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Abstract

High quality Machine Learning (ML) models are of-
ten considered valuable intellectual property by companies.
Model Stealing (MS) attacks allow an adversary with black-
box access to a ML model to replicate its functionality by
training a clone model using the predictions of the target
model for different inputs. However, best available existing
MS attacks fail to produce a high-accuracy clone without
access to the target dataset or a representative dataset nec-
essary to query the target model. In this paper, we show
that preventing access to the target dataset is not an ade-
quate defense to protect a model. We propose MAZE — a
data-free model stealing attack using zeroth-order gradient
estimation that produces high-accuracy clones. In contrast
to prior works, MAZE uses only synthetic data created us-
ing a generative model to perform MS.

Our evaluation with four image classification models
shows that MAZE provides a normalized clone accuracy
in the range of 0.90x to 0.99%, and outperforms even the
recent attacks that rely on partial data (JBDA, clone accu-
racy 0.13x to 0.69x ) and on surrogate data (KnockoffNets,
clone accuracy 0.52x to 0.97x). We also study an ex-
tension of MAZE in the partial-data setting, and develop
MAZE-PD, which generates synthetic data closer to the
target distribution. MAZE-PD further improves the clone
accuracy (0.97x to 1.0x ) and reduces the query budget re-
quired for the attack by 2x-24x.

1. Introduction

The ability of Deep Neural Networks (DNN5s) to achieve
state of the art performances in a wide variety of challenging
computer-vision tasks has spurred the wide-spread adop-
tion of these models by companies to enable various prod-
ucts and services such as self-driving cars, license plate
reading, disease diagnosis from medical images, activity
classification from images and video, and smart cameras.
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moin@gatech.edu

As the performance of ML models scales with the train-
ing data [1 1], companies invest significantly in collecting
vast amounts of data to train high-performance ML mod-
els. Protecting the confidentiality of these models is vital
for companies to maintain a competitive advantage and to
prevent the stolen model from being misused by an adver-
sary to compromise security and privacy. For example, an
adversary can use the stolen model to craft adversarial ex-
amples [9, 30, 32], compromise user membership privacy
through membership inference attacks [29, 34, 21], and leak
sensitive user data used to train the model through model in-
version attacks [0, 35, 38]. Thus, ML models are considered
valuable intellectual properties of the owner and are closely
guarded against theft and data leaks.

Step 1: Construct Training dataset by querying the target model
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Step 2: Use the constructed dataset to train the clone model
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Figure 1. Model stealing attacks: The target model is queried us-
ing a set of inputs {x;}j—; to obtain a labeled training dataset
{zi,yi}i=1, which is used to train the clone model.

Model functionality stealing attacks compromise the
confidentiality of ML models by allowing an adversary to
train a clone model that closely mimics the predictions
of the target model, effectively copying its functionality.
These attacks only require black-box access to the target
model where the adversary can access the predictions of
the model for any given input. Fig. 1 illustrates the steps
involved in carrying out a MS attack. The adversary first
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queries the target model 7" with various inputs {x;}? , and
uses the predictions of the target model y; = T'(x;) to con-
struct a labeled dataset D = {z;,y;}. This dataset is then
used to train a clone model C' to match the predictions of 7T'.

In the current state of the art methods (e.g., [26, 24]),
the availability of in-distribution or similar surrogate data
to query the target model plays a key role in the ability of
the attacker to train high accuracy clone models. However,
in most real-world scenarios, the training data is not readily
available to the attacker as companies typically train their
models using proprietary datasets. To carry out MS in such
a data-limited setting, existing attacks either assume par-
tial availability of the target dataset or the availability of
a surrogate dataset that is semantically similar to the tar-
get dataset (e.g., using CIFAR-100 to attack a CIFAR-10
model). For example, Jacobian-Based Dataset Augmenta-
tion (JBDA) [26] is an attack that uses a subset of the train-
ing data to create additional synthetic data, which is used to
query the target model. KnockoffNets [24] is another MS at-
tack that uses a surrogate dataset to query the target model.
These attacks become ineffective without access to the tar-
get dataset or a representative surrogate dataset. '

This paper is the first to show that a highly accurate MS
attack is feasible without relying on any access to the tar-
get dataset or even a surrogate dataset — our method only
relies on synthetically-generated out-of-distribution data —
but results in high-accuracy clones on in-distribution data.
We make the following key contributions in our paper:

Contribution 1: We propose MAZE- the first data-
free model stealing attack capable of training high-accuracy
clone models across multiple image classification datasets
and complex DNN target models. In contrast to exist-
ing attacks that require some form of data to query the
target, MAZE uses synthetic data created using a genera-
tive model to carry out MS attack. Our evaluations across
DNNs trained on various image classification tasks show
that MAZE provides a normalized clone accuracy of 0.90 x
to 0.99x (normalized clone accuracy is the accuracy of the
clone model expressed as a fraction of the target-model ac-
curacy). Despite not using any data, MAZE outperforms
recent attacks that rely on partial data (JBDA, clone accu-
racy of 0.13x to 0.69x) or surrogate data (KnockoffNets,
clone accuracy of 0.52% to 0.97x).

Contribution 2: Our key insight is to draw inspira-
tion from data-free knowledge distillation (KD) and zeroth-
order gradient estimation to train the generative model used
to produce synthetic data in MAZE. Similar to data-free
KD, the generator is trained on a disagreement objective,
which encourages it to produce synthetic inputs that maxi-
mize the disagreement between the predictions of the target

'We refer the interested readers to Section 6.1 of the KnockoffNets
paper [24] for a discussion on the importance of using semantically similar
datasets to carry out the attack.

(teacher) and the clone (student) models. By training the
clone model on such synthetic examples we can improve
the alignment of the clone model’s decision boundary with
that of the target, resulting in a high-accuracy clone model.

In data-free KD, training the generator on the disagree-
ment objective is possible since white-box access to the
teacher model is available. But, unlike in data-free KD,
MAZE operates in a black-box setting. We therefore lever-
age zeroth-order gradient estimation (ZO) [22, 7] to approx-
imate the gradient of the black-box target model and use
this to train the generator. Unfortunately, we found a di-
rect application of ZO gradient estimation to be impractical
on real-world image classification models since the dimen-
sionality of the generator’s parameters can be in the order of
millions. We propose a way to overcome the dimensionality
problem by estimating gradients with respect to the signifi-
cantly lower-dimensional synthetic input and show that our
method can be successfully used to train a generator in a
query-efficient manner.

Contribution 3: In some cases, partial datasets may be
available. Recognizing that, we propose an extension of
MAZE, called MAZE-PD, for scenarios where a small par-
tial dataset (e.g., 100 examples) is available to the attacker.
MAZE-PD leverages the available data to produce queries
that are closer to the training distribution than in MAZE
by using generative adversarial training. Our evaluations
show that MAZE-PD provides near-perfect clone accuracy
(0.97x to 1.0x), while reducing the number of queries by
2x-24x compared to MAZE.

In summary, our key finding is that an attacker only
requires black-box access to the target model and no in-
distribution data to create high-accuracy clone models in the
image classification domain. If even a very limited amount
of in-distribution data is available, near-perfect clone ac-
curacy is feasible. This raises questions on how machine
learning models can be better protected from competitors
and bad actors in this domain.

2. Related Work

Several types of MS attacks have been proposed in re-
cent literature. Depending on the goal of the attack, MS
attacks can be categorized into: (1) parameter stealing (2)
hyper-parameter stealing (3) functionality stealing attacks.
Parameter stealing attacks [31, 18] focus on stealing the ex-
act model parameters, while hyper-parameter stealing at-
tacks [33, 23] aim to determine the hyper-parameters used
in the model architecture or the training algorithm of the tar-
get model. Our work, MAZE and MAZE-PD, are designed
to carry out a functionality stealing attack, where the goal
is to replicate the functionality of a blackbox target model
by training the clone model on the predictions of the tar-
get. As the attacker typically does not have access to the
dataset used to train the target model, attacks need alternate
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forms of data to query the target model and perform model
stealing. Depending on the availability of data, function-
ality stealing attacks can be classified as using (1) partial-
data, (2) surrogate-data, or (3) data-free, i.e., synthetic data.
We discuss prior works in each of these three settings and
also briefly discuss relationship between model stealing and
knowledge distillation.

2.1. Model Stealing with Partial Data

In the partial-data setting, the attacker has access to a
subset of the data used to train the target model. While
this in itself may be insufficient to carry out model steal-
ing, it allows the attacker to craft synthetic examples using
the available data. Jacobian Based Dataset Augmentation
(JBDA) [26] is an example of one such attack that assumes
that the adversary has access to a small set of seed exam-
ples from the target data distribution. The attack works by
first training a clone model C' using the seed examples and
then progressively adding synthetic examples to the train-
ing dataset. JBDA uses a perturbation based heuristic to
generate new synthetic inputs from existing labeled inputs.
E.g., from an input-label pair (x,y), a synthetic input 2’ is
generated by using the jacobian of the clone model’s loss
function VL (C (x;6.) ,y) as shown in Eqn. 1.

' = x4+ Xsign (VoL (C (z;0.),y)) QY

The dataset of synthetic examples {z}} generated this
way are labeled by using the predictions of the target model
yi = T'(z}) and the labeled examples {z/, y;} are added to
the pool of labeled examples that can be used to train the
clone model C'. In addition to requiring a set of seed exam-
ples from the target distribution, a key limitation of JBDA
is that, while it works well for simpler datasets like MNIST,
it tends to produce clone models with lower classification
accuracy for more complex datasets. For example, our eval-
uations in Section 5 show that JBDA provides a normalized
clone accuracy of only 0.13x (GTSRB dataset) and 0.18 %
(SVHN dataset).

2.2. Model Stealing with Surrogate Data

In the surrogate data setting, the attacker has access to al-
ternate datasets that can be used to query the target model.
KnockoffNets [24] is an example of a MS attack that is de-
signed to operate in such a setting. With a suitable surrogate
dataset, KnockoffNets can produce clone models with up to
0.97x the accuracy of the target model. However, the effi-
cacy of such attacks is dictated by the availability of a suit-
able surrogate dataset. For instance, if we use the MNIST
dataset to perform MS on a FashionMNIST model, it only
produces a clone model with 0.41 X the accuracy of the tar-
get model (See Table 1 for full results). This is because the

surrogate dataset is not representative of the target dataset,
which reduces the effectiveness of the attack.

2.3. Data-Free Model Stealing

In the data-free setting, the adversary does not have ac-
cess to any data. This represents the hardest setting to carry
out MS as the attacker has no knowledge of the data dis-
tribution used to train the target model. A recent work by
Roberts et al. [28] studies the use of inputs derived from var-
ious noise distributions to carry out MS attack in the data-
free setting. While this attack works well for simple datasets
like MNIST, our evaluations show that such attacks do not
scale to more complex datasets such as CIFAR-10 (we ob-
tained relative clone accuracy of only 0.11 x), limiting their
applicability (See Table 1 for full results).

2.4. Knowledge distillation

Model stealing is related to knowledge-distillation
(KD) [12], but in KD, unlike in model stealing, the tar-
get model is available to the attacker and is simply being
summarized into a simpler architecture. Appendix E fur-
ther discusses works in data-free KD and explain why the
these works are not directly applicable for MS attacks.

3. Preliminaries

The goal of this paper is to develop a model functionality
stealing attack in the data-free setting, which can be used
to train a high-accuracy clone model only using black-box
access to the target model. We formally state the objective
and constraints of our proposed model stealing attack.

Attack Objective: Consider a target model 7' that per-
forms a classification task with high accuracy. Our goal is
to train a clone model C' that replicates the functionality of
the target model by maximizing the accuracy on a test set
Diest as shown in Eqn. 2.

[Ace(C(x;0c), )] 2)

max E
Oc z,y~Diest

Attack Constraints: We assume that the adversary does
not know any details about the Target model’s architecture
or the model parameters 7. The adversary is only allowed
black-box access to the target model. We assume the soft-
label setting where the adversary can query the target model
with any input = and observe its output probabilities i =
T(x;01). We consider model stealing attacks under two
settings based on the availability of data:

1. Data-free setting (Primary goal): The adversary does
not have access to the dataset Dy used to train the target
model or a good way to sample from the target data distri-
bution P7. (Section 4)
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Target Model (T')
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Figure 2. MAZE Attack Setup: MAZE uses a generative model G to produce the synthetic input queries {z} to perform Model Stealing.
The clone model C is trained to match the predictions of the target model 7'. G is trained to produce queries that maximize the dissimilarity
between yr and yc. Optimizing L requires backpropagation through 7' to update G. However, we only have black-box access to 7T',
therefore we use zeroth-order gradient estimation to perform gradient descent on L.

2. Partial-data setting (Secondary goal): The adversary
has access to a small subset (e.g., 100) of training examples
randomly sampled from the training dataset of the target
model. (Section 6)

For both of these settings we assume the availability of a
test set D;es¢, Which is used to report the test accuracies of
the clone models produced by our attack.

4. MAZE: Data-Free Model Stealing

We propose MAZE, a data-free model stealing attack us-
ing zeroth order gradient estimation. Unlike existing at-
tacks, MAZE does not require access to the target or a surro-
gate dataset and instead uses a generative model to produce
the synthetic queries for launching the attack. Fig. 2 shows
an overview of MAZE. In this section, we first describe the
training objectives of the clone and the generator model.
We then motivate the need for gradient estimation to up-
date GG in the black-box setting of MS attack and show how
zeroth-order gradient estimation can be used to optimize the
parameters of G. Finally, we discuss our algorithm to carry
out model stealing with MAZE.

4.1. Training the Clone Model

The clone model is trained using the input queries pro-
duced by the generator. The generator G takes in a low
dimensional latent vector z, sampled from a random nor-
mal distribution, and produces an input query x € R¢ that
matches the input dimension of the target classifier (Eqn. 3).
We use x to obtain the output probabilities of the target
model y7 and clone model & on x as shown in Eqn. 4.

r=G(z;0g); z~N(0,I) (3)

yr = T(x;07); yo = C(a;6c) )

Where 07, 0 and 65 represent the parameters of the
target, clone, and generator models, respectively. The clone

model is trained using the loss function in Eqn. 5 to mini-
mize the KL divergence between ¢ and y7.

Lo = Dkr(yrllye) Q)
4.2. Training the Generator Model

The generator model G synthesises the queries necessary
to perform model stealing. Similar to recent works in data-
free KD [20, 35, 5], MAZE trains the generator to produce
queries that maximize the disagreement between the pre-
dictions of the teacher and the student by maximizing the
KL-divergence between 37 and 3¢ The loss function used
to train the generator model is described by Eqn. 6, which
we refer to as the disagreement objective.

Lo =—Dgr(yrlye) (6)

Training G on this loss function maximizes the disagree-
ment between the predictions of the target and the clone
model. Since C' and G have opposing objectives, training
both models together results in a two-player game, simi-
lar to Generative Adversarial Networks [8], resulting in the
generation of inputs that maximize the learning of the clone
model. By training C' to match the predictions of 7" on the
queries generated by GG, we can perform knowledge distil-
lation and obtain a highly accurate clone model.

Training G using the loss function in Eqn. 6 requires
backpropagating through the predictions of the target model
T, as shown by the dashed lines in Fig. 2. Unfortunately, as
we only have black-box access to 7', we cannot perform
back-propagation directly, preventing us from training G
and carrying out the attack. To solve this problem, our in-
sight is to use zeroth-order gradient estimation to approx-
imate the gradient of the loss function £5. The number
of black-box queries necessary for ZO gradient estimation
scales with the dimensionality of the parameters being op-
timized. Estimating the gradients of L with respect to the
generator parameters 6 directly is expensive as the gener-
ator has on the order of millions of parameters. Instead, we
choose to estimate the gradients with respect to the synthetic
input x produced by the generator, which has a much lower
dimensionality (3072 for CIFAR-10), and use this estimate
to back propagate through G. This modification allows us
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to compute a gradient estimates in a query efficient manner
to update the generator model. The following section de-
scribes how we efficiently apply zeroth-order gradient esti-
mation to train the generator model.

4.3. Train via Zeroth-Order Gradient Estimate

Zeroth-order gradient estimation [22, 7] is a popular
technique to perform optimization in the black-box setting.
We use this technique to train our generator model G. Re-
call that our objective is to update the generator model pa-
rameters 0 using gradient descent to minimize the loss
function L as shown in Eqn. 7.

0L = 0L — Vo, La (7

Updating 6¢ in this way requires us to compute the
derivative of the loss function Vg L. By the use of chain-
rule, Vo, L can be decomposed into two components as
shown in Eqn. 8.

. aﬁg - a[:(; ox
Voeke = 3o = an * 906

We can compute the second term (%; in Eqn. 8 by per-

forming backpropagation through G. Computing the first
term %:TG however requires access to the model parameters
of the target model (67). Since 7' is a black-box model from
the perspective of the attacker, we do not have access to O,
which prevents us from computing aaﬁ—mc through backprop-
agation. Instead, we propose to use an approximation of the
gradient by leveraging zeroth-order gradient estimation. To
explain how the gradient estimate is computed, consider an
input vector z € R generated by G that is used to query
T. We can estimate aaﬁ—f by using the method of forward

differences [27] as shown in Eqn. 9.

®)

VaLa(w;u) = d (Lolotew) - EG(:E))W )

€

Where u; is a random variable drawn from a d dimen-
sional unit sphere with uniform probability and € is a small
positive constant called the smoothing factor. The ran-
dom gradient estimate, shown in Eqn. 9, tends to have a
high variance. To reduce the variance, we use an averaged
version of the random gradient estimate [4, 7] by com-
puting the forward difference using m random directions
{u1, ug, ..ty }, as shown in Eqn. 10.

m

1 ~
V.La(x) = - Z VeLa(x;u;) (10)
i=1

Where V., L is an estimate of the true gradient VL.
By substituting VL into Eqn. 8, we can compute an ap-
proximation for the gradient of the loss function of the gen-
erator: @QG L. The gradient estimate @QG L computed

this way can be used to perform gradient descent by up-
dating the parameters of the generator model 6 according
to Eqn. 7. By updating 65, we can train G to produce the
synthetic examples required to perform model stealing.

4.4. MAZE Algorithm for Model Stealing Attack

We outline the algorithm of MAZE in Algorithm | by
putting together the individual training algorithms of the
generator and clone models. We start by fixing a query bud-
get (), which dictates the maximum number of queries we
are allowed to make to the target model T'. € is the smooth-
ing parameter and m is the number of random directions
used to estimate the gradient. We set the value of € to 0.001
in our experiments. N¢, N¢ represent the number of train-
ing iterations and 7, ¢ represent the learning rates of the
generator and clone model, respectively. Ng denotes the
number of iterations for experience replay.

Algorithm 1: MAZE Algorithm for Model Steal-
ing Attack
Illpllt: T7 Q, €,m, Ng, Nc, Nc;, NG, Nc
Output: Clone model C(+;6¢)
Initialize G(+;0c), C(;0¢),q < 0,D « {}
while ¢ < @ do
/I Generator Training
for : < 0 to Ng do
x=G(z):z2~N(0,I)
Lo =Dy (T(x)]|C(x))
Voo La < ZO_grad_est(G,T,C,x,¢e,m)
0g + 0g —naVesLa
end
// Clone Training
for : < 0 to N¢ do
r=G(2):2~N(0,I)
Le = Dir (T(x)]|C(x))
Oc + 0c —ncVe.Lc
D« DU{(z,T(x))}
end
/l Experience Replay
for : < 0 to Nt do
(1‘, yT) ~D
Lo = Dk (yrl|C(z))
Oc < 0c —ncVo Lo
end
q < update(q)

end

The outermost loop of the attack repeats till we exhaust
our query budget ). The attack algorithm involves three
phases: 1. Generator Training 2. Clone Training and 3. Ex-
perience Replay. In the Generator Training phase, we per-
form N¢ rounds of gradient descent for G, which is trained
to produce inputs x that maximize the KL-divergence be-
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tween the predictions of the target and clone model. 6g
is updated by using zeroth-order gradient estimates as de-
scribed in Section 4.3. This is followed by the Clone Train-
ing phase, where we perform N¢ rounds of gradient de-
scent for C. In each round, we generate a batch of inputs
x = G(z) and use these inputs to query the target model.
The clone model is trained to match the predictions of the
target model by minimizing D1, (T (x)||C(x)). The input,
prediction pair: (z,T(z)) generated in each round is stored
in dataset D. Finally, we perform Experience Replay, where
we train the clone on previously seen inputs that are stored
in D. Retraining on previously seen queries reduces catas-
trophic forgetting [19] and ensures that the clone model
continues to classify old examples seen during the earlier
part of the training process correctly.

4.5. Computing the Query Cost

The target model needs to be queried in order to up-
date both the generator and the clone models. Consider-
ing a batch size of 1, one training iteration of G requires
m + 1 queries to T for the zeroth-order gradient estimation
and each training loop of C' requires 1 query. Experience
replay, on the other hand, does not require any additional
queries to T'. Thus, with a batch size of B, the query cost of
each iteration is described by Eqn. 11

Query cost per iteration = B(Ng(m + 1) + N¢)  (11)

Weuse B = 128, No¢ = 1,N¢ = 5,Nr = 10 and
m = 10 in our experiments, unless stated otherwise. Thus,
each iteration of the attack requires 2048 queries. We use
a query budget of 5M for FashionMNIST and SVHN and
a query budget of 30M for GTSRB and CIFAR-10 datasets
to report our results.

5. Experimental Evaluation

We validate our attack by performing model stealing on
various target models and provide experimental evidence to
show that our attack can produce high accuracy clone mod-
els without using any data. We compare our results against
two prior works— KnockoffNets and Jacobian Based Dataset
Augmentation (JBDA)— and show that the clone models pro-
duced by our attack have comparable or better accuracy than
the ones produced by these prior works, despite not using
any data. In addition, we also perform sensitivity studies to
understand the impact of various attack parameters includ-
ing query cost and number of gradient estimation directions
in Appendix B.

5.1. Setup: Dataset and Architecture

We perform our evaluations by attacking DNN mod-
els that are trained on various image-classification tasks.
The datasets and target model accuracies used in our ex-
periments are mentioned in Table 1. We use a LeNet for

the FashionMNIST and ResNet-20 for the other datasets
as the target model. Our attack assumes no knowledge of
the target model and uses a randomly initialized 22-layer
WideResNet [37] as the clone model for all the datasets.
In general, any sufficiently complex DNN can be used as
the clone model. We use an SGD optimizer with an initial
learning rate of 0.1 to train our clone model. For GG, we use a
generative model with 3 convolutional layers. Each convo-
lutional layer in G is followed by a batchnorm layer and the
activations are upsampled to ensure that the outputs gener-
ated by G are of the correct dimensionality corresponding to
the dataset being attacked. We use an SGD optimizer with
an initial learning rate of 0.0001 to train G. The learning
rates for both the clone and generator models are decayed
using cosine annealing.

5.2. Configuration of Existing Attacks

Existing MS attacks either use surrogate data or synthetic
datasets derived from partial access to the target dataset. We
compare MAZE with the following attacks:

1. KnockoffNets [24] attack uses a surrogate dataset to
query the target model to construct a labeled dataset using
the predictions of the target model. This labeled dataset
is used to train the clone model. We use MNIST, CI-
FAR10, CIFAR100, and CIFAR10 as the surrogate datasets
for FashionMNIST, SVHN, CIFAR10, and GTSRB models,
respectively. In each case, we query the target model with
the training examples of the surrogate dataset. We then use
the dataset constructed from these queries to train the clone
model for 100 epochs using an SGD optimizer with a learn-
ing rate of 0.1 with cosine annealing scheduler.

2. JBDA [26]: attack performs MS by using synthetic
examples to query the target model. These synthetic ex-
amples are generated by adding perturbations to a set of
seed examples, which are obtained from the data distri-
bution of the target model. The perturbations are com-
puted using the Jacobian of the clone model’s loss function
(Eqn. 1). We start with an initial dataset of 100 seed exam-
ples and perform 6 rounds” of synthetic data augmentation
with the clone model being trained for 10 epochs between
each round. )\ in Eqn. 1 dictates the magnitude of the per-
turbation. We set this to a value of 0.1. We use Adam opti-
mizer with a learning rate of 0.001 to train the clone model.
3. Noise: To test if inputs sampled from noise can be used
to carry out MS attack, we design a Noise attack. We follow
the proposal by Roberts et al. [28] and use random samples
from an Ising prior model to query the target model. This
attack serves as a baseline data-free MS attack to compare
with our proposal.

2We found that the accuracy of the JBDA attack stagnates beyond 6
augmentation rounds. This is in line with the observations made by Juuti
etal. [14].
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Table 1. Comparison of clone accuracies obtained from various attacks. Numbers in the bracket express the accuracy as a multiple of the
target model accuracy. MAZE obtains high accuracy (0.90x to 0.99x), despite not using any data.

Dataset Target MAZE KnockoffNets JBDA Noise
Accuracy (%) (data-free) (surrogate data) | (partial-data) (data-free)
FashionMNIST 91.04 81.9 (0.90x) 47.26 (0.52x) 62.65 (0.69x) | 62.91 (0.69x)
SVHN 95.25 93.85(0.99%) 92.77 (0.97x) 17.16(0.18%) | 51.86 (0.54x%)
GTSRB 97.43 88.31 (0.91x) 89.86 (0.92x) | 12.80(0.13x) | 38.38 (0.39%)
CIFAR-10 92.26 89.85 (0.97x) 82.56 (0.89x) 25.11 (0.27x) | 10.17 (0.11x)

5.3. Key Result: Normalized Clone Accuracy

Table 1 shows the clone-accuracy obtained by attacking
various target models using MAZE. The numbers in brack-
ets express the clone accuracy normalized to the accuracy of
the target model being attacked. We also compare MAZE
with existing MS attacks and highlight the best clone accu-
racy for each dataset in bold. Our results show that MAZE
produces high accuracy clone models with a normalized ac-
curacy greater than 0.90x for all the target models under
attack. In contrast, the baseline Noise attack fails to pro-
duce high accuracy clone models for most of the datasets.

Furthermore, the results from our attack also compare
favorably against KnockoffNets and JBDA, both of which
require access to some data. We find that the effective-
ness of KnockoffNets is highly dependent on the surrogate
data being used to query the target model. For example,
using MNIST to attack FashionMNIST dataset results in a
low accuracy clone model (0.52 % target accuracy) as these
datasets as visually dissimilar. However, using CIFAR-100
to query CIFAR-10 results in a high accuracy clone model
(0.89x target accuracy) due to the similarities in the two
datasets. JBDA seems to be effective for attacking sim-
pler datasets like FashionM NIST, but the accuracy re-
duces when attacking more complex datasets. This is in
part because JBDA produces queries that are highly corre-
lated to the initial set of “seed” examples, which sometimes
results in worse performance even compared to noise (e.g.
SVHN). By using the disagreement objective to train the
generator, MAZE can generate queries that are more useful
in training the clone model and result in higher accuracy of
clones (0.91x-0.99x) compared to other attacks like JBDA
(0.13x-0.69x) that use synthetic data.

6. MAZE-PD: MAZE with Partial-Data

The accuracy and speed of our attack can be improved if
a few examples from the training-data distribution of the
target model are available to the adversary. In this sec-
tion we develop MAZE-PD, an extension of MAZE to the
partial-data setting. In the data-free setting of MAZE, G is
trained on a disagreement objective to produce inputs that
maximize the disagreement between the target and the clone

model. In the presence of a limited amount of data, we
can additionally train the generator to produce inputs that
are closer to the target distribution by using the Waserstein
Generative Adversarial Networks (WGAN ) [ 1] training ob-
jective. We observe that even a small amount of data from
the target distribution (100 examples) can enable the gener-
ator to produce synthetic inputs that are closer to the target
distribution (see Appendix D for example images). By im-
proving the quality of the generated queries, MAZE-PD not
only improves the effectiveness of the attack but also al-
lows the attack to succeed with far fewer queries compared
to MAZE. In this section, we describe how WGANSs can
be incorporated into the training of the generator model to
develop MAZE-PD. We also provide empirical evidence to
show that MAZE-PD improves clone accuracy and reduces
query cost significantly compared to MAZE.

6.1. Incorporating WGAN in MAZE

We describe the modifications to the training algorithm
of MAZE (Algorithm 1) to incorporate WGAN training in
the partial-data setting. In addition to the generator (G) and
clone (C") models, we define a critic model D, which esti-
mates the Wasserstein distance between the target data dis-
tribution P7 and the synthetic data distribution of the gen-
erator P using the function described in Eqn. 12.

W (Pp,Pq) = max Epnpy [D(2)] = E.ono,n [P (G(2))]
(12)

The generator model aims to produce examples closer to
the target distribution by minimizing the Wasserstein dis-
tance estimated by the critic model. To incorporate the
WGAN objective in the training of the generator, we modify
the original loss function of G' (Eqn. 6) with an additional
term as shown in Eqn. 13.

x=G(2);2 ~N(0,I)

Lo = =Dk (T (2)]|C(z)) — AD(x) (13)

The first term in Eqn. 13 represents the disagreement
loss from MAZE and the second term is the WGAN loss.
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Figure 3. Normalized clone accuracy of MAZE (data-free), MAZE-PD (partial-data), and JBDA (partial-data) as the query budget is varied.
Our results show that for a given query budget, MAZE-PD can train a clone model with higher accuracy than MAZE. The accuracy of

MAZE-PD is also significantly better than the JBDA attack.

The hyper-parameter A balances the relative importance be-
tween these two losses. To train the critic model D, we
add an extra training phase (described by Algorithm 2) to
our original training algorithm. We also include a gradient
penalty term GP = (||VyD(z)||, — 1)%> in Lp to ensure
that D is 1-Lipschitz continuous. We refer the reader to
Appendix A for a more detailed explanation of WGAN:Ss.

Algorithm 2: Critic Training

// Critic Training

for i + 0to N, do
2~ N0, D)z~ {z 1
Lp =D(G(2)) — D(z) + GP
9[) — GD — UDVGDL:D

end

The training loops for the clone training and experience
replay in Algorithm | remain unchanged. Using these mod-
ifications we can train a generator model that produces in-
puts closer to the target distribution Pr.

6.2. Results: Clone Accuracy with Partial Data

We repeat the MS attack using MAZE-PD in the par-
tial data setting. We assume that the attacker now has ac-
cess to 100 random examples from the training data of the
target model, which is roughly 0.2% of the total training
data used to train the target model. We use A = 10 in
Eqn. 13 and N; = 10 in Algorithm 2. Note that critic
training does not require extra queries to the target model.
The rest of the parameters are kept the same as before. Fig 3
shows our results comparing the normalized clone accuracy
obtained with MAZE-PD and MAZE (data-free) for vari-
ous query budgets. For a given query budget, MAZE-PD
obtains a higher clone accuracy compared to MAZE and
achieves near-perfect clone accuracy (0.97x-1.0x) for all
the datasets. Additionally, MAZE-PD offers a reduction of
2% to 24x in the query budget compared to MAZE for a
given clone accuracy (see Appendix C).

Comparison with JBDA: We compare the performance
of MAZE-PD with JBDA, which also operates in the
partial-data setting. JBDA produces low clone accuracies
for most datasets (less than 0.30x for SVHN, GTSRB, and
CIFAR-10). In contrast, MAZE-PD obtains highly accurate
clone models (0.97x-1.0x) across all four datasets.

7. Conclusion

This paper proposes MAZE, a high-accuracy MS attack
that requires no input data. To the best of our knowl-
edge, MAZE is the first data-free MS attack that works
effectively for complex DNN models trained across mul-
tiple image-classification tasks. MAZE uses a generator
trained with zeroth-order optimization to craft synthetic in-
puts, which are then used to copy the functionality of the
target model to the clone model. Our evaluations show
that MAZE produces clone models with high classification
accuracy (0.90x to 0.99%). Despite not using any data,
MAZE outperforms recent attacks that rely on partial-data
or surrogate-data. Our work presents an important step to-
wards developing highly accurate data-free MS attacks.

In addition, we propose MAZE-PD to extend MAZE to
the partial-data setting, where the adversary has access to
a small number of examples from the target distribution.
MAZE-PD uses generative adversarial training to produce
inputs that are closer to the target distribution. This further
improves accuracy (0.97x to 1.0x) and yields a significant
reduction in the number of queries (2x to 24 ) necessary
to carry out the attack compared to MAZE.
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