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High aboveground carbon stock of African 
tropical montane forests

Tropical forests store 40–50 per cent of terrestrial vegetation carbon1. However, 
spatial variations in aboveground live tree biomass carbon (AGC) stocks remain 
poorly understood, in particular in tropical montane forests2. Owing to climatic and 
soil changes with increasing elevation3, AGC stocks are lower in tropical montane 
forests compared with lowland forests2. Here we assemble and analyse a dataset of 
structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 
African countries. We find that montane sites in the AfriMont plot network have a 
mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 
137.1–164.2), which is comparable to lowland forests in the African Tropical  
Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than 
averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, 
respectively. Notably, our results are two-thirds higher than the Intergovernmental 
Panel on Climate Change default values for these forests in Africa8. We find that the 
low stem density and high abundance of large trees of African lowland forests4 is 
mirrored in the montane forests sampled. This carbon store is endangered: we 
estimate that 0.8 million hectares of old-growth African montane forest have been 
lost since 2000. We provide country-specific montane forest AGC stock estimates 
modelled from our plot network to help to guide forest conservation and 
reforestation interventions. Our findings highlight the need for conserving these 
biodiverse9,10 and carbon-rich ecosystems.

Tropical forests cover less than 10% of the global land area yet store 
40–50% of terrestrial vegetation carbon1 and contribute more than 
one-third of primary productivity11, so they are a key component of the 
global carbon cycle12,13. There is substantial variation in carbon stocks 
across the biome, with lowland forests in Africa and Borneo storing 
more carbon per unit area than lowland forests in the Neotropics4,7. 
This variation arises partly from structural differences: the signature 
feature of African forests is their low stem density but relatively high 
abundance of large trees (>70 cm in diameter), which store large quanti-
ties of carbon, whereas Bornean forests are characterized by high stem 
density and basal area4,14,15.

Despite increased understanding of biogeographic differences in 
tropical lowland forests, patterns of spatial variation in carbon stocks 
remain poorly understood in the 880,000 km2 of tropical montane 
forests located ≥1,000 m above sea level (a.s.l.)2. Montane forests are 
expected a priori to have lower aboveground live tree biomass carbon 
(AGC) stocks than lowland forests because (1) temperature decreases 
with increasing elevation, reducing net primary productivity and 
slowing nutrient recycling, (2) long periods of cloud immersion in 
montane forests suppresses productivity, (3) soil waterlogging slows 
nutrient recycling, and (4) high epiphyte load, local wind exposure 
in crests and nutrient-limited soils limit tree size and increase invest-
ment in roots over shoots3. Although forest inventory plots provide 
some support for these assumptions2, data from African mountain 
regions are exceptionally sparse. Indeed, in the most recent Inter-
governmental Panel on Climate Change (IPCC) guidelines, there is no 
specific AGC default value for old-growth montane forests in Africa: 
the value given of 89.3 MgC ha−1 is simply a mean of secondary and 

old-growth forests found at ≥1,000 m a.s.l. (ref. 8). Mountain areas also 
pose special challenges for remote-sensing approaches for estimating 
carbon stocks, as radar data are affected by geometric distortions16 and 
steep slopes bias spaceborne LiDAR estimates towards overestimating 
canopy height17. These issues are reflected in the limited correlation 
between estimates of AGC stocks at mountain locations from differ-
ent recent remote-sensing-derived carbon maps (Supplementary  
Table 1).

Better understanding of montane carbon stocks is important for 
many African countries, particularly in eastern Africa where montane 
forests represent most of the extant evergreen old-growth forest cover. 
Quantifying carbon stocks in these ecosystems is critical for estimating 
national carbon losses from deforestation and forest degradation18. 
Quantifying carbon stocks in old-growth montane forests also serves 
to constrain potential carbon uptake by restored natural forests, given 
the high commitment of most African nations to the Bonn Challenge 
effort to restore 150 million hectares of degraded and deforested lands 
by 2020 (Table 1), and 350 million hectares by 2030.

Here we measured, compiled and analysed a new dataset of 226 plot 
inventories spanning 44 sites in 12 African countries, covering most 
major mountain regions on the continent (the ‘AfriMont’ dataset). Plots 
range from 800 m a.s.l. to 3,900 m a.s.l. to include submontane forests 
(800–1,000 m a.s.l.) in smaller mountains closer to the ocean19,20. For all 
plots, stem diameter and species were recorded for each tree ≥10 cm in 
diameter at breast height (or above buttress) following standard meth-
ods21. Tree height was sampled in 23 montane sites, allowing variation 
in height–diameter allometry to be incorporated into the calculation 
of aboveground biomass. A total of 72,336 stems with diameter ≥10 cm 
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were measured. For each tree, we computed AGC (in MgC ha−1) accord-
ing to standard procedures (Methods).

We find that the mean plot-level AGC stock across the sampled 
African tropical montane forests is 149.4 MgC ha−1 (95% confidence 
interval (CI) 137.1–164.2), two-thirds more than the IPCC default value 
of 89.3 MgC ha−1. Our estimates are robust to subsampling our dataset 
(Extended Data Fig. 1) and excluding small plots (Extended Data Fig. 2), 
and are not affected by the sampling strategy used to establish plots in 
each study site (Extended Data Fig. 2). Comparing our dataset to previ-
ous syntheses of montane2,5,6 and lowland7 forest plot networks reveals 
that tropical montane forests in Africa have significantly higher AGC 
stocks per unit area than both montane (95% CI 50.4–71.9 MgC ha−1) 
and lowland (95% CI 124.0–147.9 MgC ha−1) forests in the Neotropics, 
and that they do not differ significantly from lowland forests in Africa 
(95% CI −27.6–9.6 MgC ha−1) (Fig. 1, Supplementary Table 2). The similar 
AGC stocks in montane and lowland forests in Africa contrasts with 
the Neotropics and Southeast Asia, where carbon stocks are lower in 
montane forests than lowland forests (albeit not significantly differ-
ent in Southeast Asia due to the small sample size) (Fig. 1). These dif-
ferences are robust to accounting for differences in elevation among 
montane datasets: removing African plots 800–1,000 m a.s.l. slightly 
reduces estimated montane forest AGC stock to 145.0 MgC ha−1 (95% CI 
129.6–163.2), but observed differences in AGC stock among continents 
remain when plots are restricted to elevations that are well represented 
in all continents (Extended Data Fig. 3).

The characteristic structural properties of lowland African forests 
(relatively low stem density and greater importance of large trees com-
pared with elsewhere in the tropics4) are also evident in the African 
montane forests we sampled. In these montane forests, the mean stem 
density is 483.3 stems per hectare (±177.7 s.d.) and the mean basal area 
is 39 m2 ha−1 (±14.8 s.d.). We find a high density of large stems (>70 cm 
in diameter, 19.1 stems per hectare ± 15.4 s.d.), which contribute 35.3% 
(95% CI 29.6–41.8%) to plot-level AGC stock (Fig. 2). The contribution 
of large trees to plot-level AGC stock is also similar in montane and 
lowland Africa (95% CI of difference in square-root transformed pro-
portional contribution of large trees between lowland and montane 

forests −0.100–0.075, P = 0.80). There was no significant difference 
in the proportional contribution of any other size class to AGC stocks 
between our montane dataset and 132 lowland plots from the African 
Tropical Rainforest Observatory Network (AfriTRON; P ≥ 0.24) (Supple-
mentary Table 3), although greater variation among plots is observed 
in montane forests (Fig. 2).

To investigate whether elevation affected AGC or forest structure, 
we modelled these variables as functions of elevation using random 
slopes mixed-effects models. This approach allows intercepts and 
relationships to vary among sites, which would be expected as moun-
tains can have very different climate at the same elevation owing to 
proximity to the ocean (generally the farther, the drier) and because 
of the mass-elevation or telescopic effect22 (larger mountains are 
better at warming the atmosphere above them). We found that AGC, 
stem density or density of large stems (>70 cm in diameter) were not 
significantly related to elevation (Fig. 3, Supplementary Table 4). 
Across sites, these non-significant relationships were all negative, 
although there was some variation in strength and direction among 
sites (Fig. 3). Similarly, in the Neotropics and Southeast Asia montane 
forest plot datasets, AGC was not significantly correlated with eleva-
tion (Extended Data Fig. 4).

To assess potential environmental drivers of AGC-stock variation 
across the AfriMont plot network, we related AGC to climate, soil and 
topography. We found that AGC stocks increased with annual precipi-
tation (albeit not statistically significantly), decreased with soil fertil-
ity and were higher in plots that were locally at higher elevation than 
their surroundings (Extended Data Fig. 5). Relationships with other 
environmental variables were non-significant (Extended Data Fig. 5). 
Although global datasets might not capture fine-scale variation in 
climate or soils in mountain regions23, leading to regression dilution24, 
the general absence of strong climate effects combined with the lack 
of a significant effect of elevation on AGC stocks suggest that the high 
AGC stock of African montane forests is a pervasive phenomenon across 
a wide environmental gradient.

Although the AfriMont dataset covers most major mountain areas 
in tropical Africa (Fig. 4), some areas remain under-sampled relative 

Table 1 | Remaining forest area and AGC estimates for montane and lowland tropical forests in Africa

Country Montane (ha) Montane lost 
(ha)

Montane AGC 
(Mg ha−1, 95% CI)

Montane sites 
(plots)

Lowland (ha) Lowland AGC 
(Mg ha−1, 95% CI)

Lowland 
plots

Bonn Challenge 
by 2020 (ha)

Burundi 25,000 300 94 (47–176) 1 (7) 0 0 2 million

Cameroon 840,000 30,200 153 (121–195) 7 (37) 17.7 million 166 (151–185) 72 12 million

Democratic Republic 
of the Congo

10.2 million 536,500 129 (84–202) 2 (37) 90 million 158 (135–183) 48 8 million

Ethiopia 1.7 million 62,100 165 (124–215) 8 (25) 145,000 a 0 15 million

Guinea 29,000 1,700 314 (147–616)b 1 (2) 193,000 157 (122– 206)c 24 2 million

Kenya 568,000 44,100 104 (79–136) 8 (38) 37,000 0 5.1 million

Mozambique 18,000 6,600d 226 (146–384)b 3 (4) 93,000 e 0 1 million

Nigeria 42,000 1,400 120 (47–309)b 1 (1) 1.8 million 161 (105–262) 2 4 million

Rwanda 53,000 300 106 (65–168) 2 (11) 0 0 2 million

Tanzania 587,000 13,900 175 (129–234) 6 (29) 130,000 128 (101–163) 16 5.2 million

Uganda 427,000 64,600d 158 (111–209) 6 (23) 18,000 0 2.5 million

Zimbabwe 7,000 800d 203 (108–363) 1 (12) <1,000 0 2 million

Forest cover circa 2018 was extracted from ref. 38 and clipped to ‘primary humid forest’ using ref. 39. Montane forest lost covers the period 2000–2018. Mean aboveground carbon (AGC, in MgC 
ha−1) estimates for montane (or lowland) forests were estimated from AfriMont and AfriTRON plot network data. AGC values are means with 95% confidence intervals in parentheses. For details 
on sites and plots used, see Supplementary Table 5. Bonn Challenge pledges for 2030 are not yet available. 
aRef. 48 reports 192 MgC ha−1 for lowland. 
bFew plots sampled, or very small plots sampled, AGC estimates may not be robust; see Extended Data Fig. 10. 
cData from neighbouring Liberia. 
dMontane forest loss in Mozambique, Uganda and Zimbabwe represents 27%, 13% and 10% of the existing montane forest in 2001, respectively. Montane forest loss in Côte d’Ivoire (no plot 
data are available) was estimated to be 21% for the same period. 
eRef. 49 reports 132.2 MgC ha−1 for lowland.
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to forest extents (Extended Data Fig. 6), resulting in some differences 
between the environmental conditions sampled by our plot network 
and the wider montane forest biome in Africa (Extended Data Fig. 7). 
Notably, the absence of plots from montane forests of eastern Demo-
cratic Republic of the Congo (Fig. 4, Extended Data Fig. 6) means that 
the AfriMont dataset samples forests are, on average, at higher eleva-
tions, and are cooler and cloudier than the wider montane forest biome 
in Africa (Extended Data Fig. 7). Using relationships with environmental 
variables (Extended Data Fig. 5) to predict AGC stocks in each 1-km grid 
cell containing montane forest gives a mean (weighted by remaining 
forest cover) AGC stock of 176.9 MgC ha−1 (±32.0 s.d.) for the tropical 
montane forest biome in Africa. This indicates that the estimate we 
report based on our AfriMont plot network data (149.4 MgC ha−1) is 
conservative.

Several mechanisms could explain the high AGC stock of montane 
forests in the AfriMont plot network. First, large herbivores such as 
elephants (Loxodonta spp.) can have marked effects on forest struc-
ture by consuming biomass, destroying small stems, dispersing seeds 
and transporting nutrients25. Studies for lowland forests suggest that 
elephants can increase carbon stocks26,27. We tested whether Afri-
Mont plots with a known elephant presence as of 2019 had signifi-
cantly higher AGC stocks, but found that they had significantly lower 
AGC stocks, although significant differences were not observed in 
some countries (Extended Data Fig. 8). Although the initial ecosys-
tem response to elephant removal might be greater AGC stocks due 
to reduced biomass consumption and small-stem destruction, the 
longer-term effects might differ. We were unable to fully disentan-
gle such effects, as we lacked details on both the time since elephant 
extirpation and the elephant abundance and its determinants (Sup-
plementary Table 5).

A second potential explanation is a relatively low frequency of 
large-scale abiotic disturbances, allowing trees time to grow large and 

stands to self-thin, as is seen in lowland African forests4. For exam-
ple, tropical cyclones are largely absent in mainland Africa (except in 
Mozambique28) and lava flows are limited even in the active volcano 
of Mount Cameroon29. Although fine-scale variability in landslide risk 
limits comparisons across large spatial scales, there are fewer areas 
with high landslide susceptibility in mountains in tropical Africa than 
in the Andes and most mountain ranges in Southeast Asia30. If forests 
have been ecologically stable over evolutionary timescales, tree spe-
cies may be adapted to grow slowly but potentially reaching great 
sizes31. On Mount Kilimanjaro Entandrophragma individuals reach 
enormous heights and ages32. This low frequency of large-scale abi-
otic disturbances contrasts with the Andes and several mountains in 
Southeast Asia (for example, Barisian mountains in western Sumatra), 
which are tectonically active, so the trees there are adapted to sud-
den disturbance followed by intense competition to get established 
and grow. Future monitoring of the AfriMont plot network will help to 
determine the extent to which the high biomass of African tropical 
montane forests results from them being dynamic and productive, 
or adapted to stability.

A third potential explanation could be the presence of conifers33. 
Mixed conifer/broadleaved forests tend to have a greater basal area 
than purely broadleaved forests owing to a more effective use of 
light and other resources34. Podocarpaceae can be found in mon-
tane forests across the tropics35. Despite having fewer species in 
Africa than in other continents36, these could be more abundant at 
the site level. However, there is no pantropical comparative study 
on Podocarpaceae abundance in tropical montane forests. In our 
dataset, there was no significant correlation between plot-level AGC 
stock and conifer (Podocarpaceae) abundance (Extended Data Fig. 9). 
Other explanations could be continental differences in mountain 
terrain (more gentle slopes or plateau regions in Africa) or types of 
montane forest investigated (less cloud forest existing/sampled in 
Africa). Within our dataset, slope did not have a significant effect 
on AGC stocks (Extended Data Fig. 5). Contrary to the Neotropics37, 
there is no high-resolution map of cloud forests available for Africa, 
so although we found no relationship between AGC stock and cloud 
frequency (Extended Data Fig. 5), we were unable to investigate dif-
ferences in AGC stock between cloud forest and non-cloud forest  
plots.

To understand the policy implications of our findings for African 
countries, we calculated montane (≥800 m a.s.l.) forest cover change 
between 2000 and 2018, using forest cover from ref. 38 and clipped 
to ‘primary humid forest’ from ref. 39. We show that tropical montane 
forests represent most—or all—evergreen old-growth forests found 
in ten African countries (Fig. 4), and that the Democratic Republic of 
the Congo has two-thirds of the remaining 16 million hectares of mon-
tane forests in Africa. Over 0.8 million hectares (5%) have been lost in 
Africa since 2001, with the highest losses in the Democratic Republic 
of the Congo (536,000 ha), Uganda (65,000 ha) and Ethiopia (62,000 
ha) (Fig. 4, Table 1). In terms of percentage, Mozambique and Côte 
d’Ivoire lost over 20% of their montane forests over this period (Fig. 4, 
Table 1). In some sites, however, a larger proportion of montane forests 
was lost before 2000, for example, in Taita Hills in Kenya40. If absolute 
country-level deforestation rates continue, a further 0.5 million hec-
tares of tropical montane forests will be lost by 2030.

African tropical montane forests are not only carbon rich but 
also contain some of the highest concentrations of biodiversity 
and endemism in the world9,10. They are important ‘water towers’ 
as—located at the headwaters of numerous river systems, including 
the Congo and the Nile—they regulate the timing and magnitude of 
runoff9. They also regulate local temperatures41 and provide numer-
ous other services to people in the surrounding landscapes9. Clearly, 
more should be done to avoid the destruction of these important 
ecosystems. Logging, mining and clearing land for farming, but also 
political unrest and militia presence, have affected—and continue 
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to affect—these forests, for example, in Itombwe Mountains in the 
Democratic Republic of the Congo42. Protected areas are known to 
help to reduce deforestation in the tropics43. Beyond protected areas, 
other forest conservation mechanisms could be implemented, includ-
ing effective carbon finance. Previous IPCC AGC-stock estimates for 
montane forests in Africa (89.3 MgC ha−1) may have contributed to low 
incentives for carbon finance mechanisms in these ecosystems. Our 
study shows the far greater carbon-storage potential in these tropical 
montane forests, which will be even higher if soil carbon stocks are 
considered (for example, >200 MgC ha−1 of organic carbon occurs in 
the top 0–30 cm of soil on Mount Cameroon44 and in the Usambara 
Mountains, Tanzania45).

As well as conserving the remaining montane forests, efforts to 
restore them are critical. Forest restoration at one of our sites, Kibale 
National Park in Uganda, indicates the potential for rapid AGC accu-
mulation46. Our study shows the high potential AGC stock these mon-
tane forests can attain. The possible co-benefits of forest restoration, 
notably water regulation, control of soil erosion and landslides, and 
biodiversity conservation should also be considered. Most African 
nations are committed to the Bonn Challenge; Ethiopia leading with 
15 million hectares committed (Table 1). We provide country-specific 
estimates of potential AGC stocks based on forests sampled in the 
AfriMont dataset to help guide such interventions (Table 1, Extended 
Data Fig. 10). Caution is needed when scaling-up our estimates to the 

landscape scale, as not all forests are closed-canopy old-growth and 
structurally intact. Remote-sensing or ancillary data (landcover maps 
and spatial environmental data) could be used to identify, for example, 
exotic plantations, degraded or bamboo forests, and thus help to create 
detailed AGC maps at different spatial scales18,47. A closer collaboration 
between airborne, spaceborne and ground approaches (such as the 
AfriMont and AfriTRON plot networks) is key for accurate quantifica-
tion and monitoring of landscape-scale tropical forest AGC stocks, 
particularly in mountain regions.
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Our newly compiled dataset and analysis provides a large-scale 
quantification of AGC stock in African tropical montane forests, 
indicating it to be on average substantially higher than previously 
thought. Although there is variation around this mean AGC stock 
within and across sites, it is not systematically related to elevation. 
Apart from helping refine country-level estimates, IPCC guidelines 
and ground calibration of remote-sensing estimates, continued 
on-the-ground monitoring of the AfriMont plot network will help 
determine ecosystem dynamics and carbon residence time in these 
extraordinarily carbon-rich forests, as well as their responses to  
climatic changes.
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Methods

AfriMont or montane Africa dataset
We compiled forest inventory plot data from AfriTRON (www.afritron.
org), with data curated at www.ForestPlots.net50,51 and the TEAM net-
work52, as well as from numerous site-specific publications detailed in 
Supplementary Table 5 and mapped in Fig. 4. Plots were selected for 
the analysis when conforming to the following criteria: ≥800 m a.s.l., 
closed-canopy evergreen wet or moist tropical forest, geo-referenced, 
old-growth and structurally intact (not affected by recent selective 
logging, fire or coffee cultivation), with no exotic species present (for 
example, Eucalyptus or Pinus spp.), all trees ≥10 cm in diameter meas-
ured and majority of stems identified to species. We included plots from 
Virunga Massif in Rwanda/Uganda even when not 100% closed canopy 
due to the high abundance of naturally occurring bamboo. In all plots, 
tree diameter was measured at 1.3 m along the stem from the ground, 
or above buttresses if present. In 23 sites, tree height was sampled in 
the field for some stems, using a clinometer or a laser. Families and 
species names follow the African Plant Database (http://africanplant-
database.ch). The AfriMont dataset consists of 72,336 stems, of which 
92.9% were identified to species, 98.4% to genus and 98.5% to family. 
This dataset represents a standardized safe long-term repository of 
valuable historical data (four sites initially considered could not be 
included because tree-level data had already been lost by data owners).

AfriTRON or lowland Africa dataset
The 132 lowland forest plots are all from AfriTRON4,13,53. They 
were selected using the same criteria as above (but with elevation 
<800 m a.s.l.), restricted to countries for which we also had montane 
plots plus neighbouring countries where the mountains span interna-
tional borders (for example, Mount Nimba spans Guinea and Liberia). 
The dataset includes 51,305 stems, of which 89.6% were identified to 
species, 97.3% to genus and 97.7% to family. The plot data were retrieved 
from www.ForestPlots.net on 6 January 2019. The plot locations and 
details are in Supplementary Table 6.

Literature dataset
We compiled data on AGC stocks in tropical lowland and montane 
forests to compare with the AfriMont data. Data for lowland forests 
came from ref. 7. and consisted of all multi- and single-census plots 
that were <800 m a.s.l. Data for montane forests were obtained from 
ref. 2, with additional data from Venezuela5 and Colombia6. Montane 
plots were defined as ≥800 m a.s.l.; elevation was not provided for the 
Colombian dataset so plots were selected based on the forest type, 
and these plots were excluded from analyses requiring elevation. To 
avoid double counting plots, Venezuelan and Colombian plots were 
removed from the ref. 2 dataset.

Aboveground carbon
For each tree in the montane dataset, we used the published allometric 
equation by ref. 54 to estimate aboveground biomass. This allometric 
equation was created using data from directly harvested trees at 58 
sites across the tropics, including eight sites with elevation ≥800 m a.s.l. 
(range 900–3,000 m a.s.l. including sites in Africa). We then converted 
this biomass to carbon, assuming that AGC (in MgC ha−1) is 45.6% of 
aboveground biomass55. AGC for each plot was estimated as the sum 
of the AGC of each living stem, divided by planimetric plot area (in 
hectares). If field measurements of slope were unavailable, we con-
verted surface to planimetric area extracting slope from the NASA’s 
Shuttle Radar Topography Mission (SRTM) product. We excluded tree 
ferns, bamboo and palms, as these were not measured in all plots. Ref-
erence54 includes tree diameter, wood mass density and tree height. 
The best taxonomic match wood density of each stem was extracted 
from a global database56,57 following ref. 53. For some sites, all trees in 
a plot had been sampled for height. If this was not the case, but some 

field measurements of height were available (typically ten stems per 
diameter class), we constructed a site-specific height–diameter model, 
using a Weibull equation following ref. 14. If no field measurements of 
height were available, we constructed a cluster-specific height–diam-
eter model, using a Weibull equation, as explained in Supplementary 
Table 7. The same approach was used to calculate aboveground biomass 
for lowland forests. For these, height was estimated using a Weibull 
equation following ref. 14.

Small plots and data subsampling
For 22 sites where plots were small (<0.2 ha), we aggregated plots to 
groups of about 0.2 ha based on their geographic proximity, elevation, 
environmental affinity and the co-authors’ knowledge of the site, to 
help reduce the variation among plots at site level. This is because the 
presence of an extremely large tree in a small plot can result in overes-
timates of AGC58. We investigated whether using the aggregated-plot 
approach affected AGC-stock estimates at the site level, and this was not 
the case (Extended Data Fig. 2). We also investigated whether including 
small plots affected the continental mean AGC-stock estimates, as small 
plots have greater edge surface, and there is a tendency of some field 
teams to include large trees inside plots when laying out the bounda-
ries59. Including small plots did not significantly affect our continental 
mean AGC-stock estimates (Extended Data Fig. 2). We also explored the 
sensitivity of our continental mean AGC-stock estimates to data subsam-
pling. Data were resampled at different sample sizes either at plot level 
(sampling with replacement) or at site level (sampling without replace-
ment). The number of plots (n = 226) and the number of sites (n = 44) 
we sampled indicate that our estimates of AGC stock at the continental 
level are robust (Extended Data Fig. 1). They are also not affected by the 
fact that we included plots 800–1,000 m a.s.l. (Extended Data Fig. 3).

Size classes
For all plots, we computed the proportion of AGC that was distributed 
in each size-diameter class, using the classes of ref. 15. We also computed 
stem density, basal area, density of large trees (>70 cm in diameter, 
named SD70 in stems per hectare) and Podocarpaceae abundance (in 
percentage of plot-level basal area).

Environmental variables and their effects
Climate variables (temperature annual mean and seasonality, and pre-
cipitation mean and seasonality, that is, Bio1, Bio4, Bio12 and Bio15) 
were extracted from WorldClimV260 at 30-arcsec (about 1 km) reso-
lution. Mean temperature values were adjusted for the difference in 
elevation between the plot and the wider 1-km grid cell using the lapse 
rate of −0.005 °C m−1. We obtained data on cloud cover from ref. 61 and 
lightning frequency (0.1°, about 11 km) from the Lightning Imaging Sen-
sor (LIS) very-high-resolution climatology62. Values for soil variables 
(cation exchange capacity, CEC, representing soil fertility, and percent-
age clay representing soil texture) were extracted from SoilGrids63 
(about 1-km resolution) and a depth-weighted mean taken for values 
from 0 cm to 30 cm depth to give a single value of each soil variable per 
plot. Elevation was obtained from SRTM (at 3-arcsec resolution, about 
90 m). Topographic metrics were calculated from elevation data using 
the terrain function in the raster R package version 3.3-6. These were 
slope and topographic position index (TPI). The TPI is the difference 
between the elevation of the plot and the mean value of the eight sur-
rounding grid cells—positive values indicate locally high locations and 
negative values indicate locally low locations. Where small plots were 
aggregated for analysis, environmental variables were extracted for 
the ungrouped plot locations, and then an area-weighted mean taken 
to obtain a plot-level value.

Elephant and conifer effects on AGC stocks
For the current elephant presence in the AfriMont plots, we created a 
binary variable (presence/absence) based on co-authors’ knowledge 
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of elephant ranges and elevation distribution at each site as of 2019. 
Co-authors estimated that elephants were present in 2019 in 54 plots in 
12 sites in five countries (Supplementary Table 5). For all plots that had 
at least one individual in the Podocarpaceae family (47 plots, 16 sites,  
7 countries), we computed the contribution of Podocarpaceae to plot 
basal area and AGC stock in terms of percentages.

Estimating forest cover and loss
We obtained estimates of forest cover and loss in the years 2000 to 
2018, using the ‘loss year’ dataset of the Global Forest Change data-
base, version 1.6 (ref. 38). To exclude plantation forests, ‘dry’ forests 
(for example, miombo woodland) and degraded forests, we applied 
the ‘primary humid forest’ mask developed by ref. 39. We distinguished 
montane from lowland forests using an elevational cut-off of 800-m 
elevation, using the SRTM v3 product at 1-arcsec resolution (snap-
ping to the ref. 38 grid of the same resolution). Where there were gaps 
in the 1-arcsec SRTM product, we filled these using a 1-arcsec bilinear 
interpolation of the (gapless) 3-arcsec SRTM product. Areal estimates 
of forest cover and loss were calculated at 30-m resolution using the 
Africa sinusoidal projection. To estimate future forest loss by 2030, we 
extrapolated absolute country-level deforestation rates for the period 
2000–2018 (in hectares per year).

Investigating AfriMont representativeness
To quantify AfriMont sampling effort within the montane forest biome 
in Africa, we used the map of tropical montane forest extent (see above) 
and calculated the amount of remaining forest in each 1° grid cell. By 
dividing the area sampled in the AfriMont dataset by the proportion of 
this biome in a grid cell, we calculated the expected sampling intensity 
if sampling was proportional to remaining forest extent. To assess how 
representative our plot network was of the environmental conditions 
of the wider tropical montane forest biome in Africa, we extracted the 
environmental data (climate and soil variables presented above) at 
about 1-km resolution from grid cells that contained montane forest. 
We then visually compared the distribution of each variable in our 
dataset to its distribution across the biome (Extended Data Fig. 7).

AfriMont versus global AGC maps
We extracted alternative AGC estimates for the AfriMont plots (unag-
gregated, n = 666) from four different sources: Harris et al.64 (30-m 
resolution, dated 2000), the European Space Agency Climate Change 
Initiative Biomass map65 (100-m resolution, 2017), Saatchi, et al.66 (1-km 
resolution, 2007–2008) and Avitabile et al.67 (1-km resolution, circa 
2000–2010). Most of the AfriMont plots were sampled between 2000 
and 2019 (Supplementary Table 5). Where the plots were found within 
a single map pixel, we extracted that value. Where plots were larger 
than the pixel size, we averaged the values from the surrounding pixels 
weighted according to the proportion of the pixel that was in the plot.

Statistical analysis
Data were analysed using linear mixed-effects models, with site as a 
random effect. Site was included as a random intercept in all models, 
and as a random slope where relationships were assessed against eleva-
tion. Allowing the slope of the elevation effect to vary among sites in 
this way captures the a priori expectation for slopes to differ among 
sites, for example, due to mass-elevation effects. The effect of plot size 
on variation was accounted for by weighting observations by a power 
transformation of plot size; this was estimated during model fitting 
using the varPower function in the nlme R package68, and then models 
refitted using the lme4 R package69 using these estimated weights. 
Confidence intervals and P values for mixed-effects model param-
eters were estimated by bootstrapping models (1,000 iterations) using 
the bootstrap_parameters function in the parameters R package70. 
AGC stocks, stem density and SD70 were natural-log transformed (a 
small constant was added to SD70 before log-transforming to avoid 

log-transforming zeros) to meet assumptions of normality and avoid 
heteroscedacity. Likewise, the proportional contribution of each size 
class was square-root transformed. Differences in AGC stocks between 
all combinations of lowland and montane forests among continents 
were assessed using Tukey post hoc tests implemented in the multcomp 
R package71. Relationships between AGC stocks and environmental 
variables were investigated by fitting all subsets of the full model with 
all environmental covariates and averaging the best supported (differ-
ence in Akaike information criterion from the best supported model 
<4) models (using dredge and movel.avg functions in the MuMIn R 
package72. We used these relationships with climate and soil to predict 
AGC stocks in each 1-km grid cell containing montane forests (holding 
topographic variables at their dataset wide mean), and then took the 
forest-area weighted mean of these to obtain a single mean for the 
tropical montane forest biome in Africa. Differences in AGC stocks 
between plots with and without elephants were tested using a t-test 
with AGC stocks natural-log transformed. We investigated whether 
Podocarpaceae abundance (in terms of basal area) and plot AGC 
stocks were significantly correlated using Spearman’s rank correla-
tion coefficient. To investigate whether the sampling design affected 
AfriMont AGC-stock estimates, we used analysis of variance to test 
whether site-level mean AGC stocks differed according to the sampling 
strategy used to establish plots at that site. To explore the relationship 
between AfriMont AGC-stock estimates and global maps, and among 
these global maps, we used Spearman’s rank correlation test.

Data availability
Source data to generate figures and tables are available from https://
doi.org/10.5521/forestplots.net/2021_5.

Code availability
The R code to generate figures and tables is available from https://doi.
org/10.5521/forestplots.net/2021_5.
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Extended Data Fig. 1 | Sensitivity of mean AGC stock estimates to data subsampling. AfriMont plot data were resampled at different sample sizes either at plot 
level (sampling with replacement) or at site level (sampling without replacement). N = 1,000 resamples for each sample size.



Extended Data Fig. 2 | Effect of plot area, aggregation procedure and plot 
design on estimates of AGC stocks across the AfriMont plot network.  
a, Relationship between AGC stocks and plot area of plots before aggregation. 
The red line shows the fit of a locally weighted regression model (span 0.75) 
relating these variables, with dashed lines showing the standard errors.  
b, Variation in AGC stocks using either all plots before aggregation 
(unaggregated), plots before aggregation but excluding those <0.2 ha 
(unaggregated, >0.2 ha) or the aggregated plots used in the main analyses 
(aggregated). c, Effects of plot design on AGC stocks (each site represents one 

dot). Sampling strategies include random or stratified random, plots 
positioned along transects, plots established within elevation bands, 
subjective measures such as choosing an area of forest considered 
representative of the wider area, and other strategies (one plot sampled per 
site or unclear strategy). Carbon stocks (log transformed) did not differ 
significantly between sites with different sampling strategies (analysis of 
variance F4,39 = 0.432, P = 0.785). For specific site information, see 
Supplementary Table 5.
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Extended Data Fig. 3 | Robustness of differences in tropical montane forest 
AGC stocks among continents based on plot networks to differences in 
elevation. a, Elevations of montane forests plots sampled in each continent. 
Violin plots show the distribution of data, with boxplots showing the median 
and interquartile range of elevation in each continent. b, Effect of removing 
submontane plots (800–1,000 m a.s.l.) and high elevation plots 
(>2,200 m a.s.l., approximately the upper quartile of elevations for the African 

montane plot dataset) on AGC stocks in montane forests sampled by plot 
networks in each continent. Mean AGC stocks and 95% CIs are shown as 
estimated by models using all data, excluding plots 800–1,000 m and 
restricting plots to 1,000–2,200 m. Means for all plots differ from the analysis 
in Fig. 1 as literature plots without elevation data (plots in Colombia) were 
excluded from this analysis. Point symbols are proportional to the square-root 
plot area. N = 324 plots.



Extended Data Fig. 4 | Relationship between AGC stocks and elevation for 
tropical montane forests in each continent based on plot networks. The 
dashed lines show relationships from a linear mixed-effects model of 
log-transformed AGC stocks as a function of elevation, continent and their 
interaction. Site was included as a random effect, and AGC stock–elevation 
relationships allowed to vary among sites. The lines show fitted slopes across 

sites. Neither the overall relationship between elevation and AGC stocks 
(slope −0.039 [95% CI = −0.127–0.057], P = 0.420) nor interactions between 
elevation and continent (Southeast Asia, change in slope = −0.074 [−0.294–
0.149], P = 0.503; Neotropics, change in slope 0.006 [−0.132–0.149], P = 0.913) 
are statistically significant. N = 324 plots.
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Extended Data Fig. 5 | Environmental drivers of AGC stocks across the 
AfriMont plot network. Coefficients are from a linear mixed-effects model 
with site as a random intercept. Results are following all-subsets regression and 
model averaging, in which variables that do not appear in well supported 
models are given coefficients of zero, leading to shrinkage in model 
coefficients. Statistically significant relationships (P < 0.05) are indicated with 

asterisks. TPI refers to topographic position index (positive values indicate 
higher than surroundings and negative values indicate lower than 
surroundings). T_mean, annual mean temperature; T_seasonality, temperature 
seasonality; Precip_total, annual precipitation; Precip_seasonality, 
precipitation seasonality.



Extended Data Fig. 6 | Expected sampling effort if effort was distributed in 
proportion to the area of tropical montane forest biome in Africa. Data are 
summarized at 1° resolution. The upward triangles show grid cells where 
AfriMont sampling effort is more than double expected effort and the 
downward triangles show grid cells where AfriMont sampling effort is less than 
half expected effort. The circles denote AfriMont sampling effort being 

between half and double expected effort. The extent of the tropical montane 
forest biome was defined as closed-canopy forests ≥800 m a.s.l. in December 
2018, extracted from ref. 38 and clipped to ‘primary humid forest’ using ref. 39. 
This grided map differs from Fig. 4 as numerous grids have very little tropical 
montane forest.
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Extended Data Fig. 7 | Differences in the environmental conditions 
sampled by the AfriMont plot network and the tropical montane forest 
biome in Africa. The extent of the biome was defined as closed-canopy 

forests ≥800 m a.s.l. in December 2018, extracted from ref. 38 and clipped to 
‘primary humid forest’ using ref. 39. Environmental variables for the biome were 
extracted at about 1-km resolution.



Extended Data Fig. 8 | Differences in AGC stocks in AfriMont plots located 
in montane forests with and without elephants. a, Differences across all 
plots. AGC stocks are statistically significantly lower in forests with elephants 
(t-test, t = 3.5, d.f. = 83.5, P = 0.001). The thick line shows the median, and boxes 
cover the interquartile range (IQR). Values >1.5 times IQR away from the IQR are 

shown by points. b, Differences in countries where elephants are present in at 
least one of the montane sites studied. The black squares show means in each 
country in forests with or without elephants and the solid lines denote 
statistically significant differences (t-tests, P < 0.05). Elephant presence in 2019 
was estimated by the co-authors (Supplementary Table 5).
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Extended Data Fig. 9 | Relationship between AGC stocks and 
Podocarpaceae. a, Relationship between AGC stocks and Podocarpaceae 
basal area across plots in the AfriMont network, expressed as a percentage of 
total plot basal area. These variables are not significantly correlated (rs = 0.083, 

n = 226, P = 0.212). b, Distribution of plots with at least 20% basal area of 
Podocarpaceae (black points) in relation to elevation and AGC stocks. AGC 
stocks are not significantly related to elevation or Podocarpaceae basal area 
(linear mixed effects model, P = 0.152 and P = 0.132, respectively).



Extended Data Fig. 10 | Within-country variation in AGC stocks based on the AfriMont plot network. Error bars show means and 95% CIs estimated by linear 
mixed-effects models. Modelled means not shown for countries with fewer than five plots. Point size is proportional to plot area.
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