;, = Z""/f:l(zj’ll ej)’””‘ where {e;} is drawn from the exponential
distribution.

7 Best here means in terms of minimizing dispersion.
8 See, for example, two special issues on heavy-tailed data, Paolella et al. (2013) and Dufour and Kims (2014).
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T 1/a . Sa,h
<@> (o(h) = p(h)) = Suiro

where (Sq/2,0, So,1) are independent stable random variables with indices « /2 and «, respectively. If « > 1, then the latter
convergence also holds if EZ, # 0 provided p(h) is replaced by its mean-corrected version, p(h) = tT:_lh(Xt —X)(Xeep —
X)) Yopy e = X)2,

iii. dZ_Tl 23:1 Xi_1Zy—S,, where S, is a stable random variable with index o.

By restricting attention to 0 < « < 2, we only consider processes with infinite variance. Even though X; is not
covariance stationary (since E|X;|> = oo), part (i) states that the process X; exists and is strictly stationary. The stated
results for the sample covariance and sample autocorrelation are due to Davis and Resnick (1986, Theorem 3.3) and also
hold when X, is centered for « € (1, 2). Note that the convergence of p(h) is faster than the +/T rate obtained for finite
innovation variance.

For VAR estimation, Lemma 1 can be used to show that

T [e'S] T [e’S]
_ _ d
dyf ZButh/—] = Z B<(T logT)~"/* Z utut—l—h)lph/_) Z BSuu h ¥y, =: Sve
=1 h=0 =1 h=0
T [e'e] T p 00
Y Ve =Y <T‘2/"‘ ) u[u;> B S S0 = S
=1 h=0 t=1 h=0

It then follows from continuous mapping that the least squares estimator is super consistent:
T 1/ . d
—— ) (A= A)—>SpS,.
( IOg T ) ( ) Yedyy

Note that both Syy and Sy, depend on the tail index « but the notation is suppressed for simplicity. Though the analysis
is straightforward, this setup is unappealing for macroeconomic data because if u;; and u, both have infinite variance,
Y;1 and Yy, must also have infinite variance. But a typical economic time series does not resemble the series shown in
Fig. 1. Not only is the disaster series much less persistent, its kurtosis (over 70) is an order of magnitude larger than for
variables like output growth, inflation, and interest rates.

3. A VAR with heavy and light tailed shocks

Our goal is a model in which (i) a heavy tailed shock u;; co-exists with light tailed shocks us, i = 2, ..., n, and (ii) Yy
is influenced by the current and past values of u¢y but not dominated by them in a sense to be made precise. We consider
the HL (heavy-light) model derived from the SVAR(p)

Yi =AY+ + ApYep + Bug, (5)

where for each h =1, ..., p, Ay is a n x n matrix with (i, j)th entry denoted [Agjh)], the coefficient of variable j at lag h in
equation i. The entries [B;] of the n x n matrix B are similarly defined.

Assumption HL

i. The sequence of n-dimension random vectors {u,} is iid and the components, u;;,i = 1, ..., n are also independent.
The u;q will have Pareto-like tails with index 1 < & < 2 and E[u;;] = 0, while the remaining shocks u;,i=2...,n
will have thin tails with mean zero and variance 1.

ii The coefficient matrices A, for h = 1, ..., p and the matrix B will satisfy the following conditions.

h h .
AV =dT? i=2,...n, (6)
Bigr=0bu/T", i=2,....n, (7)
with
1 1
0=———. 8
=73 (8)

The primitive shocks u,; are assumed to be independent across i and t but does not preclude time varying second
moments, though it is stronger than mutual orthogonality of u, typically assumed in SVAR modeling. Assumption HL (i)
restricts attention to processes with tail index 1 < o < 2 and thus excludes Cauchy shocks. The assumption that the thin
tailed shocks ug;,i = 2, ..., n have unit variance is without loss of generality, but it is important that their variances are
finite. Since the variations of u;; will dominate those of u;,i > 2 when both are present, Y;; will have heavy tails and
exhibit the large spikes originating from u;.

Assumption HL(ii) is motivated by the fact that Y; cannot have finite variance unless B;; = 0 and Aﬁ') = 0 for all h.
But the dynamic effects of u;; on Y ,4; would then be zero at all lags by assumption, rendering the empirical exercise
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meaningless. Thus, the Y; equation is modified to dampen the influence of u;; on Y; at rate 6 given in (8), so that
T-1/2 ZT LUt /T =TV ZZ:] Uz has a limit.? Localizing AET?T and B;; 1 to zero is an asymptotic device to obtain this
limit, but note that Af’1 r and Bj; r are not time varying. Under assumption HL(ii), Y; r is a triangular array that depends
on T. To simplify notation, the explicit dependence on T is suppressed.

A heavy-tailed linear time series must have a heavy-tailed shock as its primary source of variation, but it need not be

exogenous. In our model, exogeneity would require that Ay = By = 0, j = 2, ..., n, in which case, any feedback from Yj;,
i > 2 to Y;; would be disabled. But such a model would not shed light on how macroeconomic outcomes might mitigate
or amplify the effects of disasters. Assumption HL allows A(]’}.) and Byj, j =2, ..., nto be free parameters to be estimated.

Specializing to the n = 2 and p = 1 case with Eufl = 0o and Euf2 < oo we show in the Appendix that the following
holds under Assumption HL

.
1 d oy
7 D Yo =55,

t=1

r
1 2 d
T ZYtZ = —S¥y.2

where the limits have a stable distribution with index « and « /2, respectively. Thus the sample first and second moments
of Y;; have (random and possibly constant) limits even though one of its shocks has infinite variance. The implications
for least squares estimation of the HL model can be summarized as follows.

Proposition 1. Suppose that the data are generated by (5), and for tractability assume that n = 2,p = 1 with VAR(1)
coefficient matrix A = [Aij]i j=1. If Assumption HL holds, then the least squares estimate of A satisfies

(A )
1-1/a(p
T (A2 — Ar2) —> SA 12
TV(Ay — Az1) —> Sa21
VT(Ay — Ay) LN Sa,22

The convergence rate for Au is min(%l/m, T1/2), which is J/T. This is slower than the rate for 12\11 in the HH model
because one of the infinite variance regressors in the HH model is replaced by one that has finite variance. The convergence
rate for A;, can be written as ~/TT~? which is slower than the /T rate for A, in the LL model because the variations in
this equation are dominated by those from lags of Y;;, hampering identification of A1;. Now the convergence rate for A21
can be written as /TT? which is faster than the +/T rate obtained for A21 in the LL model. This implies that d,; = T? A21 is
/T consistent. Hence in the HL model, the local parameter a, is consistently estimable. In each case, the limit distribution
is non-standard and not pivotal, so that construction of asymptotically correct confidence intervals is intractable.

Since VAR estimates are obtained from least squares regressions on an equation by equation basis, Proposition 1 sheds
light on the more general setting when a regressor has infinite variance, but the dependent variable has finite variance.
Though such a regression would be ‘imbalanced’ in the standard setup, the coefficients on the heavy-tailed variable
are being scaled down to accommodate the heavy-tailed shock in our HL setup. The coefficient estimate on the infinite
variance regressor would be consistent but not asymptotically normal. By implication, the impulse response coefficients
whether computed from the VAR or by local projections would likely not be asymptotically normal.

3.1. Identification of B and the primitive shocks

The structural moving-average representation of the model is
Y, = &(L)Bu = ¥(L)u;
= Your + Y1ty + -+,
where ¥ (L) = A(L)"'B and ¥, = B. The effects of u;; on Yi4n2 are given by the first column of ¥, which depends on A
and B. Hence to estimate the dynamic causal effects of u;;, we also need to be able to consistently estimate B when uy;

has infinite variance.
The relationship between the vector of primitive shocks u and error terms is

e =Bu; and u; = We; (9)

where u; = (1, ..., Uy) is an n-vector consisting of independent random variables with mean zero and B is an n x n
matrix with inverse W. As is well known, B is not uniquely identified from the second moments of e, alone even when
e; has finite variance because BQ'Qu, has the same covariance structure as Bu, for any orthonormal matrix Q.

9 A similar effect can be achieved by replacing the heavy-tailed shock by its truncated version %}'Mumgwl/w for some constant M. This was the
approach taken by Amsler and Schmidt (2012).
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Lemma 2. Let e = Bu, where uis a n x 1 vector of mutually independent components of which at most one is Gaussian and
B is an n x n invertible matrix with inverse W = B~ 1. If the components of i = We are pairwise independent, where W is an
invertible matrix, then W = PAW where P is a permutation matrix and A is a diagonal matrix. Further, the components of i
must be mutually independent.

Proof. The proof of this result follows directly from Skitovich-Darmois theorem as described in the proof of Theorem 10
in Comon (1994). Since &t = WBu =: Gu, the components of i; can be written as

n
U = E Gi kUk-

k=1

The independence of the #i; and iI; components implies that G; 1G;j 1 = 0 for i # j. That is, the first column of G contains at
most one nonzero value. A similar conclusion holds for all the columns of G. Hence G is product of a permutation matrix
P times a diagonal matrix A = diag{A1, ..., An}, i.e.,, G = PA. In other words, WW~! =PA or W = PAW as was to be
shown. It follows by the form of G that the components of i must be mutually independent. [

Independence of u narrows the class of observational equivalent models to those characterized by permutations of
rows and changes of scale/sign. As discussed in Gouriéroux et al. (2017), scale changes are responsible for failure of local
identification, a problem that can be dealt with by normalizing the shocks so that A is an identity matrix. Failure of global
identification arising from permutation and sign changes require additional assumptions. It is only when the restrictions
are correctly imposed that P is also an identity matrix, in which case, W = W.

We also need to impose restrictions on W to identify a component of u as a disaster shock. Our problem is non-standard
because the shock of interest has a heavy tail, but this distinctive feature actually helps identification. We reorder the
components by their tail-heaviness, and take the disaster shock to be the first component, which is also the one with
the largest kurtosis. In practice, the variables in the estimated u will be ordered by sample kurtosis. As seen in (4), this
ordering is consistent with ordering the components of i by tail-heaviness.

3.2, ICA and distance and covariance estimation of u

Independent components analysis (ICA) is widely used to identify a linear mixture of non-Gaussian signals. Whereas
PCA uses the sample covariance to find uncorrelated signals, ICA typically uses properties of the random vector that go
beyond second moment properties in order to separate the independent signals.'? In the ICA literature, B is known as the
mixing matrix and W the unmixing matrix. ICA has been applied to finite variance SVARs in which global identification is
achieved by imposing additional restrictions such as lower triangularity of B.!!

There exist many ICA estimators for identifying the source process, which in our case corresponds to the primitive
shocks u. Some procedures evaluate negative entropy (also known as negentropy) and take as solution the W that
maximizes non-Gaussianity of We;, while others maximize an approximate likelihood using, for example, log-concave
densities. The popular fast ICA algorithm of Hyvaninen et al. (2001) is a fixed-point algorithm for pseudo maximum-
likelihood estimation. A different class of procedures take as the starting point that if the signals are mutually independent
at any given t, their joint density, if it exists, factorizes into the product of their marginals. This suggests to evaluate the
distance between the joint density and the product of the marginals.'? Chen and Bickel (2006) form a distance measure
between the joint characteristic function and the product of the marginal characteristic functions to estimate the unmixing
matrix. The advantage of this procedure is that it does rely on existence of joint densities or moments. In case the vector
has finite second moments, they obtain a convergence rate of 1/ /T for this nonparametric estimate of W, the same as the
one obtained in Gouriéroux et al. (2017) for parametric estimation. Matteson and Tsay (2017) use a distance covariance
approach to extract the independent sources under the assumption that they have finite variances, which is similar in
spirit to the method of Chen and Bickel (2006).

Remark 1. Following Chen and Bickel (2006) we assume that the parameter space of unmixing matrices is given by £
consisting of invertible matrices W for which (a) each of its rows has norm 1; (b) the element with maximal modulus in
each row is positive; (c) the rows are ordered by <; for a,b € R", a < b if and only if there exists k € {1, ..., n} such
thata; = b;,i=1,...,k—1and a, < b. Further it is assumed that the true unmixing matrix Wy € 2. However, we will
reorder the rows of the estimated W according to largest sample kurtosis. The disaster shock with infinite variance will
correspond to the first row of W.

10 The two will give similar results when the higher-order statistics add little information. For a recent review, see Hyvarinen (2013).

1 See, for example, Moneta et al. (2013), Hyvarinen et al. (2010), Gouriéroux et al. (2017), Maxand (2020) and Lanne et al. (2017).

12 See, for example, Bach and Jordan (2001) and Eriksson and Koivunen (2003), and Hyvaninen and Oja (2000) for an overview of the methods
used in signal processing. Statistical procedures include Chen and Bickel (2006), Hastie and Tibshirani (2003), Hastie and Tibshirani (2003), Samworth
and Yuan (2012) and Gouriéroux et al. (2017).
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We will also use the distance covariance approach because as shown in the companion paper (Davis and Fernandes,
2022), it is also valid when one component of u has infinite variance. The distance covariance between two random vectors
X and Y of dimensions m and n, respectively, is

2
206 viw) = [ Joxsts.0) = ox) o) us. dsde. (10)
Rm n
where w(s, t) > 0 is a weight function and ¢;(t) = E[exp{©?)], t € R¢ denotes the characteristic function for any random
vector Z € RY. The most commonly used weight function, which we will also adopt here, is

w(s, £) = (cmplsl**Men pleF7) (11)
2mm/2r(1-4/2)
B2P ((B+m)/2)
EIX|? + E|Y|? < oo. Under this moment assumption, one sees immediately that X and Y are independent if and only
if Z(X, Y; w) = 0 since in this case the joint characteristic function factors into the product of the respective marginal
characteristic functions, ¢x y(s,t) = @x(s)ey(t) for all (s,t) € R™™ Based on data (X, Y;) ..., (Xr, Yr) from (X, Y),
the general distance covariance in (10) can be estimated by replacing the characteristic functions with their empirical
counterparts @x.y, ¢x and @x y, where e.g., ¢x y(s, t) = % Z].T:] exp{i(s, X;) + i(t, Y;)}. Then

where 8 € (0,2), cmp (see Székely et al. (2007)). The integral in (10) is then finite provided

X, Y5 w) = / |Px.v (s, £) — @x(5) @y (0) (s, t)ds de (12)
RITH'TI

Using the w given in (11) and assuming E|X|?|Y|# < oo, there is an explicit formula for Z (see ) that avoids direct
computation of the associated integral. Additional background on distance covariance can be found in the Appendix.

Now the components of say a random vector S = (Sy, ..., S,) are independent if and only if Z(Sk, Ski 1.0, w) = O for
k=1,...,n—1, where Sgy1.n = (Sks1,-..,Sn). Matteson and Tsay (2017) observe that the independence condition is
equivalent to Zyr = 0, where

It = Z(S1, Szn) + Z(S2, S3:n) + -+ - + Z(Su—1, Su—1:n) » (13)
with weight function given by (11). Based on a sample e; = (e¢1,...,em), t = 1,..., T, an estimate of the unmixing
matrix W is found by minimizing the objective function,

Zur(W) = Z(S1, San) + Z(S2, S3n) + - + - + Z(Sn—1, Sn—1:n) » (14)
subject to W € £ and where 7 is the empirical estimate of 7 using S; = We;, t = 1, ..., T. Matteson and Tsay (2017)

show that procedure produces a consistent estimate of W when the variance of the S; is finite. The proof is based on
rewriting Z(-) in terms of V statistics and presumes that terms of the form E|XY| are finite.

In our case of infinite variance, Z(X, Y) is finite even if E|XY| = oc. One only needs that E|X|+E|Y| < oco. More recently,
it is shown in Davis and Fernandes (2022) that consistency of W based on the sample distance covariance also holds in
the infinite variance case. This result justifies the use of the objective function Zyr(W) for estimating the unmixing matrix
in the finite mean but infinite variance case. In case the mean is infinite, one can choose a 8 < 1 in the weight function
to ensure that the moment condition E|e;|f < oo is met.

3.3. Prewhitening and Choleski decomposition

In most ICA estimation procedures, the first step is typically to prewhiten the output. In effect, prewhitening removes
second moment correlations prior to estimating the independent components. In the context of a SVAR with finite
variance, suppose we have the observations ey, ..., er, from the model e, = Bu;. Denote the sample covariance matrix
of the e;’s by S 172 from which its prewhitened values are given by ¢, = b Y Zet, where the inverse square root matrix
is, for example, computed from the singular value decomposition (SVD) of the sample covariance matrix. Then one can
restrict candidate unmixing matrices W to have the form W = Of{ K 2, where O is an orthogonal matrix. In particular,
one could optimize the function in (13), e.g.,

0 = argminlyr(05;72), (15)
0eO(n)

where the minimization is over all O € O(n), the space of n-dimensional orthogonal matrices. This produces an estimate

of the unmixing matrix given by (A)ﬁe_ /2 that is a consistent estimate of W after suitable rescaling and row permutation

as noted in Remark 1. The optimization over orthogonal matrices reduces the number of unknowns from n? to n(n—1)/2.

The fact that this prewhitening step actually works in the infinite variance case follows directly from Theorem 3.2 in Davis

and Fernandes (2022) (see also Chen and Bickel (2006)), which we record in the following proposition.

Proposition 2. Consider observations e;, t = 1, ..., T, from the ICA model (9) where W = Wy € £2 is the true unmixing
matrix, and that the components of u, are mutually independent, at most one has infinite variance, at most one component is

8
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normal and none of the components are degenerate. Then, setting W= [6§; Y 2] o, the rescaled and row permuted version of
028—1/2 € 2, we have

WS w,.

Although we have used the SVD version of 2;1/2 in Proposition 2, we could also use the Choleski analogue, which is
often an attractive alternative. This is especially true for SVARs since it is already widely used to identify a lower triangular
structure of B. Though the population covariance matrix of e; does not exist in the infinite variance case, a decomposition
of the sample covariance matrix is possible. The following result gives the decomposition for the n = 2 case.

1/2

Lemma 3. Letef = (ef,ef,) = X, Y zet, where X, ' is the Choleski decomposition of the sample covariance matrix 5.,

ie, ¥, = XV2(X12Y. Under Assumption HL,
a1 e—1/2
ef, ~ T'? ]/a|B111|511,4 €1,
ef, ~ [Bn|"'o; (ea — cren),

T
Zs:] €51€52

_ 72/NT 20 2 _ P C
ST, Sur =T th] uy; = 0p(1), and o5 = var(ug,). Moreover, cr — 0 and hence e, ~
s=1"t

where cr =
sign(Bys )urz /03.

The proof of the lemma is given Appendix A.2 of the Appendix. The prewhitened variables e{ remain a function
of u¢ and ug, which we seek to identify. Observe that if B were lower triangular, ef, will only depend on u;; since
er1 = Biius1 + Biauss. But note that Choleski decomposition is used here only as a prewhitening device and not as a
way to achieve identification. If the ordering is incorrect, ICA will undo the ordering to find the u satisfying the additional
identification restrictions.

In practice, of course, we do not observe the residuals e; directly but rather the estimated versions & = (&1, ..., ),
t = 1,...,T. Limit distributions of the distance covariance function based on the residuals can be slightly different
when applied to the ¢, than the actual residuals (see Davis et al. (2018)). Interestingly, in the heavy-tailed case, the limit
theory for the distance covariance based on estimated and actual residuals is the same. In the context of consistency
in the estimation of the unmixing matrix, the same procedure can be carried out as above using estimated residuals
ét = € + (A - A)Yt_].

Proposition 3. Consider the estimated residuals &, t = 1, ..., T, based onAﬁttingAtI}e AR coefficients in an SVAR model using
OLS. Assuming the same model framework as in Propositions 1 and 2, set W = [OE;/Z]_Q, where the objective function in
(15) is based on the estimated residuals instead of e;. Then

w A w,.

The proof is given in the Appendix. The idea is that the sample residuals can be represented by an ICA model with
noise, i.e., & = Bu,+v, where the noise is the sampling error v, = (A—A)Y,_;. It is then shown that the difference between
2; I (from noiseless model) and f,‘é‘ ! (from noisy model) converges to zero in probability and thus has asymptotically
negligible effects on the objective function that estimates W. Applying Theorem 3.3 in Davis and Fernandes (2022) for
ICA with noise gives the stated result.

3.4. An independence test of SVAR restrictions

The dynamic properties of a SVAR are determined by restrictions imposed on the model and generally difficult to
test. But if u; is independent, then by Lemma 2, the identifying restrictions are testable. Lanne et al. (2017) suggest a
procedure to first verify identifiability of the model, and then parametrically specify u (with finite variance) so that after
maximum likelihood estimation, the restrictions can be validated using classical Wald and Likelihood ratio tests. QQ-plots
of the identified shocks provide an additional check for non-normality. Herwatz (2019) applies a non-parametric test for
independence to ascertain whether demand shocks have no long run effects using bootstrap critical values. Amengual
et al. (2021) use the influence functions of a discrete mixture-normal likelihood to test the second, third, and fourth
cross-moments while explicitly accounting for sampling uncertainty in é.

We also test independence of i, but independence of é is also of interest because if the components of e; = Bu, were
already independent, then by Lemma 2, B would be diagonal and no further analysis on the structure of W would be
required. A independence test of € is thus informative about its unrestricted structure. In contrast, independence of i is
informative about the structure implied by identifying restrictions. If &1, should fail an independence test, there would be
no point in further analyzing the impulse responses.

As reviewed in Josse and Holmes (2016), many independence tests are available, and if one suspects that the data
have features such as heteroskedasticity that are inconsistent with independence, tests that target those features should
have more power, as in Montiel Olea and Plagborg-Moller (2022). But we need a test that is also consistent when one
component of u; has heavy tails. That is, the test should reject with probability tending to one as T — oo for any W # W

9
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modulo permutations and scale/sign changes, irrespective of the tail properties of the data to be tested. A test using the
empirical version of the aggregated distance covariance Zy;; defined in (13) can in principle be used. Even though TZy; has
a limit distribution under the null hypothesis of independent components, the limit distribution is generally intractable.
Hence direct use of the limit distribution for calculating cutoff values for the test statistic is infeasible.

However, as pointed out in Matteson and Tsay (2017), one can use a test by calculating the test statistic Zy; for random
permutations of the data. A permutation-based test for independence is founded on the idea that if there is dependence in
the components, then the value of Zy;; should be larger than the corresponding statistics based on random permutations of
the components, in which the dependence among the components has been severed by the permutation. The test is known
to control Type I error and also robust to the possibility of heavy tails. Precisely, if Sy, ..., St is an iid sample of random
vectors of dimension n, then the permutation procedure is implemented via the following steps. For b =1, ..., NP,

(b)

a. Forj € [1, n], generate (St,j,

t=1,...,T) = (ST(/‘)],, t=1,...,T), where %9 is a random permutation of {1, ..., T}.
2,
b. Compute 7.2 using S®,

The test is distribution free under the null hypothesis. The p value of the test is constructed as

(k+1)
p(NP) = ——

(NP + 1)

where k is the number of i,(\f,’%‘s from the NP permuted samples that exceed Zy. The test is implemented in the R-package

STEADYICA with a default NP value of 199.

We reject independence of the components in S if the p-value is less than a prescribed nominal size. In principle, the
null hypothesis of independence can be rejected because u; is not independent, or because the identifying restrictions
are incorrect, or both. But under the maintained assumption that the components of u are mutually independent, the test
provides a validation of the (overidentified or exactly identified) restrictions on B (or W).

4. Simulations

The dynamic effects of a disaster shock can be analyzed as follows. Step 1 estimates the coefficients of a VAR model
using least squares. Step 2 prewhitens the VAR residuals. Step 3 applies ICA to obtain independent components and
associates the component with the largest kurtosis as the disaster shock. Step 4 estimates the impulse response functions.
Their dynamic effects after h periods defined by ¥ (L) = (I —A{L—- - - ApLP)~'B can be computed once consistent estimates
of A and B are available. We are primarily interested in the effects of u;; on Y;,, and can also estimate the first column
of ¥ by projecting the response variable of interest on ii; on other controls as in Jorda (2005). However, it should be
noted that the coefficient estimates from the local projection regressions will have non-standard properties in view of
Proposition 1.

To illustrate the effectiveness of this methodology, simulations are performed with (T, n) = (400, 3) for four SVAR(1)
models based on two specifications of B and two sets of primitive shocks, holding the A matrix fixed throughout at

02 O 0
A=\103 06 0 ].
04 03 038

The B matrix In model 1 (labeled NLT), the B matrix is Not Lower Triangular. In model 2 (labeled LT), B is Lower Triangular.

130 1 0 0
Bue(NLT)= (1 1 0 ButlT)= (15 1 0
0 0 1 2 05 1

From a given By that is either NLT or LT, its inverse yields a non-normalized Wj; from which a normalized W is formed
by imposing the constraint that each row sums to one. Then B = W~ is used to simulate data and subsequently estimated.

Innovations u The first innovation specification (denoted HL) has one heavy-tailed shock while in the second specification
(denoted LL), all three shocks have light tails. In both cases, the shocks are ordered such that u; has the largest kurtosis
and u3 has the smallest.

rstable(1.1, 0) pearson(0, 1, 2, 20)
HL: {ts5 LL : { pearson(0, 1, —2, 10)
tio t15.

Prewhitening: Let e = (eq, e5, e3) and e! = (e,, e3, e1), both of dimension T x 3, denote two assumed orderings with
estimated covariances cov(e®) and cov(e') based on samples from each vector, respectively.

i. 8 = €%P; !, Py = chol(cov(e)).

ii. ' =e'P;’!, Py = chol(cov(e")).
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Table 1
Monte Carlo simulations.

Panel A: Permutation test: e observed
Fraction of p values < 0.1

Model Noise u u? el 0 ¢! 2 e (%) ") ii(e?) ii(e3)
Observed Prewhitened e Estimated shocks W’
NLT HL 0.091 0.091 1 0.892 0.271 1.000 0.804 0.001 0.001 0.000 0.006
LT HL 0.091 0.091 1 0.008 0.972 1.000 0.864 0.002 0.145 0.027 0.047
NLT LL 0.092 0.089 1 1.000 1.000 0.902 1.000 0.000 0.000 0.000 0.001
LT LL 0.092 0.089 1 0.003 1.000 1.000 1.000 0.000 0.001 0.000 0.007
Panel B: Permutation test: e estimated from VAR
Fraction of p values < 0.1
Model Noise &0 8! 82 23 {i(e%) fiel) ii(e?) ii(e®)
Prewhitened VAR residuals Estimated shocks éW’
NLT HL 0915 0.255 1.000 0.834 0.002 0.003 0.003 0.006
LT HL 0.006 0.982 1.000 0.869 0.003 0.139 0.027 0.058
NLT LL 1.000 1.000 0.858 1.000 0.001 0.002 0.001 0.002
LT LL 0.005 1.000 1.000 1.000 0.001 0.001 0.001 0.004
Panel C: Amari distance: (l§, B)
Model Noise B(@) BEY) B@) B@®) B(&%) B@Y) B#) B
e observed e estimated
NLT HL 0.151 0.148 0.170 0.211 0.086 0.087 0.108 0.133
LT HL 0.118 0.486 0.266 0.361 0.122 0.605 0.320 0.482
NLT LL 0.101 0.102 0.101 0.103 0.086 0.087 0.085 0.087
LT LL 0.103 0.103 0.106 0.114 0.101 0.102 0.103 0.106

jii. € = e°P_ !, Po,q = UDYV2U’, svd(cov(e®)) = UDU'.

svd’
iv. € = VD!, svd(e? — &%) = UDV".

Table 1 reports the Type I errors of the independence test described in Section 3.4, calculated as the mean occurrence
of p-values less than 0.1 in 1000 replications. The results in the top left panel assume that e; is observed. Regardless of
the specification for u; and B, the Type I errors associated with u; or ur2 are close to the size of the test. However, since
the components of u, are non-Gaussian by construction, the test always rejects independence of e?. Recall that €? are
constructed from a Choleski decomposition of the sample covariance matrix for e. Independence of €? is always rejected
when data are generated from Model NLT but is almost never rejected for model LT because W is lower triangular in
model LT. The prewhitened data ¢/, 82 and € are based on W matrices that differ from W and hence the test also rejects
independence. The top right panel shows that the permutation test does not reject independence of the signals #(€)
recovered by ICA except in Model LT-HL when the test rejects with probability 0.145 in the Monte-Carlo, which is slightly
oversized.

The above results assume that e° is observed. Next, we replace e® with residuals from estimation of a VAR(1). ICA is
then applied to the estimated residuals after prewhitening. Panel B of Table 1 shows that the rejection probabilities of
the permutation test are not affected by having to estimate A and B by least squares. As in the case when e is observed,
the permutation test cannot reject independence of the primitive shocks identified by ICA except in the LT-HL case when
the rejection probability is 0.139.

A metric for comparing matrices is Amari distance which, for two p x p matrices Ay and A with r; = [AOA”],-]-, is
defined in Bach and Jordan (2001) as

0 2p =\ max; |y 2p P max; |y
Though ICA studies usually report the Amari distance for the unmixing matrix W, the matrix B is of more interest in SVAR
since it is gives impact response of the shocks. We compare the absolute value of two matrices to ensure that differences
are not due to a sign flip that is difficult to control in simulations. Panel C of Table 1 shows that all prewhitening methods
give similar Amari distances except in Model LT-HL when using &, gives noticeably smaller errors.

The results suggest that the method of prewhitening matters, but only in the LT-HL case, and there are two possible
explanations. One is that in the LT-HL case the true B (hence W) is lower triangular, and when this structure is
accompanied by a heavy-tailed shock, much can be learned from a kurtosis ordering of the VAR residuals. Prewhitening
without using this information is inefficient. The second explanation is that as seen from Panel B, independence of e°
cannot be rejected. This suggests that it is desirable to use prewhitened data that are as close to independent as possible
for ICA estimation. Comparing the p value of the permutation test applied to different sets of prewhitened data can be
useful in this regard.

11
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The results thus favor prewhitening the VAR residuals by Choleski decomposition ordered by kurtosis. A closer look
finds that the A and B matrices are precisely estimated using ey as prewhitened data. Even without imposing a lower
triangular structure, the pattern is recovered precisely whether or not the innovations have heavy tails. The difference
compared to Choleski decomposition is that ICA lets the data speak as to whether the upper triangular entries of B are
zero. If the lower triangular structure is true, Y; is exogenous and one can alternatively estimate the dynamic causal
effects from a regression of Y, on Y; and lags of Yy, Y, Ys.

Mean Estimates of A and B

Model/Noise True A HL LL
0.2 0.0 0.0 [0.192 0.002 —0.007 [0.193 0.000 —0.007
NLT 0.3 0.6 0.0j| 0.293 0.602 —0.007:| 0.298 0.598 —0.004]
0104 03 0.8 10.400 0.300 0.800 10.399 0.303 0.798
0.2 0.0 0.0 [0.190 0.003 —0.009 [0.195 0.001 —0.003
LT 0.3 0.6 0.0:| 0.296 0.598 —0.005:| 0.303 0.593 —0.002:|
0104 03 0.8 10.399 0.301 0.798 1 0.401 0.303 0.792
Model/Noise True B HL LL
[1.581 2.121 0 [1.582 2.091 0.005 [ 1.584 2.104 0.005
NLT 1.581 0.707 0i| 1.582 0.693 —0.001:| 1.558 0.724 0.003i|
10.000 0.000 1 10.000 —0.002 0.987 | —0.002 —0.001 1.000

LT 0.75 1.250 0.000 0.749 1.231 0.015 0.727 1.240 0.002
0L1.00 0.208 1.339 10.999 0.202 1.319 1 0.976 0.220 1.334

[1.00 0.000 0.000:| [0.999 —0.003 —0.005:| 0.985 0.017 —0.001]

5 Applications

We consider three applications. The first aims to show that the validity of ordering used in Choleski can be tested, as
suggested by Lemma 2. The second application estimates an HL model to shed light on the dynamic effects of a disaster
shock. In the third, HL regressions are used to purge the variations due to covip-19 from the data.

5.1. Example 1: Uncertainty

Economic theory is inconclusive as to whether episodes of heightened uncertainty during economic downturns arise
because of exogenous increases in uncertainty, or if they are the consequence of endogenous responses to other economic
shocks. SVARs have been estimated using a variety of identification strategies using different measures of uncertainty and
over different samples. But testing the validity of these restrictions has been difficult as these models are often exactly
identified, i.e., the number of unique entries in the covariance matrix for e; equals the number of free parameters in B.
An independence test provides a way to test these restrictions.

We take industrial production (IP) as indicator of real activity and consider six different measures of uncertainty used
in Ludvigson et al. (2021b). These are JLN macro uncertainty (UM), real economic uncertainty (UR), financial uncertainty
(UF), policy uncertainty (EPU), news-based uncertainty (EPN), and stock market volatility (VIX). This leads to estimation of
six three-variable SVARs for each model, each using six lags, over the sample 1960:7-2015:4. Table 2 shows that the data
used in the six systems have different statistical properties. However, there is little evidence that the systems considered
have heavy tails.

We test independence of the identified shocks obtained from different orderings of the VAR residuals. Recall that the
p value indicates the Type 1 error in rejecting the assumed lower triangular structure. The p values reported in Table 2
indicate strong evidence against independence of the shocks constructed from Models 2,4,5 regardless of ordering. There
is some support for independence in Models 1 and 6, while the strongest evidence for independence is provided by Model
1 using the ordering (ip,uf,um), a configuration that would not be obvious based on economic reasoning.

As Lemma 2 indicates, independence is necessary but not sufficient for model identification. Nonetheless, testing
independence of & provides a way to rule out incorrect restrictions. The finding that independence of shocks from multiple
orderings cannot be rejected suggests that the restrictions imposed by the Choleski orderings are not enough to uniquely
identify u. This lends support to using restrictions beyond the ordering of variables to help identification.

5.2. Example 2: Disaster shocks

The second example considers a SVAR in the cost of disasters series (CD) shown in Fig. 1, unemployment claims
(Claims), and JLN uncertainty (UM) for the sample 1980:1-2019:12. To make the scale of the variables comparable, the
CD series (originally in billions of dollars) is divided by 1000; the claims series is divided by 1000 so that it is in millions;
the UM series is multiplied by 1000 and remains unit free. Each series is passed through the filter proposed in Mueller
and Watson (2017) to remove the low frequency variations in the mean. This is equivalent to adding a set of cosine
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Table 2
Permutation test for @ in three variable VARs.
Model
1 2 3 4 5 6
Variables (um,ip,uf) (ur,ip,uf) (epu,ip,uf) (epn,ip,uf) (epu,ip,vix) (ur,ip,vix)
Ordering p values of independence test
12,3 0.025 0.005 0.120 0.130 0.065 0.100
2,13 0.040 0.025 0.080 0.105 0.065 0.120
3,12 0.295 0.020 0.095 0.085 0.110 0.245
2,3,1 0.445 0.040 0.180 0.125 0.050 0.225
3,2,1 0.320 0.050 0.140 0.080 0.130 0.375
1,32 0.035 0.015 0.150 0.065 0.090 0.190
Kurtosis
kgt Y 6.155 5.206 9.851 9.851 9.139 9.139
5.206 4.886 3.720 5.473 7.346 9.113
3.436 3.436 3.421 3.421 3.645 7.346
K4t € 4.897 4572 6.647 6.562 7.143 5.991
4575 6.509 7.209 8.770 7.591 5.474
21.797 21.889 31.928 31.749 8.512 6.437
T 652 652 358 358 297 297

Note: 1P is industrial production. Six measures of uncertainty are considered: macro (um), financial (UF),
policy uncertainty (EPU), news uncertainty (EPN), and stock market volatility index (vix). See Jurado et al.
(2015) and Ludvigson et al. (2021b) for definitions.

predictors in the VAR. The residuals from estimating a VAR with six lags are mean zero with standard deviation (13.617,
14.276, 8.783) and kurtosis (69.122, 5.338, 5.232) respectively. The permutation test cannot reject the null hypothesis
of independence of the shocks obtained by Choleski decomposition for orderings (1,2,3), (2,1,3), and (1,3,2). However,
irrespective of the ordering of e, the ICA shocks always pass the independence test. Furthermore, the shocks identified by
the different orderings have very similar kurtosis.

The ICA estimates obtained with &y as prewhitened data are:

|:0.181>x< 0.196 0.088*:| ) [0.034 —0.005 —0.006:|
A1) =

~

A; =10.049% 0.911x 0.026x* —0.156  0.827x 0.136x%

0.101%x  0.229 1.647x —0.090 —-0.014 0.938x

According to Proposition 1, A is consistent, though the entries have different convergence rates. Since the estimates have
non-standard distribution, we use (*) to indicate that zero is outside the (10, 90) percentiles of the bootstrap distribution.
The matrix A; gives the lag one response to a disaster shock. The estimates indicate that response of CD and UM are both
non-zero. The A3 estimate suggests that the costly disaster series is not strictly exogenous. The matrix A(1) = f:] Aj
summarizes the cumulative effects of the shocks over six periods. The (1,1)th diagonal entry of A(]) indicates that the
disaster shock has a short half-life. The B matrix gives the instantaneous effect of the disaster shock. The unconstrained ICA
estimate is quite close to the one implied by Choleski decomposition with a (1,2,3) ordering. Taking sampling uncertainty
into account, ICA supports a B matrix that is more sparse than the lower triangular structure imposed by Choleski
decomposition. Note also that the HL model is based on the premise that the effects of an infinite variance shock on
a finite variance variable are small. Rows two and three of the first column of B and A, are small relative to the own
effect recorded in the (1,1)th entry of the respective matrices. The estimates are consistent with the HL structure.

) 13.884x 0 0 1.0 0 07 [13.884 0 0
Benot = |:—0.089 14.556% 0i| = |:—0.0064 1.0 0i| |: 0 14.556 0]
1.014« —0.0005 8.899x 0.073 —0.0038 1.0 0 0 8.899
) 13.881x% 0.153 0.235 1.0 0.010 0.0267 [13.881 0 0
Bica = |:—O.265 14.522x% O.952:| = |:—0.019 1.0 0.107i| |: 0 14.522 0 i|
0.870x 0.579 8.894x 0.062 —0.039 1.0 0 0 8.894

The three shocks recovered by ICA have Kkurtosis (69.34, 5.39, 5.03). The density of ii; in Fig. 2 shows that the shock
has a heavy right tail. We estimate the impulse response functions by (i) iterating A"B as implied by the VAR, (ii) local
projections using i obtained from ICA as shocks, and (iii) dynamic responses as implied by Choleski decomposition. These
are labeled vAR, LP, and cHoL in Table 3. To provide some idea of precision of the estimated impulse responses, we report
standard errors for the L estimates as well 95% bootstrap confidence intervals using the vARs package in R as rough guides.
But note that our estimates A have non-standard distributions and results about bootstrap inference with heavy-tailed
variables have only been considered in the univariate setting, see, for example, Davis and Wu (1997) and Wan and Davis

13



R. Davis and S. Ng Journal of Econometrics xxx (XXxX) Xxx

Table 3
Dynamic effects of a Costly Disaster (CD) shock.

h var Ip Ip.se chol chol.up chol.dn
Response of CD

1 13.88 13.88 0.00 13.88 18.45 7.90

2 2.63 2.61 1.87 2.65 3.85 123

3 —0.15 —0.31 0.82 —0.14 0.96 —1.24

4 —0.05 —0.09 0.34 —0.04 0.97 —0.90

5 —0.51 —0.44 0.35 —0.51 0.70 —1.54

6 —-0.71 —0.56 0.32 —-0.71 0.51 —1.63
Response of unemployment claims

1 —0.27 —0.27 0.00 —0.09 1.32 —1.49

2 2.68 2.95 1.02 2.88 474 0.67

3 0.18 0.37 0.63 0.39 243 —1.04

4 —0.83 —0.72 0.83 —0.61 141 —2.85

5 —1.31 —1.03 1.08 —1.07 1.83 —3.68

6 —1.76 —1.64 1.15 —1.54 1.50 —433
Response of JLN uncertainty

1 0.87 0.87 0.00 1.01 2.21 0.16

2 2.65 2.57 0.58 2.89 4.95 1.36

3 2.28 2.02 0.86 2.56 5.11 0.67

4 1.26 0.74 1.10 1.56 4.64 —0.67

5 0.82 0.13 1.17 1.12 5.12 —1.78

6 0.28 —0.49 1.30 0.56 4.58 —2.81

Note: VAR are the dynamic response implied by the VAR using the ICA estimates. LP are responses
estimated by local projections, and LP.SE are the corresponding standard errors. CHOL are the
dynamic responses using Choleski decomposition, with 95% confidence intervals defined by
CHOL.UP and CHOL.DN.

(2022). Each local projections regression is of the HL type and hence inference is also non-standard. The standard errors
should be interpreted with this caveat in mind.

The CD series has short memory and the effects of its own shock die out after one month. The shock induces a tightly
estimated increase in uncertainty for three months and an increase in unemployment claims of two months. As a point
of reference, an unemployment claims shock has an impact effect of 14.556 on itself, and an uncertainty shock has an
impact effect of 8.898 on itself. The effects of a disaster shock on these economic variables are small, but they do exist.
This reinforces the motivation of the HL model that infinite variance shocks can affect variables with finite variances.

It can be argued that the infinite variance nature of u;; makes the unit variance property of shocks identified by
ICA unappealing. But it is easy to calibrate the shock to yield exactly a one percent change to the variable of interest!>
without changing the shape of the impulse response function. With this data, the unit effect is associated with a shock
of size 13.881, which is slightly larger than Katrina shock in 2005, which was of magnitude 11.56.

5.3. Example 3: Economic shocks

coviD-19 has been costly in health, social, and economic dimensions, but it has also created new challenges for data
analysis. One problem discussed in Ng (2021) is that covid-19 is pervasive and persistent, and the principal components
of economic data will be now spanned by common economic variations and covip-19. To isolate the economic factors, a
suggestion was made to project each economic variable on covid indicators such as positivity rate, hospitalization, and
deaths, then use the panel of ‘de-covid’ data to estimate the economic factors.

coviDp-19 also has implications for VAR estimation. Consider a two variable VAR in log payroll-employment (PAYEMS)
and log consumption of durables (CD). The top panel of Fig. 3 shows the response to a positive employment shock from a
VAR estimated over the pre-covid sample of 1960:1-2020:2, while the second panel extends the sample to 2020:12.
Adding ten months of post-covid data completely changed the shape of the impulse response functions. Lenza and
Primiceri (2021) recognize that the covid-induced spikes in the data will distort VAR estimation and suggest using Pareto
priors for innovation variances to capture these spikes. Others such as Carriero et al. (2021) model covip-19 as outliers.

Instead of specifying changes to the probability distribution of existing shocks, an alternative is to assume as in Ng
(2021) that there is an additional ‘virus’ shock, say, v in the post-covid sample. There are then two ways to proceed. The
first is to de-covid all variables used in the VAR which would entail running n(p + 1) decovid regressions. By Frish-Waugh
arguments, this is the same as adding covid indicators as exogenous variables to each equation. Note that these are not
the same as running a VAR on n de-covid variables, which would only entail n decovid regressions. Results using the log

13 The ‘unit effect normalization’ considered in Stock and Watson (2015) can be used to transform the ICA estimates ii;; = fln,iwl?“,,-m, 3,-,- =1,
and Bj; = Bj1 ica/Bi1,ica for j > 1.
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Fig. 2. Density of costly disaster shock.

changes in positive cases as v are shown in the third panel of Fig. 3.!4 The dynamic responses are very similar to the ones
in the top panel estimated on the pre-covid sample.

Removing the covid variations from the data before VAR estimation suppresses feedback from the economic variables
to v which could be restrictive. An alternative approach is to include a v indicator in the VAR directly and order it first,
resulting in a HL model with (n + 1) variables. In this case, interest is not in the dynamic effects of an infinite variance
shock; but to isolate the economic variations so that the dynamic effects of economic shocks can be estimated in spite
of the presence of covip-19. The results for the three variable VAR in the bottom panel of Fig. 3 are again similar to the
two step approach in the third panel. Whichever way we choose to control for covid variations, the exercise involves
regressions with a finite variance variable on the left hand side and a heavy-tailed variable on the right hand side, and
Proposition 1 is relevant to the interpretation of the estimates.

6. Conclusion

This paper provides a VAR framework that accommodates disaster-type events. The framework can be used to study
the effects of disaster type shocks, as well as the effects of finite variance shocks in the presence of large rare events. Under
the maintained assumption that the primitive shocks are independent, a disaster-type shock can be uniquely identified
from the tail behavior and sign of the components estimated by ICA. An independence test for validity of the identifying
restriction is also proposed. The test is valid even for exactly identified models and is of interest in its own right. The
focus here is developing the HL framework and consistent estimation. Inference when the data have heavy tails remains
an area for future research.

Appendix

A.1. Background on distance covariance
The distance covariance between two random vectors X and Y of dimensions m and n, respectively, is given by
2
20 ¥iw) = [ fonrts. 0 = s on(o)] wis. s, (16)
RH’FH’I

where w(s, t) > 0 is a weight function and ¢;(t) = E[exp{©?)], t € R¢ denotes the characteristic function for any random
vector Z € RY. It is assumed that the integral in (10) is finite, which certainly holds if w(s, t) is a probability density
function. One sees immediately that X and Y are independent if and only if Z(X, Y; w) = 0 since in this case the joint
characteristic function factors into the product of the respective marginal characteristic functions, ¢x y(s, t) = @x(s) @y(t)
for all (s,t) € R™™, Now if the weight function factors into a product function, i.e., w(s, t) = wq(s)w;(t), then under
suitable moment conditions on X and Y, Z(X, Y, w) has the form

T(X,Y; w) = E[W1(X —X") (Y — Y')] + E[1(X — X)E[i2(Y — Y)]
— 2E[1(X — X" )oY — Y1, (17)

14 The covid data are taken from https://covidtracking.com/data/download.
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Fig. 3. Dynamic response of (PAYEMS, CS) to PAYEMS shock.

where (X)) = [om €EVwi(s)ds, W2(y) = [ €V wy(s)ds, and (X, Y), (X', Y’), (X", Y”) are iid copies of (X, Y). This relation
is found by expanding the square in the integrand in (16) and using Fubini to interchange integration with expectation.
Precise conditions on w to perform these operations are given in Davis et al. (2018). Suffice it to say that if w; is a
probability density function, then application of Fubini requires no further conditions on the distributions of X and
Y. In order to avoid direct integration in (16), one can choose functions, w; which have an easily computable Fourier
transform. Examples include the Gaussian density for which w;(x) = exp{—o2|x||?/2} or a Cauchy density in which case
wi(x) = exp{—o|x||1}, where ||x||; is the 1-norm. A popular choice for w is

-1
w(s, t) = (cmplslP e pltP ™), (18)

where 8 € (0, 2), tmp = % (see Székely et al. (2007)). In this case, one has f]}? cr;}ﬁ (1 = cos(s, x)) ds = |x|?,

and provided E(|X|? + E|Y|® + |X|?|Y|?) < oo, then
(X, Y:w) = E[IX = X|°|Y = Y'/"1+ E[X — X' 1PIEQ)Y — Y|P
—2E[X = X'IPly — Y")]. (19)
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Notice that with this choice of w, Z is invariant under orthogonal transformations on X and Y and is scale homogeneous
under positive scaling. The most common choice for g is the value 1, which requires a finite mean. In our heavy-tailed
framework, we have assumed the tail-index « € (1, 2) so the integral in (16) is finite and formula (19) is valid (if X and
Y are independent) using the above weight function w with § = 1. However, in order to extend the results to heavier
tails, such as Cauchy, then one can choose a smaller 8, which is difficult to identify in practice, or use the Gaussian
density function. As noted in Davis et al. (2018), the weight function in (11) can have potential limitations when applied
to estimated residuals in the finite variance case.

Based on data (X1, Y1), ..., (X, Yr) from (X, Y), the general distance covariance in (16) can be estimated by replacing
the characteristic function with their empirical counterparts. Using the w given in (18), we obtain the estimate

T T T T T
IX. Vi w) = %ZZ|xf—xj|ﬂ|Yi—Yj|ﬂ+ %ZZ - Xl %ZZM—Y;V’
i=1 j=1 i=1 i=1 j=1

=

1 T T T
=255 200 D X=Xl Y= vl

which can be shown to be consistent for Z(X, Y; w) by the ergodic theorem applied to the empirical characteristic function.
The limit theory for TZ(X, Y; w), under the assumption that X and Y are independent can be found in Székely et al. (2007)
in the iid case and in Davis et al. (2018) a time series setting when {(X;, Y;)} is a stationary time series. The latter also
considers the limit theory of f( IX,Y;w)—I(X, Y; w)), when X and Y are not independent.

w

A.2. Proofs

We now consider an array of models given by Y; r = ArY:_1.r + Bru;, where

(l) AZLT = % and BZ],T = Tﬁ , with 0 = 1/0{ — 1/2
(i) uy has Pareto-like tails, E[u;;] = O if it exists and has dispersion 1 so that TP(Jus| > T'%) — 1 and u;, ~ (0, 1).

In other words, for fixed T, the time series {Y; 7, t € Z} satisfies the VAR(1) equations with coefficient matrix Ar. The time
series of observations, Y1, ..., Yr are then considered to come from this model. To lighten the notation going forward,
we will often suppress the dependence of Y; on T.

. ) Lo d :
Claim 1. We will first show that the assumptions imply that 1 >_ Y2 —>S5 where S is random or a constant, and hence
the sample variance of Y, is convergent.

From the causal MA representation, we have
o0
— J .
=Y AlBu,,
j=0

which can be expressed component-wise as

o0 o0
Yo = Z G 11lUe—j1 + Z Gj12Ur—j2 (20)
i—0 i—0
1 o0 o0
Yo = 70 Z Gjo1Ue—j1 + Z G 22U—j2 , (21)
=0 =

where the ¢; i depend on T but converge (as T — o) to finite limits that decay as a function of the lag j at an exponential
rate. For example, (co.11, Co,12) corresponds to the first row of the matrix B, while (co 21, C0.22) = (b21, B22).

Since § = 1/a—1/2,20+1=2/a, and 146 = 1/ + 1/2, the sample mean of the Y;,, normalized by +/T, converges
in distribution even if the population variance is infinite. We have

1 T o] 1 T 00 1 T
\7FT ; Yo = j:ZOngl <T1/°‘ Zurm) + j:ZOCj,zz <ﬁ ;utﬂ)

o0

o0

* * . C*
ZCjJZ Sy + ch,zz Ny =:Sy,,
j=0
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where cj*m = limy_, o G2 i = 1,2, and S, is a stable random variable with index « that is independent of N,, a standard
normal random variable. The sample second moment also converges. To see this, we have

T o] T
1 1
2 2 2
T § iytZ = § Gi21 (TZ/“ E u[j,]) E Gj,21Ck,21 (Tz/”‘ E Up—j1Ue— I<1>
t=1 j=0 t=1

Jj#k=0

00 1 T 0 1 T
2 2
+ ZO:C]-_ZZ (T ;Ut_ﬂ) + Z Gj,22Ck,22 (T Zutj,zutk,z)
Jj= =

j#k=0 t=1

E Gj,21Ck,22 (T1/a+1/2 E Ur—j, e~ I<2>

J.k=0
d = >
- Z(CJ‘Z])Z Suu + Z(szz)z = Syy2- (22)
j=0 Jj=0

where S, is a stable random variable with index « /2. The last line follows essentially from Lemma 1, which shows that
forj # k,

T
1
W ; Up—j1Ue—k,1 = Op(1) (23)
1 J
T 2 gtk = Op(1), (24)
t=1
1 0
f Z Ur—jaUt—k2 = Op(]) (25)
t=1

by the ergodic theorem. Using the ideas in Davis and Resnick (1986) and the continuous mapping theorem, it is
straightforward to obtain the limit in the last line upon summing out j and k.

Proof of Proposition 1. We first note that the OLS estimate of A is given by

-1
T T-1
A=Y vy, (Z YtY[) (26)
t=2 t=1

and hence

T T-1 -1
—A=)eY (Z Y[Yt’> (27)
t=2 t=1

(For simplicity, we have terminated the second sum in (26) and (27) at T — 1 instead of T, but this has no bearing on the
asymptotics.) We begin by analyzing the terms in the matrix of cross products given by Z[T;l Y:Y/. From (22), we can
write

T
Z Y5 =TSur,
=1

where Sy, 1 = + 31, V2 —>SW ,. The same argument as above shows that T=2/% 3"/ _ v2 —>Sw 1» so that

T
T/ Z Y[21 = Tz/asn,r,
t=1
. d .
with Sy, 7—>S5y ;- Now applying the same arguments as before,

T
1
Tiati2 Zynyfz = chnckm (TZ/D‘ Zut—nur kl) ZCJlZCkZI (T2/°‘ Zut—}zut k1>
t=1 j,k=0 Jj.k=0
1 T
+ Z Gj,11Ck,22 (Tl/a+l/2 Zut —jale— I<2>
J.k=0
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o] 1 T
+ Z Cj,12Ck,22 W Z Ur—jo2Ut—k,2
t=1

Jj,k=0

o0
d * * . CX
- E 11621 | Suu = Syy 125
i=0

where we have made use of (23)-(25) once again. We write
T

Z YoYe = TVT128, 1,

t=1
d
where S13 1—>5Jy 1. It follows that

;
(Z YY) = 1 S Y =Y YaYe) _ 1 TSy 1 —TVe+1/28, ¢
- te det ’

— ZtT=1 YY1 ZLl Y2 T det \—TVet125,, TSy 1

d . .
where det = T?/**'D and Dr = (S11,1522.1 — S%5 7)—>Doo := Syy 1S4y 2 — (Syy 12)%. The inverse can then be written more
concisely as o '

T
1 T*Z/as _T71/a7]/25
n-1 _ 22, 12,7
([2_1 YY) = D; <_T71/a71/25]” TSt . (28)

Estimation of the Y; equation We have

T [e'e} T
(TlogT)~"/* Z erYi—11 = Z ¢ia1(T logT)~® Z Ur—1-j,1(Ur1B11 + Ur2B12)
t=2 j=0 =2
o] T
+ Z G12(T log T)~1/* Z Ue—1-j2(Ur1B11 + ueaBi2)
j=0 t=2
00 T
= ZCLH(TIOgTTI/aZurflfj,lutan +0p(1)
d j=0 t=2
—> Sev 11 (29)
Next
T 00 T
TV Z enYi—12 = Z G T2/ 12 Z U—1-j,1(Ur1B11 + Ue2Bi2)
t=2 j=0 t=2
00 T
+ Z G2 T Z Ur—1-j2(Ur1B11 + UraB12)
=0 =2
[} T
= Z 2T Z Ur—1-j2Ue1B11 + 0p(1)
g 0 t=2
— Sev,12- (30)

Estimation of the Y, equation Using the representation in (20), it is relatively straightforward to show

T T T
_ b2 _ d
T/ Z enY_11 = (W Z Yi 11Uy + BT~V ZU[ZYt—l,l —> B2 Svu21 =t Sev 21
t=2 t=2 t=2
1/a 1/a
since (log T)'/*/T? — 0. Furthermore, since %‘;gf{/; — el " o,
1 < > 1 « b
21
— Z enYi—12 = Z G277, Z Urj-1,1 <*Un + Bzz”rz)
: ’ /o ’ 0
VT 5 =0 T = T
i 1 < b
21
+ Z G271 Z Up—j-1,2 <W”tl + 322Ur2>
j=0 t=2

—> B2ySvu,12 + b21Suu21 + BoaNuz =: Sey 22,
where Sy 12, Suu.21 are stable with index « and N,; is normally distributed.
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Summarizing, we have, using an obvious notation,
T T T ~ ~
Z oy’ DiseaYo11 Y penYeo12 (Tlog T)"*Sy1r  TY*Sypr
tfy_1 = T T = ~ ~ s
t—2 Dl Y penYeo12 TSy 1 TSy ¢
so that A — A is

1 (TlOgT)l/‘XEnJ T]/aglz,r TSy 1 —T-Vem125, ¢
Dy Tl/a§21,r T1/2’§22$T —T V=125, ¢ T 'Siur '

Since —1/a¢+1/2 <0and 1 — 1/a — 1/2 < 0, we conclude

~ d .
VT(Ayy — Ay) == Spn = —Sev.125¢y 12/Doo
CUarh d .
TUVAp — Ap) —> Sann == Sev.125vy 11/Doo
o d
TY*(A21 — A21) —> Sa21 = (Sev.21Spy 20 — Sev.22Spy.12)/Doo
( )

Proof of Proposition 3. The proof relies on an application of Theorem 3.3 in Davis and Fernandes (2022), which considers
consistency for the unmixing matrix in an ICA model with noise. Observe that

e =Y — ?t =e +(A _A)Yt—l = Buy +r(T)Ye—1, (31)

where r(T) = A — A= op(1). By the independence of u; with Y;_; it follows that the components of E|u;||Y;—1| < oo.
Hence, in order to apply Theorem 3.3, it suffices to show that

s-212%0. (32)
We first show

S.-532%0. (33)
From (31),

T T
Y- =—A-ASA-A +A-AT! Z Y, i€, 4T Z eY, ,(A—A),
t=1 t=1
where f]y is the sample covariance matrix of Y;_;, t = 1, ..., T. Using the relations for A—Ain Proposition 1, and the
calculations leading to the limit in (28), it follows that
A-A)Z,A-A) So.

Similarly, applying (29)-(30), it is straightforward to also show that

T T
A—AT' > Y qe, +T7' ) e, (A—AY 2o,

t=1 t=1

which proves (33). To finish the proof, we note the following relations

T
1 _
T > ety =T Siir + BLof + 0p(1) (34)
=1
17
- > ety = b3,Siir + B3,07 + 0p(1) (35)
=1
17
T ZetletZ = TV*"V2B11by1S11,1 + B11Baaos + 0p(1), (36)
t=1
where Si1r = T2*Y|_,u% = 0p(1), and 07 = var(up). In view of (33), the exact same relations hold for the

corresponding entries of X;. The determinant of both sample covariance matrices is then of order
|Ze| = T¥*'B2,S1 1By0y + O0p(T*71/2),
20
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Since 3,1 = I):l—lze, where
e

-1 T 2 -1 T
E T Zt:l € -T Z[:l €r1€r2

e — ’

-1 T -1 T 2
T Z[:l €r1€r2 T Zt:l €

with a similar expression for Eé‘], we have

alt e 1 1) ~ 1
Ee - Eé = ~ - = Z‘e - 7=
|Zel 2%l | 2l

The second converges to probability by (32) and the fact that the determinant goes to infinity in probability. To show the
first term converges to 0, since |i‘e| / |f]g_,| 2 1, it suffices to show that the matrix fe‘ ! remains bounded. But

(5 - 5.

st =wEIw,
where ﬁu is the sample covariance matrix of uy, ..., ur. A straight forward calculation shows that

. 0 0
zul—"><0 022)

and hence f]; T is bounded in probability as claimed. This establishes (32) which completes the proof of the
proposition. 0

Proof of Lemma 3. Using (34), we see that

c €1 €1
en = - ~ 5 s
\/T_l Ys-r€h \/Tz/a_ansllf
which gives the asserted representation for ef;. Also from (35) and (36), we find that

~ b21
T]/a—]/an ’

as T — oo. It follows from (34)-(36) that

Cr

T T
1 2 1 2 2.2
T Z(esz —cres)) =T Z (652 — 2cresies + Cresz)

s=1

s=1
o2 2
B;,05 .
. P
Since c; — 0, we conclude
c er1 e — Crétq B2
€ = ~ ~ U2,
|Baz|02

By, |0
\/T_l Z:=1(es2 — creg )? 1B22]02

as claimed. O
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