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ABSTRACT: Physics-based models are the primary approach for modeling the phase behavior of block 
copolymers. However, the successful use of self-consistent field theory (SCFT) for designing new materials 
relies on the correct chemistry- and temperature-dependent Flory-Huggins interaction parameter 𝜒𝐴𝐵 that 
quantifies the incompatibility between the two blocks A and B, as well as accurate estimation of the ratio 
of Kuhn lengths (𝑏𝐴/𝑏𝐵) and block densities. This work uses machine-learning to model the phase behavior 
of AB diblock copolymers by using the chemical identities of blocks directly, obviating the need for meas-
urement of 𝜒𝐴𝐵 and 𝑏𝐴/𝑏𝐵. The random forest approach employed predicts the phase behavior with almost 
90% accuracy after training on a data set of 4,768 data points, almost twice the accuracy obtained using 
SCFT employing 𝜒𝐴𝐵 from group contribution theory. The machine-learning model is notably sensitive 
towards the uncertainty in measuring molecular parameters; however, its accuracy still remains at least 60% 
even for highly uncertain experimental measurements. Accuracy is substantially reduced when extrapolat-
ing to chemistries outside the training set.  This work demonstrates that a random forest phase predictor 
performs remarkably well in many scenarios, providing an opportunity to predict self-assembly without 
measurement of molecular parameters. 
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Block copolymers self-assemble to form a variety of nanostructures useful in applications as diverse as 
advanced plastics,1 drug delivery,2 ultra-filtration membranes,3 and photonic crystals.4 The simplest block 
copolymers, AB diblocks, serve as excellent models to understand the physics of self-assembly; therefore, 
they have garnered exceptional interest.5,6 The phase behavior of AB diblocks depends on five factors: the 
chemical identities of the A and B blocks, temperature (𝑇), volume fraction of the A block (𝑓𝐴), and the 
overall molar mass of the polymer (𝑀𝑛), with pressure generally having a negligible effect.7–9 Identifying 
the combination of block chemistries, molecular parameters (𝑓𝐴 and 𝑀𝑛), and temperature that produces a 
desired morphology for a required application is central to diblock copolymer materials design.  

Traditionally, self-consistent field theory (SCFT) is used as the primary approach for modeling the phase 
behavior of block copolymers, and it has enjoyed remarkable success in discovering new structures and 
understanding the origins of experimentally-observed morphologies.10–17 SCFT is a coarse-grained theory 
in which the phase behavior of AB diblocks is described by only three parameters: 𝑓𝐴, segregation strength 
𝜒𝐴𝐵𝑁, and conformational asymmetry 𝑏𝐴/𝑏𝐵, where 𝑏𝐴 and 𝑏𝐵 are the Kuhn lengths of the A and B poly-
mer blocks, respectively. The quantity 𝑁 is the total number of Kuhn segments in the block copolymer 
chain, and 𝜒𝐴𝐵 is the Flory-Huggins interaction parameter. The most common functional form used in lit-
erature is 𝜒𝐴𝐵 = 𝛼/𝑇 + 𝛽, where 𝛼 and 𝛽 are constants specific to the pair of polymers (A, B).18 Since 𝜒𝐴𝐵 
is a coarse-grained parameter accounting for all types of interactions between A and B blocks, it is difficult 
to define a general functional form that can capture the phase behavior of all polymer pairs.18–21 Even for 
the most studied diblock copolymer in literature, poly(isoprene)-b-poly(styrene) (IS), estimates of 𝜒𝐼𝑆 can 
vary up to 200% due to experimental uncertainty or variation in methods.22 In addition to 𝜒𝐴𝐵, reasonably 
accurate estimations of the conformational asymmetry (𝑏𝐴/𝑏𝐵) and block densities (𝜌𝐴 and 𝜌𝐵) that are 
used to calculate the volume fraction 𝑓𝐴 are also required. Even in the best-case scenario with all parameters 
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known, SCFT cannot yet capture effects such as hydrogen bonding, local liquid structure,23 and monomer 
shapes24,25 that are prevalent below the size of a Kuhn segment.  

As an alternative to physics-based models, data-driven techniques can model phase behavior by directly 
using the blocks’ chemical identities, obviating the need for 𝜒𝐴𝐵. Historically, such approaches were used 
to predict a broad range of polymer properties,26–29 as well as for modeling quantitative structure property 
relationships (QSPR) for small molecules.30,31 Owing to the development of new, efficient algorithms, ma-
chine-learning methods have lately enjoyed a renaissance32–35 and have been used to discover new materials 
such as advanced polymer dielectrics,36 high thermal-conductivity polymers,37 and exceptional gas-separa-
tion polymer membranes.38 Recently, such methods are also used to enhance the efficiency of SCFT for 
constructing block copolymer phase diagrams using data from simulations.39,40 Here, a data-driven ap-
proach is taken to model the phase behavior of neat diblock copolymers directly from an experimental 
dataset, benchmarking the performance of the developed machine-learning model with SCFT using 𝜒𝐴𝐵 
from solubility-parameters estimates.   

 
Figure 1: (a) Temperature-volume fraction (𝑇 − 𝑓𝐴) , and (b) 𝜒𝐴𝐵𝑁 − 𝑓𝐴 phase diagram of diblock copolymers ob-

tained from the data gathered by mining experimental studies in literature.41 The solid lines in (b) denotes the SCFT -

predicted phase boundaries for conformationally symmetric diblock copolymers.  

A key ingredient for using a machine-learning approach is the availability of a sufficiently large and 
diverse set of data. An extensive set of data containing all the required information: 𝑇 , 𝑓𝐴 , 𝑀𝑛 , blocks’ 
chemistries, and the observed phase, has been gathered by mining the experimental literature on diblock 
copolymer melts.41 Figure 1 (a) shows the 𝑇 vs. 𝑓𝐴 phase diagram of the assembled data, while Figure 1(b) 
shows the 𝜒𝐴𝐵𝑁 vs. 𝑓𝐴 phase diagram with 𝜒𝐴𝐵 obtained using group contribution theory (see SI for de-
tails). Overall, the dataset contains 4,768 measurements, and a detailed description of the data collection 
protocols, experimental methods, and uncertainty in the measured molecular parameters, is provided in Ref. 
41. Despite many newer structures,42–44 this work focuses only on the five classical phases: lamellae (Lam), 
hexagonal-packed cylinders (Cyl), body-centered cubic spheres (Sph), a cubic gyroid phase (Gyr), and a 
disordered (Dis) phase due to the amount of available data.  

To develop a machine-learning model for predicting this self-assembly behavior, chemical fingerprints 
are first generated for the polymers of interest.  The type of fingerprinting method used is crucial for devel-
oping a machine-learning model, hence several different ways to transform polymers into fingerprint vec-
tors are considered (see SI for details). For fingerprinting algorithms that are applicable only to finite-sized 
chemical compounds, ring oligomers with the first and last atoms joined together are used as representative 
inputs for generating fingerprints. This construct eliminates any endgroup effects and captures the high-
molecular-weight nature of polymers. It is found that the number of repeat units within this ring polymer 
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does not have any significant effect on the quantitative fingerprint (See SI for details), so eight repeat units 
are used for all the results presented in the work. For each entry in the dataset, the fingerprint vectors for 
the individual blocks are generated separately and concatenated with each other as well as with the respec-
tive values of 𝑇, 𝑓𝐴, and 𝑀𝑛 to constitute the complete feature set used to describe the block copolymer. For 
each entry, two data points, corresponding to the case where the two blocks are labelled AB and BA, are 
included in the training set to guarantee symmetry of block labeling. The conformational symmetry (𝑏𝐴/𝑏𝐵) 
depends upon the chemical groups, hence it is captured by the chemical fingerprint. The calculation of 𝑓𝐴 
involves density which depends weakly on temperature; this small variation is neglected here.  

To develop a model that relates these feature vectors to the observed nanostructure formed via self-as-
sembly, a decision-tree-based algorithm called Random Forest Classifier (RFC)45,46 was applied.  RFC cap-
tures the non-linearity of phase space while maintaining a low variance towards the uncertainty in input 
data, and it naturally monitors the role of different features during training.  Therefore, the relative im-
portance of different features can be extracted alongside model development. The model is developed in 
two stages. First an optimal set of hyperparameters is obtained using a grid-search cross-validation proce-
dure which divides the dataset in test-train-validation sets (see SI for details). These optimal hyperparame-
ters are then used to develop the final RFC model using a 25%-75% test-train split and a 4-fold cross-
validation procedure. Because the data is highly imbalanced, cross-validation on test-train sets with strati-
fied splits is used to evaluate model performance in lieu of the more commonly used out-of-bag perfor-
mance. The splits are kept invariant across all the fingerprint types. All preprocessing of the data and model 
training is performed using the Scikit-learn library in Python47 (see SI for model setup).  

The RFC model is highly effective at predicting the self-assembled phase across the entire block copol-
ymer database. Figure 2(a) shows the results obtained from the RFC model for various types of fingerprint-
ing methods. The model performance is assessed by computing accuracy and 1 − (Hamming-loss), both 
evaluated on a test set that is the same for all the fingerprint types. The accuracy is simply the number of 
points in the test data that are predicted correctly by the trained model, while 1 − (Hamming-loss) takes 
into account the partial correctness of the prediction for the phase transition points, i.e., whether the model 
predicted any one of the co-existing phases correctly or not (see SI for details). Figure 2(a) demonstrates 
that the RFC model can predict the phase behavior with almost 92% accuracy, and if the partial correctness 
of phase transitions is also considered, the accuracy increases to 97%.  



 

 

4 

 
Figure 2: (a) Performance of the RFC model, characterized by accuracy and 1-(Hamming-loss), for various types of 
fingerprinting methods. (b) Importance score for each feature. 

Owing to the binary splitting of nodes, tree-based classification methods such as RFC produce separation 
boundaries that are extremely sharp compared to the typical phase boundaries. Figure 3 shows the 𝑇 − 𝑓𝐴 
phase diagrams at constant values of 𝑀𝑛 obtained using the RFC model trained with Morgan fingerprints. 
Although the phase boundaries are almost vertical, the general shape of the theoretical phase diagram is 
well captured for all values of 𝑀𝑛; the symmetric copolymers (𝑓𝐴 ≈ 0.5) exhibiting the Lam phase, which 
transforms to curved-domain phases (Lam → Cyl → Sph) as the volume fraction deviates from 0.5. At high 
temperatures, there is a tendency to form a disordered phase for all values of 𝑀𝑛, with the lowest 𝑀𝑛 =
20,000 g/mol phase diagram exhibiting the widest region of a pure disordered phase due to both low 𝑀𝑛 
and high T resulting in low segregation strength. In contrast, the high values of 𝑀𝑛 do not exhibit such a 
wide disordered phase, instead demonstrating broad order-disorder transition regions involving a structured 
phase co-existing with the disordered phase. An evident feature in all the phase diagrams is the presence of 
empty regions which denote the parameter spaces where the RFC model predicts either no phase or more 
than two phases. This failure of the RFC model to yield a correct prediction is likely due to the lack of 
training data in those regions.  

The accuracy of the RFC model can be put into perspective by comparing it to SCFT simulations. Here, 
𝜒𝐴𝐵 estimation using the Hilderbrand solubility parameters provides a common basis to assess SCFT accu-
racy for many chemistries. Details on how solubility parameters are estimated are provided in the SI. As 
listed in Table 1, SCFT simulations predict the phase behavior with significantly lower accuracy compared 
to the RFC model, even when an empirical factor of 0.34 was added to the 𝜒𝐴𝐵 estimation. Even considering 
only isoprene-styrene (IS) diblock copolymers, for which accurate 𝜒𝐴𝐵 estimations obtained from experi-
ments were available,48 the RFC model still outperforms SCFT.   The performance of SCFT depends 
strongly on the estimate of 𝜒𝐴𝐵, so improving the accuracy of the 𝜒𝐴𝐵 estimate could improve the accuracy 
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of predictions. Additionally, SCFT performance could also increase by correcting for the mean-field as-
sumption built in the SCFT famework.49–51 Physics-based models also yield a disordered phase when the 
two blocks are same; however, for a data-driven models such fundamental physics needs to be build-in by 
supplying additional points (see Section 6 in SI). 

Table 1: Performance of the RFC model and SCFT for phase prediction 
Method Accuracy 𝟏 − (Hamming-loss) 

All diblock copolymers (4768 data points) 
SCFT with 𝜒𝐴𝐵 = (𝛿𝐴 − 𝛿𝐵)2𝑣ref/𝑅𝑇  0.188 0.688 
SCFT with 𝜒𝐴𝐵 = (𝛿𝐴 − 𝛿𝐵)2𝑣ref/𝑅𝑇 + 0.34   0.529 0.823 
RFC with No-Chem 0.926 ± 0.005 0.980 ± 0.002 
RFC with Morgan-fp 0.921 ± 0.002 0.980 ± 0.001 

IS diblock copolymers (693 data points) 
SCFT with 𝜒𝐴𝐵 = (𝛿𝐴 − 𝛿𝐵)2𝑣ref/𝑅𝑇  0.118 0.667 
SCFT with 𝜒𝐴𝐵 = (𝛿𝐴 − 𝛿𝐵)2𝑣ref/𝑅𝑇 + 0.34   0.538 0.825 
SCFT with 𝜒𝐴𝐵 = 71.4/𝑇 − 0.0857  0.538 0.825 
RFC with No-Chem 0.929 ± 0.006 0.982 ± 0.002 
RFC with Morgan-fp 0.915 ± 0.002 0.980 ± 0.001 

 
Figure 3: Phase diagrams (𝑇 − 𝑓𝐴) predicted by the RFC model, trained with all chemistries and evaluated for PI-PS, 
at four values of molar mass (𝑀𝑛): (a) 20,000 g/mol, (b) 40,000 g/mol, (c) 60,000 g/mol, and (d) 80,000 g/mol. Points 
denote experimental data that have molar mass within 5000 g/mol of the specified 𝑀𝑛. The phase diagram is not 
symmetric because the training data used to build the model is asymmetric around 𝑓𝐴 = 0.5, as it is selected randomly 
from the complete dataset.  
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The impact of individual features on the overall performance sheds more light on RFC-model behavior. 
Figure 2(a) demonstrates that the RFC model performance for predicting block copolymer phase behavior 
is independent of the type of fingerprinting method used. Crucially, the model performance remains almost 
the same even without using any descriptors for block chemistry, as depicted by the No-chem case; this 
effect is discussed in the SI (Section 7). Figure 2(b) depicts the rankings of different features, as indicated 
by respective feature importance scores. The score for chemistry is calculated as the sum of the scores for 
the individual entry in the fingerprint vector. For models with chemical fingerprints, molar mass is the 
dominant feature, followed by chemistry. For the No-chem case only, temperature is the dominant feature, 
further indicating the influence of high-density rheology and scattering temperature measurements. Inter-
estingly, the score for chemistry increases as the complexity of fingerprints increases, indicating that a 
minimum of triplet-type fingerprints is required to capture the effect of distinct chemical groups. To further 
investigate the effect of chemical diversity, a smaller dataset is constructed by removing 9 chemical groups 
(Figure S5) totaling approximately 500 datapoints. Figure S5 shows that the importance of different features 
is reversed for the less chemical-rich dataset, with chemistry becoming the least important feature and tem-
perature being the most dominant feature for the reduced dataset. This analysis clearly illustrates the need 
for chemical diversity in the dataset to build a reliable machine-learning model.  

The RFC model described here cannot predict a new phase on which it was not trained and is limited in 
its ability to extrapolate to new chemistries.   To examine the ability of RFC model to predict new chemistry, 
RFC model was trained on M-1 chemistries, and tested on the remaining one chemistry, where M is the 
total number of chemistries in the dataset (see section 9 in SI). Figure S6 demonstrates that there is a sig-
nificant variation in the accuracy for different chemistries, indicating that the model is able to identify only 
a few selected chemistries while it fails to predict others. Such a behavior is not surprising considering the 
dataset is heavily biased towards a few extensively-studied diblock copolymers. However, this ability of 
RFC predictor can be increased further as the chemical diversity of the dataset grows.    

Experimental data inherently contains uncertainty which may also affect the model prediction, especially 
if the model overfits noise in the data.  The temperature measured during scattering and rheology can be 
reasonably accurate (Δ𝑇 = ±1℃), while the molar mass and volume fraction measured by gel permeation 
chromatography can have uncertainties as high as 10%. In order to assess model sensitivity towards the 
uncertainties in experimental measurements, 100 new test datasets were created by adding Δ𝑀𝑛, Δ𝑓𝐴, Δ𝑇 
to 𝑀𝑛, 𝑓𝐴, and 𝑇 values for each of the data points in the original dataset. These perturbations are selected 
randomly from Gaussian distributions having zero mean 𝜇(Δ𝑀𝑛) = 𝜇(Δ𝑓𝐴) = 𝜇(Δ𝑇) = 0, and specified 
variances 𝜎(Δ𝑀𝑛), 𝜎(Δ𝑓𝐴) and 𝜎(Δ𝑇). Data points representing measurements from the same temperature-
sweep are perturbed by the same Δ𝑀𝑛 and Δ𝑓𝐴 but with different values of Δ𝑇 (see SI for details) to capture 
correlated error. Figure 4(a) shows the accuracy on the perturbed test sets for the No-chem model and the 
Morgan fingerprint model. It is evident that the RFC model is quite sensitive towards the variation in 𝑀𝑛, 
as indicated by the sharp decrease in the accuracy upon the introduction of uncertainty. Unlike accuracy, 
the sensitivity towards experimental uncertainty depends strongly on the fingerprinting method; Morgan 
fingerprint maintains 80% accuracy while for No-chem the accuracy decreases to 60% for highly varied 
samples. Figure 4(b) shows the accuracy as a function of uncertainty in both Δ𝑓𝐴  and Δ𝑀𝑛  for models 
trained with Morgan fingerprints. As expected, variation in 𝑓𝐴 affects the model performance more com-
pared to similar variation in 𝑀𝑛. Compared to the RFC model, the variation in 𝑀𝑛 and 𝑓𝐴 has less impact 
on the SCFT-predictions (Figure S7). Nevertheless, the RFC model still outperforms the SCFT model even 
for the most varied samples.  
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Figure 4: Sensitivity of the RFC-model prediction towards the uncertainty in experimentally measured mo-
lecular parameters. (a) Mean accuracy of 100 new samples created by adding Gaussian distributed pertur-
bations (𝛥𝑇, 𝛥𝑓𝐴, 𝛥𝑀𝑛) to each data point in the original dataset. For various values of 𝛥𝑀𝑛, 𝛥𝑓𝐴 = 0.05, 
and 𝛥𝑇 = 1 K. (b) Heatmap for model performance with Morgan fingerprints for variations in both 𝛥𝑓𝐴 
and 𝛥𝑀𝑛, with 𝛥𝑇 = 1 K.   

In summary, this work demonstrates that machine learning is promising for modeling the phase behavior 
of block copolymers while eliminating the need to estimate the Flory-Huggins parameter and other physi-
ochemical parameters. Due to an a priori structure present in the data, the model performance is independ-
ent of the type of chemical fingerprinting method used with all different methods demonstrating 90% ac-
curacy. However, the performance of model built without considering chemical descriptors is significantly 
more sensitive to experimental uncertainty than models containing such descriptors. More sophisticated 
methods such as boosting algorithms or deep neural networks may further increase the accuracy of predic-
tions. Overall, the analyses presented in this work highlight the importance of model interpretability and 
domain knowledge in assessing the robustness and reliability of models built on practical chemical datasets 
which typically possess strong internal structure and chemical bias. 
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