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Abstract

Snow is Earth's most climatically sensitive land cover type. Traditional snow metrics

may not be able to adequately capture the changing nature of snow cover. For exam-

ple, April 1 snow water equivalent (SWE) has been an effective index for streamflow

forecasting, but it cannot express the effects of midwinter melt events, now expected

in warming snow climates, nor can we assume that station-based measurements will

be representative of snow conditions in future decades. Remote sensing and climate

model data provide capacity for a suite of multi-use snow metrics from local to global

scales. Such indicators need to be simple enough to “tell the story” of snowpack

changes over space and time, but not overly simplistic or overly complicated in their

interpretation. We describe a suite of spatially explicit, multi-temporal snow metrics

based on global satellite data from NASA's Moderate Resolution Imaging

Spectroradiometer (MODIS) and downscaled climate model output for the U.S. We

describe and provide examples for Snow Cover Frequency (SCF), Snow Disappearance

Date (SDD), At-Risk Snow (ARS), and Frequency of a Warm Winter (FWW). Using

these retrospective and prospective snow metrics, we assess the current and future

snow-related conditions in three hydroclimatically different U.S. watersheds: the

Truckee, Colorado Headwaters, and Upper Connecticut. In the two western

U.S. watersheds, SCF and SDD show greater sensitivity to annual differences in snow

cover compared with data from the ground-based Snow Telemetry (SNOTEL) network.

The eastern U.S. watershed does not have a ground-based network of data, so these

MODIS-derived metrics provide uniquely valuable snow information. The ARS and

FWW metrics show that the Truckee Watershed is highly vulnerable to conversion

from snowfall to rainfall (ARS) and midwinter melt events (FWW) throughout the sea-

sonal snow zone. In comparison, the Colorado Headwaters and Upper Connecticut

Watersheds are colder and much less vulnerable through mid- and late-century.
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1 | INTRODUCTION

Snow cover variability affects multiple sectors, from water, energy,

and forest management to transportation planning to outdoor recrea-

tion and tourism. Historically, snow monitoring has mainly focused on

ground-based measurements, with airborne and satellite remote sens-

ing adding more capacity in the past several decades. While ground-

based monitoring networks remain valuable, they do not have the

spatial coverage, representative geospatial characterization, and pre-

dictive capabilities needed by researchers and water managers today.

Snow cover products derived from remote sensing require technical

expertise and computing resources to produce and interpret, thereby

limiting their broader usefulness (Sproles et al., 2018). Gridded snow

data from sources such as the Snow Data Assimilation System

(SNODAS; National Operational Hydrologic Remote Sensing Center,

2004) and the University of Arizona snow water equivalent product

(UA SWE; Broxton, et al., 2019) provide coverage across the conter-

minous United States are U.S. only and are limited to present-day

snow, not future snow. Here, we present a suite of snow metrics that

can serve as key climate indicators to support the goals and needs of

snow hydrologists, water managers, climate researchers, and various

stakeholder groups.

The objectives of this research are to:

1. Produce a new suite of snow metrics for assessing past and future

changes in snow cover and snowpacks;

2. Provide web-based visualization tools to communicate these snow

metrics;

3. Assess the use of these snow metrics for a small set of varied

watersheds for years with low, average, and high snowfall.

This suite of snow metrics was created to address sector con-

cerns and stakeholder questions such as: Where and how have the

extent/duration/timing of snow cover changed in the past, and how

might it change in the future? How might snowpack storage change

over the next several decades in a particular watershed? What has

been the climatological frequency of warm winters for vulnerable eco-

nomic sectors such as ski areas? How might the frequency of warm

winters change in mid-century and late-century?

While there have been a number of previously developed snow

metrics, to date there have not been spatially extensive metrics that

allow users to look at recent and potential future changes in snow

cover. Access to these metrics is particularly important for sectors

that may not have technical experience with gridded remote sensing

and climate data. Thus, we have created and made readily available a

suite of metrics including Snow Cover Frequency (SCF), Snow Disap-

pearance Date (SDD), At-Risk Snow (ARS) and Frequency of a Warm

Winter (FWW). This suite of metrics aims to provide information to a

wide range of researchers and stakeholders, including hydrologists, cli-

matologists, water and land managers, snow sports enthusiasts, cli-

mate adaptation planners, and others for whom snow plays a role in

decision making.

2 | PREVIOUSLY DEVELOPED SNOW
METRICS AND THEIR LIMITATIONS

2.1 | April 1 snow water equivalent

To date, most metrics used to describe changing snowpacks have

been limited in their spatial extent and not specifically designed to

capture the changing nature of snow cover. The National Resources

Conservation Service (NRCS) measures snow water equivalent (SWE)

along snow courses (survey transects) monthly and at automated

SNOw TELemetry (SNOTEL) stations daily across the western United

States. SWE is the amount of water stored in the snowpack (Serreze

et al., 1999). Daily SWE and meteorological data from these NRCS sites

are used for seasonal streamflow forecasts using regression-based rela-

tionships developed for individual watersheds (Garen, 1992).

Although snow course and SNOTEL data were not intended as

climate indicators, the data have been available for decades allowing

researchers to incorporate SWE measurements into climate research.

Since the early part of the last century, snow surveyors and water

supply forecasters have used April 1st as the average date of maxi-

mum SWE (Church, 1935; McCabe & Legates, 1995), though this var-

ies depending on geographic location and winter temperatures

(Serreze et al., 1999). As winter temperatures continue to warm, April

1 SWE may no longer effectively separate accumulation from ablation

periods, especially as mid-winter melt events become more common

in the maritime snowpacks of Washington, Oregon, and California

(Cooper et al., 2016; Knowles, 2015; Mote, 2003; Mote et al., 2018;

Sproles et al., 2013, 2017). Depending on climate modes (e.g., El

Niño/La Niña, Pacific Decadal Oscillation, etc.) and station elevation,

maximum SWE can occur prior to April 1, thereby introducing a bias

to watershed budget calculations (Montoya et al., 2014). Seasonal

drought outlooks that use April 1 SWE as a climate indicator may miss

key precipitation processes leading up to that date. For instance,

anomalously low winter precipitation, called a “dry snow drought”
(Harpold et al., 2017), is due to the natural variability of synoptic-scale

atmospheric circulation and has regional impacts across all elevations.

This is important for continental mountain regions where a shift in the

storm track can lead to early and mid-winter dry conditions and low

SWE. In contrast, warmer than average winter temperatures that lead

to a shift from snowfall to rainfall is termed a “warm snow drought”
(Harpold et al., 2017) and may be caused by overall increases in winter

storm temperatures. Warm snow droughts are most pronounced at

low elevations and in maritime snow regions such as the Oregon and

Washington Cascades and the California Sierra Nevada, where storm

temperatures are close to the melting point (Hu & Nolin, 2020).

The spatial representativeness of SNOTEL and snow course sites

is a concern when used for purposes outside of streamflow forecast-

ing. For logistical reasons, in some watersheds snow course and

SNOTEL sites may occupy a relatively limited elevation range; thus,

high elevation snow and rain-snow transition zones are under-

sampled (Gleason et al., 2017; Molotch & Bales, 2006; Nolin, 2012).

Even with over 800 measurement sites across the western United

2 of 13 NOLIN ET AL.



States (NRCS https://www.wcc.nrcs.usda.gov/about/mon_automate.

html), the monitoring network is sparse, with many larger watersheds

having few or no sites. Eastern U.S. watersheds have no SNOTEL or

similar ground-based monitoring sites. Moreover, as the climate con-

tinues to warm, these sites, most of which were installed in the early

1980s, may become non-representative of watershed-scale SWE

(Gleason et al., 2017). This is because snowline elevation in the moun-

tains increases during warm and/or dry winters (Cooper et al., 2016;

Sproles et al., 2017). As such, these sites may underestimate trends in

snow cover and changes in interannual variability across the seasonal

snow zone.

2.2 | Snow cover extent, absence and persistence

Since the earliest years of satellite remote sensing, researchers have

mapped snow cover as a way to examine hemispheric climatological

patterns (Dewey, 1987; Frei et al., 1999; Matson et al., 1986; Xiao

et al., 2004). Metrics such as snow cover extent, SCE (Brown &

Robinson, 2011), snow cover absence, SA (Wayand et al., 2018), snow

persistence, SP, and snow season, SS (Hammond et al., 2018a, 2018b)

have been used to explore multi-decadal, regional and hemispherical

snow cover trends ((Brown & Mote, 2009; Brown & Robinson, 2011;

Rupp et al., 2013), fine spatial scale patterns relating to wind and ava-

lanche redistribution in mountainous areas (Wayand et al., 2018), and

hydrologically-relevant snow persistence and snow season length at

the watershed scale (Hammond et al., 2018b). There is a trade-off

however, between temporal and spatial resolution satellite data. Finer

spatial scale data, such as from Landsat 8, have a 16-day revisit time

so even with two satellites there are long gaps in coverage. Such gaps

can miss important events such as snowfall and snowmelt events.

2.3 | Snow disappearance date

Another snow metric is the SDD. The presence or absence of snow

affects landscape albedo, which in turn controls the energy balance. In

snowy climates, SDD signifies the onset of spring and the start of the

growing season. The elevational progression of snow disappearance in

spring affects Arctic wildlife, with late spring, low elevation snow hav-

ing a negative impact on populations of caribou and Dall sheep

(Boelman et al., 2019; Mahoney et al., 2018). In the western United

States, SDD is associated with wildfire activity (Westerling et al., 2006)

in the sense that SDD reflects the end of snowmelt and the onset of

seasonal declines in soil moisture and fine fuel moisture content.

Lundquist et al. (2013) used SDD in their comparison of forested and

open sites and showed that in locations with relatively warmer winters

forests lose their snow cover earlier than in open areas.

SDD has been measured using ground-based and remotely-

sensed measurements. Using decades of station data across the

Arctic, Foster (1989) identified trends in snowmelt date as a possible

indicator of anthropogenic pollution or climate change affecting the

tundra region. In related work, Foster et al. (1992) used satellite

remote sensing and station-based data to map snow cover and snow

disappearance for locations in Alaska, Canada, Scandinavia, and Sibe-

ria. In the various studies using station data, the way SDD was deter-

mined is not always clear. For instance, Foster et al. (1992), in his

Arctic tundra studies, defined SDD as the first day of the calendar

year when station-based snow depth measurements dropped below

1 in. (2.54 cm). In their 2013 meta-analysis, Lundquist et al. (2013)

listed SDD as the first day of the calendar year with no snow as

reported from station data (though they did not provide a measure-

ment threshold). Lundquist and Lott (2010) used near-surface soil

temperature measurements to detect the presence and absence of

snow cover, which is also used to identify the SDD.

Such varied uses and ways of recording SDD indicate both the

importance of this snow metric and a need for a spatially consistent

approach to its measurement. Station-based data are inherently lim-

ited in their spatial representation of SDD, though they are critical for

calibrating and validating remote sensing measurements of SDD. Tem-

poral factors affecting SDD are also essential to consider. Transient

snowfall events can influence SDD detection and can be important

for hydrology and wildlife. The variable nature of spring meteorology

means that it is not uncommon for spring melt to be followed by

spring snowstorms that can drive the actual SDD to be days or even

weeks later.

2.4 | Climatologically-based snow metrics: At-risk
snow and frequency of a warm winter

2.4.1 | At-risk snow

First defined by Nolin and Daly (2006), ARS is when snowfall is at risk

of turning to rainfall under climate warming conditions. Nolin and Daly

used the PRISM 4-km gridded climate data (Daly et al., 2002) and a

decision tree approach to classify grid cells as either at-risk or not at-

risk, based on monthly mean air temperature for December, January,

and February. That study's geographic scope covered only the Pacific

Northwest (Washington, Oregon, Idaho, and western Montana),

where snowfall is often close to the melting point. Their approach

used the 0�C monthly mean temperature threshold to partition

between rain and snow. The monthly mean 0�C threshold was

selected because, though spatial and temporal differences exist, both

thermodynamically and practically, it represents a shift from snowfall

and snow accumulation to rainfall and declining snowpacks. Their

methodology assumed that locations that might warm to that 0�C

monthly mean temperature threshold would be at-risk of converting

from snowfall to rainfall. For instance, a grid cell with a climatological

mean monthly temperature of �2�C for any one of the core winter

months (December–February) was classified as ARS for a +2�C

warming scenario. This data-driven approach was simple but did not

consider possible changes in atmospheric circulation and storm pat-

terns. Moreover, the 4-km resolution was too coarse to address

changes at more local scales, especially in mountain regions where a

4-km grid cell can span a wide range of elevations and temperatures.
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2.4.2 | Frequency of a warm winter

Nolin and Daly (2006) also developed the FWW metric using the

PRISM gridded climate data product and monthly mean temperatures

for December, January, and February. FWW is computed as the num-

ber of winters out of 30 consecutive winters that meet the “warm

winter” criterion. A warm winter is defined as one in which the mean

monthly temperature exceeds 0�C for any one of the three core win-

ter months (December–February). Thus, if three winters out of 30 win-

ters are classified as warm in a given grid cell, the FWW is 0.1% or

10%. To demonstrate possible impacts of changes in FWW, Nolin and

Daly (2006) tabulated the historical and future FWW values for

selected ski areas in the study region. All ski areas in the region

showed increases in FWW for incremental temperature increases, but

the 4-km resolution introduced uncertainty due to the range of eleva-

tions in a grid cell.

3 | DESCRIPTIONS OF THE NEW SNOW
METRICS

The suite of snow metrics described below is meant to improve upon

and augment previously established snow metrics. We include a pair

of satellite-derived metrics, SCF and SDD, in conjunction with climate

model-derived metrics, FWW and ARS. We have modified the sub-

setting capabilities of SCF and SDD from Crumley et al. (2020) and

have made considerable updates to FWW and ARS from Nolin

and Daly (2006). We refer to them as “new” snow metrics because,

together, they represent a new paradigm in access to snow informa-

tion (Crumley et al., 2020). The snow metrics described in the follow-

ing section are intended to add value through spatial coverage, future

climate characterization, more nuanced interpretation, improved data

access, and user-driven flexibility.

3.1 | Snow cover frequency (SCF)

SCF is a global, satellite-derived, gridded product representing the fre-

quency of snow cover in a grid cell. It is computed as the number of

days that snow is observed on the land surface divided by the number

of valid observations for a specified period. SCF uses the global,

500-m, daily, gridded snow cover product, version 6 from NASA's

Moderate Resolution SpectroRadiometer (MODIS/Terra MOD10A1).

Because the MOD10A1 product is daily and global, it allows the user

to compute SCF anywhere globally for the MODIS period of record

(February 2000–present). For analysis periods greater than 30 days,

we assume SCF to be the empirical equivalent of probability. In recent

work, Crumley et al. (2020) describe a version of this SCF metric for

the Northern Hemisphere Water Year (WY, October 1–September

30) for WY 2001–2019. Their SCF snow metric is available as a web-

based product (SnowCloudMetrics.app) developed using the Google

Earth Engine (GEE) framework. Using the app, users can spatially sub-

set SCF by user-defined polygon, U.S. state boundary or Canadian

province, elevation range. For the U.S. only, a user can subset by

watershed using the USGS hydrologic unit codes (HUC levels 2–12).

Here, we have expanded the utility of this metric by providing code

for users to run within GEE (i.e., as a GEE developer). In this case,

users can select and compute SCF for any sub-annual set of sequen-

tial days within the MOD10A1 record (for 2000-present).

3.2 | Snow disappearance date (SDD, Northern
Hemisphere extent)

The SDD is a global, satellite-derived, gridded product that maps the

last day of the WY when snow is last detected in a pixel. As with SCF,

SDD also uses the global, 500-m, daily, gridded snow cover product

from MODIS. Starting on the last day of each WY, the algorithm

searches back in the WY for the longest period without snow after a

minimum of 5 days of snow cover (accounting for cloudy days).

Crumley et al. (2020) computed SDD for WY 2001–2019. Like SCF,

SDD has been used in wildlife studies for locations where spring snow

disappearance affects the survival of young (Van De Kerk

et al., 2018). We anticipate that SDD will have value for mountain

regions where SDD has been related to the onset of the wildfire sea-

son (Westerling et al., 2006) and where spring vegetation phenology

varies with snow cover (Huang et al., 2018; Xie et al., 2020).

At this time, SDD spatial coverage is for the Northern Hemi-

sphere only. However, users can choose to download the SDD code,

modify it for the Southern Hemisphere timeframe and run it indepen-

dently as a GEE developer. The same subsetting options are available

for SDD as with SCF.

3.3 | At-risk snow (ARS, conterminous U.S. extent)

While originally developed by Nolin and Daly (2006) using PRISM

data with a simple temperature offset, the ARS metric presented here

uses statistically downscaled climate model output and as such is

more physically realistic than the original ARS. This new version of

ARS is computed using the gridded NASA Earth Exchange Down-

scaled Climate Projections (NEX-DCP30) 30 arcsec (approximately

800-m) dataset (Thrasher et al., 2013), which covers the conterminous

United States. We compute mean temperature from their average

monthly maximum and minimum temperature data from 33 down-

scaled climate models and four Representative Concentration Path-

ways (RCPs) (Meinshausen et al., 2011). The data set includes

retrospective model runs covering the historical period from 1950 to

2005, and prospective model runs for 2006 to 2099.

We have produced a fully functional code running on GEE that

allows the user to compute ARS for any range of years in the period

covered by the NEX-DCP30 downscaled climate data. Users can spa-

tially and temporally subset, visualize, explore, and download the ARS

data of interest. A user can filter by RCP, global climate model, spatial

extent, and period. They can select from any of four CMIP5 RCPs

(RCP2.6, RCP4.5, RCP6.0 and RCP8.5) and from numerous
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downscaled (800-m) model output (23 models for RCP2.6; 33 models

for RCP4.5; 17 models for RCP6.0; and 31 models for RCP8.5). If

desired, users can subset by watershed using the USGS hydrologic

unit codes (HUC levels 2–12).

3.4 | Frequency of a warm winter (FWW,
conterminous U.S. extent)

As with the ARS metric, FWW uses the monthly maximum and mini-

mum temperature data from NEX-DCP30, computing mean tempera-

ture from their average. The definition of FWW is the same as in

Nolin and Daly (2006), but as with ARS, we use more physically realis-

tic climate model output rather than the simplistically modified PRISM

monthly temperatures. The geographic scope covers the contermi-

nous U.S. at 800-m spatial resolution. The temporal range is 1950–

2005 for historic FWW and 2006–2099 for future FWW.

For users to compute FWW, we have produced code that runs on

GEE. This allows the user to calculate FWW for any range of years in

the period covered by the NEX-DCP30 downscaled climate data. As

with ARS, users can spatially and temporally subset, visualize, explore,

and download the FWW data of interest. A user can filter by emis-

sions scenario, global climate model, spatial extent, and range of years.

As with ARS, users can subset by USGS HUC.

When computing FWW, we recommend that users specify a

range of at least 30 years so that the calculated values are the empiri-

cal equivalent of a statistical probability. For instance, a user can com-

pare FWW for 1979–2009 (historical) with FWW for 2035–2069

(mid-century) or 2079–2099 (late-century). The 800-m gridded data

are sufficiently fine spatial resolution that users can explore projected

FWW changes for spatial extent as large as the conterminous United

States and as small as a headwater catchment, an urban area, and

even along an elevation gradient in a ski area. For example, Table 1

gives FWW values for the selected ski areas across the US. These rep-

resent major ski resorts in various mountain regions of the U.S. and

snow climates (Sturm et al., 1995) including the maritime snow climate

of the Sierra Nevada and Cascades (Squaw Valley, CA; Mt. Bachelor,

OR), the continental/Alpine snow climate of the northern and central

Rocky Mountains (Big Sky, MT; Vail, CO), and the maritime/taiga

snow climate of the northern Appalachian mountains (Killington, VT).

This is a simple example of the use of the FWW metric for non-

scientists seeking climate change information at the local-to-regional

scale.

4 | WATERSHED APPLICATION OF THE
NEW SNOW METRICS

In this section we apply the suite of new snow metrics to three water-

sheds across different regions of U.S.: the Truckee (CA, NV), the Colo-

rado Headwaters (CO), and the Upper Connecticut (ME, VT, NH)

(Figure 1).

4.1 | Description of the study watersheds

The study areas are first- and second-order watersheds with critical

downstream water use (Figure 1). In the Western U.S., the Truckee

River watershed (12 357 km2) drains from Lake Tahoe and the sur-

rounding Sierra Nevada Mountains, providing water for municipal and

industrial use, energy production, environmental flows, recreation,

and agriculture in the downstream high mountain desert which

TABLE 1 Frequency of a Warm Winter for selected ski areas. FWW values were computed based on RCP8.5 and are expressed as a percent
for each 30-year period

Location Elevation (m) Historical 1970–1999 Mid-century 2035–2064 Late-century 2070–2099

Squaw Valley, CA base 1890 53.3 96.7 100

mid-mtn 2316 16.7 86.7 100

summit 2758 13.3 70 96.7

Mt. Bachelor, OR base 1737 13.3 53.3 96.7

mid-mtn 2370 0 10 70

summit 2763 0 3.3 36.7

Big Sky, MT base 2286 0 23.3 63.3

mid-mtn 2682 0 0 56.7

summit 3403 0 0 26.7

Vail, CO base 2454 0 3.3 36.7

mid-mtn 3150 0 0 13.3

summit 3527 0 0 6.7

Killington, VT base 355 0 10 66.7

mid-mtn 1095 0 10 50

summit 1293 0 3.3 30
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receives less than 125 mm of precipitation annually (Sterle

et al., 2019). In the Rocky Mountains, the Colorado Headwaters

watershed (25 480 km2) lies directly west of the continental divide

and provides much of the meltwater for the Colorado River, which

provides water to 27 million people (Painter et al., 2017). Finally, in

the Eastern U.S., the Upper Connecticut watershed (16 217 km2)

extends through four states and the Connecticut River itself provides

drinking water to 4.8 million New England residents (Kennedy

F IGURE 1 Maps and hypsometric relationships for each of the three watersheds used in the new snow metrics examples. Each inset map
shows the watershed boundary and location of SNOTEL sites. The plot below each map shows the area-elevation relationship for the watershed
with the elevation of each SNOTEL site indicated on the hypsometric curve

F IGURE 2 Maps of SCF for
the three watersheds for high,
average, and low snow years
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et al., 2018). Although these three watersheds are all located in the

U.S., our SCF and SDD can be applied globally. The FWW and ARS

metrics use downscaled climate data that are currently available for

the U.S. only. However, these could be readily adapted to watersheds

outside the U.S. We use these three watersheds for illustrative exam-

ples of the new snow metrics.

4.2 | Watershed results for SCF and SDD

Figures 2 and 3 map out SCF and SDD, respectively for each of the

three watersheds. We map high, average, and low snow years (water-

shed-specific), as determined from SNOTEL and regional climate data.

The Truckee shows the greatest differences in SCF across the water-

shed and between 3 years. In the 2015 low snow year, the Truckee

had almost no snow in the lower elevations and less than 20% SCF in

the seasonal snow zone (historically at elevations >1850 m). The

Upper Colorado showed little temporal variability between SCF in

the high and average snow years but had negligible SCF at low eleva-

tions in the low snow year. The Upper Connecticut shows the least

amount of SCF differences spatially and temporally with 40% or less

SCF throughout the watershed in the high and average years and 20%

SCF or less in the low snow year.

The SDD patterns in Figure 3 resemble the SCF patterns shown

in Figure 2. A reasonable explanation is that for these example water-

sheds and years, higher SCF means higher SWE and therefore later

melt-out date. An alternative explanation is simply that higher SCF

implies that colder temperatures are controlling snow persistence. Of

course, SCF can be controlled by both greater SWE and colder tem-

peratures. The SDD data show that in the temperature-sensitive

Truckee watershed, SDD for a low snow year such as 2015 can be as

much as 2 months earlier than in a high snow year.

Figure 4 provides an interesting comparison between MODIS-

derived SCF and SDD and SNOTEL-derived SCF and SDD. While

there is reasonable agreement between MODIS-derived and

SNOTEL-derived SCF and SDD, the MODIS-derived metrics show dis-

tinct and expected trends in SCF and SDD from low to high snow

years, whereas the SNOTEL-derived SCF and SDD are much less sen-

sitive to interannual differences. We attribute the higher sensitivity to

the fact that the MODIS-derived SCF and SDD data have a spatial

resolution of 500 m and thus encompass a wider range of snow

F IGURE 3 Maps of SDD for
the three watersheds for high,
average, and low snow years

F IGURE 4 Comparison of SNOTEL-derived and MODIS-derived
SCF and SDD for the Truckee and Colorado Headwaters watersheds for
low, average, and high snow years. For reference, April 1 is the 183rd
Day of Water Year (DoWY). The Upper Connecticut is not included in
this figure because there are no SNOTEL stations in that watershed

NOLIN ET AL. 7 of 13



conditions than the point-based SNOTEL station data. The MODIS

snow product will not indicate the presence of snow cover if the snow

extent in the pixel is less than about 50% (Rittger et al., 2013). Thus,

pixels with low/patchy snow cover are likely to be mapped as snow-

free. This is not necessarily a concern if the user is aware of the sensi-

tivity of the snow/no snow threshold used in processing the standard

MODIS snow product (which can be adjusted in the SCF and SDD

snow mapping algorithms, if desired). Another explanation for the

lower sensitivity of SNOTEL-derived SCF and SDD is that

the SNOTEL sites themselves can act as highly effective snowfall col-

lection sites. SNOTEL sites are open clearings, which are often sur-

rounded by trees and shrubs that act to reduce wind speeds and may

increase snow retention compared with the surrounding landscape.

4.3 | Watershed results for FWW and ARS

For illustrative purposes, we present results using the FWW and ARS

metrics derived from a single global climate model for each region,

though an ensemble approach using multiple models may be preferred

when making an assessment of potential climate change impacts

(Mote et al., 2011).We chose models that performed better than most

with respect to reproducing observed regional climate: ACCESS1.0 in

the Sierra Nevada (Lynn et al., 2015), CMCC-CM in the Rocky Moun-

tain West (Bureau of Reclamation, in press) and BCC-CSM1.1 on the

East Coast (Karmalkar et al., 2019).

FWW and ARS were calculated using a slightly modified version

of the SnowCloudMetrics JavaScript code in GEE (Crumley

et al., 2020) to more effectively subset the watershed data. FWW is

the empirical probability of the mean monthly temperature in

December, January, or February (DJF) exceeding 0�C over a 30-year

period (Nolin & Daly, 2006). As mid-winter monthly mean tempera-

tures become more frequent, this suggests that there could be a

greater occurrence of mid-winter melt events. ARS is the climatologi-

cal classification of areas having a mean DJF temperature greater than

0�C over a composite of 30 years. As described in Nolin and Daly,

ARS implies that the mid-winter precipitation would likely shift from

snowfall to rainfall. Thus, one aspect of this metric is that it might

serve as a proxy for mid-winter rain-on-snow events.

From NEX-DCP30 data, we computed FWW and ARS for three,

30-year periods: historic (1970–1999), mid-century (2035–2065), and

late-century (2070–2099) and under two RCP scenarios: RCP4.5

and RCP8.5, for a total of six scenarios per watershed. RCP4.5 repre-

sents a stabilization of the global rate of greenhouse gas emissions

while RCP8.5 assumes increasing greenhouse gas emissions through-

out the 21st century (Thomson et al., 2011).

F IGURE 5 Maps of FWW for
each of the three watersheds
(columns), three time periods, and
two climate change
scenarios (rows)
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We compared climate model-derived FWW and ARS with values

computed from SNOTEL temperature data that had been bias-

corrected and homogenized (TopoWx; Oyler et al., 2015). The

SNOTEL/TopoWx historic period covered the period 1984–2005

(21 years) for which the data were consistently available across all the

SNOTEL sites in the Truckee and Colorado Headwaters watersheds.

The Truckee watershed has 15 SNOTEL stations while the Colorado

Headwaters has 29 SNOTEL stations. Across both watersheds, the

SNOTEL sites are primarily located in the upper reaches of the water-

shed (Figure 1).

The FWW analysis showed distinct patterns and differences

between the three watersheds (Figure 5). The Truckee watershed

shows a high frequency of warm winters (mean 79%) already occur-

ring in the historic period with little difference between RCP5.5 and

RCP8.5 (Figure 5). By late century, the impacts on snow in the

Truckee are severe, with a spatially-averaged FWW value of 99%. In

the upper part of the Truckee watershed above 1850 m, winter snow

plays an important role both hydrologically and economically. This is

the area surrounding Lake Tahoe and is home to several ski areas.

Focusing on this seasonal snow zone in the Truckee, we observe that,

in the historic period only 4% by area of the snow zone is considered

at risk and about 12% of the area experiences a high FWW. Here, we

define high frequency of a warm winter as FWW > 75%. It is in this

seasonal snow zone that major changes are anticipated by mid-

century when well over half of the snow zone will be classified as ARS

(Figures 6 and 7) and will experience high FWW. By late century, even

under the moderate RCP4.5 scenario, 94% of the Truckee snow zone

will be experiencing high FWW and 82% of the snow zone will be

classified as ARS. For the RCP8.5 late-century projections, nearly

100% of the Truckee watershed will experience 100% FWW, with

areas of negligible snow emerging even at elevations above 1850 m.

These changes will greatly reduce snowpack water storage and is

likely to be economically damaging to the region's snow sports indus-

try (Table 1).

Compared to the Truckee and Upper Connecticut watersheds,

the Colorado Headwaters watershed exhibits a steeper elevation gra-

dient of FWW, with lower elevations having FWW values of 80%–

100% while FWW values are 0% near the Continental Divide

(Figure 5). Interestingly, in the mid-century scenarios in the Colorado

Headwaters, the RCP4.5 shows a spatially larger, although less severe,

change in FWW (mean 33%) compared to RCP8.5 (mean 28%). By the

late-century, more than half of the area in the Colorado Headwaters

watershed will be experiencing high FWW even under the RCP4.5

scenario (Figure 7). Similar to the FWW results, ARS in the Colorado

Headwaters is concentrated at the lower elevations in the watershed

(Figure 6). Differences between ARS for RCP4.5 and RCP8.5 are more

F IGURE 6 Maps of ARS for
each of the three watersheds
(columns) and for the three time
periods and two climate change
scenarios (rows)

NOLIN ET AL. 9 of 13



subtle for this watershed while differences in ARS are more pro-

nounced between mid-century versus late century. This will reduce

snowpack storage, increase winter runoff, and may have significant

consequences for both the local economy, which is heavily dependent

on winter recreation, and for the downstream users of the Colorado

River.

Finally, the Upper Connecticut watershed shows very low FWW

(watershed-averaged FWW of 15%) for the historic and mid-century

periods under both RCPs. There is also little difference between mid-

century and late-century for RCP4.5 (watershed-averaged FWW of

17% for RCP4.5 mid-century versus 15% for RCP4.5 late century). By

late century there is a substantial difference in FWW between the

two RCPs with watershed-averaged FWW remaining low for RCP4.5

(15%) but increasing to 62% for RCP8.5 (Figure 5). In the Upper Con-

necticut. ARS is very low across all scenarios and time periods

(Figure 6). ARS occupies 1% or less of the watershed area for all sce-

narios and time periods (Figure 7). This implies that in the Upper Con-

necticut, there is low risk even under severe climate change scenarios

of mid-winter snowfall converting to rainfall.

When examining the FWW and ARS projections, it is important

to consider that uncertainties and errors/biases in the source datasets

influence results. Uncertainties in temperature projections from the

NEX-DCP30 downscaled climate data arise from multiple sources,

including: (1) short-term deviations from the long-term trends brought

about by natural internal variability in the climate system, (2) varying

sensitivities to anthropogenic forcing across the suite of global climate

models, and (3) the spread among the forcing scenarios (i.e., the differ-

ent RCPs) (Hawkins & Sutton, 2009). A fourth source of uncertainty is

introduced by the spatial downscaling and bias correction of the

global climate data. The NEX-DCP30 data inherit any biases that may

exist in the monthly PRISM temperatures (Daly et al., 2008) that were

used as the training data for bias-correction of the global climate

model data (Thrasher et al., 2013). These biases, along with errors

introduced by the downscaling method, may be very small relative to

the total variability in temperature productions across the ensemble

yet they can have a sizable effect on projections of when and where

winter temperatures exceed the 0�C threshold (Alder & Hostetler,

2018). The relative importance of the different sources of uncertainty

changes with the lead time of the projection. Internal variability in the

first couple of decades dominates the spread in projections out to a

couple of decades into the future but is replaced by GCM variability

and downscaling methodology (in that order) as lead time increases

(Alder & Hostetler, 2018). Towards the end of the 21st century,

scenario uncertainty becomes the largest source of total uncertainty

in future temperatures (Hawkins & Sutton, 2009).

5 | CONCLUSIONS

In this paper we have introduced a suite of snow metrics that can be

used individually or in conjunction with existing snow metrics to

describe changing snow cover in recent years and for future projec-

tions. These new snow metrics are intended to provide a greater

understanding of snow's spatial and temporal variability and be rele-

vant to a wide range of researchers and stakeholders. We have pro-

duced two globally extensive, retrospective snow metrics: SCF and

SDD. These two metrics are readily available and can augment exis-

ting station data or provide snow information where none currently

exists. The SCF and SDD data that are available through

SnowCloudMetrics.app (Crumley et al., 2020) cover the Northern

F IGURE 7 Plots of percent area of
each watershed have high FWW
(>75%) and for ARS for historical,
midcentury, and late century time
periods, and for RCP4.5 and RCP8.5
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Hemisphere Water Year and a newly modified version of these met-

rics allow for highly flexible temporal and spatial subsetting. Users

who wish to subset by month for SCF or to produce SDD for the

Southern Hemisphere Water Year can download and modify our GEE

code for their own use. These remote sensing-derived metrics, cur-

rently produced using the MODIS binary snow cover algorithm have

the potential for further improvement by instead using fractional

snow covered area (Painter et al., 2009; Rittger et al., 2013) or using

data from Landsat 8, Sentinel 2 or similar finer resolution sensors.

In addition to the retrospective metrics, we have produced two

prospective snow metrics: ARS and FWW. The downscaled climate

model output used to create ARS and FWW provide a more physically

based approach and 800-m versus 4-km higher spatial resolution com-

pared with the original ARS and FWW of Nolin and Daly (2006).

In applying these four snow metrics to three sample watersheds

across the U.S., we have shown that they provide uniquely valuable

information that can augment existing SNOTEL data, where such data

are available, and provide new snow information in watersheds with-

out snow monitoring networks. Our preliminary assessment suggests

that MODIS-derived SCF and SDD are more sensitive to interannual

differences in snowpack compared with SNOTEL-derived SCF and

SDD. The FWW and ARS metrics are important as prospective climate

indicators. Results show that the Truckee watershed in the Sierra

Nevada is highly vulnerable to even a slight winter warming whereas

the Colorado Headwaters and Upper Connecticut watersheds are

colder but increasingly vulnerable by late-century.

As climate models and downscaling methods continue to improve,

these prospective metrics will continue to be updated and produced

on a global extent, while also offering access and subsetting capabili-

ties through GEE. The emphasis here has been on snow hydrology but

these metrics have already demonstrated that they are useful for

other applications such as mapping snowline in the Arctic (Verbyla

et al., 2017), and wildlife applications in high latitude snowscapes

(Boelman et al., 2019; Mahoney et al., 2018; Van De Kerk et al., 2018;

Verbyla et al., 2017). In addition to hydrologic application, we believe

that there is a global and broad need for snow information, including

for winter recreation, wildlife, and snow management for transporta-

tion infrastructure.

The snow metrics presented here are simple enough to “tell the
story” of snowpack changes over space, are spatially extensive

(in some cases, global), are produced in a consistent manner using

high-quality data, and are not overly complicated in their interpreta-

tion. We anticipate and hope that these snow metrics will serve multi-

ple sectors and stakeholder groups, some of whom have never had

access to such information in the past.
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