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Abstract

High quality Machine Learning (ML) models are of-

ten considered valuable intellectual property by companies.

Model Stealing (MS) attacks allow an adversary with black-

box access to a ML model to replicate its functionality by

training a clone model using the predictions of the target

model for different inputs. However, best available existing

MS attacks fail to produce a high-accuracy clone without

access to the target dataset or a representative dataset nec-

essary to query the target model. In this paper, we show

that preventing access to the target dataset is not an ade-

quate defense to protect a model. We propose MAZE – a

data-free model stealing attack using zeroth-order gradient

estimation that produces high-accuracy clones. In contrast

to prior works, MAZE uses only synthetic data created us-

ing a generative model to perform MS.

Our evaluation with four image classification models

shows that MAZE provides a normalized clone accuracy

in the range of 0.90⇥ to 0.99⇥, and outperforms even the

recent attacks that rely on partial data (JBDA, clone accu-

racy 0.13⇥ to 0.69⇥) and on surrogate data (KnockoffNets,

clone accuracy 0.52⇥ to 0.97⇥). We also study an ex-

tension of MAZE in the partial-data setting, and develop

MAZE-PD, which generates synthetic data closer to the

target distribution. MAZE-PD further improves the clone

accuracy (0.97⇥ to 1.0⇥) and reduces the query budget re-

quired for the attack by 2⇥-24⇥.

1. Introduction

The ability of Deep Neural Networks (DNNs) to achieve

state of the art performances in a wide variety of challenging

computer-vision tasks has spurred the wide-spread adop-

tion of these models by companies to enable various prod-

ucts and services such as self-driving cars, license plate

reading, disease diagnosis from medical images, activity

classification from images and video, and smart cameras.

As the performance of ML models scales with the train-

ing data [11], companies invest significantly in collecting

vast amounts of data to train high-performance ML mod-

els. Protecting the confidentiality of these models is vital

for companies to maintain a competitive advantage and to

prevent the stolen model from being misused by an adver-

sary to compromise security and privacy. For example, an

adversary can use the stolen model to craft adversarial ex-

amples [9, 30, 32], compromise user membership privacy

through membership inference attacks [29, 34, 21], and leak

sensitive user data used to train the model through model in-

version attacks [6, 35, 38]. Thus, ML models are considered

valuable intellectual properties of the owner and are closely

guarded against theft and data leaks.

Step 1: Construct Training dataset by querying the target model

Step 2: Use the constructed dataset to train the clone model

y3 = T (x3)

x3

Clone Model

     Black -Box    

Target Model (T )

(C)

Dataset

Dataset

x0, y0
x1, y1

x2, y2

· ·

xn, yn

x0, y0
x1, y1

x2, y2
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Figure 1. Model stealing attacks: The target model is queried us-

ing a set of inputs {xi}
n

i=1 to obtain a labeled training dataset

{xi, yi}
n

i=1, which is used to train the clone model.

Model functionality stealing attacks compromise the

confidentiality of ML models by allowing an adversary to

train a clone model that closely mimics the predictions

of the target model, effectively copying its functionality.

These attacks only require black-box access to the target

model where the adversary can access the predictions of

the model for any given input. Fig. 1 illustrates the steps

involved in carrying out a MS attack. The adversary first
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queries the target model T with various inputs {xi}
n
i=1 and

uses the predictions of the target model yi = T (xi) to con-

struct a labeled dataset D = {xi, yi}. This dataset is then

used to train a clone model C to match the predictions of T .

In the current state of the art methods (e.g., [26, 24]),

the availability of in-distribution or similar surrogate data

to query the target model plays a key role in the ability of

the attacker to train high accuracy clone models. However,

in most real-world scenarios, the training data is not readily

available to the attacker as companies typically train their

models using proprietary datasets. To carry out MS in such

a data-limited setting, existing attacks either assume par-

tial availability of the target dataset or the availability of

a surrogate dataset that is semantically similar to the tar-

get dataset (e.g., using CIFAR-100 to attack a CIFAR-10

model). For example, Jacobian-Based Dataset Augmenta-

tion (JBDA) [26] is an attack that uses a subset of the train-

ing data to create additional synthetic data, which is used to

query the target model. KnockoffNets [24] is another MS at-

tack that uses a surrogate dataset to query the target model.

These attacks become ineffective without access to the tar-

get dataset or a representative surrogate dataset. 1

This paper is the first to show that a highly accurate MS

attack is feasible without relying on any access to the tar-

get dataset or even a surrogate dataset – our method only

relies on synthetically-generated out-of-distribution data –

but results in high-accuracy clones on in-distribution data.

We make the following key contributions in our paper:

Contribution 1: We propose MAZE– the first data-

free model stealing attack capable of training high-accuracy

clone models across multiple image classification datasets

and complex DNN target models. In contrast to exist-

ing attacks that require some form of data to query the

target, MAZE uses synthetic data created using a genera-

tive model to carry out MS attack. Our evaluations across

DNNs trained on various image classification tasks show

that MAZE provides a normalized clone accuracy of 0.90⇥
to 0.99⇥ (normalized clone accuracy is the accuracy of the

clone model expressed as a fraction of the target-model ac-

curacy). Despite not using any data, MAZE outperforms

recent attacks that rely on partial data (JBDA, clone accu-

racy of 0.13⇥ to 0.69⇥) or surrogate data (KnockoffNets,

clone accuracy of 0.52⇥ to 0.97⇥).

Contribution 2: Our key insight is to draw inspira-

tion from data-free knowledge distillation (KD) and zeroth-

order gradient estimation to train the generative model used

to produce synthetic data in MAZE. Similar to data-free

KD, the generator is trained on a disagreement objective,

which encourages it to produce synthetic inputs that maxi-

mize the disagreement between the predictions of the target

1We refer the interested readers to Section 6.1 of the KnockoffNets

paper [24] for a discussion on the importance of using semantically similar

datasets to carry out the attack.

(teacher) and the clone (student) models. By training the

clone model on such synthetic examples we can improve

the alignment of the clone model’s decision boundary with

that of the target, resulting in a high-accuracy clone model.

In data-free KD, training the generator on the disagree-

ment objective is possible since white-box access to the

teacher model is available. But, unlike in data-free KD,

MAZE operates in a black-box setting. We therefore lever-

age zeroth-order gradient estimation (ZO) [22, 7] to approx-

imate the gradient of the black-box target model and use

this to train the generator. Unfortunately, we found a di-

rect application of ZO gradient estimation to be impractical

on real-world image classification models since the dimen-

sionality of the generator’s parameters can be in the order of

millions. We propose a way to overcome the dimensionality

problem by estimating gradients with respect to the signifi-

cantly lower-dimensional synthetic input and show that our

method can be successfully used to train a generator in a

query-efficient manner.

Contribution 3: In some cases, partial datasets may be

available. Recognizing that, we propose an extension of

MAZE, called MAZE-PD, for scenarios where a small par-

tial dataset (e.g., 100 examples) is available to the attacker.

MAZE-PD leverages the available data to produce queries

that are closer to the training distribution than in MAZE

by using generative adversarial training. Our evaluations

show that MAZE-PD provides near-perfect clone accuracy

(0.97⇥ to 1.0⇥), while reducing the number of queries by

2⇥-24⇥ compared to MAZE.

In summary, our key finding is that an attacker only

requires black-box access to the target model and no in-

distribution data to create high-accuracy clone models in the

image classification domain. If even a very limited amount

of in-distribution data is available, near-perfect clone ac-

curacy is feasible. This raises questions on how machine

learning models can be better protected from competitors

and bad actors in this domain.

2. Related Work

Several types of MS attacks have been proposed in re-

cent literature. Depending on the goal of the attack, MS

attacks can be categorized into: (1) parameter stealing (2)

hyper-parameter stealing (3) functionality stealing attacks.

Parameter stealing attacks [31, 18] focus on stealing the ex-

act model parameters, while hyper-parameter stealing at-

tacks [33, 23] aim to determine the hyper-parameters used

in the model architecture or the training algorithm of the tar-

get model. Our work, MAZE and MAZE-PD, are designed

to carry out a functionality stealing attack, where the goal

is to replicate the functionality of a blackbox target model

by training the clone model on the predictions of the tar-

get. As the attacker typically does not have access to the

dataset used to train the target model, attacks need alternate
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forms of data to query the target model and perform model

stealing. Depending on the availability of data, function-

ality stealing attacks can be classified as using (1) partial-

data, (2) surrogate-data, or (3) data-free, i.e., synthetic data.

We discuss prior works in each of these three settings and

also briefly discuss relationship between model stealing and

knowledge distillation.

2.1. Model Stealing with Partial Data

In the partial-data setting, the attacker has access to a

subset of the data used to train the target model. While

this in itself may be insufficient to carry out model steal-

ing, it allows the attacker to craft synthetic examples using

the available data. Jacobian Based Dataset Augmentation

(JBDA) [26] is an example of one such attack that assumes

that the adversary has access to a small set of seed exam-

ples from the target data distribution. The attack works by

first training a clone model C using the seed examples and

then progressively adding synthetic examples to the train-

ing dataset. JBDA uses a perturbation based heuristic to

generate new synthetic inputs from existing labeled inputs.

E.g., from an input-label pair (x, y), a synthetic input x0 is

generated by using the jacobian of the clone model’s loss

function rxL (C (x; ✓c) , y) as shown in Eqn. 1.

x0 = x+ �sign (rxL (C (x; ✓c) , y)) (1)

The dataset of synthetic examples {x0

i} generated this

way are labeled by using the predictions of the target model

y0i = T (x0

i) and the labeled examples {x0

i, y
0

i} are added to

the pool of labeled examples that can be used to train the

clone model C. In addition to requiring a set of seed exam-

ples from the target distribution, a key limitation of JBDA

is that, while it works well for simpler datasets like MNIST,

it tends to produce clone models with lower classification

accuracy for more complex datasets. For example, our eval-

uations in Section 5 show that JBDA provides a normalized

clone accuracy of only 0.13⇥ (GTSRB dataset) and 0.18⇥
(SVHN dataset).

2.2. Model Stealing with Surrogate Data

In the surrogate data setting, the attacker has access to al-

ternate datasets that can be used to query the target model.

KnockoffNets [24] is an example of a MS attack that is de-

signed to operate in such a setting. With a suitable surrogate

dataset, KnockoffNets can produce clone models with up to

0.97⇥ the accuracy of the target model. However, the effi-

cacy of such attacks is dictated by the availability of a suit-

able surrogate dataset. For instance, if we use the MNIST

dataset to perform MS on a FashionMNIST model, it only

produces a clone model with 0.41⇥ the accuracy of the tar-

get model (See Table 1 for full results). This is because the

surrogate dataset is not representative of the target dataset,

which reduces the effectiveness of the attack.

2.3. Data-Free Model Stealing

In the data-free setting, the adversary does not have ac-

cess to any data. This represents the hardest setting to carry

out MS as the attacker has no knowledge of the data dis-

tribution used to train the target model. A recent work by

Roberts et al. [28] studies the use of inputs derived from var-

ious noise distributions to carry out MS attack in the data-

free setting. While this attack works well for simple datasets

like MNIST, our evaluations show that such attacks do not

scale to more complex datasets such as CIFAR-10 (we ob-

tained relative clone accuracy of only 0.11⇥), limiting their

applicability (See Table 1 for full results).

2.4. Knowledge distillation

Model stealing is related to knowledge-distillation

(KD) [12], but in KD, unlike in model stealing, the tar-

get model is available to the attacker and is simply being

summarized into a simpler architecture. Appendix E fur-

ther discusses works in data-free KD and explain why the

these works are not directly applicable for MS attacks.

3. Preliminaries

The goal of this paper is to develop a model functionality

stealing attack in the data-free setting, which can be used

to train a high-accuracy clone model only using black-box

access to the target model. We formally state the objective

and constraints of our proposed model stealing attack.

Attack Objective: Consider a target model T that per-

forms a classification task with high accuracy. Our goal is

to train a clone model C that replicates the functionality of

the target model by maximizing the accuracy on a test set

Dtest as shown in Eqn. 2.

max
θC

E
x,y⇠Dtest

[Acc(C(x; ✓C), y)] (2)

Attack Constraints: We assume that the adversary does

not know any details about the Target model’s architecture

or the model parameters ✓T . The adversary is only allowed

black-box access to the target model. We assume the soft-

label setting where the adversary can query the target model

with any input x and observe its output probabilities ~y =
T (x; ✓T ). We consider model stealing attacks under two

settings based on the availability of data:

1. Data-free setting (Primary goal): The adversary does

not have access to the dataset DT used to train the target

model or a good way to sample from the target data distri-

bution PT . (Section 4)
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Clone Model (C)

Target Model (T )

Generator (G)

x LGLG LC

yT = T (x)

yC = C(x)

LG = −DKL (yT , yC)

LC = DKL (yT , yC)

Forward propagation

Backprop for Generator Update

Backprop for Clone Update

z ∼ N (0, I)

Figure 2. MAZE Attack Setup: MAZE uses a generative model G to produce the synthetic input queries {x} to perform Model Stealing.

The clone model C is trained to match the predictions of the target model T . G is trained to produce queries that maximize the dissimilarity

between yT and yC . Optimizing LG requires backpropagation through T to update G. However, we only have black-box access to T ,

therefore we use zeroth-order gradient estimation to perform gradient descent on LG.

2. Partial-data setting (Secondary goal): The adversary

has access to a small subset (e.g., 100) of training examples

randomly sampled from the training dataset of the target

model. (Section 6)

For both of these settings we assume the availability of a

test set Dtest, which is used to report the test accuracies of

the clone models produced by our attack.

4. MAZE: Data-Free Model Stealing

We propose MAZE, a data-free model stealing attack us-

ing zeroth order gradient estimation. Unlike existing at-

tacks, MAZE does not require access to the target or a surro-

gate dataset and instead uses a generative model to produce

the synthetic queries for launching the attack. Fig. 2 shows

an overview of MAZE. In this section, we first describe the

training objectives of the clone and the generator model.

We then motivate the need for gradient estimation to up-

date G in the black-box setting of MS attack and show how

zeroth-order gradient estimation can be used to optimize the

parameters of G. Finally, we discuss our algorithm to carry

out model stealing with MAZE.

4.1. Training the Clone Model

The clone model is trained using the input queries pro-

duced by the generator. The generator G takes in a low

dimensional latent vector z, sampled from a random nor-

mal distribution, and produces an input query x 2 R
d that

matches the input dimension of the target classifier (Eqn. 3).

We use x to obtain the output probabilities of the target

model ~yT and clone model ~yC on x as shown in Eqn. 4.

x = G(z; ✓G); z ⇠ N (0, I) (3)

~yT = T (x; ✓T ); ~yC = C(x; ✓C) (4)

Where ✓T , ✓C and ✓G represent the parameters of the

target, clone, and generator models, respectively. The clone

model is trained using the loss function in Eqn. 5 to mini-

mize the KL divergence between ~yC and ~yT .

LC = DKL( ~yT k ~yC) (5)

4.2. Training the Generator Model

The generator model G synthesises the queries necessary

to perform model stealing. Similar to recent works in data-

free KD [20, 35, 5], MAZE trains the generator to produce

queries that maximize the disagreement between the pre-

dictions of the teacher and the student by maximizing the

KL-divergence between ~yT and ~yC . The loss function used

to train the generator model is described by Eqn. 6, which

we refer to as the disagreement objective.

LG = �DKL( ~yT k ~yC) (6)

Training G on this loss function maximizes the disagree-

ment between the predictions of the target and the clone

model. Since C and G have opposing objectives, training

both models together results in a two-player game, simi-

lar to Generative Adversarial Networks [8], resulting in the

generation of inputs that maximize the learning of the clone

model. By training C to match the predictions of T on the

queries generated by G, we can perform knowledge distil-

lation and obtain a highly accurate clone model.

Training G using the loss function in Eqn. 6 requires

backpropagating through the predictions of the target model

T , as shown by the dashed lines in Fig. 2. Unfortunately, as

we only have black-box access to T , we cannot perform

back-propagation directly, preventing us from training G

and carrying out the attack. To solve this problem, our in-

sight is to use zeroth-order gradient estimation to approx-

imate the gradient of the loss function LG. The number

of black-box queries necessary for ZO gradient estimation

scales with the dimensionality of the parameters being op-

timized. Estimating the gradients of LG with respect to the

generator parameters ✓G directly is expensive as the gener-

ator has on the order of millions of parameters. Instead, we

choose to estimate the gradients with respect to the synthetic

input x produced by the generator, which has a much lower

dimensionality (3072 for CIFAR-10), and use this estimate

to back propagate through G. This modification allows us
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to compute a gradient estimates in a query efficient manner

to update the generator model. The following section de-

scribes how we efficiently apply zeroth-order gradient esti-

mation to train the generator model.

4.3. Train via Zeroth-Order Gradient Estimate

Zeroth-order gradient estimation [22, 7] is a popular

technique to perform optimization in the black-box setting.

We use this technique to train our generator model G. Re-

call that our objective is to update the generator model pa-

rameters ✓G using gradient descent to minimize the loss

function LG as shown in Eqn. 7.

✓t+1
G = ✓tG � ⌘rθGLG (7)

Updating ✓G in this way requires us to compute the

derivative of the loss function rθGLG. By the use of chain-

rule, rθGLG can be decomposed into two components as

shown in Eqn. 8.

rθGLG =
@LG

@✓G
=

@LG

@x
⇥

@x

@✓G
(8)

We can compute the second term ∂x
∂θG

in Eqn. 8 by per-

forming backpropagation through G. Computing the first

term ∂LG

∂x
however requires access to the model parameters

of the target model (✓T ). Since T is a black-box model from

the perspective of the attacker, we do not have access to ✓T ,

which prevents us from computing ∂LG

∂x
through backprop-

agation. Instead, we propose to use an approximation of the

gradient by leveraging zeroth-order gradient estimation. To

explain how the gradient estimate is computed, consider an

input vector x 2 R
d generated by G that is used to query

T . We can estimate ∂LG

∂x
by using the method of forward

differences [27] as shown in Eqn. 9.

r̂xLG(x;ui) =
d · (LG (x+ ✏ui)� LG(x))

✏
ui (9)

Where ui is a random variable drawn from a d dimen-

sional unit sphere with uniform probability and ✏ is a small

positive constant called the smoothing factor. The ran-

dom gradient estimate, shown in Eqn. 9, tends to have a

high variance. To reduce the variance, we use an averaged

version of the random gradient estimate [4, 17] by com-

puting the forward difference using m random directions

{u1, u2, ..um}, as shown in Eqn. 10.

r̂xLG(x) =
1

m

mX

i=1

r̂xLG(x;ui) (10)

Where r̂xLG is an estimate of the true gradient rxLG.

By substituting r̂xLG into Eqn. 8, we can compute an ap-

proximation for the gradient of the loss function of the gen-

erator: r̂θGLG. The gradient estimate r̂θGLG computed

this way can be used to perform gradient descent by up-

dating the parameters of the generator model ✓G according

to Eqn. 7. By updating ✓G, we can train G to produce the

synthetic examples required to perform model stealing.

4.4. MAZE Algorithm for Model Stealing Attack

We outline the algorithm of MAZE in Algorithm 1 by

putting together the individual training algorithms of the

generator and clone models. We start by fixing a query bud-

get Q, which dictates the maximum number of queries we

are allowed to make to the target model T . ✏ is the smooth-

ing parameter and m is the number of random directions

used to estimate the gradient. We set the value of ✏ to 0.001
in our experiments. NG, NC represent the number of train-

ing iterations and ⌘G, ⌘C represent the learning rates of the

generator and clone model, respectively. NR denotes the

number of iterations for experience replay.

Algorithm 1: MAZE Algorithm for Model Steal-

ing Attack

Input: T,Q, ✏,m,NG, NC , NG, ⌘G, ⌘C
Output: Clone model C(·; ✓C)
Initialize G(·; ✓G), C(·; ✓C), q  0,D  {}
while q < Q do

// Generator Training

for i  0 to NG do
x = G(z) : z ⇠ N (0, I)
LG = �DKL (T (x)kC(x))
r̂θGLG  ZO grad est(G, T,C, x, ✏,m)
✓G  ✓G � ⌘Gr̂θGLG

end

// Clone Training

for i  0 to NC do
x = G(z) : z ⇠ N (0, I)
LC = DKL (T (x)kC(x))
✓C  ✓C � ⌘CrθCLC

D  D [ {(x, T (x))}
end

// Experience Replay

for i  0 to NT do
(x, yT ) ⇠ D
LC = DKL (yT kC(x))
✓C  ✓C � ⌘CrθCLC

end

q  update(q)
end

The outermost loop of the attack repeats till we exhaust

our query budget Q. The attack algorithm involves three

phases: 1. Generator Training 2. Clone Training and 3. Ex-

perience Replay. In the Generator Training phase, we per-

form NG rounds of gradient descent for G, which is trained

to produce inputs x that maximize the KL-divergence be-
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tween the predictions of the target and clone model. ✓G
is updated by using zeroth-order gradient estimates as de-

scribed in Section 4.3. This is followed by the Clone Train-

ing phase, where we perform NC rounds of gradient de-

scent for C. In each round, we generate a batch of inputs

x = G(z) and use these inputs to query the target model.

The clone model is trained to match the predictions of the

target model by minimizing DKL(T (x)kC(x)). The input,

prediction pair: (x, T (x)) generated in each round is stored

in dataset D. Finally, we perform Experience Replay, where

we train the clone on previously seen inputs that are stored

in D. Retraining on previously seen queries reduces catas-

trophic forgetting [19] and ensures that the clone model

continues to classify old examples seen during the earlier

part of the training process correctly.

4.5. Computing the Query Cost

The target model needs to be queried in order to up-

date both the generator and the clone models. Consider-

ing a batch size of 1, one training iteration of G requires

m+ 1 queries to T for the zeroth-order gradient estimation

and each training loop of C requires 1 query. Experience

replay, on the other hand, does not require any additional

queries to T . Thus, with a batch size of B, the query cost of

each iteration is described by Eqn. 11

Query cost per iteration = B(NG(m+ 1) +NC) (11)

We use B = 128, NG = 1, NC = 5, NR = 10 and

m = 10 in our experiments, unless stated otherwise. Thus,

each iteration of the attack requires 2048 queries. We use

a query budget of 5M for FashionMNIST and SVHN and

a query budget of 30M for GTSRB and CIFAR-10 datasets

to report our results.

5. Experimental Evaluation

We validate our attack by performing model stealing on

various target models and provide experimental evidence to

show that our attack can produce high accuracy clone mod-

els without using any data. We compare our results against

two prior works– KnockoffNets and Jacobian Based Dataset

Augmentation (JBDA)– and show that the clone models pro-

duced by our attack have comparable or better accuracy than

the ones produced by these prior works, despite not using

any data. In addition, we also perform sensitivity studies to

understand the impact of various attack parameters includ-

ing query cost and number of gradient estimation directions

in Appendix B.

5.1. Setup: Dataset and Architecture

We perform our evaluations by attacking DNN mod-

els that are trained on various image-classification tasks.

The datasets and target model accuracies used in our ex-

periments are mentioned in Table 1. We use a LeNet for

the FashionMNIST and ResNet-20 for the other datasets

as the target model. Our attack assumes no knowledge of

the target model and uses a randomly initialized 22-layer

WideResNet [37] as the clone model for all the datasets.

In general, any sufficiently complex DNN can be used as

the clone model. We use an SGD optimizer with an initial

learning rate of 0.1 to train our clone model. For G, we use a

generative model with 3 convolutional layers. Each convo-

lutional layer in G is followed by a batchnorm layer and the

activations are upsampled to ensure that the outputs gener-

ated by G are of the correct dimensionality corresponding to

the dataset being attacked. We use an SGD optimizer with

an initial learning rate of 0.0001 to train G. The learning

rates for both the clone and generator models are decayed

using cosine annealing.

5.2. Configuration of Existing Attacks

Existing MS attacks either use surrogate data or synthetic

datasets derived from partial access to the target dataset. We

compare MAZE with the following attacks:

1. KnockoffNets [24] attack uses a surrogate dataset to

query the target model to construct a labeled dataset using

the predictions of the target model. This labeled dataset

is used to train the clone model. We use MNIST, CI-

FAR10, CIFAR100, and CIFAR10 as the surrogate datasets

for FashionMNIST, SVHN, CIFAR10, and GTSRB models,

respectively. In each case, we query the target model with

the training examples of the surrogate dataset. We then use

the dataset constructed from these queries to train the clone

model for 100 epochs using an SGD optimizer with a learn-

ing rate of 0.1 with cosine annealing scheduler.

2. JBDA [26]: attack performs MS by using synthetic

examples to query the target model. These synthetic ex-

amples are generated by adding perturbations to a set of

seed examples, which are obtained from the data distri-

bution of the target model. The perturbations are com-

puted using the Jacobian of the clone model’s loss function

(Eqn. 1). We start with an initial dataset of 100 seed exam-

ples and perform 6 rounds2 of synthetic data augmentation

with the clone model being trained for 10 epochs between

each round. � in Eqn. 1 dictates the magnitude of the per-

turbation. We set this to a value of 0.1. We use Adam opti-

mizer with a learning rate of 0.001 to train the clone model.

3. Noise: To test if inputs sampled from noise can be used

to carry out MS attack, we design a Noise attack. We follow

the proposal by Roberts et al. [28] and use random samples

from an Ising prior model to query the target model. This

attack serves as a baseline data-free MS attack to compare

with our proposal.

2We found that the accuracy of the JBDA attack stagnates beyond 6

augmentation rounds. This is in line with the observations made by Juuti

et al. [14].
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Table 1. Comparison of clone accuracies obtained from various attacks. Numbers in the bracket express the accuracy as a multiple of the

target model accuracy. MAZE obtains high accuracy (0.90× to 0.99×), despite not using any data.

Dataset
Target MAZE KnockoffNets JBDA Noise

Accuracy (%) (data-free) (surrogate data) (partial-data) (data-free)

FashionMNIST 91.04 81.9 (0.90×) 47.26 (0.52⇥) 62.65 (0.69⇥) 62.91 (0.69⇥)
SVHN 95.25 93.85(0.99×) 92.77 (0.97⇥) 17.16(0.18⇥) 51.86 (0.54⇥)

GTSRB 97.43 88.31 (0.91⇥) 89.86 (0.92×) 12.80(0.13⇥) 38.38 (0.39⇥)
CIFAR-10 92.26 89.85 (0.97×) 82.56 (0.89⇥) 25.11 (0.27⇥) 10.17 (0.11⇥)

5.3. Key Result: Normalized Clone Accuracy

Table 1 shows the clone-accuracy obtained by attacking

various target models using MAZE. The numbers in brack-

ets express the clone accuracy normalized to the accuracy of

the target model being attacked. We also compare MAZE

with existing MS attacks and highlight the best clone accu-

racy for each dataset in bold. Our results show that MAZE

produces high accuracy clone models with a normalized ac-

curacy greater than 0.90⇥ for all the target models under

attack. In contrast, the baseline Noise attack fails to pro-

duce high accuracy clone models for most of the datasets.

Furthermore, the results from our attack also compare

favorably against KnockoffNets and JBDA, both of which

require access to some data. We find that the effective-

ness of KnockoffNets is highly dependent on the surrogate

data being used to query the target model. For example,

using MNIST to attack FashionMNIST dataset results in a

low accuracy clone model (0.52⇥ target accuracy) as these

datasets as visually dissimilar. However, using CIFAR-100

to query CIFAR-10 results in a high accuracy clone model

(0.89⇥ target accuracy) due to the similarities in the two

datasets. JBDA seems to be effective for attacking sim-

pler datasets like FashionMNIST , but the accuracy re-

duces when attacking more complex datasets. This is in

part because JBDA produces queries that are highly corre-

lated to the initial set of “seed” examples, which sometimes

results in worse performance even compared to noise (e.g.

SVHN). By using the disagreement objective to train the

generator, MAZE can generate queries that are more useful

in training the clone model and result in higher accuracy of

clones (0.91⇥-0.99⇥) compared to other attacks like JBDA

(0.13⇥-0.69⇥) that use synthetic data.

6. MAZE-PD: MAZE with Partial-Data

The accuracy and speed of our attack can be improved if

a few examples from the training-data distribution of the

target model are available to the adversary. In this sec-

tion we develop MAZE-PD, an extension of MAZE to the

partial-data setting. In the data-free setting of MAZE, G is

trained on a disagreement objective to produce inputs that

maximize the disagreement between the target and the clone

model. In the presence of a limited amount of data, we

can additionally train the generator to produce inputs that

are closer to the target distribution by using the Waserstein

Generative Adversarial Networks (WGANs) [1] training ob-

jective. We observe that even a small amount of data from

the target distribution (100 examples) can enable the gener-

ator to produce synthetic inputs that are closer to the target

distribution (see Appendix D for example images). By im-

proving the quality of the generated queries, MAZE-PD not

only improves the effectiveness of the attack but also al-

lows the attack to succeed with far fewer queries compared

to MAZE. In this section, we describe how WGANs can

be incorporated into the training of the generator model to

develop MAZE-PD. We also provide empirical evidence to

show that MAZE-PD improves clone accuracy and reduces

query cost significantly compared to MAZE.

6.1. Incorporating WGAN in MAZE

We describe the modifications to the training algorithm

of MAZE (Algorithm 1) to incorporate WGAN training in

the partial-data setting. In addition to the generator (G) and

clone (C) models, we define a critic model D, which esti-

mates the Wasserstein distance between the target data dis-

tribution PT and the synthetic data distribution of the gen-

erator PG using the function described in Eqn. 12.

W (PT ,PG) = max
θD

Ex⇠PT
[D(x)]� Ez⇠N (0,I) [D (G(z))]

(12)

The generator model aims to produce examples closer to

the target distribution by minimizing the Wasserstein dis-

tance estimated by the critic model. To incorporate the

WGAN objective in the training of the generator, we modify

the original loss function of G (Eqn. 6) with an additional

term as shown in Eqn. 13.

x = G(z); z ⇠ N (0, I)

LG = �DKL(T (x)kC(x))� �D(x) (13)

The first term in Eqn. 13 represents the disagreement

loss from MAZE and the second term is the WGAN loss.
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Figure 3. Normalized clone accuracy of MAZE (data-free), MAZE-PD (partial-data), and JBDA (partial-data) as the query budget is varied.

Our results show that for a given query budget, MAZE-PD can train a clone model with higher accuracy than MAZE. The accuracy of

MAZE-PD is also significantly better than the JBDA attack.

The hyper-parameter � balances the relative importance be-

tween these two losses. To train the critic model D, we

add an extra training phase (described by Algorithm 2) to

our original training algorithm. We also include a gradient

penalty term GP = (krxD(x)k2 � 1)
2

in LD to ensure

that D is 1-Lipschitz continuous. We refer the reader to

Appendix A for a more detailed explanation of WGANs.

Algorithm 2: Critic Training

// Critic Training

for i  0 to Nd do
z ⇠ N (0, I);x ⇠ {xi}

n
i=1

LD = D(G(z))�D(x) +GP

✓D  ✓D � ⌘DrθDLD

end

The training loops for the clone training and experience

replay in Algorithm 1 remain unchanged. Using these mod-

ifications we can train a generator model that produces in-

puts closer to the target distribution PT .

6.2. Results: Clone Accuracy with Partial Data

We repeat the MS attack using MAZE-PD in the par-

tial data setting. We assume that the attacker now has ac-

cess to 100 random examples from the training data of the

target model, which is roughly 0.2% of the total training

data used to train the target model. We use � = 10 in

Eqn. 13 and Nd = 10 in Algorithm 2. Note that critic

training does not require extra queries to the target model.

The rest of the parameters are kept the same as before. Fig 3

shows our results comparing the normalized clone accuracy

obtained with MAZE-PD and MAZE (data-free) for vari-

ous query budgets. For a given query budget, MAZE-PD

obtains a higher clone accuracy compared to MAZE and

achieves near-perfect clone accuracy (0.97⇥-1.0⇥) for all

the datasets. Additionally, MAZE-PD offers a reduction of

2⇥ to 24⇥ in the query budget compared to MAZE for a

given clone accuracy (see Appendix C).

Comparison with JBDA: We compare the performance

of MAZE-PD with JBDA, which also operates in the

partial-data setting. JBDA produces low clone accuracies

for most datasets (less than 0.30⇥ for SVHN, GTSRB, and

CIFAR-10). In contrast, MAZE-PD obtains highly accurate

clone models (0.97⇥-1.0⇥) across all four datasets.

7. Conclusion

This paper proposes MAZE, a high-accuracy MS attack

that requires no input data. To the best of our knowl-

edge, MAZE is the first data-free MS attack that works

effectively for complex DNN models trained across mul-

tiple image-classification tasks. MAZE uses a generator

trained with zeroth-order optimization to craft synthetic in-

puts, which are then used to copy the functionality of the

target model to the clone model. Our evaluations show

that MAZE produces clone models with high classification

accuracy (0.90⇥ to 0.99⇥). Despite not using any data,

MAZE outperforms recent attacks that rely on partial-data

or surrogate-data. Our work presents an important step to-

wards developing highly accurate data-free MS attacks.

In addition, we propose MAZE-PD to extend MAZE to

the partial-data setting, where the adversary has access to

a small number of examples from the target distribution.

MAZE-PD uses generative adversarial training to produce

inputs that are closer to the target distribution. This further

improves accuracy (0.97⇥ to 1.0⇥) and yields a significant

reduction in the number of queries (2⇥ to 24⇥) necessary

to carry out the attack compared to MAZE.
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