
Universal 3-Dimensional Perturbations for
Black-Box Attacks on Video Recognition Systems

Shangyu Xie1, Han Wang1, Yu Kong2, Yuan Hong1

1Illinois Institute of Technology, Chicago, IL 60616
2Rochester Institute of Technology, Rochester, NY 14623

Email: {sxie14, hwang185}@hawk.iit.edu, yu.kong@rit.edu, yuan.hong@iit.edu

Abstract—Widely deployed deep neural network (DNN) models
have been proven to be vulnerable to adversarial perturbations in
many applications (e.g., image, audio and text classifications). To
date, there are only a few adversarial perturbations proposed
to deviate the DNN models in video recognition systems by
simply injecting 2D perturbations into video frames. However,
such attacks may overly perturb the videos without learning
the spatio-temporal features (across temporal frames), which are
commonly extracted by DNN models for video recognition. To our
best knowledge, we propose the first black-box attack framework
that generates universal 3-dimensional (U3D) perturbations to
subvert a variety of video recognition systems. U3D has many
advantages, such as (1) as the transfer-based attack, U3D can
universally attack multiple DNN models for video recognition
without accessing to the target DNN model; (2) the high trans-
ferability of U3D makes such universal black-box attack easy-
to-launch, which can be further enhanced by integrating queries
over the target model when necessary; (3) U3D ensures human-
imperceptibility; (4) U3D can bypass the existing state-of-the-art
defense schemes; (5) U3D can be efficiently generated with a few
pre-learned parameters, and then immediately injected to attack
real-time DNN-based video recognition systems. We have con-
ducted extensive experiments to evaluate U3D on multiple DNN
models and three large-scale video datasets. The experimental
results demonstrate its superiority and practicality.

I. INTRODUCTION

Deep neural network (DNN) models have been extensively
studied to facilitate a wide variety of intelligent video recogni-
tion systems, such as face recognition [88], action recognition
[23] and anomaly detection [69]. For instance, self-driving
vehicles are equipped with many cameras to capture the visual
information. Then, DNNs are adopted to accurately recognize
road signs, detect and predict trajectories of pedestrians and
vehicles, and thus make the driving decisions [54], [60].
Video anomaly detection systems [10], [69] integrate DNNs
to monitor the activities under surveillance, and trigger alarms
once anomalies (e.g., traffic accident, theft, and arson) are
visually identified to advance the public safety.

However, DNNs have been revealed to be inherently vul-
nerable to adversarial attacks, where attackers can add well-
crafted imperceptible perturbations to the inputs to deviate the
learning results. Such attacks are initially identified in the
image domain [17], [49]–[51], [73], and have also attracted
significant interests in other contexts, e.g., text understanding
[42], [70], and voice recognition [7], [11], [44]. Similarly,
adversarial perturbations to the DNNs in video recognition

systems could potentially cause severe physical and financial
damages. For instance, they may misdirect the DNN models
in autonomous vehicles to inaccurately recognize objects and
make detrimental decisions towards accidents. Furthermore,
DNN-based anomaly detection models in video surveillance or
CCTV might be deviated via the perturbations to misclassify
anomalous activities to routine ones, and vice-versa [69].

Although the adversarial attacks on images have been well-
explored, there are very limited works on attacking DNN
models for videos [32], [43], [82], [83], which need to address
additional challenges, e.g., larger data sizes, a new set of DNN
models for learning actions in the videos, different types of
features extracted with additional temporal convolution, and
different realizability. To our best knowledge, current video
attacks [32], [43], [82], [83] adapt image perturbations in a
frame-by-frame fashion to subvert DNNs for video classifica-
tion, which have the following major limitations.

1) Frame-by-frame image perturbations may overly per-
turb the videos (human perceptible), and also lack the
temporal consistency in the perturbations. These make
the attacks not robust against the state-of-the-art detec-
tion schemes (e.g., AdvIT [85]). Adversarial examples
crafted by [32], [43], [83] can be accurately detected by
AdvIT (as evaluated in our experiments).

2) Frame-by-frame image perturbations may not be well
aligned with the video frames (boundary effect by mis-
aligning the perturbation and video frames) [43].

3) Crafting adversarial examples for videos frame-by-frame
results in heavy computation overheads and lacks uni-
versality. It limits the application to attack large-scale
videos or streaming videos (e.g., CCTV surveillance).

To address the above limitations, we propose a black-box at-
tack framework that generates universal 3-dimensional (U3D)
perturbations to subvert a wide variety of video recognition
systems. U3D has the following major advantages: (1) as
a transfer-based black-box attack [15], [46], [56], U3D can
universally attack multiple DNN models for video recognition
(each of which can be considered as the target model) without
accessing to the target DNN models; (2) the high transfer-
ability of U3D makes such black-box attacks easy-to-launch,
which can be further enhanced by integrating queries over
the target model when necessary (validated); (3) U3D ensures

good human-imperceptibility (validated by human survey); (4)
U3D can bypass the existing state-of-the-art defense schemes
(extended towards defending against U3D), including universal
adversarial training (UAT) [47], [63], detection schemes [85],
[89], and certified schemes (e.g., PixelDP [41] and randomized
smoothing [18]); (5) U3D perturbations can be generated on-
the-fly with very low computation overheads (e.g., ∼0.015s
per frame) to attack DNN models for streaming videos.

Specifically, in the attack design, we generate perturbations
by maximally deviating features over the feature space repre-
sentation of the DNNs while strictly bounding the maximum
perturbations applied to the videos. We aim at generating
more transferable adversarial examples (to be misclassified
by multiple DNN models) by explicitly optimizing the attack
performance w.r.t. layer-wise features of a video DNN model.
Moreover, we integrate boundary effect mitigation and univer-
sality into the optimization for learning the U3D perturbations.

Different from traditional black-box attacks that may re-
quest intensive queries over the target DNN model, U3D
perturbations can be efficiently derived independent of the
target DNN model. Assuming that the adversary does not need
to know the target DNN model under the black-box setting
(and no need to query over the target model by default), our
U3D attack computes the perturbation using a surrogate DNN
model (any public DNN model, which can have very different
model structure and parameters from the target model). Such
black-box attacks are realized via high transferability across
multiple DNN models on different datasets (as validated in
Section V-C). We have also shown that our U3D attack can
integrate queries over target model when necessary (turning
into a hybrid black-box attack [71]).

Fig. 1: Universal 3-dimensional (U3D) perturbation

Figure 1 demonstrates an example of the U3D pertur-
bation, which is continuously generated. Compared to the
state-of-the-art universal perturbations (see Section V), U3D
achieves higher success rates with significantly less pertur-
bations (mostly between [0,10] in grayscale [0,255]). It is
also highly efficient for attacking multiple video recognition
systems (e.g., classification and real-time anomaly detection).
Therefore, we summarize our main contributions as below:

• To our best knowledge, we propose the first black-
box attack that generates 3D perturbations to universally
subvert multiple DNN-based video recognition systems.

• We construct two different types of novel U3D pertur-
bations optimized in the feature space representation of
DNNs, which can practically attack various DNN models

and the related video recognition systems (e.g., classifi-
cation and anomaly detection) with high transferability.

• We conduct extensive experiments to validate the U3D
attack while benchmarking with the state-of-the-art at-
tacks (e.g., C-DUP [43], V-BAD [32] and H-Opt [83]).
Evaluations include success rate, transferability, univer-
sality, human-imperceptibility, performance against de-
fenses, physical realization, and efficiency. The results
have shown the superiority and practicality of U3D.

• In particular, we also evaluate the U3D against differ-
ent types of state-of-the-art defense schemes. We have
extensively adapted the defenses w.r.t. U3D, and studied
the potential mitigation of the U3D. The high attack per-
formance against defenses reveals the potential severity
of the adversarial attack and the vulnerabilities in the
DNN-based video recognition systems. Our novel U3D
attack can facilitate the development of more robust and
trustworthy DNN models for video recognition.

The remainder of this paper is organized as follows. We first
briefly introduce the video recognition systems and define our
threat model in Section II. Section III presents the U3D design
goals and attack framework. Then, we give the detailed design
of the U3D attack in Section IV. Section V demonstrates the
experimental results on real datasets. Section VI discusses the
mitigation of the U3D attack. Section VII reviews the related
works. Finally, we draw conclusions in Section VIII.

II. BACKGROUND

A. DNN-based Video Recognition Systems

DNNs have been widely adopted for accurate video recogni-
tion in numerous real-world applications, e.g., anomaly detec-
tion [69], self-driving vehicles [54] and smart security cameras
[35]. There have been a series of works on designing video
DNNs to improve model accuracy [20], [34], [65], [76]. For
instance, Donahue et al. [20] proposed the long-term recurrent
convolutional networks (LRCNs) for video recognition and
description via combining convolutional layers and long-range
temporal recursion. Moreover, two-stream network (TSN) [65]
fusing static frames and optical flows was proposed for action
recognition. Later, Tran et al. [76] proposed the C3D model
to significantly improve classification accuracy by focusing on
spatio-temporal feature learning with 3D convolutional neural
network. Recently, more networks built on spatio-temporal
convolutions (e.g., I3D [9]) have been exhibited high perfor-
mance, which greatly promoted the video recognition systems.
Two example applications are demonstrated in Appendix E.

B. Threat Model

Attack Scenarios. The U3D attack is applicable to the offline
scenario, which is identical to the attack scenario of adversarial
perturbations for other types of data, e.g., images [17], [49],
[51], texts [42], and audio signals [7], [11], [44]. For instance,
the adversary can craft adversarial examples by adding the
pre-generated U3D perturbations to static videos. Then, the
perturbed videos will be misclassified to wrong labels.

Furthermore, our U3D attack can work online to perturb the
streaming video (e.g., real-time anomaly detection in CCTV
surveillance). This is also feasible since our U3D perturbations
are designed to universally perturb any video at any time
(from any frame in the streaming video) without the boundary
effect. Thus, the U3D perturbations can be generated offline
and injected into the online videos in real-time applications.

Adversary’s Capabilities. The adversary can either craft
adversarial examples offline on static videos, or inject the
U3D perturbations (pre-learned) into the streaming videos,
similar to the attack setting in [43], [49]. Specifically, the
adversary can manipulate the systems via malware, or perform
man-in-the-middle (MITM) attack to intercept and perturb
the streaming videos. Furthermore, the adversary could also
slightly delay the streaming video when performing injections
without affecting the overall quality of the streaming video.

Note that MITM adversary is unable to perform attacks by
simply replacing streaming videos with pre-recorded videos
or static frames while ensuring the stealthiness of the attack,
since the adversary does not know what will happen in the
future [43]. For instance, if the adversary wants to fool the
video surveillance system in a parking lot, he/she may need
to replace the video streams in long run (ideally all the time) to
perform the attack. However, without prior knowledge on the
future objects/events in the parking lot, it would be very hard
to make the replaced video visually consistent with the real
scenario (e.g., moving vehicles, humans, and weather). Then,
the replaced video can be easily identified by the security
personnel. Instead, U3D attack can be easier to be covertly
realized (always human-imperceptible). The universal and
boundary effect-free perturbation will be efficiently generated
and continuously injected in real time (see our design goals in
Section III-A). Thus, it can universally attack video streams in
long run even if video streams may differ at different times.

We experimentally study the practicality of attack vectors
(e.g., man-in-the-middle attack) in a video surveillance system
[19], [33], [53] and implement the real-time attack based on
U3D. The results show that U3D is efficient to attack real-time
video recognition systems (as detailed in Section V-G).

Adversary’s Knowledge (black-box). Similar to other black-
box transfer-based attacks [15], [46], [56], the adversary does
not necessarily know the structure and parameters of the target
DNN model. U3D aims to generate universal perturbations
that can successfully subvert a variety of DNN models, each
of which can be the potential target DNN model. By default,
the adversary does not need to query the learning results (e.g.,
classification score or label) from the target model either.

To successfully perform the attack, the adversary will lever-
age the high transferability of U3D to deviate the target DNN
models. Specifically, we assume that the adversary can utilize
any public DNN model as the surrogate (e.g., C3D, I3D,
LRCN and TSN) and some labeled videos (e.g., from any
public data such as the HMDB51 dataset [36]). Such data are
not necessarily included the training data of the target DNN
model. The surrogate model can be very different from the

target model. Without querying the target model, the U3D
attack is even easier to realize than the conventional query-
based black-box attacks [5], [13], [31].

Indeed, the U3D attack can also integrate queries over the
target DNN model when necessary (see such extended attack
design and evaluations in Section V-D). Thus, the transfer-
based back-box attack will turn into a hybrid black-box attack
[71], which integrate both query-based and transfer-based
attack strategies to improve the attack performance under
the black-box setting. We have experimentally validated that
integrating a number of queries over the target DNN model
could slightly enhance the success rates.

III. U3D ATTACK METHODOLOGY

A. U3D Attack Design Goals

The goals in our U3D attack design include:
• G1: The attack should achieve high performance on the

video recognition systems under the black-box setting.
• G2: The adversarial perturbations should be very small

to obtain good human-imperceptibility.
• G3: The adversarial examples are robust against existing

defense schemes (cannot be easily detected or mitigated).
G1: High Attack Performance. To launch the U3D attack,
the following properties are desired: (1) transferable on a wide
variety of DNN models for video recognition; (2) universal on
a large number of videos; (3) boundary effect-free.

Different from increasing the magnitude of the perturbations
for transferability [6], [11], [73], we formulate an optimization
problem with a surrogate DNN model (which can be any
public DNN model) in an interpretable fashion. The objective
is to maximize the distance between the clean video and
perturbed video in the feature space representation (Section
IV-B1). First, the change of feature space representations
via perturbations (especially the deep spatio-temporal feature
space for videos) will non-trivially impact the classification
results. This will increase the success rates of the attack.
Second, the explicit attack in the feature space could craft
more transferable adversarial examples since the intermediate
layer features of DNNs have shown to be transferable [90].
Experimental results in Section V have demonstrated high
cross-model transferability for feature space perturbations.

Moreover, the adversary does not have prior knowledge
on the video (especially the streaming video), then the 3D
perturbations should universally attack [50] a large number of
videos (ideally, any video). We construct U3D perturbations
from a relatively small set of videos to fool the target DNN
model on arbitrary input videos with high success rates.

With temporal dimensions on multiple frames, the video
perturbations should address the potential misalignment with
the input video (boundary effect [43]), which can degrade the
attack performance, especially in long run. While launching
attacks, the perturbation should be effectively injected at any
time in the video. To address the misalignment, we employ a
transformation function to convert the perturbation temporally,
and then optimize the attack on all temporal transformations

U3D
Generator

U3D
Perturbation

Streaming Video (Online)

Perturb Static Video (Offline) Attack G3
(validated)

U3D
NoiseOpt

Transferability

Boundary
Effect-Free

Universality

Attack G1U3D
Parameter
Space

Public Video Set

Public DNN
Model

Attack Surrogate

s*

Attack G2

H
um
an-

Im
perceptibility

(a) U3D Generator (b) U3D Perturbation Injection

s*

Adversarial
Training

Certified
Robustness

Detection

Fig. 2: U3D attack framework (including three design goals: G1, G2 and G3). (a) U3D Generator learns the near-optimal
U3D parameters s∗. (b) U3D perturbations can be generated on-the-fly with s∗ to perturb both static and streaming videos.

(see Section IV-B2), which enable the U3D perturbations to
be injected at random times without the boundary effect.

G2: Human-Imperceptibility. We add a bound on the U3D
perturbations with `∞-norm, which strictly restricts the pixel
deviations. Later, we use MSE metrics to quantify the per-
turbations in the experiments. Moreover, we conduct surveys
among humans to illustrate the imperceptibility of U3D.

G3: Robustness against Defenses. To show the robustness of
our U3D attack, we implement attacks on the video recogni-
tion models equipped with defense schemes (G3 is not directly
designed but ensured with post-validation). There are two
rules of thumb for evaluating attacks: (1) we should carefully
utilize current effective defenses to explicitly defend against
the newly proposed attack, e.g., developing adaptive schemes
which uncover the potential weaknesses of the attack; (2) the
defenses should be in white-box setting, i.e., the defender
should be aware of the attack, including the adversary’s
knowledge and strategy. The rules of thumb also work for
evaluating newly proposed defenses vice versa [2], [8], [74].

Specifically, we adapt three types of major defense schemes:
(1) adversarial training [47], [63]; (2) detection [85], [89];
(3) certified robustness [41], [52]. We redesign the defense
schemes to defend against universal perturbations or U3D per
the rules of thumb. For example, based on the adversarial
training (AT) [47], [63], we design the U3D-AT, which utilizes
the capability of AT to defend against the best U3D (iteratively
updating U3D perturbations). See details in Section V-F.

B. U3D Attack Overview

We now overview the U3D attack in Figure 2. We first
formulate the U3D perturbation generation (U3D Generator)
by synthesizing the procedural noise [39], [57] (which can
be efficiently generated with low-frequency patterns) with the
U3D parameters s (see Section IV-A). Meanwhile, the attack
goals of U3D are optimized: transferability, universality, and
boundary effect-free (see Section IV-B). Then, we apply the
particle swarm optimization (PSO) to solve the problem to
derive the near-optimal parameters s∗ for generating U3D
perturbations (see Section IV-C). Finally, U3D perturbations
can be generated on-the-fly to be injected into the videos in
the attack scenarios (either static or streaming videos).

C. U3D Attack Formulation

The DNN model can be modeled as a function f(·) that
infers the video v with a label (e.g., the label with the top-
1 probability). The attack crafts a video adversarial example
v′ by injecting the perturbation ξ into the original video v:
v′ = v + ξ, where the output label of v′ by the DNN model
f(·) would be f(v′) 6= f(v) (as a universal attack).

To pursue human-imperceptible perturbations, `∞-norm is
adapted to bound the distance between the original and per-
turbed videos (w.r.t. U3D perturbation ξ) with a pre-specified
small value ε: ||v′ − v||∞ = maxi |ξ| ≤ ε. Then, we formu-
late an optimization problem to generate U3D perturbations:
arg minξ : Γ(v + ξ), s.t. ||ξ||∞ ≤ ε, where Γ is a loss metric
function, e.g., a distance or cross-entropy metric. In Section
IV-B, we align the objective function with the attack goals in
the optimization for the U3D design.

IV. ATTACK DESIGN

A. U3D Perturbation Formalization

“Procedural noise” [39], [40], [57], [58] refers to the
algorithmically generated noise with a predefined function,
which can be added to enrich visual details (e.g., texture, and
shading) in computer graphics. It can be directly computed
with only a few parameters, and has no noticeable direction
artifacts [17], [39], [57]. These properties make it potentially fit
for inexpensively computing adversarial perturbations. While
constructing U3D perturbations, we utilize two types of com-
mon procedural noises: (1) “Perlin noise” [57], [58] (a lattice
gradient noise) due to its ease of use, popularity and simplicity;
(2) “Gabor noise” [40] (a convolutional sparse noise) with
good sparsity and accurate spectral control. We propose two
types of U3D perturbations, “U3Dp” and “U3Dg”, both of
which universally perturb videos to subvert the DNN models.

We first formally define the U3D noise function. Denote
N (x, y, t;S) as the U3D noise function, where (x, y, t) rep-
resents the 3D coordinates of each pixel in the video, and S
is the parameter set for noise generation.

1) U3Dp Noise: Perlin noise [57], [58] originally works
as an image modeling primitive to produce natural-looking
textures in realistic computer generated imagery.

Specifically, we denote every pixel in a video by its 3D
coordinates (x, y, t) where (x, y) are the coordinates in frame

t, and denote the Perlin noise value of the pixel (x, y, t)
as p(x, y, t). To model the change of visual perturbations,
we define three new parameters of wavelength λx, λy , λt
to determine the octaves along the three dimensions x-axis,
y-axis, and frame t, respectively, and define the number of
octaves as Λ. The newly updated noise is computed as the
sum of all the corresponding octaves for 3D coordinates:

N (x, y, t) =

Λ∑
`=0

p(x · 2`

λx
, y · 2`

λy
, t · 2`

λt
) (1)

Moreover, we compose the noise function with a color map
function [72] to generate distinct visual perturbations in the
video. Then, the noise of pixel (x, y, t) can be derived as:

Np(x, y, t) = cmap(N (x, y, t), φ) (2)

where cmap(p, φ) = sin(p · 2πφ) is a sine color map
function, which ensures the bound of noise value with the
circular property. φ indicates the period of the sine function,
and the visualization of perturbations can be tuned with φ.

U3Dp Parameters. Combining Equation 1 and 2, we denote
the corresponding parameter set as Sp for U3Dp noise:

Sp = {λx, λy, λt,Λ, φ} (3)

2) U3Dg Noise: Gabor noise [39], [40] is a type of sparse
convolution noise that obtains a better spectral control via a
Gabor kernel, a multiplication of circular Gaussian envelope
and a harmonic function [24]. We construct U3Dg noise by
first extending the 2D Gabor kernel to 3D Gabor kernel
(adding the temporal dimension t):

g(x, y, t) = Ke−πσ
2(x2+y2+t2) cos

[
2πF (x′ + y′ + t′)

]
(4)

where x′ = x sin θ cosω, y′ = y sin θ sinω, t′ = t cos θ; K
and σ are the magnitude and width of the Gaussian envelope;
F and (θ, ω) are the magnitude and orientation angles of the
frequency in the harmonic function. Then, we derive the noise
N (x, y, t) with the sparse convolution and 3D Gabor kernel:

N (x, y, t) =
∑
k

g(x− xk, y − yk, t) (5)

where the point set {∀(xk, yk, t)} are a set of sampled
pixel points in the same frame t with Poisson distribution.
Furthermore, to model the isotropy of the Gabor noise [39],
we realize the two frequency orientations (θ, ω) as random
variables (θi, ωi) uniformly distributed in [0, 2π]. Then, the
updated U3Dg noise is given as below:

Ng(x, y, t) =
∑
i

N (x, y, t; (θi, ωi)) (6)

U3Dg Parameters. Similar to U3Dp, we denote the following
parameter set as Sg for U3Dg with Equation 4 and 6:

Sg = {K,σ, F} (7)

We synthesize the procedural noise to construct the U3D
perturbations, whose low-frequency patterns and low compu-
tational overhead can greatly advance the attacks. Formally,

given the U3D noise function N and the parameters s, the
generated U3D perturbation ξ of length T will be:

ξ = {N (t; s)|t ∈ [0, T − 1]} (8)

If T is less than the video length, ξ will be circular. Note that
T works as a pre-specified parameter. For simplification, we
use ξ = N (T ; s) to represent Equation 8. Next, we will present
how to calibrate U3D perturbation to achieve the design goals.

B. Calibrating U3D Perturbations

1) Improving Transferability in Feature Space: U3D aims
to deviate the intermediate layer’s features, which could im-
prove the transferability of the attacks. Large distance between
the original and perturbed videos’ features at intermediate lay-
ers of the DNN model can result in relatively high deviations
in the final results. This will increase the probabilities on false
learning by the unknown target DNN model and videos.

Specifically, we formally define fL(·, d) as the truncated
DNN model function, which outputs the intermediate fea-
ture of the input video at layer Ld, d ∈ [1,M] of the
DNN model f(·), M is the number of DNN layers. Then,
fL(v, d), fL(v′, d) are denoted as the intermediate features
of the original video v and perturbed video v′, respectively.
Thus, we have the `2-norm distance between the feature
representations of the original video v and perturbed video
v′ = v + ξ at layer d of the DNN as:

D(v, v′; d) = ||P (fL(v, d))− P (fL(v′, d))||2 (9)

where P (z) = sign(z) � |z|α is a power normalization
function α ∈ [0, 1] and � is the element-wise product [59].

Then, we maximize the distance D(v, v′; d) between the
original and perturb videos over all the intermediate feature
space as our attack objective function:

max
ξ

:
∑

d∈[1,M]

D(v, v + ξ; d) (10)

2) Mitigating Boundary Effect: Recall that the boundary
effect may potentially degrade the attack performance due to
the misalignment between the adversarial perturbation and the
input video. To tackle such issue, we introduce a temporal
transformation function Trans(·) for the U3D perturbation
with a shifting variable denoted as τ . Specifically, given a U3D
perturbation ξ of length T , then Trans(ξ; τ) represents the
U3D perturbation ξ temporally shifted by τ ∈ [0, T−1]. Then,
we maximize the expectation of the feature distances with all
the T possible temporal shift transformation τ ∈ U [0, T − 1]
for U3D perturbation ξ (U denotes the uniform distribution):

max
ξ

: E
τ∼U [0,T−1]

[
∑
d∈M

D(v, v + Trans(ξ, τ); d)] (11)

To achieve such objective, we can consider all the possible
transformed U3D perturbation (the size of transformation
will be T) uniformly shifted with τ ∈ [0, T − 1] (step 1
frame by frame in the video). τ will be sampled in the
corresponding algorithm. Then, our U3D attack can learn a
generic adversarial perturbation without the boundary effect,
which can be injected into the streaming video anytime.

3) Improving Universality with Public Videos: Another
goal is to find a universal perturbation learned from a relatively
small set of videos, which can effectively perturb the unseen
videos for misclassification. Denoting a set of public videos
as V , the optimization integrates the universality maximization
on videos in V (and `∞-norm bound) as below:

max
ξ

: E
v∼V,τ∼U [0,T−1]

[
∑
d∈M

D(v, v + Trans(ξ, τ); d)]

s.t. ξ = N (T ; s), ||ξ||∞ ≤ ε
(12)

C. Optimizing and Generating U3D Perturbations

Since the U3D perturbation ξ can be efficiently generated
if the U3D parameter set S is pre-computed, Equation 12
will optimize the attack w.r.t. S . To search the optimal
U3D parameter set S), we solve it with the Particle Swarm
Optimization (PSO) method [21]. Specifically, the parameter
values in S are viewed as the particles’ positions, and the set of
parameter ranges can be constructed as the search space. Then,
the objective function (Equation 12) is the fitness function
A(f, V,N (T ;~s)), where ~s is the current position for U3D
parameter set S in the iterations.

In the initialization phase, m points will be randomly
selected from the searching space for S while satisfying `∞-
norm bound. Then, in the iterations, every particle will itera-
tively update its position by evaluating the personal and group
best location (determined by the output of the fitness function).
Notice that, before fed into the fitness function, the algorithm
validates if the U3D perturbation ξ generated by the parameter
set ~si

k+1 satisfies `∞-norm bound ε or not. Finally, we can
get the near-optimal parameter set s∗. Then, we generate the
U3D perturbation ξ = N (T ; s∗). The computation of fitness
function A(f, V,N (T ;~s)) and PSO optimization process are
detailed in Algorithm 1 and 2, respectively (Appendix B).

We have evaluated PSO by benchmarking with genetic
algorithms [26], simulated annealing [80], and Tabu search
[25]. PSO slightly outperforms them for U3D optimization
(experimental setting and results are detailed in Appendix C).

V. EXPERIMENTS

A. Experimental Setup

Datasets. We use three widely used datasets for video recog-
nition to validate the proposed U3D attack.
• HMDB51 [36] dataset includes 6,766 video clips (30 fps)

in 51 different actions, e.g., fencing, climb and golf.
• UCF101 [66] dataset includes 13,320 video clips (25 fps)

in 101 different actions, e.g., archery, and punch.
• UCF Crime [69] dataset includes 1,900 long surveillance

videos (30 fps) collected from Youtube and Liveleak, in
13 anomalies, e.g., accident, explosion, and shooting.

The HMDB51 and UCF101 datasets are used for video clas-
sification, and the UCF Crime dataset for anomaly detection.

Target DNN Models. We evaluate the U3D attack on two
common DNN models for video recognition: (1) C3D model
[76]; (2) I3D model [69]. We also implement two video
recognition techniques based on both C3D and I3D: (1) video

classification [76]; (2) video anomaly detection [69] identify-
ing anomalies by scoring the video segments in sequence.

Note that we choose C3D and I3D as the main evaluation
models to show the attack performance due to the popularity
and practicality in the video recognition systems (as depicted
in Section II-A). To fully evaluate the transferability of the
U3D attack, we choose three more video classification models,
including LRCN [20], DN [34] and TSN [65], and evaluate the
U3D attack across five different DNN models. We summarize
the differences of such five models in Appendix E1.

Benchmarks. We use the following baseline adversarial per-
turbations: (1) Gaussian Noise: ξg ∼ N (0, σ2) and σ=0.01;
(2) Uniform Noise: uniformly sampled noise ξu ∼ [−ε, ε]; (3)
Random U3D: applying U3D without calibration by randomly
choosing parameters. For the above three methods, we repeat
each experiment 10 times, and return the average value; (4)
The state-of-the-art video attacks, C-DUP [43] (as a white-
box universal attack), V-BAD [32] and H-Opt [83] (both as
non-universal black-box attacks).

Since V-BAD [32] and H-Opt [83] are non-universal, they
might be incomparable with U3D and C-DUP on attacking a
specific target (though their success rates are claimed to be
high in such cases). It might also be unfair to compare U3D
and C-DUP with V-BAD and H-Opt on transferability since
the latter two are not designed towards that goal.

B. Attack Performance

We first evaluate U3Dp and U3Dg generated with a surro-
gate C3D model to attack unknown target models on different
datasets. Specifically, we randomly select 500 videos from the
HMDB51 dataset (retaining a similar distribution for classes
as the full dataset) as the public video set (V), and consider
the full UCF101 and UCF Crime datasets as the target set. We
set ε = 8, T = 16 and report the attack results on the target
set. Note that the MSE of all the U3D perturbations are below
20 (very minor distortion out of 2552 in the scale).

TABLE I. U3D vs. benchmarks (success rates; C3D/HMDB51
as surrogate; C3D/I3D and UCF101/UCF Crime as target).

Noise
Model C3D I3D

UCF101 UCF Crime UCF101 UCF Crime
Gaussian 10.2% 15.3% 9.1% 12.6%
Uniform 5.3% 9.1% 1.7% 2.4%

Rnd. U3D 43.2% 52.6% 40.3% 51.8%
C-DUP [43] 80.2% 83.6% 54.4% 45.8%

U3Dp 82.6% 92.1% 80.4% 87.1%
U3Dg 85.4% 93.4% 82.9% 90.2%

Table I lists the results for applying U3Dp and U3Dg to
attack unknown models and videos (in different datasets).
The U3D perturbations are injected into both UCF101 (for
video classification) and UCF Crime (for anomaly detection)
datasets, which are then inferred by both C3D and I3D.
Such black-box attacks are realized by the transferability and
universality of U3D (which will be thoroughly evaluated in
Section V-C). Table I also includes the attack performance of
Gaussian, Uniform, Random, and C-DUP [43] (see the setting

in Section V-A). For both U3D and benchmarks, we apply the
perturbations to full UCF101 and UCF Crime datasets.

Both U3Dp and U3Dg achieve high success rates on the
two DNNs. For C3D, U3Dp achieves 82.6% on the UCF101
dataset (video classification) and 92.1% on the UCF Crime
(anomaly detection) while U3Dg obtains a slightly higher
success rate, i.e., 85.4% on the UCF101, and 93.4% on the
UCF Crime. This can also show that our U3D perturbations
effectively attack to other different DNN models on different
datasets, e.g., HMDB51 and C3D → UCF Crime and I3D.

However, the benchmarks cannot achieve satisfactory attack
performance. Injecting random noise (Gaussian and Uniform)
to videos can only give 2.4%-15.3% success rates in all
the experiments. Random U3D (random parameters without
optimization) performs better but still not satisfactory (35.7%-
52.6%). C-DUP [43] returns worse success rates on both C3D
and I3D, even in the white-box setting. Since it is designed for
attacking C3D, its performance on I3D is even worse (54.4%
on UCF101 and 45.8% on UCF Crime, low transferability).

Finally, both U3Dp and U3Dg can perform very well
(90%+) on anomaly detection regardless of the target models.
We observe that anomaly detection is more vulnerable than
video classification under the same perturbation, e.g., U3Dp
(92.1%>82.6%). The possible reason is that such DNN models
have an extra computing model to output anomaly scores,
which may make it more sensitive to perturbations.

C. Transferability and Universality

Transferability. Transferability refers to the perturbations de-
signed for one classifier can also attack other classifiers (cross-
model) [73]. To study the transferability, we first define the
transfer rate (TR) as the percent of the adversarial examples
which deviates one model fsrg (e.g., a public DNN model as
the surrogate model) and also deviate the target model ftar
(black-box). We denote fsrg → ftar as the transferability of
the attack from surrogate model to target model.

TABLE II. Transferability: transfer rate (TR) on UCF101 from
surrogate model fsrg to target model ftar. See similar results
on HMDB51 and UCF Crime in Appendix A.

Noise
fsrg
ftar C3D I3D DN LRCN TSN

U3Dp

C3D – 93.4% 92.7% 85.0% 87.2%
I3D 89.7% – 96.3% 88.7% 85.0%
DN 84.0% 83.2% – 85.5% 83.4%

LRCN 85.8% 87.2% 92.4% – 86.1%
TSN 85.5% 82.5% 89.3% 87.5% –

U3Dg

C3D – 87.0% 93.2% 86.3% 85.3%
I3D 88.2% – 97.4% 85.2% 86.0%
DN 82.6% 81.4% – 83.7% 85.6%

LRCN 81.2% 83.4% 88.6% – 84.5%
TSN 86.2% 83.6% 90.2% 86.4% –

To evaluate the transferability, we choose C3D, I3D and
other three more video classification models as surrogate/target
models: DN [34], LRCN [20], and TSN [65], all of which are
already fine-tuned on the UCF101 dataset. Then, we compute
U3Dp and U3Dg (ε = 8) with the surrogate model (as

surrogate) and apply the U3D perturbations to craft adversarial
examples on the UCF101 dataset, which are fed into the target
models. We generate the U3D perturbations with 10% of the
UCF101 dataset (randomly picked for each class), and select
all the adversarial examples (crafted on the 90% of videos
for target dataset) which can successfully fool the surrogate
models. Then, we examine the percent of such adversarial
examples that can fool the target model.

Table II presents the transfer rates of both U3Dp and U3Dg .
We can observe that all the attack can achieve high transfer
rates (over 80%). This shows that our U3D perturbations
achieve good transferability across these models. For example,
U3Dp can obtain 92.7% transfer rate for C3D→DN and 92.4%
for LRCN→DN. We repeat the same set of experiments on the
HMDB51 and UCF Crime datasets (results are given in Table
XII and XIII in Appendix A). High cross-model transferability
for U3D can also be observed from such experiments.

Universality. Universality refers to the perturbations learnt
from one dataset can perturb many different datasets (cross-
data) to fool the DNN models [50]. To evaluate the universality
of U3D, we first randomly pick 500 videos as the surrogate
video set (denoted as X) from each of the three datasets,
HMDB51, UCF101 and UCF Crime, respectively (retaining
a similar class distribution as the full datasets). Then, we
compute the U3D perturbations (ε = 8) on X with the C3D
model and evaluate the attack success rates on all the three
datasets (as the target dataset Y). For the same dataset case
(intra-dataset attack), the target set Y excludes X to evaluate
the universality. All the results are listed in Table III.

We can observe that the U3D achieve 80%+ success rates
for all the cases (X → Y within the same dataset or across
different datasets). The diagonal results are higher than other
cases, which shows that the U3D can perform well among
the unseen videos in the same dataset. Moreover, for the
same U3D perturbation, e.g., U3Dg , the success rate of UCF
Crime→UCF101 is lower than that of HMDB51→UCF101
(81.6%<85.4%). Similar results are also observed from UCF
Crime→HMDB51 and UCF101→HMDB51 (82.2%<85.0%).
Since HMDB51 and UCF101 consist of human action videos
while UCF Crime includes surveillance videos for anomaly
detection, U3D perturbations learned on UCF Crime will
exhibit less universality to HMDB51 and UCF101. Thus,
selecting different surrogate videos can slightly help tune the
attack performance on different target models and videos.

TABLE III. Universality (success rate (SR); surrogate C3D).
See similar results for surrogate I3D in Appendix A.

Noise
X

Y HMDB51 UCF101 UCF Crime

HMDB51 87.3% 82.6% 92.1%
U3Dp UCF101 84.2% 88.4% 91.5%

UCF Crime 80.1% 82.4% 96.0%
HMDB51 88.7% 85.4% 93.4%

U3Dg UCF101 85.0% 86.2% 90.2%
UCF Crime 82.2% 81.6% 95.3%

We repeat the same set of experiments for I3D as surrogate

(see similar high universality in Table XIV in Appendix A).
Note that C-DUP [43] (as a white-box attack only on C3D) has
low transferability (in Table I), and V-BAD [32] and H-Opt
[83] (both as non-universal attacks) have low transferability.

D. Hybrid Black-Box Attack with Queries over Target Model

U3D is designed to universally attack different target mod-
els, and it has shown high transferability. If the attack perfor-
mance is not very satisfactory for a new target model (though
not found in our extensive experiments), we can extend the
U3D to a hybrid black-box attack [71] by integrating queries
over the target model g(·). Note that this still maintains
attack universality on different target models. Thus, given the
surrogate model f(·) (including a small set of public videos)
and the target model g(·) available for queries, we can update
the optimization for U3D by integrating the queries using input
videos v1, . . . , vn (perturbed by ξ before querying):

max
ξ

: E
v∼V,τ∼U [0,T−1]

[
∑
d∈M

D(v, v + Trans(ξ, τ); d)]

+ ω · Q(g, v1, . . . , vn, ξ)

s.t. ξ = N (T ; s), ‖ξ‖∞ ≤ ε

(13)

where the query oracle Q(·) first derives the final classifica-
tion results of the perturbed videos {v1 +ξ, . . . vn+ξ} by the
target model g(·), and then returns the success rate for such
videos. ω is hyperparameter for weighing the transferability
of the surrogate model and queries (success rate) over the
target model. Note that the adversary only needs to query the
final classification (limited information) instead of the specific
probability scores or logits information.

This optimization will search the U3D perturbations which
can successfully fool the target model g(·) by both transfer-
ability and queries (hybrid). Similarly, after revising the fitness
function with the new objective (Equation 13), we can apply
PSO to compute the optimal U3D parameters.

0 1000 2000 3000 4000
Number of Queries

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

I3D
DN
LRCN
TSN

(a) U3Dp

0 1000 2000 3000 4000
Number of Queries

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

I3D
DN
LRCN
TSN

(b) U3Dg

Fig. 3: Hybrid black-box attack performance (surrogate C3D).

To evaluate the hybrid attack, we choose the C3D as the
surrogate model, and I3D, DN, LRCN, TSN as target models,
respectively. Then, we follow the setting as the previous
experiments on the UCF101 dataset (10% for learning U3D
while 90% for target set) and U3D parameters. For the hybrid
attack, we set the size of querying dataset as 50 (randomly
chosen), ε = 8 and ω = 10, vary the number of queries as
{0, 1000, 2000, 3000, 4000} (“0” means the original U3D
attack without queries). Then, we apply PSO to optimize U3D
perturbations on Equation 13, and report the success rate for

both U3D perturbations against the four target models. Figure
3 shows that the success rates of both U3D perturbations
slightly increase as the number of queries increases. The
hybrid attack with additional queries to the target model can
improve the transfer-based attack to some extent [71].

E. Visual Impact and Human-Imperceptibility

Visual Impact. We arbitrarily select two videos, “shooting”
and “fighting” to demonstrate the visual differences of the
adversarial examples. Figure 5 in Appendix A presents a
sequence of selected frames in two videos, and we can observe
that the videos perturbed by U3Dp and U3Dg are much more
human-imperceptible than C-DUP.

Human-Imperceptibility Study. We also conducted a human-
imperceptibility study (with an IRB exempt) to validate if
the perturbed videos could be visually discerned by humans
compared with the original videos. We distributed the videos
(original videos, adversarial examples based on U3Dp, U3Dg
and C-DUP) and an online survey to 87 anonymous students.

Specifically, we randomly pick 870 videos from the UCF101
and UCF Crime datasets. To avoid bias on the distribution of
adversarial examples, we randomly choose 435 videos to inject
perturbations (218 videos by U3Dp and 217 by U3Dg; all the
adversarial examples are selected from the previous groups
of experiments to successfully fool the video classifiers). The
students do not know the distribution of adversarial examples.
Then, 435 pairs of videos (the adversarial examples and their
clean videos) are mixed with another 435 pairs of videos (the
remaining 435 clean videos and their duplicates).

Next, we randomly assign 10 pairs of videos to each student.
Each of the 87 students is expected to watch and annotate 10
pairs of videos (“visual difference” or “no visual difference”).
We also ask the participants to identify the region of difference
if they choose “visual difference”. Finally, we collected 740
valid annotations on pairs of videos (74 students have submit-
ted their results over a 1-week time frame; among the assigned
videos to these students, there exist 386 adversarial examples).
We found that 96.4% (372) out of such 386 annotations are “no
visual difference”, while only 3.6% (14 annotations) of them
are annotated with “visual difference”. Among the remaining
354 pairs of original videos and their duplicates, there also
exist 7 annotations submitted as “visual difference”.

Meanwhile, we conduct the same group of studies for C-
DUP by randomly picking another 870 different videos to
inject perturbations (in order to avoid the bias on mutually
linking the adversarial examples of U3D and C-DUP perturbed
on the same videos).1 As high as 85.4% (304 out of 356 valid
adversarial examples of C-DUP) can be successfully identified
by the same group of students. All the above results have
indicated that our U3D perturbations achieve high human-
imperceptibility (significantly better than C-DUP).

1If any visual difference is identified by the student from the C-DUP
perturbed video (or vice-versa), this may give him/her prior knowledge to
identify visual difference from U3D (or vice-versa) since both are perturbed.

F. U3D against Defense Schemes

To our best knowledge, there are very few defense schemes
against the adversarial attacks on videos (mostly on images).
We comprehensively evaluate the performance of U3D against
three major categories of state-of-the-art defense schemes,
which are adapted towards video/U3D defenses. They include:
(1) adversarial training [47], [63]; (2) adversarial example
detection [85], [89]; (3) certified robustness [18], [41].

Attack and Defense Setting. We use the U3Dp and U3Dg
perturbations generated in Section V-B (surrogate C3D and
HMDB51 dataset) to craft adversarial examples on a dataset
(e.g., UCF101 or UCF Crime). The adversarial examples will
be used to attack the target model (C3D or I3D), which will
be adversarially trained, integrated into the detection schemes,
or certified with randomization. In all the tables in this
subsection, “Model” refers to the target model, and “Dataset”
refers to the dataset used to craft adversarial examples.

Adversarial Training. Adversarial training [27], [47], [62],
[63] refers to the model training by adding adversarial exam-
ples into the training dataset. It has been empirically validated
to be effective on improving the robustness against adversarial
examples and maintaining accuracy on clean data.

First, due to the universality of U3D, we evaluate U3D
attack on a universal adversarial training (denoted as “UAT”)
[63] which defends against universal perturbations. Specifi-
cally, such scheme adopts PGD-based adversarial training [47]
to formulate a min-max optimization problem as below:

min
θ

max
ξ

:
1

|X|
∑

(xi,yi)∈X

L(θ;xi + ξ, yi) s.t. ||ξ||∞ ≤ ε (14)

where θ denotes the model parameters, X = {(xi, yi), i ∈
[1, |X|]} is the training sample set, L(·) is the loss function,
and the `p-norm of universal perturbation ξ is bounded by
ε. Different from the conventional PGD-based adversarial
training (computing the perturbation for each instance), the
inner optimization problem seeks a universal (more precisely,
batch X-universal) perturbation ξ to maximize the adversarial
loss w.r.t. the sample set X . It has been shown to be effective
against universal perturbations compared to PGD-based adver-
sarial training [47]. In addition, it is more efficient to compute
one universal perturbation across all the training iterations, i.e.,
only updating perturbation ξ once for each step [63].

Second, besides “UAT”, we tailor the universal adversarial
training towards U3D (denoted as “U3D-AT”), and evaluate
the U3D under a stronger defense setting (see the white-box
defense of G3 in Section III-A). Specifically, the defender
knows the U3D function N (·) but does not know the spe-
cific values of the U3D parameters s. Recall that the U3D
perturbation is computed by optimizing Equation 12, which
is formulated as a attack fitness function A(f, V, s). Then,
we can also adapt the UAT framework by replacing the inner
optimization objective with the U3D function as A(f,X, s):

min
θ

max
s

: A(f,X, s) s.t. ξ = N (T ; s), ||ξ||∞ ≤ ε (15)

where the norm-bounded U3D perturbation ξ can be com-
puted by the U3D function with the parameters s. Similar
to UAT, we can iteratively update the best U3D perturbation
among a batch of data (X) in the inner loop via NoiseOpt,
which adapts PSO to find the optimal parameters.

For the experiments, we evaluate the defense performance
of standard PGD-based adversarial training (denoted as “Nor-
mal”), universal adversarial training (“UAT”) and our U3D-
adaptive AT (“U3D-AT”) against our U3D perturbations, re-
spectively. We split the datasets (UCF101 and UCF Crime)
into the training dataset (80%) and the test dataset (20%). We
set the perturbation bound ε = 8. For both UAT and U3D-
AT, we set the batch size as 200. For UAT, we utilize FGSM
to update ξ, and Momentum SGD optimizer to update model
parameters as the original setting [63]. For the adversarially
trained models, we evaluate the accuracy (Clean ACR) – the
predication accuracy on the clean data, besides the attack
success rate (SR) for misclassification. Note that we also report
the accuracy and SR of the normal models.

Table IV summarizes the results of the adversarial training
against U3D on the UCF101. The accuracy of both UAT
and U3D-AT on the clean data declines since the training
has included adversarial examples. Nevertheless, the success
rates of both U3Dp and U3Dg have been reduced against
both UAT and U3D-AT. The U3D-AT performs better than
the UAT, e.g., the attack SR of U3Dp is 42.7%<67.4% on the
C3D. This is because U3D-AT directly optimizes the defense
on U3D (with the attack fitness function), which thus makes
the model more robust against U3D. However, such U3D-
AT is more like “white-box” defense in which the defender
(model owner) already knows the adversary’s strategy (e.g.,
U3D format and attack function). In practice, the defender
usually cannot readily obtain such information.

TABLE IV. Adversarial training on UCF101. See similar
results on UCF Crime in Table XV (Appendix A).

Model Defense Clean U3Dp U3Dg
ACR (SR) (SR)

C3D
Normal 86.2% 83.7% 84.2%

UAT 78.5% 67.4% 65.5%
U3D-AT 77.2% 42.7% 45.3%

I3D
Normal 88.7% 82.1% 82.6%

UAT 80.4% 70.2% 69.5%
U3D-AT 78.6% 50.3% 47.4%

Adversarial Examples Detection. Most detection schemes
[45], [48], [61], [85], [89] locally train a detector or utilize
feature characteristics in adversarial examples to determine
if the input is perturbed or not. For instance, a detector can
be trained on both clean data and adversarial examples via
adversarial training [89]. Although detection schemes have
difficulties on mitigating adversarial attacks (e.g., Magnet [48]
was broken by [8], and some recent defenses were broken by
adaptive attacks [74]), we still evaluate our U3D against de-
tection schemes (including that adapted to U3D). Note that the
U3D attack can be both online and offline. Then, we evaluate
both of them against the detection schemes (assuming that the

offline detection can be executed with arbitrary runtime).
First, for the online detection, we choose AdvIT [85] which

is effective against the existing adversarial attacks on real-time
video recognition. It finds the inconsistency among the tempo-
rally close frames with the optimal flow information, assuming
that perturbations can destroy the frame consistency to some
extent. Specifically, given one target frame (to be detected),
AdvIT first estimates the optimal flow between the target
frame and previous k frames, and then reconstructs pseudo
frames by applying the optical flow to the beginning frame.
Finally, it would compute the inconsistency score c between
the target frame and pseudo frames, where high inconsistency
score indicates that the target frame is adversarial. To defend
against the adaptive attacks, AdvIT applies the Gaussian noise
to fuzz the optical flow for generating the pseudo frames.

In the experiments, we randomly select 200 clean videos
from the UCF101 and UCF Crime datasets (100 each), and
apply both U3Dp and U3Dg perturbations to craft adversarial
examples. We set the perturbation bound ε = 8. For detection,
we set k = 3 (which only slightly affects the detection rate)
and utilize FlowNet [30] as the optical flow estimator in
AdvIT. Then, we randomly select 5 frames in each video as the
target frames, and average the inconsistency scores (reporting
detection when ≥ 1) to derive the detection results.

Table V summarizes the detection accuracy (DR) and false
positive rate (FPR) of AdvIT. It shows that U3D can bypass the
detection of the state-of-the-art detection scheme, even though
AdvIT achieves low false positive rates. For instance, AdvIT
only obtains 12% accuracy to detect U3Dp-based adversarial
examples for the C3D. The results show that U3D is immune
to the temporal consistency detection by AdvIT, since the U3D
perturbations are constructed on continuous 3-dimensional
noise, which can still retain the consistency in temporal space.

TABLE V. Detection and false positive rates of AdvIT [85]

Model Dataset U3Dp U3Dg
DR FPR DR FPR

C3D UCF101 12% 2% 18% 2%
UCF Crime 12% 5% 19% 3%

I3D UCF101 10% 3% 17% 3%
UCF Crime 12% 5% 22% 3%

TABLE VI. Detection AUC of AdvIT [85] against U3D, C-
DUP, V-BAD, and H-Opt. C3D:1st/3rd row. I3D:2nd/4th row

Dataset U3Dp U3Dg C-DUP V-BAD H-Opt

UCF101 54.2% 56.7% 97.2% 98.4% 99.2%
56.4% 55.3% 98.7% 97.3% 98.6%

UCF Crime 61.2% 64.8% 97.6% 99.5% 98.3%
55.6% 58.1% 97.4% 99.7% 99.8%

Furthermore, we have evaluated the Area Under Curve
(AUC) values of the Receiver Operation Characteristic Curve
(ROC) of AdvIT for U3D perturbations and other three bench-
marks: C-DUP [43], V-BAD [32] and H-Opt [83]. The AUC
metric represents the probability that the detector assigns a
higher score to a random positive sample (adversarial example)
than to a random negative sample (clean data) [85]. It can bet-
ter measure the detection performance than the DR/FPR. Table

VI summarizes the results. From the table, we can observe that
the AUC values of U3D are close to random guess, e.g., 54.2%
(U3Dp) and 56.7% (U3Dg) on C3D and UCF101 while all
the benchmarks can be almost fully detected by AdvIT (all
the AUC values are very close to 1). This occurs since the
temporal consistency cannot hold in the adversarial examples
by C-DUP, V-BAD and H-Opt (perturbations are generated
specific to the frames as frame-by-frame perturbations).

Second, for the offline detection, we evaluate the U3D
against another recent work [89] based on the adversarial
training [47]. If the universal adversarial training (UAT) can
defend against U3D to some extent, we can also extend
it to train a universal perturbation detector against U3D.
Specifically, the asymmetrical adversarial training (AAT) [89]
trains K detectors (for a K-class classification model) to
detect adversarial examples. Given an input x, each detector
hk, k ∈ [1,K] will output a logit score corresponding to the
class label, which can determine if data is perturbed or not
(see details in [89]). To defend against the U3D, we revise
the K detectors hk, k ∈ [1,K] with the UAT by changing the
training objective as below (denoted as “U3D-AAT”):

min
θ

: [E
x∼D′

k

max
s
L(hk(x+ ξ), 1) + E

x∼Dk

L(hk(x), 0)]

s.t. ξ = N (T ; s), ||ξ||∞ ≤ ε (16)

The objective includes two parts: (1) the maximum loss
of adversarial examples (by U3D perturbation ξ) on the out-
of-class data samples D′k; (2) the loss of intra-class natural
data samples Dk. L(·) is a loss function, e.g., binary cross-
entropy loss. For the inner optimization of the first part,
we adopt similar procedures as U3D-AT to update the U3D
perturbations (as depicted earlier).

TABLE VII. Detection and false positive rates of U3D-AAT.

Model Dataset U3Dp U3Dg
DR FPR DR FPR

C3D UCF101 56.2% 6.3% 53.4% 5.9%
HMDB51 44.5% 8.2% 47.4% 7.1%

I3D UCF101 55.4% 4.2% 56.5% 5.1%
HMDB51 52.6% 5.7% 54.3% 5.9%

To evaluate the performance of the detectors, we choose
the action classification on the UCF101 and HMDB51 as
K-Class problem (K = 101 and 51). Specifically, we split
the training/testing datasets by 80%/20% for each category.
We set the perturbation bound ε = 8, and apply the two
U3D perturbations to craft the adversarial examples, which
are mixed up with the clean videos for detection (for instance,
in UCF101 dataset, there are 2664 clean videos, 2664 videos
perturbed by U3Dp, and 2664 videos perturbed by U3Dg). We
adopt the integrated classifier which computes the estimated
class label c = f(x) with the original classifier f and
computes a logit vector hc(x) using the corresponding detector
hc [89]. We report the detection accuracy (DR) and false
positive rate (FPR). The results in Table VII have shown
that such universal adversarial detector can detect the U3D
perturbations to some extent: the universal AAT detector can

achieve about 50% detection rate while maintaining a low FPR
(less than 7%). Such FPR is reasonable considering there could
still exist overlapped adversarial subspaces, i.e., U3D-AAT
may not be trained to be perfect to learn U3D perturbations
and thus separate the perturbed video and clean ones. However,
training such AAT detectors should know the U3D attack
(white-box defense), and it is only limited to defend against
offline attacks due to the computational costs.

Certified Robustness. Recently, certified schemes [4], [18],
[37], [41], [84] have been proposed to defend against norm-
bounded adversarial perturbations with theoretical guarantees.
We evaluate the U3D attack against two representative certified
schemes: PixelDP [41] and randomized smoothing [18].

First, PixelDP [41] adopts the Gaussian mechanism of
differential privacy to slightly randomize the image pixels [81].
After injecting Gaussian noise, the small change of image
pixels (adversarial perturbation) will not affect the classifi-
cation results with some probabilistic bound (thus provide
robustness guarantee for DNN models). It will be extended
from protecting image DNN models to video DNN models.

To evaluate the U3D attack against PixelDP, we modify
the video DNN models by placing the noise layer in the
first convolutional layer under the same Gaussian mechanism
setting [41] w.r.t. an `2 attack bound L = 0.1 (such setting
ensures a high accuracy in [41]). We split training/test as
80%/20% for retraining the model. Note that PixelDP admits
that the certified effectiveness against `∞ attacks is substan-
tially weaker via empirical evaluations (which conforms to the
performance of other certified schemes such as randomized
smoothing). Then, we generate U3D perturbations bounded
by `2 norm value of 0.5 (which indeed generates very minor
perturbations in case of very high video dimensions).

TABLE VIII. Accuracy (ACR) and success rate (SR) of
PixelDP [41] (UCF101 and UCF Crime).

Model Dataset Clean U3Dp U3Dg
ACR (SR) (SR)

C3D UCF101 63.2% 83.4% 85.3%
UCF Crime 65.9% 86.2% 89.7%

I3D UCF101 65.8% 82.3% 79.4%
UCF Crime 67.4% 84.7% 85.2%

We report the classification accuracy of PixelDP on clean
videos, and the success rates of the U3D attack in Table VIII.
The accuracy of PixelDP drastically declines after injecting
Gaussian noises (vs. the baseline models), e.g., 86.2%→63.2%
on C3D. Meanwhile, the U3D attack can still achieve high
success rates in all the cases. This shows that PixelDP cannot
defend against U3D since PixelDP only ensures a weak bound
with the Gaussian mechanism of differential privacy.

Second, we also evaluate the certified robustness via ran-
domized smoothing [18]. It provides a tight guarantee (based
on the Neyman-Pearson Lemma) for any random classifier by
smoothing inputs with an additive isotropic Gaussian noise.
However, it only certifies `2 radius of the perturbation bound.
The certified schemes via smoothing against `∞ have been

shown to be ineffective as the input dimensionality d increases.
The certified radius is bounded by O(1√

d
) as p > 2 [4], [37].

To evaluate our U3D attack against such certified scheme,
we first generate the optimal U3D perturbations ξ by changing
perturbation bound `∞ in NoiseOpt to `2.2 Specifically,
we evaluate the accuracy of the smoothing classifier on the
perturbed videos against U3D, which is the percentage of the
perturbed videos to be correctly classified (we also evaluate
the accuracy on the clean videos as benchmarks). Furthermore,
we also derive certificated radius R for the videos, which
indicates that the classification results can be certified against
any perturbation with `2-norm no greater than R (see [41]).

Next, we set the number of Monte Carlo samples as
n = 100/1000 and failure rate α = 0.001. The failure rate
indicates that the robust classifier can have 1-α confidence to
return the classification result. We set the Gaussian variance
σ = 0.25 (same as [41]), and the radius bound for U3D
perturbations as ε = 0.5 (which generates minor perturbations
in case of high video dimensions). We report the accuracy
and average certified radius in Table IX. The results show
that the randomized smoothing cannot defend against the U3D
attack under `2-norm perturbations (can only certify very small
radius), and the robust classifier only achieves less than 70%
accuracy on the clean video samples.

TABLE IX. Accuracy and radius of rand. smoothing [18] on
UCF101. See similar results in Table XVI (Appendix A).

Model n Clean U3Dp U3Dg
ACR ACR Radius ACR Radius

C3D 100 67.4% 14.5% 0.23 15.2% 0.19
1000 68.2% 16.2% 0.24 18.4% 0.25

I3D 100 71.5% 21.7% 0.32 19.8% 0.28
1000 72.2% 25.2% 0.37 21.2% 0.26

G. Practicality for the U3D Attack

We now discuss the possible attack vectors, and evaluate
the U3D attack on a real system. Prior real-time video attack
scenarios can also be used for U3D (e.g., manipulating the
system via a pre-installed malware in C-DUP [43]). Besides
them, we design extra ways for the real-time attack. Other ad-
versarial attacks on videos (including future attacks) can also
use our physical scenarios to inject real-time perturbations.

First, the network topology of the recent intelligent video
surveillance system (VSS) [19], [53], include: (1) camera; (2)
communication network; (3) server. Then, the adversary needs
to inject the U3D perturbations in two cases: data-at-rest and
data-in-motion [49]. The data-at-rest locally stores videos in
the camera or the server. The data-in-motion transfers videos
across the network or loads them into the volatile memory.
Per the potential threats to VSS [33], [53], we consider the
local infiltration to the systems in two scenarios: (1) malware;
(2) man-in-the-middle (MITM) attack. First, malware can be
locally installed via a malicious firmware update over the USB
port. Moreover, the surveillance cameras could be sold through

2Since randomized smoothing cannot certify defense against `∞ bounded
attack for high dimensional inputs (e.g., videos) [4], [37], the U3D perturba-
tions using `2 bound instead of `∞ are still effective against such scheme.

legitimate sales channels with the pre-installed malware [67].
Second, for the MITM attack, the adversary could access to
the local network (e.g., by penetration) which connects to the
camera and server, and behave like a normal user. Here, we
take the MITM attack as an example.

Specifically, we setup a local camera-server network, where
one PC works as the surveillance camera to continuously
send video streams to another PC (as a server) using the
real-time streaming protocol (RTSP). Then, we use the third
PC as the adversary running Ettercap (https://www.ettercap-
project.org/) with ARP poisoning to implement the man-in-
the-middle attack (sniffing the network traffic). All three PCs
use Ubuntu 18.04 OS, connected on a LAN. According to the
recent survey on the security of IP-based video surveillance
systems [33], [68], a large number of unencrypted cameras
(4.6 millions) are exposed to the network, e.g., using HTTP
instead of HTTPS. Although the percentage of such unen-
crypted cameras is not disclosed, the unencrypted RTSP has
been a major security vulnerability in video surveillance [33],
[68]. Thus, in our attack setting, we assume that the camera
network is open with unencrypted RTSP. By exploiting the
vulnerabilities, the adversary will target the camera-server
communication without decryption and temporarily intercept
the communication session by injecting the TEARDOWN
request to the server. When the server tries to send a new
request for the new communication session with the camera,
the adversary will capture it, modify the delegated client port
and forward the request to the camera. Finally, the adversary
can receive video streams from the camera in real time.

Note that we utilize the FFmpeg compiled with the video
encoder libx264 to execute the codec (decode and encode
process) on the video from RTSP streams. Since our attack
is performed through unencrypted video streams, there is
no extra cost for decrypting video packets. To evaluate the
computational overheads for the codec on the video streams,
we set the following encoding parameters: (1) PRESET (en-
coding speed): “medium” by default; (2) bit rate: same as the
streaming video bit rate (∼ 350kbps) [1]. The average cost for
the codec on the video is ∼ 0.3 < 1 second, which will not
affect the streaming video quality. It can also be accelerated by
hardware, e.g., GPU. Overall, we have experimentally shown
that the delay of our U3D attack (including both codec and
injection) are negligible. Finally, the adversary can forward the
perturbed video streams to the server for misclassifications.

TABLE X. Amortized runtime (each frame) for attacking the
streaming video on UCF101 (in Seconds). See similar results
on UCF Crime in Table XVII (Appendix A).

Video Name Codec Inject Runtime
Bowling 0.010 0.004 0.014

BoxingPunchingBag 0.012 0.005 0.017
CliffDiving 0.010 0.005 0.015

CuttingInKitchen 0.009 0.005 0.014
HorseRace 0.010 0.004 0.014

Evaluation. We randomly pick 10 videos (5 videos from each
of UCF101 and UCF Crime) to evaluate the attack against the

video classification and anomaly detection. For each video, we
repeat 10 times while injecting 10 different U3D perturbations
(pre-generated with the HMDB51 dataset and C3D) in the
video streams. The attack success rate for classification is
88% (44/50) and for anomaly detection is 98% (49/50). Table
X presents the amortized online time for processing each
frame. All the runtimes are less than 1/30 (the frame rate is
between 24fps and 30fps in experimental videos). Thus, U3D
can efficiently attack streaming videos with negligible latency.

0 500 1000 1500
Frame (t)

0.0

0.2

0.4

0.6

0.8

1.0

An
om

al
y

Sc
or

e

Original Video
Perturbed Video

(a) Road Accident (U3Dp)

0 500 1000 1500
Frame (t)

0.0

0.2

0.4

0.6

0.8

1.0

An
om

al
y

Sc
or

e

Original Video
Perturbed Video

(b) Explosion (U3Dg)

Fig. 4: Real-time attack on anomaly detection

Moreover, Figure 4 presents the real-time anomaly scores
of two example videos (i.e., “Road Accident” and “Explo-
sion”), where each streaming video (sent from the camera to
the server) is perturbed by a U3D perturbation in real-time
(w.l.o.g., U3Dp for “Road Accident” and U3Dp for “Explo-
sion”). In Figure 4(a) (“Road Accident”), we can observe that
there are three wave peaks in the original video, e.g., around
frame 750, which will trigger the anomaly alarm (reporting
“Road Accidents” if the score is greater than a pre-set thresh-
old). While our U3D attack perturbs the streaming video, the
anomaly scores of the perturbed video are reduced to almost
zero in all the frames. The “Explosion” example (Figure 4(b))
also shows similar results. This illustrates that our U3D can
perfectly compromise the video anomaly detection systems.

TABLE XI. Success rates of U3D perturbations (boundary
effect-free), injected at 10 different times for each video.

Noise
Model C3D I3D

UCF101 UCF Crime UCF101 UCF Crime
U3Dp 81.2% 90.3% 80.2% 85.3%
U3Dg 84.5% 93.0% 82.6% 89.4%

Finally, to validate the boundary effect-free property of the
U3D attack on streaming videos, we conduct another group
of experiments on the UCF101 and UCF Crime datasets. Note
that the lengths of videos are at least 15 seconds. Then,
for each input video in two datasets, we insert the U3D
perturbation at 10 different times (from 0 to 5s with a step of
0.5s), and the classification and anomaly detection will start
from the first perturbed frame to the end of the video. Table XI
summarizes the results for success rates in two applications.
We can observe that our U3D perturbations can still achieve
high success rates while the misalignment may occur, e.g.,
U3Dp still achieves 81.2% on UCF101 against C3D, and
U3Dg achieves 93.0% on UCF Crime against C3D. This shows
that U3D can mitigate the boundary effect well.

VI. MITIGATION OF U3D PERTURBATIONS

The experiments show that the adversarial training (AT) is
still the state-of-the-art on improving the model robustness
regardless of overheads. The universal AT and AT adapted to
U3D (U3D-AT) have shown some effectiveness on reducing
the attack success rates (though the accuracy on clean videos
has been reduced). To further improve the performance of
AT against U3D, we can enhance the search in a larger
U3D perturbation space. Also, we can integrate the adaptive
inference method, e.g., applying stochastic interpolation to
reduce the effect of U3D [55], and certified robustness [18].

For detection methods, the properties of the procedural noise
(e.g., low frequency texture structure) can be utilized. For
instance, since the background scenes in most surveillance
videos captured by static cameras do not change, the defender
can extract the static frame of the background and compare
it with the perturbed video frame(s) to check the possible
perturbation. An alternative way is to check the moving objects
or humans in the videos. Since the U3D perturbations applied
to the same object in different frames are likely to be different
due to the changed coordinates, the deviations between the
perturbed object in different frames might be identified. This
needs other object detection/tracking algorithms, which may
only be suitable for offline analysis due to high overheads.

Furthermore, although certified robustness cannot defend
against the U3D, it is promising since it provides theoretical
guarantee against norm-bound perturbations. One potential
method to improve the robustness is the integration of ran-
domized smoothing with UAT, which could potentially make
the trained model robust against more unknown perturbations
and thus improve the robust accuracy. However, this also poses
challenges on expensive training (not model-agnostic either).
We should also address the high dimensionality of videos
since the certified guarantee can be jeopardized drastically
on high dimensional data under `∞ bound. Thus, we can
execute transformation to reduce the dimension of input data
(e.g., by autoencoder) while certifying the robustness after
transformation. We will explore these in the future.

Last but not least, we can also mitigate the online U3D
attacks by enhancing the security of video recognition systems,
e.g., upgrade to encrypted communication channels or add
watermarking to the video streams (to detect injections).

VII. RELATED WORK

Security in machine learning, especially the vulnerabilities
of AI systems to the adversarial inputs, has been intensively
studied in both security and machine learning communities.
Since adversarial examples were introduced [3], [27], [73],
there have been numerous works on attacking image classi-
fiers. For instance, FGSM [27], PGD [47], UAP [50] and many
others [6], [38], [51], work well in the white-box setting. For
black-box attacks, researchers have proposed two main types
of methods: transfer-based [15], [46], [56] and query-based
attacks [5], [13], [14], [31]. Recently, a hybrid attack [71]
combines both of them to improve the attack performance.

Moreover, adversarial attacks emerge in voice recognition [7],
[11], malware classification [28], text understanding [42], etc.

Recent research has extended adversarial attacks from at-
tacking DNNs on 2-D images to 3-D videos [32], [43], [82],
[83]. Wei et al. [83] proposed a heuristic algorithm based
on the query-based optimization attack [14] to search the
saliency region in the video frames for perturbation. V-BAD
[32] utilizes natural evaluation strategy (NES) [31] to query the
target model for estimating gradient, and then craft adversarial
examples via PGD. Both methods compute the perturbation for
each frame, which requires heavy computational overheads.
They cannot attack real-time videos (due to lack of univer-
sality either). C-DUP [43] applies GAN to generate universal
perturbations offline and attack real-time video classification.
However, it is a white-box attack, which is also limited to only
the C3D model. More importantly, due to lack of consistency
in the perturbations across frames, all these three attacks can
be directly mitigated by AdvIT [85] with high accuracy.

To defend the model against adversarial attacks, a wide
range of defense schemes [18], [47], [52], [63], [85], [89] have
been proposed, which aim to either improve the robustness of
model or detect adversarial examples. To our best knowledge,
existing defense schemes (e.g., [41], [47]) mainly work on
images, and have not empirically studied videos. Instead, we
have thoroughly evaluated our U3D attack by redesigning
current defense schemes in Section V-F, which show some
effectiveness against the U3D attack on videos. We anticipate
that our U3D can motivate to build more robust defense
schemes for DNN-based video recognition.

VIII. CONCLUSION

In this paper, we have successfully constructed two novel
U3D perturbations to universally attack multiple DNN-based
video recognition systems in the black-box setting. The pro-
posed U3Dp and U3Dg can be efficiently generated on-the-
fly while ensuring transferability, universality and human-
imperceptibility. Also, U3Dp and U3Dg can be applied to
attack video streams in real-time applications. Furthermore,
we have conducted extensive experiments on three large-scale
video datasets to validate the performance of U3D perturba-
tions by benchmarking with the state-of-the-art attacks. The
experimental results demonstrate that our U3D attack greatly
outperforms other attacks (e.g., C-DUP) on attack success rate,
transferability, and human-imperceptibility. We also perform
experiments to evaluate U3D attack against three different
types of defense schemes, adapted to universal perturbation
or U3D on videos. It is more difficult to defend against U3D
compared to C-DUP, V-BAD, and H-Opt (e.g., by AdvIT).

ACKNOWLEDGEMENTS

This work is partially supported by the National Science
Foundation (NSF) under the Grants No. CNS-1745894 and
CNS-2046335. We would like to thank Zhaorui Liu and
Junwen Chen for their help on some preliminary results and
figures. We are also grateful to the anonymous reviewers and
the PC point of contact for their constructive comments.

REFERENCES

[1] “Ffmpeg guide,” 2020. Available: https://ffmpeg.org/ffmpeg.html
[2] A. Athalye and N. Carlini, “On the robustness of the cvpr 2018 white-

box adversarial example defenses,” arXiv:1804.03286, 2018.
[3] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,

G. Giacinto, and F. Roli, “Evasion attacks against machine learning at
test time,” in ECML-KDD. Springer, 2013, pp. 387–402.

[4] A. Blum, T. Dick, N. Manoj, and H. Zhang, “Random smoothing might
be unable to certify `∞ robustness for high-dimensional images,” JMLR,
vol. 21, no. 211, pp. 1–21, 2020.

[5] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
in ICLR, 2018.

[6] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in IEEE S&P, 2017, pp. 39–57.

[7] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields,
D. Wagner, and W. Zhou, “Hidden voice commands,” in USENIX
Security 16, 2016, pp. 513–530.

[8] N. Carlini and D. Wagner, “Magnet and ”efficient defenses against
adversarial attacks” are not robust to adversarial examples,” 2017.

[9] J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new
model and the kinetics dataset,” in CVPR, 2017, pp. 4724–4733.

[10] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A
survey,” arXiv preprint arXiv:1901.03407, 2019.

[11] G. Chen, S. Chen, L. Fan, X. Du, Z. Zhao, F. Song, and Y. Liu, “Who is
real bob? adversarial attacks on speaker recognition systems,” in IEEE
S&P, 2021.

[12] J. Chen, M. I. Jordan, and M. J. Wainwright, “Hopskipjumpattack: A
query-efficient decision-based attack,” in S&P, 2020, pp. 1277–1294.

[13] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth
order optimization based black-box attacks to deep neural networks
without training substitute models,” in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, 2017, pp. 15–26.

[14] M. Cheng, T. Le, P. Chen, H. Zhang, J. Yi, and C. Hsieh, “Query-
efficient hard-label black-box attack: An optimization-based approach,”
in ICLR, 2019.

[15] S. Cheng, Y. Dong, T. Pang, H. Su, and J. Zhu, “Improving black-box
adversarial attacks with a transfer-based prior,” in NeurIPS, 2019.

[16] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[17] K. T. Co, L. Muñoz-González, S. de Maupeou, and E. C. Lupu,
“Procedural noise adversarial examples for black-box attacks on deep
convolutional networks,” in CCS, 2019, pp. 275–289.

[18] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial
robustness via randomized smoothing,” in ICML, 2019.

[19] A. Costin, “Security of cctv and video surveillance systems: Threats,
vulnerabilities, attacks, and mitigations,” in Proceedings of the 6th
international workshop on trustworthy embedded devices, 2016.

[20] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in CVPR, 2015.

[21] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in MHS’95, 1995, pp. 39–43.

[22] H. J. Escalante, M. Montes, and L. E. Sucar, “Particle swarm model
selection,” JMLR, vol. 10, no. Feb, pp. 405–440, 2009.

[23] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” in CVPR, 2016.

[24] D. Gabor, “Theory of communication. part 1: The analysis of informa-
tion,” Journal of the Institution of Electrical Engineers-Part III: Radio
and Communication Engineering, vol. 93, no. 26, pp. 429–441, 1946.

[25] F. Glover, “Tabu search—part i,” ORSA Journal on computing, vol. 1,
no. 3, pp. 190–206, 1989.

[26] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” 1988.

[27] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in ICLR, 2015.

[28] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” arXiv preprint arXiv:1606.04435, 2016.

[29] R. Hassan, B. Cohanim, O. De Weck, and G. Venter, “A comparison
of particle swarm optimization and the genetic algorithm,” in 46th
AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and ma-
terials conference, 2005, p. 1897.

[30] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep networks,”
in CVPR, 2017.

[31] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial
attacks with limited queries and information,” in ICML, 2018, pp. 2137–
2146.

[32] L. Jiang, X. Ma, S. Chen, J. Bailey, and Y.-G. Jiang, “Black-box
adversarial attacks on video recognition models,” in MM, 2019, pp. 864–
872.

[33] N. Kalbo, Y. Mirsky, A. Shabtai, and Y. Elovici, “The security of ip-
based video surveillance systems,” Sensors, vol. 20, no. 17, 2020.

[34] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. Li,
“Large-scale video classification with convolutional neural networks,”
in CVPR, 2014, pp. 1725–1732.

[35] M. S. Khandare and A. Mahajan, “Mobile monitoring system for smart
home,” in 2010 3rd International Conference on Emerging Trends in
Engineering and Technology. IEEE, 2010, pp. 848–852.

[36] H. Kuehne, H. Jhuang, E. Garrote, T. A. Poggio, and T. Serre, “HMDB:
A large video database for human motion recognition,” in ICCV, 2011,
pp. 2556–2563.

[37] A. Kumar, A. Levine, T. Goldstein, and S. Feizi, “Curse of dimensional-
ity on randomized smoothing for certifiable robustness,” in ICML, 2020,
pp. 5458–5467.

[38] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[39] A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D. S. Ebert,
J. P. Lewis, K. Perlin, and M. Zwicker, “A survey of procedural noise
functions,” in Computer Graphics Forum, 2010, pp. 2579–2600.

[40] A. Lagae, S. Lefebvre, G. Drettakis, and P. Dutré, “Procedural noise
using sparse gabor convolution,” ACM Trans. Graph., vol. 28, no. 3,
p. 54, 2009.

[41] M. Lécuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” in IEEE
S&P, 2019, pp. 656–672.

[42] J. Li, S. Ji, T. Du, B. Li, and T. Wang, “Textbugger: Generating
adversarial text against real-world applications,” in NDSS, 2019.

[43] S. Li, A. Neupane, S. Paul, C. Song, S. V. Krishnamurthy, A. K. Roy-
Chowdhury, and A. Swami, “Stealthy adversarial perturbations against
real-time video classification systems,” in NDSS, 2019.

[44] Z. Li, Y. Wu, J. Liu, Y. Chen, and B. Yuan, “Advpulse: Universal,
synchronization-free, and targeted audio adversarial attacks via subsec-
ond perturbations,” in CCS, 2020, p. 1121–1134.

[45] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense against
adversarial attacks using high-level representation guided denoiser,” in
CVPR, 2018, pp. 1778–1787.

[46] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable
adversarial examples and black-box attacks,” in ICLR, 2017.

[47] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in ICLR, 2018.

[48] D. Meng and H. Chen, “Magnet: a two-pronged defense against adver-
sarial examples,” in CCS, 2017, pp. 135–147.

[49] Y. Mirsky, T. Mahler, I. Shelef, and Y. Elovici, “Ct-gan: Malicious
tampering of 3d medical imagery using deep learning,” in USENIX
Security, 2019, pp. 461–478.

[50] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal
adversarial perturbations,” in CVPR, 2017, pp. 86–94.

[51] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple
and accurate method to fool deep neural networks,” in CVPR, 2016,
pp. 2574–2582.

[52] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-road
obstacle avoidance through end-to-end learning,” in NeurIPS, 2006, pp.
739–746.

[53] J. Obermaier and M. Hutle, “Analyzing the security and privacy of
cloud-based video surveillance systems,” in Proceedings of the 2nd ACM
international workshop on IoT privacy, trust, and security, 2016.

[54] T. Onishi, T. Motoyoshi, Y. Suga, H. Mori, and T. Ogata, “End-to-end
learning method for self-driving cars with trajectory recovery using a
path-following function,” in IJCNN, 2019, pp. 1–8.

[55] T. Pang, K. Xu, and J. Zhu, “Mixup inference: Better exploiting mixup
to defend adversarial attacks,” in ICLR, 2020.

[56] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
ASIA CCS, 2017, pp. 506–519.

[57] K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph.,
vol. 19, no. 3, p. 287–296, Jul. 1985.

[58] K. Perlin, “Improving noise,” ACM Trans. Graph., 2002, p. 681–682.
[59] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel

for large-scale image classification,” in ECCV, 2010, pp. 143–156.
[60] V. Rausch, A. Hansen, E. Solowjow, C. Liu, E. Kreuzer, and J. K.

Hedrick, “Learning a deep neural net policy for end-to-end control of
autonomous vehicles,” in ACC, 2017, pp. 4914–4919.

[61] K. Roth, Y. Kilcher, and T. Hofmann, “The odds are odd: A statistical
test for detecting adversarial examples,” in ICML, 2019, pp. 5498–5507.

[62] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S.
Davis, G. Taylor, and T. Goldstein, “Adversarial training for free!” in
NeurIPS, 2019.

[63] A. Shafahi, M. Najibi, Z. Xu, J. Dickerson, L. S. Davis, and T. Goldstein,
“Universal adversarial training,” in AAAI, 2020, pp. 5636–5643.

[64] M. Shen, Z. Liao, L. Zhu, K. Xu, and X. Du, “Vla: A practical visible
light-based attack on face recognition systems in physical world,” Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 3, no. 3, 2019.

[65] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in NeurIPS, 2014, pp. 568–576.

[66] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of
101 human actions classes from videos in the wild,” CoRR, vol.
abs/1212.0402, 2012.

[67] S. Srivastava, “amazon-surveillance-cameras-infected-with-malware,”
2016. [Online]. Available: https://www.zdnet.com/article/amazon-
surveillance-cameras-infected-with-malware/

[68] “Shodan report,” 2016, https://www.shodan.io/report/UMAja2tN
[69] W. Sultani, C. Chen, and M. Shah, “Real-world anomaly detection in

surveillance videos,” in CVPR, 2018, pp. 6479–6488.
[70] J. Sun, B. Liu, and Y. Hong, “LogBug: Generating Adversarial System

Logs in Real Time,” in CIKM, 2020, pp. 2229–2232.
[71] F. Suya, J. Chi, D. Evans, and Y. Tian, “Hybrid batch attacks: Find-

ing black-box adversarial examples with limited queries,” in USENIX
Security, 2020, pp. 1327–1344.

[72] D. A. Szafir, “Modeling color difference for visualization design,” IEEE
TVCG, vol. 24, no. 1, pp. 392–401, 2017.

[73] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in ICLR, 2014.

[74] F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks
to adversarial example defenses,” in NeurIPS, 2020.

[75] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,” in
ICLR, 2018.

[76] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3d convolutional networks,” in
ICCV, 2015, pp. 4489–4497.

[77] D. Tran, H. Wang, L. Torresani, and M. Feiszli, “Video classifi-
cation with channel-separated convolutional networks,” CoRR, vol.
abs/1904.02811, 2019.

[78] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A
closer look at spatiotemporal convolutions for action recognition,” in
CVPR, 2018, pp. 6450–6459.

[79] F. Van Den Bergh et al., “An analysis of particle swarm optimizers,”
Ph.D. dissertation, University of Pretoria, 2007.

[80] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated
annealing: Theory and applications. Springer, 1987, pp. 7–15.

[81] H. Wang, S. Xie, and Y. Hong, “VideoDP: A Flexible Platform for Video
Analytics with Differential Privacy,” in PETS, 2020, pp. 277–296.

[82] X. Wei, J. Zhu, S. Yuan, and H. Su, “Sparse adversarial perturbations
for videos,” in AAAI, vol. 33, 2019, pp. 8973–8980.

[83] Z. Wei, J. Chen, X. Wei, L. Jiang, T.-S. Chua, F. Zhou, and Y.-G. Jiang,
“Heuristic black-box adversarial attacks on video recognition models,”
in AAAI, 2020.

[84] E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in ICML, 2018.

[85] C. Xiao, R. Deng, B. Li, T. Lee, B. Edwards, J. Yi, D. Song, M. Liu,
and I. Molloy, “Advit: Adversarial frames identifier based on temporal
consistency in videos,” in ICCV, 2019, pp. 3968–3977.

[86] C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille,
“Improving transferability of adversarial examples with input diversity,”
in ICCV, 2019, pp. 2730–2739.

[87] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” in NDSS, 2018.

[88] J. Yang, P. Ren, D. Zhang, D. Chen, F. Wen, H. Li, and G. Hua, “Neural
aggregation network for video face recognition,” in CVPR, 2017, pp.
5216–5225.

[89] X. Yin, S. Kolouri, and G. K. Rohde, “Adversarial example detection and
classification with asymmetrical adversarial training,” in ICLR, 2020.

[90] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in NeurIPS, 2014, pp. 3320–3328.

[91] Z. Zhou, D. Tang, X. Wang, W. Han, X. Liu, and K. Zhang, “Invisible
mask: Practical attacks on face recognition with infrared,” 2018.

APPENDIX

A. Additional Experimental Results

TABLE XII. Transferability: transfer rate (TR) on HMDB51
from surrogate model fsrg to target model ftar

Noise
fsrg
ftar C3D I3D DN LRCN TSN

U3Dp

C3D – 92.0% 89.5% 83.2% 84.6%
I3D 87.6% – 91.2% 82.5% 81.4%
DN 82.3% 81.6% – 84.5% 80.5%

LRCN 85.0% 85.4% 95.3% – 85.6%
TSN 82.5% 85.7% 88.0% 84.2% –

U3Dg

C3D – 86.6% 96.4% 81.4% 83.1%
I3D 92.2% – 96.0% 88.3% 84.5%
DN 82.0% 84.8% – 87.5% 82.3%

LRCN 85.6% 83.4% 88.2% – 82.9%
TSN 84.6% 81.2% 86.1% 84.2% –

TABLE XIII. Transferability: transfer rate (TR) on UCF Crime
from surrogate model fsrg to target model ftar

Noise
fsrg
ftar C3D I3D DN LRCN TSN

U3Dp

C3D – 91.5% 94.1% 92.3% 89.0%
I3D 90.7% – 94.5% 90.2% 89.1%
DN 87.2% 87.4% – 88.2% 90.7%

LRCN 92.8% 87.2% 92.4% – 86.1%
TSN 91.7% 90.2% 93.4% 91.7% –

U3Dg

C3D – 87.0% 93.2% 86.3% 85.3%
I3D 91.3% – 93.4% 90.2% 89.0%
DN 89.3% 88.4% – 93.4% 89.5%

LRCN 93.2% 90.8% 91.2% – 90.4%
TSN 89.4% 88.6% 92.4% 89.5% –

TABLE XIV. Universality (success rate (SR); I3D surrogate).

Noise
X

Y HMDB51 UCF101 UCF Crime

HMDB51 89.6% 80.4% 87.1%
U3Dp UCF101 83.5% 86.3% 93.4%

UCF Crime 80.1% 82.4% 96.0%
HMDB51 86.3% 82.9% 90.5%

U3Dg UCF101 82.5% 86.7% 91.7%
UCF Crime 80.1% 84.3% 98.5%

First, Table XII and XIII show additional results for cross-
model transferability tested on the HMDB51 and UCF Crime
datasets. Table XIV show the results for cross-data universality

by considering I3D as the surrogate DNN to learn the U3D.
All the results have confirmed the high transferability and
universality of U3D (similar to the results in Section V-C).

TABLE XV. Adversarial training on UCF Crime

Model Defense Clean U3Dp U3Dg
ACR (SR) (SR)

C3D
Normal 92.5% 91.6% 90.7%

UAT 84.5% 74.7% 75.3%
U3D-AT 82.4% 62.7% 65.3%

I3D
Normal 95.3% 88.4% 91.2%

UAT 89.4% 76.2% 80.5%
U3D-AT 86.2% 58.6% 59.5%

TABLE XVI. Randomized smoothing on UCF Crime

Model n Clean U3Dp U3Dg
ACR ACR Radius ACR Radius

C3D 100 70.6% 26.3% 0.26 25.1% 0.22
1000 71.2% 30.2% 0.21 32.4% 0.23

I3D 100 74.6% 28.3% 0.23 25.6% 0.20
1000 75.1% 29.2% 0.25 26.4% 0.18

TABLE XVII. Amortized runtime (each frame) for attacking
the streaming video on UCF Crime (in Seconds)

Video Name Codec Inject Runtime
Arson 0.010 0.004 0.014

Assault 0.010 0.005 0.015
Explosion 0.009 0.007 0.016
Fighting 0.009 0.006 0.015
Shooting 0.010 0.004 0.014

Second, Table XV and XVI present the additional results for
U3D against defense schemes. All the results have confirmed
the high attack performance even against defense schemes
(similar to the results in Section V-F). Table XVII presents
the amortized runtime (each frame) for attacking the streaming
video (i.e., five videos in the UCF Crime).

B. Particle Swarm Optimization for U3D Parameters

PSO was first developed for social behavior simulation [16],
[21], [29], [79] and then commonly applied to optimization,
e.g., model selection [22]. Moreover, PSO can be approxi-
mated for the optimization with a high-dimensional intense
search space and numerous local optimal.

To utilize PSO to optimize U3D perturbations, we first
define the fitness function A(f, V,N (T ; ~si)), detailed in Algo-
rithm 1. Then we aim to find the optimal particle position (i.e.,
U3D parameters value) for such fitness function. Algorithm
2 demonstrates the detailed process of U3D optimization.
At the beginning, a swarm of m particles denoted as S =
{ ~x1k, ~x2k, . . . , ~xmk} will be initialized. For each iteration k,
each particle i holds a position ~xi

k = [xki,1, x
k
i,2, . . . , x

k
i,d],

where d is the dimension of the searching parameter space and
xi,j , j ∈ [1, d] indicates the parameter value of jth dimension.
To update its position ~xi

k+1 = ~xi
k + ~vi

k, each particle i
compute with its current velocity ~vi

k = [vki,1, v
k
i,2, . . . , v

k
i,d] as

the following equations:

vk+1
i,j = W ∗vki,j+c1∗r1(si,j−xki,j)+c2∗r2(sg,j−xki,j) (17)

xk+1
i,j = vki,j + xki,j (18)

where (1) si,j is the value for kth dimension of the best
solution searched via particle i so far; Si = [si,j], j ∈ [1, d]
is called personal best; (2) sg,j is the value for kth dimension
of the best solution in the Swarm S so far; Sg = [sg,j], j ∈
[1, d] is called leader. Note that every particle can use the Si
(local information) and Sg (social information) to iteratively
update its velocity and position. c1, c2 ∈ R are weights for
quantifying the impacts of the personal and social best solution
correspondingly; r1, r2 is uniformly distributed values of range
[0, 1] which represents of randomness in the search. W =
{Ws,Wf ,We} is called inertia weight, which can control the
impacts of the previous velocity on the current iteration, and
then influence searching ability. W will be decreased with
every iteration via the following equation: W = W − Ws−We

k∗Wf
,

where W is initialized as Ws and ended as We.

Algorithm 1: Attack Objective A(f, V,N (T ;~s))

Input: public DNN model f , public video dataset V , current
U3D noise parameters ~s, sample times I

Output: Output value r of fitness function
1 Initialize r ← 0
2 ξ ← Np
3 for vi ∈ V do
4 t← 0

// Sample I times
5 for i ∈ I do
6 τ ← U [0, T − 1]
7 t← t+D(vi, vi + Trans(ξ, τ); d)
8 r ← r + t

I
9 r ← r

|V |
10 return r

Algorithm 2: NoiseOpt(f , V)
Input: U3D function N (·), DNN model f , video dataset V ,

`∞-norm bound ε, search space X for U3D
perturbation parameter S; PSO model: inertia weight
W = {Ws,Wf ,We}, individual/social weights
c1, c2, swarm size m, maximum iteration number h

Output: optimal parameter set S∗
// each node has ||(N (T ; ~si))||∞ ≤ ε

1 Xsample ← randomly sample m points from X
2 for each ~si ∈ Xsample do
3 Call Algorithm 1: A(f, V,N (T ; ~si))
4 Set personal best of each particle Si ← ~si
5 Find the leader Sgb
6 Initialize ~sik ← ~si, i ∈ [1,m]
7 while k = 1 ≤ h do
8 for i ∈ [1,m] do
9 Update velocity and position per Equation 17, 18

10 Repeat Line 2-4
11 Update Sgb if leader changes
12 Update inertia weight W
13 return Sgb as S∗

(a) U3Dp

(b) U3Dg

(c) C-DUP [43]

Fig. 5: Some selected frames in videos corresponding to “shooting” and “fighting”: (a) perturbed by U3Dp, (b) perturbed by
U3Dg and (c) perturbed by C-DUP [43]. Both U3Dp and U3Dg show good human-imperceptibility compared with C-DUP.

C. Comparison of PSO with Other Meta-Heuristic Algorithms

We use the C3D model as the public DNN model and
randomly sample 500 videos from the HMDB51 dataset as the
public dataset. The ε is set as a small bound 8. The parameter
of the normalization α is set to 0.5. Table XVIII shows the
specified value ranges of the parameters for U3Dp and U3Dg ,
respectively. As for PSO, we set up the parameters as follows:
(1) swarm size m = 20; (2) individual and social weight
c1 = c2 = 2; (3) inertia weight W = {1.2, 0.5, 0.4}; (4)
maximum iteration times h = 40.

TABLE XVIII. U3D parameters setting

U3Dp U3Dg
λx, λy, λt Λ φ K σ F
[2, 180] [1, 5] [1, 60] [1, 5] [1, 20] [0.25, 20]

Then, we compare PSO with genetic algorithm (GA) [29],
simulated annealing (SA) [80], and Tabu search (TS) [25]
on tuning the U3D parameters. For GA, we set the number
of chromosomes to be 20 (same as the number of PSO’s
particles) with the combination of tournament selection with
a 50% uniform crossover probability [29] and mutation rate
0.5%. For SA, we set the initial temperature is 5000, and
cooling factor 0.99. For TS, the tabu list size is set to 4.
We implement the four methods for both U3Dp and U3Dg
on the 500 videos, which are repeated 5 times and averaged
for the final results. Table XIX illustrates their experimental
results. We can observe that the PSO-based method is efficient,
and also slightly outperforms GA, SA and TS on attack
performance, e.g., PSO improves 1.7% over GA and 3.3% over
SA for U3Dp. Besides, the MSE of both U3D perturbations
are below 20 (very minor distortion out of 2552 in the scale).

D. Discussions

U3D Stealthiness. Stealthiness of adversarial attacks can be
reflected with two properties: (1) human-imperceptibility with

TABLE XIX. PSO vs. GA, SA and TS (learning U3D param-
eters offline) for U3Dp and U3Dg (success rate “SR”).

Method U3Dp U3Dg
Time (s) SR MSE Time (s) SR MSE

PSO 847 88.7% 15.3 789 89.6% 16.0
GA 1,481 87.0% 14.6 1,164 89.4% 17.8
SA 1,976 85.4% 16.9 2,267 87.7% 13.7
TS 1,039 86.5% 17.5 822 88.1% 15.8

minor perturbations; (2) misclassified outputs are not always
rare. U3D can ensure much better human-imperceptibility (as
validated in Section V), compared to the white-box attack C-
DUP [43]. For the latter one, as a black-box attack, adversaries
of U3D do not know the class labels and their distributions
(different from the white-box attack [43]), and inject the
U3D perturbations to misclassify the perturbed videos to
“random class labels”. If the adversaries prefer to further
improve stealthiness by “supervising” such misclassification to
“common class labels” in the attack, they can query the target
DNN model (similar to the traditional black-box attack) to
retrieve some class labels and their distribution, and then adjust
the objective function/constraint(s) in the U3D parameters
learning to tune the U3D perturbation towards such goal. This
also applies to other DNN-based video recognition systems,
such as anomaly detection. We will explore these in the future.

Potential Advanced Attacks. Our U3D obtains good trans-
ferability to attack the video recognition systems in the black-
box setting. To further improve the attack performance, we
can utilize the query-based black-box attack to determine the
attack gradient direction with a limited number of queries [12],
[13]. We can also improve the U3D attack via learning the
U3D perturbations on an ensemble of diverse models [75] or
diverse inputs [86]. In summary, the adversarial attack can be
more adaptive in the arms race.

Attacking New and Future DNNs. To date, besides the

Fig. 6: The C3D architecture [76] consists of 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by a
softmax output layer. All 3D convolution kernels are 3 ×3 ×3 with a stride of 1 in both spatial and temporal dimensions. The
number of filters is denoted in each box [76]. The 3D pooling layers are represented as pool1 to pool5. All pooling kernels
are 2 × 2 × 2, except for pool1, which is 1 × 2 × 2. Each fully connected layer has 4,096 output units.

commonly-used C3D [76] and I3D [9], new DNN models built
on the 3D spatio-temporal convolutions are proposed all the
time, such as R(2+1)D [78], and CSN [77]. For example, the
recently proposed Channel Separated Convolutional Network
(CSN) [77] factorizes 3D convolution via separating spatio-
temporal and channel interactions, which improves both the
accuracy and computation efficiency. Considering that our
U3D perturbations work directly on spatio-temporal features
across consecutive frames, we anticipate that those new spatio-
temporal features may also be vulnerable to U3D perturba-
tions. We plan to experimentally validate such vulnerabilities
(in case of U3D perturbations) in the newly proposed and
future DNN models as soon as they have been deployed.

Attacking Image Classifiers. It is straightforward to down-
grade our U3D attack to DNN models on images. Since the
image can be considered as a 1-frame video. We only need to
fix t to 1 to generate the 2-D (frame) perturbation.

Physical U3D Attack. The U3D attack can be extended to the
physical adversarial attack in real world [38]. For example,
our U3D perturbations can be integrated with the visual
light technology (e.g., smart LED) [64], [91], with which
the U3D perturbations can be projected (realizing the U3D
perturbations with more programmable light building block)
on the scenes inconspicuously. In addition, with computer
graphic primitives, our U3D perturbations look visually like
natural textures, then the manipulated light will not easily be
discerned by humans. We will explore this in the future.

E. Video Recognition Systems and Models

1) Summary of Difference among Video DNN Models: The
five DNN models (C3D, I3D, DN, LRCN, and TSN) in the
transferability evaluations are very different.

First, C3D and I3D are using 3D convolution (3DConv)
kernels, while DN, LRCN, and TSN are using 2D convolu-
tion kernels. Therefore, C3D and I3D can naturally capture
temporal information in their convolution operations, while
DN, LRCN, and TSN require additional components to capture
the temporal information. Second, C3D is a shallow network
with only 8 convolution layers, and its convolution kernel
sizes are predefined. Although I3D is also based on the 3D
(spatio-temporal) feature extraction, it requires another extra
stream of optical flow information, which is also very different
from the C3D in the model architecture. Furthermore, other
three models (DN, LRCN, and TSN) have totally different
architectures. DN is purely based on 2D convolution networks
for images. It uses 2D convolution to extract features from

each video frame, and then fuses features from multiple
frames. LRCN also uses a 2D convolution network, but it
uses a long short-term memory (LSTM) to fuse features from
multiple frames. TSN uses two convolution networks, one
for video frames, and the other one for optical information
computed from frames.

2) C3D Network: Figure 6 shows the detailed structure and
the characteristics of the C3D network.

3) DNN-based Anomaly Detection: Figure 7 illustrates a
video anomaly detection system with the I3D model (by
integrating additional optical flow information into the spatio-
temporal features). Figure 8 illustrates the curve of anomaly
scores inferred by the I3D model in time series. At first, the
score is close to 0 for the normal scenery. Then, it increases
as the explosion occurs to report such anomalous event (with
a threshold).

……

32 temporal segments

Normal videos

1x1x1
conv

3x3x3
conv

3x3x3
conv

1x1x1
conv

1x1x1
conv

1x1x1
conv

3x3x3
maxpool

concat

An
om

al
y
Sc
or
e

1x1x1 conv

1x1x1 conv

3x3x3maxpool

1x1x1 conv

1x1x1 conv

3x3x3 conv

3x3x3 conv

co
nc
at

in
pu

t

ou
tp
ut

Inception block

…

t

a long video
divided into
32 segments

segment
i-th

…
…

Segment with
the highest
anomaly score

Video
anomalous
or normal?I3

D
Co

nv

Po
ol … fc
6

fc
7

I3
D
Co

nv

I3D

…
…

Fig. 7: Anomaly detection [69] with I3D.

Fig. 8: Video anomaly detection system for detecting an “Ex-
plosion” event. The score increases from 0 (normal scenery)
to high (explosion).

