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Stealthy 3D Poisoning Attack on Video
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Abstract—Deep Neural Networks (DNNs) have been proven to be vulnerable to poisoning attacks that poison the training data with a
trigger pattern and thus manipulate the trained model to misclassify data instances. In this paper, we study the poisoning attacks on
video recognition models. We reveal the major limitations of the state-of-the-art poisoning attacks on stealthiness and attack
effectiveness: (i) the frame-by-frame poisoning trigger may cause temporal inconsistency among the video frames which can be
leveraged to easily detect the attack; (ii) the feature collision-based method for crafting poisoned videos could lack both generalization
and transferability. To address these limitations, we propose a novel stealthy and efficient poisoning attack framework which has the
following advantages: (i) we design a 3D poisoning trigger as natural-like textures, which can maintain temporal consistency and
human-imperceptibility; (ii) we formulate an ensemble attack oracle as the optimization objective to craft poisoned videos, which could
construct convex polytope-like adversarial subspaces in the feature space and thus gain more generalization; (iii) our poisoning attack
can be readily extended to the black-box setting with good transferability. We have experimentally validated the effectiveness of our
attack (e.g., up to 95% success rates with only less than ∼ 0.5% poisoned dataset).

Index Terms—Poisoning Attack, Video Recognition, Machine Learning Security

✦

1 INTRODUCTION

D EEP neural networks (DNNs) have been extensively
studied in different domains, especially video recog-

nition, such as self-driving [1], action recognition [2] and
anomaly detection [3]. However, DNNs have been proven
to be vulnerable to adversarial attacks. Evasion attacks [4]
were first proposed to craft adversarial examples to deviate
the learning models [5], [6], [7], [8], [9], [10].

Different from the aforementioned evasion attacks dur-
ing inference phase, data poisoning attacks [11], [12], [13],
[14], [15], [16] target the training phase of machine learn-
ing models, where the adversaries aim to inject poisoned
data instances into the training dataset and thus degrade
the performance of the model trained with such poisoned
dataset. For example, a classic form of data poisoning at-
tacks [12], [15] aims to enforce the trained model to mis-
classify a particular set of inputs. Recently, another form of
poisoning attacks [11], [16], [17], [18], [19] can pose a more
sophisticated threat to the DNN models, i.e., the attacker
can inject the poisoned data generated with a small trigger
pattern and then set up a link between the trigger with a
target label (installing backdoor). Thus, the trained DNN
model on the poisoned data will consistently misclassify
the data involving the trigger to the target label while
still making correct classification on the clean data. For
example, a sticker on the road sign can effectively change
the classification result from “stop sign” to “speed limit”
[17]. However, the sticker can be easily detected since it
is highly human-perceptible. Turner et al. [16] proposes a
clean-label poisoning attack with Generative Adversarial
Network (GAN) without changing the label of poisoned
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data, which improves the stealthiness of the attack. That
is, such clean-label poisoning attacks will not degrade the
test accuracy given the normal data, which can be harder
to be detected by evaluating the overall performance of the
trained model on a clean holdout test dataset.

Fig. 1. A poisoned video example “Apply EyeMakeup” with the poisoning
trigger (the squares of pixels leftside): recent work [19] (top) vs. ours
(bottom). Our 3D poisoning trigger is more human-imperceptible as
nature-like textures compared to [19]’s trigger of highly-deviated pixels.

While most existing data poisoning attacks focus on
images [16], [17], [18], there are very limited works on DNN-
based video models. It is worth noting that Zhao et al. [19]
first explores the poisoning attack on the video models by
extending a conventional image attack [16] to achieve high
performance, which still has the major flaws on poisoning
video models as following: (i) the patched frame-by-frame
poisoning triggers [19] could jeopardize the temporal con-
sistency in videos such that the poisoning attack might be
easily detected, which can degrade the attack stealthiness
and thus cause attack failure in the testing. We have experi-
mentally shown such poisoned instances with trigger can be
accurately detected by the state-of-the-art detection scheme
on temporal consistency, AdvIT [20]; (ii) most poisoning
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attacks rely on feature collision [18], [19] with input-specific
data samples by one-to-one mapping (similar to the targeted
evasion attack [7]), which could lack generalization to the
unseen data even if injecting multiple poisoned data [19];
(iii) under the black-box setting, poisoning attacks may not
work well by attacking the substitute model since the tar-
get model can have very different classification boundaries
(low transferability). These could greatly degrade the attack
performance.

To address such limitations, we propose a novel stealthy
and effective poisoning attack framework against the video
recognition DNN models. Specifically, we first design a 3-
dimensional (3D) poisoning trigger with temporal consis-
tency based on a computer graphic primitive for stealthi-
ness, which obtains good human-imperceptibility as natural-
like textures. Figure 1 demonstrates an example of our
3D poisoning trigger compared with the state-of-the-art
[19] on poisoning videos. Second, we craft the poisoned
videos with the integration of an ensemble attack oracle
(as the attack optimization objective), which formulates a
convex polytope to cover the targeted videos in feature
representation space (to provide more attack generalization
and flexibility). Third, our proposed attack can craft more
transferable poisoned videos by explicitly optimizing the
attack in the intermediate layer feature representation of a
video DNN model, which works in the black-box setting.
Therefore, our main contributions are summarized as below:

• To our best knowledge, we are the first to reveal the
limitations of state-of-the-art video poisoning attack
in both stealthiness and attack performance.

• We design novel 3D poisoning triggers with a clas-
sic computer graphic primitive to ensure the attack
stealthiness, which can be easily generated (by a
few parameters) and human-imperceptible (nature-
like patterns or textures, see Figure 1).

• Based on the 3D poisoning trigger, we propose a
general attack framework, which can efficiently craft
poisoned videos by formulating an ensemble attack
oracle as objective. We further optimize the attack in
aspect of attack generalizability and transferability.

• We conduct extensive experiments to validate the
attack effectiveness and stealthiness with the bench-
mark of the previous attack methods. Besides, we
have experimentally shown that the proposed attack
can bypass various state-of-the-art defense schemes.
We also show that our 3D poisoning attack can be
readily downgraded to image domain.

The remainder of this paper is organized as follows.
Section 2 introduces some background and related work.
Section 3 and Section 4 present the preliminaries and design
goal of our attack framework, respectively. Then, we illus-
trate the detailed design of the proposed attack in Section
5. Section 6 demonstrates the experimental results. Section
7 discusses potential methods to mitigate or advance our
attack and Section 8 concludes the paper.

2 BACKGROUND AND RELATED WORK

In this section, we first review the related literature of
poisoning attack, which also includes the existing defense

mechanisms. We also briefly present the taxonomy for
DNN-based video recognition models.

2.1 Poisoning Attacks and Defenses

Poisoning Attacks. Poisoning attack injects poisoned in-
stances (generated with some specific triggers) into the
training dataset [12], [15], [16], [17], [18], [19], which can
install the particular trigger as backdoor into the DNN.
Thus, at the inference phase, the trained DNN model will
misclassify the test instances with the presence of such
trigger pattern. There are mainly two types of poisoning
attacks: (i) poison-label attack can change both the training
instances and their corresponding labels; (ii) clean-label
attack changes the training instances without changing the
labels. Poison-label attack can be mitigated by data filter
since the poisoned data (mislabeled data) visually look
different from the clean data but belonging to the same
label. For example, Gu et al. [17] first proposes the poisoning
attack on the deep learning application, BadNets, which
injects patterns (e.g., stickers) into the poisoned data and
also changes the corresponding label to the target label (as
the poison-label attack). However, the patched triggers (e.g.,
stickers) can be easily detected via filtering or humans.

To improve the stealthiness of poisoning attack, Turner
et al. [16] proposes clean-label attacks without changing
the poisoned labels, by utilizing GAN to craft the poisoned
instances for feature collision [12]. Saha et al. [18] presents
a universal optimization method to generate multiple poi-
soned instances for one specific source instance, which could
achieve relatively high success rates but still lack generaliza-
tion. Zhu et al. [15] studies the transferability of poisoning
attack and generates more transferable poisoned data based
on convex polytope. It is limited to attacking the images
without the backdoor trigger. Besides, such attack cannot be
directly applied to videos since it would be computationally
impractical to directly craft the poisoned videos due to
the two-fold optimization with additional constraints. Zhao
et al. [19] first studies the poisoning attack in the video
domain, which aims to jointly craft universal triggers and
poisoned videos with adversarial perturbations. Although
this method has shown to be effective, it has some major
flaws, e.g., temporal inconsistency aroused by the trigger,
and low transferability as depicted before.

To address the above limitations, we propose a novel
attack scheme for attacking video recognition models. Table
1 summarizes the main difference between our proposed
attack and the state-of-the-art attacks. Our attack outper-
forms them on both stealthiness and attack effectiveness
while attacking video DNN models (see the design goal in
Section 4 and experimental results in Section 6).
Defenses against Poisoning Attacks. There have been sev-
eral works which defend against the data poisoning attacks.
For instance, Steinhardt et al. [21] proposed a certified
defense scheme by constructing approximate upper bounds
on the loss across the poisoning attacks. Tran et al. [22] pro-
posed a spectral signature detection method for detecting
poisoned instances in the training dataset. They observed
that the poisoned data could be different from the clean data
in the latent DNN space, which can be used for removing
the poisoned data as outliers from the training data. Liu
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TABLE 1
Comparison of our work and existing clean-label poisoning attacks.

Turner et al. [16] Poison Frog [12] Zhu et al. [15] Hidden [18] Zhao et. al [19] Ours
Trigger Adv. Perturbation - - Rand. Pixels Deviated Pixels 3D Procedural

Backdoor ✓ ✗ ✗ ✓ ✓ ✓
Video Dom. ✗ ✗ ✗ ✗ ✓ ✓
Stealthiness ⋆⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆
Attack Effec. ⋆ ⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆

et al. [23] proposed a fine-pruning method to prune the
abnormal units to prevent the poisoning attack. Another
approach is the neural network cleanse [24], which checks
if the trained model is poisoned via reverse engineering
the poisoning triggers with the gradient information. Then,
neural cleanse uses an input filter to filter the poisoned
data using a simple technique called median absolute de-
viation. We have experimentally evaluated the resistance
of our proposed attack against such defense schemes. The
experimental results show that our attack can bypass these
defense schemes.

2.2 DNN-based Video Recognition

Well-designed DNN models, e.g., C3D [2], I3D [25], TSM
[26] and X3D [27] have been widely adopted for efficient and
accurate video recognition, such as action classification [28]
and anomaly detection [3] in surveillance systems. Start-
ing from the C3D model, the 3D convolutional networks
on learning spatio-temporal features have significantly im-
proved the performance of video recognition. Moreover,
I3D improves C3D via inflating the 2D convolution filters
(in conventional image networks) into the 3D convolution.
We will evaluate our attack on such two most representa-
tive video DNN models on two large-scale video datasets,
UCF101 [29] and HMDB51 [30] for video classification (see
details in Section 6.1).

3 ATTACK PRELIMINARIES

In this section, we first introduce the threat model, including
the attack scenario, the adversary’s knowledge/capability.
We then formulate 3D poisoning attacks with video models.

3.1 Threat Model

Attack Scenario. We consider the clean-label poisoning at-
tack [16], [18], [19] in the video domain. That is, the attacker
will generate the poisoned videos, which visually look as
the original clean data (thus keeping the clean label to
bypass the detection of the data filtering/humans). It should
be noted the attacker cannot control the labeling process
(different from the poison-label setting). To improve the
attack performance, we inject a set of poisoned videos [18],
[19] (still a very small portion of training dataset, e.g.,
0.5%). Besides, since the generation of the poisoned video
is offline, we do not consider the extra computational costs
of generating poisoning videos (as pre-attack phase).

For the victim’s model, we consider the transfer learning
setting [15], [19], [31], i.e., given a pre-trained DNN models
as feature extractor (yet kept frozen), we can finetune a linear
classifier based on to the specific applications/datasets.

Such transfer learning-based approach have been shown to
be practical and effective considering the relatively small
computation costs in various domains. For example, we
can utilize a pre-trained I3D model on kinetics-400 dataset
to extract the video features and train (fine-tune) a SVM
classifier on UCF101 dataset for action classification [25].

Attacker’s Knowledge. We consider both white-box and
black-box setting. For white-box setting, the attacker only
knows the victim’s model architecture (white-box) [18]. For
the black-box, the attacker will not have access to model’s
architecture and parameters as the black-box evasion attacks
[6]. Then, the attacker can utilize a substitute model to
craft poisoned videos to attack the victim’s model (via
transferability). In both white-box and black-box setting,
we assume that the attacker knows the training dataset for
training victim’s model (thus can generate poisoned data).

Attacker’s Capability. As depicted above, we assume that
the attacker can successfully inject a small number of well-
crafted poisoned data into the victim’s training dataset,
which follows the setting of previous works [16], [18]. This
is reasonable since the victim could obtain the training
dataset by crawling from the online resources with web
crawler. That is, the attacker only needs to put the generated
poisoned data on the internet as public resources, which
could be very likely collected by the victim. The attacker
cannot control the training process of victim’s model.

3.2 Attack Formulation

Denote the target video by vtar , and the source video by
vsrc. Given a poisoning trigger Pn and a binary mask M
(the location of patch is 1 while non-patched locations are
0), the attacker can generate a patched source video v′src by
patching the poisoning trigger Pn to the source video vsrc:

v′src = vsrc ⊙ (1−M) + Pn ⊙M (1)

where ⊙ denotes the Hadamard multiplication. We as-
sume that the patch location on all the frames in one video
are fixed, and can also be changed by modifying the binary
mask M . It should be noted that we have verified the loca-
tion of trigger will not arouse the attack results significantly.
We can always adjust the patch location accordingly to ob-
tain more visual imperceptibility (e.g., in the background).

To enable a successful poisoning attack, we will generate
a poisoned video vpoi which visually looks like the target
video vtar such that it can be labeled with the target label.
Meanwhile, the poisoned video vpoi should be similar to the
patched source video v′src in the feature representation of
a DNN model (to cause feature collision) [16], [18]. Thus,
a video instance (belonging to the source class) patched
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with the trigger can be misclassified into the target class.
Formally, the attacker can craft the poisoned video as the
following objective function:

vpoi = argmin
v

||F(v)−F(v′src)||22 + λD(v, vtar) (2)

where F(·) outputs the video features extracted by a
DNN model as feature extractor (e.g., in C3D model [2], the
output of the fc7 layer is a 4096-dimensional feature vector).
D(·) is a distance function (e.g., ∞-norm distance) to quan-
tify the distance between vpoi and vtar (the maximum pixel
change). The attack optimization consists of two terms:

1) The first term makes the feature representation of
the poisoned video F(v) close to the patched source
video F(v′src).

2) The second term ensures that vpoi looks like the
target video vtar , which is upper bounded by ϵ.

We utilize the hyperparameter λ > 0 to weigh the two
terms in the optimization. Conventionally, given one specific
pair of source and target videos, the attacker can generate
the poisoned video by solving Eq. 2 using the projected gra-
dient descent (PGD) algorithm [8]. Also, multiple poisoned
videos will be crafted to increase the success rate [18], [19].

4 ATTACK DESIGN GOALS & INSIGHTS

In this section, we will illustrate the major limitations of
current poisoning attacks and then briefly introduce our
design idea to address such limitations, respectively. Our
attack design aims to improve from the following two
aspects: 1) stealthiness; 2) attack performance.

G1: Stealthiness. In general, the stealthiness issues of poi-
soning attack with trigger mainly consist two aspects: 1)
the poisoned videos to be injected into the training set
(training phase); 2) the patched video with poisoning trigger
at the inference phase. Recall that current state-of-the-art
poisoning attacks are in clean-label setting, i.e., keeping the
original labels of poisoned instances [16], [18]. This can be
achieved by bounding D(vpoi, vtar) (in Eq. 2). However,
such clean-label setting can only solve the former stealth-
iness issue with poisoned videos, which aims to bypass
the data filtering or humans. In other words, the latter
stealthiness issue of patched videos in the inference phase
still exists, especially in video domain [19].

More specifically, the generated poisoning triggers usu-
ally consist of irregular pixels in the RGB space, which could
improve attack effectiveness to some extent, however, may
also result in temporal inconsistency across different video
frames, which can be accurately detected by the state-of-
the-art detection scheme, e.g., AdvIT [20] based on video
consistency. Besides, as shown in Figure 1, the highly-
deviated pixels in the triggers could be also discerned by
humans. Both of these could directly cause the failure of the
poisoning attack during the inference phase.

To address this, we construct a novel 3D poisoning trig-
ger based on a computer graphic primitive Procedural Noise
[32], [33], which obtains no noticeable directional artifacts
and thus potentially fit for stealthiness of the poisoning at-
tack (detailed in Section 5.1). We have experimentally shown
that our 3D poisoning trigger can bypass the detection

scheme, e.g., AdvIT while comparing with the state-of-the-
art attacks [18], [19]. Also, we validate that our poisoning
attack obtains good human imperceptibility by both quanti-
tative measurement and human survey.

G2: High Attack Performance. As depicted earlier, we need
to improve poisoning attack on both generalization and trans-
ferability. On the one hand, conventional poisoning attacks
rely on the feature collision with the specific source/target
instances (one-to-one mapping) [18], [19], where minimiz-
ing the distance in the feature space could cause source
instances to be trapped into the boundary belonging to
target label (successful attack). However, such one-to-one
mapping for feature collision can be restrictive like the tar-
geted evasion attack [7], which could be still hard to attack
unseen data instances even they usually inject multiple poi-
soned instances (lacking generalization). On the other hand,
sometimes the attacker may not know the victim’s model (in
black-box setting), then the feature collision attack may not
work on the substitute model since the models can be very
different, e.g., feature extractor. That is, for feature collision
mapping, the small distance for one pair of source/target
instances on one model’s feature extractor may change to
larger in case of another model (low transferability).

Instead, we define an attack primitive, namely, Ensemble
Attack Oracle (Definition 1) with an ensemble of a set of
crafted poisoned videos, which aims to construct some
adversarial subspaces as convex polytope [34], [35] in the
feature space to entrap the source video (for a successful
attack) [15], [36], [37]. Different from one-to-one mapping
in feature collision (with some isolated adversarial points),
we can formulate a convex polytope with a set of poisoned
videos, which can tolerate more generalization errors and
also loose the generation of the poisoned videos. Therefore,
such adversarial subspaces by ensemble attack oracle can
lead to more transferable attack [15], [35]. Figure 2 demon-
strates the comparison of our ensemble attack oracle with
feature collision.

Furthermore, we improve the ensemble attack optimiza-
tion with two empirical yet effective calibrations. We first
leverage Empirical Risk Minimization (ERM) to obtain more
generalization. Then for the transferability, we utilize the in-
termediate layer’s features instead of the final output feature
of the video model as the feature representation, since the
explicit attacks on the intermediate layers have been shown
to be more transferable [38], [39]. We have experimentally
validated the attack effectiveness of our attack.

Source Instance
Target Instance
Patched Source Instance
Poisoned Instance

Feature Collision Mapping Ensemble Attack Oracle

One-to-One Convex Polytope

Fig. 2. Feature Collision Mapping vs. Ensemble Attack Oracle

5 ATTACK FRAMEWORK DESIGN

In this section, we elaborate the attack design for G1 and G2
(Section 4), respectively. We overview the main steps of the
proposed attack framework (shown in Figure 3).
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Fig. 3. Overview of 3D poisoning attack framework. There are four main steps: 1. the attacker crafts 3D poisoning trigger (for stealthiness); 2. with
the optimization of both generalization and transferability, the attacker formulates an ensemble attack oracle to generate a set of poisoned videos
(for attack effectiveness); 3. after the attacker injects the poisoned data to the training dataset, the victim will train the DNN model with the poisoned
dataset; 4. during the test phase, the attacker can patch the 3D trigger on the test video (to activate the poisoing attack), which can be misclassified
to the target label, e.g., “BrushTeeth” to “EyeMakeup”.

5.1 3D Poisoning Trigger Generation

Procedural noise [32], [33] refers to the algorithmically
generated visual patterns by some predefined functions,
which have been widely used in film production and video
games to enrich the visual details, e.g., texture and shading.
It is inherently continuous and parameterized to compute
[33]. Also, the noise has no noticeable directional artifacts.
All these attributes enable the procedural noise (as com-
puter graphic primitive) to be potentially fit for generating
human-imperceptible poisoning trigger (stealthiness).

To craft the 3D poisoning trigger, we utilize one common
type of procedural noise, i.e., Perlin noise [32] due to its ease
of generation and popularity. Perlin noise was first proposed
by Perlin as an image modeling primitive to produce the
natural-like textures. As a lattice gradient noise, the noise
value is determined by computing a set of 12 pseudorandom
gradient vectors at the midpoints of 12 edges of a lattice
cube, and then utilizing a quintic polynomial equation, e.g.,
q(t) = 6t5−15t4+10t3 to interpolate the pre-defined vectors
[32]. It can be computed efficiently with a few parameters.
Thus, the Perlin noise can be readily extended to construct
the 3D poisoning trigger.

More formally, we denote every pixel of 3D poisoning
trigger by its 3D coordinates (x, y, t), where (x, y), x, y ∈
[0, d − 1] are the coordinates in frame t (the trigger is a
square of d × d). Denote the Perlin noise value of each
pixel (x, y, t) by s(x, y, t). To enrich the visual details (e.g.,
natural-looking texture for stealthiness), we can aggregate
a set of octaves (the number of octaves denoted as Λ).
Besides, we define two new parameters of wavelength λs

and λt to determine the attribute of octaves along the spatial
(location) and temporal (frame), respectively. Then the noise
value at 3D coordinates (x, y, t) can be updated as:

P(x, y, t) =
Λ∑

ℓ=0

s(x · 2
ℓ

λs
, y · 2

ℓ

λs
, t · 2

ℓ

λt
) (3)

To further improve the stealthiness by enabling various
visual perturbations with different color spaces in the video,
we extend Eq. 3 with a color mapping function [40]. Then,

the noise value of (x, y, t) for the 3D poisoning trigger can
be generated as:

Pn(x, y, t) = K ∗ cmap(P(x, y, t), ϕ) (4)

where cmap(b, ϕ) = sin(b·2πϕ) is a sine color map function,
which bounds the noise with the circular property. K is the
upper bound of the 3D trigger (in ℓ∞-norm).

With such function, our attack can craft the poisoning
trigger for patching the video on-the-fly (video-agnostic), i.e.,
we can manipulate the visual texture of the trigger pattern
by adjusting the function parameters. For instance, we can
first determine the location of the poisoning trigger, e.g.,
bottom right with trigger size d = 30. Since the video
classification usually analyzes each video clip with 16 con-
secutive video frames, we can compute 3D poisoning trigger
referring to Eq. 4, t ∈ [0, 15]. Also, we can control the
style of trigger pattern by adjusting the parameter of the
color map function. Once we obtain the poisoning trigger,
we can craft the poisoned videos as depicted below. We
have experimentally validated that our 3D poisoning trigger
ensures good stealthiness and human-imperceptibility with
both quantitative and human survey study (Section 6.4).

5.2 Poisoned Video Generation
Following G2, we construct an Ensemble Attack Oracle [15],
[36], [37] to improve attack effectiveness as the following.

Definition 1 (Ensemble Attack Oracle). Given a patched
source video v′src and a set of N poisoned videos to be crafted
Vpoi = {vipoi, i ∈ [1, N ]}, then an ensemble attack oracle,
denoted as A(Vpoi, v

′
src,F(·)), is to compute the feature repre-

sentation distance between the linear combination of the poisoned
videos set Vpoi and v′src:

A(Vpoi, v
′
src,F(·)) = ||

N∑
i

wiF(vipoi)−F(v′src)||22

s.t.
N∑
i

wi = 1, wi > 0, vipoi ∈ Vpoi

With the ensemble attack oracle, we build a relaxed
connection from the poisoned videos to patched source
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video in the feature space. That is, the convex polytope
space constructed by a set of poisoned videos can obtain
more generalization than the one-to-one mapping for fea-
ture collision [18], [19]. Take Figure 2 as an example, for
feature collision-based attack, we craft the poisoned video
one by one to approach the source videos at the boundary,
which could change the classification boundary and thus
cause misclassifcation. We can observe that there are four
poisoning videos approaching the patched source video on
the lefthand side. In general, we can inject more poisoned
videos to arouse more change of the boundary (and thus
increase the attack success rate). On the righthand side, the
four poisoned videos would formalize a convex polytope
space with the ensemble attack oracle, where the source
videos can be easier to be entrapped for more attack effec-
tiveness.

More formally, we have the following proposition to
show attack correctness of such attack oracle:

Proposition 1. If A(Vpoi, v
′
src) = 0 holds, and given ∀vipoi ∈

Vpoi to be labeled with the target class c and successfully injected
into the training set, then v′src will be misclassified into the target
class c by victim’s model (as successful attack).

Proof. We denote the video linear classifier (after feature
extractor F(·)) as g(·). Since all the poisoned videos are
labeled to class c, then ∀vipoi ∈ Vpoi, we have

Pr[g(F(vipoi)) = c] > Pr[g(F(vipoi)) = c′] (5)

where c′ ̸= c is other labels. Given A(Vpoi, v
′
src) = 0, i.e.,

F(v′src) =
N∑
i

wiF(vipoi) (6)

we thus get:

Pr[g(F(v′src)) = c] =Pr[g(

N∑
i

wiF(vipoi)) = c]

=

N∑
i

wiPr[g(F(vipoi)) = c] >

N∑
i

wiPr[g(F(vipoi)) = c′]

=Pr[g(F(v′src)) = c′]

According to Proposition 1, we can craft a set of poisoned
videos to enable source videos to be entrapped in the convex
polytope in feature space. Note that such ensemble oracle
can also provide more transferable attack due to the larger
adversarial subspaces (convex polytope). Then we refor-
mulate the attack optimization function by minimizing A
(enable the source video to be covered by convex polytope):

min
Vpoi

A(Vpoi, v
′
src,F(·))

s.t. ∀vipoi ∈ Vpoi, D(vipoi, vtar) ≤ ϵ
(7)

Moreover, we can further improve our poisoning attack
with the following calibration:

(i) Attack Generalization. A simple approach to improve
the attack generalization is to attack a set of sampled data
instances (aka. universal attack [41]). Thus, to further im-
prove the attack generalization on unseen source videos (not
in the training set), we update Eq. 7 with the expectation on

a pre-selected patched source video set V ′
src by normalizing

the distance (to avoid bias).

min
Vpoi

E
v′
src∼V ′

src

A(Vpoi, v
′
src,F(·))

||F(v′src)||22
s.t. ∀i ∈ N,D(vipoi, vtar) ≤ ϵ

(8)

(ii) Transferability in Intermediate Layers. As depicted
before, we utilize the feature representations of intermediate
layers to improve attack transferability. Then, we update Eq.
8 with all the feature representations of the intermediate
layers across the entire model as below:

min
Vpoi

E
v′
src∼V ′

src

L∑
k=1

[
A(Vpoi, v

′
src,Fk)

||Fk(v′src)||22
]

s.t. ∀i ∈ N,D(vipoi, vtar) ≤ ϵ

(9)

where L is the total number of layers and Fk, k ∈ [1, L] is
the k-th layer function to output feature representations.

Since the above objective function (Eq. 9) includes one
ensemble attack oracle (the linear combination of the poi-
soned videos’ features), we utilize an efficient optimization
method to iteratively update both linear coefficients W =
{wi}, i ∈ [1, N ] and poisoned videos Vpoi = {vipoi}, i ∈
[1, N ]. Specifically, we will fix one as the constraint while
optimizing the other one. Given the set of poisoned videos
Vpoi, we use forward-backward splitting [42] (which is more
efficient than back-propagation with neural model) to com-
pute the optimal coefficients W = {wi}, i ∈ [1, N ]; then
fixing coefficients W , we update the poisoned videos for
one gradient step (due to computational efficiency). Note
that we choose Adam optimizer [43] to update the poisoned
videos since it converges more reliably. To find the optimal
poisoned videos and coefficients, we will repeat the two
sub-steps until convergence. Algorithm 1 depicts the details.

Algorithm 1: Poisoned Video Generation
Input: Target video set Vtar , Source video set Vsrc,

Feature Layer function Fk(·), k ∈ [1, L], 3D
poisoning trigger Pn

Output: N poisoned videos Vpoi = {vipoi, i ∈ [1, N ]}
1 Initialize N target videos vitar ∈ Vtar to be poisoned

Vpoi = {vipoi ← vitar, i ∈ [1, N ]}
2 Initialize wi ← 1

N
, i ∈ [1, N ]

3 while not converged do
4 Randomly sample vsrc ←s Vsrc

5 v′src = vsrc ⊙ (1−M) + Pn ⊙M
// Given Vpoi, update wi

6 for k → 1 to L do
7 C ← [Fk(v

1
poi),Fk(v

2
poi), · · · ,Fk(v

N
poi)]

8 τ ← 1
||C⊤C||2

9 update wi ← wi − τC⊤(Cwi −Fk(v
′
src))

// Given wi, update Vpoi

10 for i→ 1 to N do
11 Graident step on vipoi
12 Clip vipoi to be bounded via ||vipoi − vitar||∞ ≤ ϵ
13 return N poisoned videos

6 EXPERIMENTS

In this section, we evaluate our 3D poisoning attack on dif-
ferent video datasets and DNN models with various base-
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lines. We first introduce the experimental setup, including
the datasets, models, baselines and the attack methodology.
Then, we demonstrate the experimental results in aspects
of attack performance and stealthiness (corresponding to
our design goal G1/G2). Besides, we conduct the extensive
ablation studies to study the effect of 3D poisoning trigger
on the whole attack. We also experimentally shows that
the proposed attack can resist defense schemes. Finally, we
demonstrate that our 3D poisoning attack can be extended
to the image domain (2D).

6.1 Experimental Setup
Datasets. We evaluate the attack on two commonly used
real datasets for video recognition:

• The UCF101 [29] dataset has 13,320 video clips in 101
different action categories, e.g., archery, fencing, and
punch.

• The HMDB51 [30] dataset contains 6,766 video clips
which are categorized into 51 different actions, e.g.,
fencing, hit, gun shooting, and sword exercises.

For each dataset, we choose 80% of each category as the
training dataset, from which we choose the target cate-
gory to generate poisoned videos. Then, the remaining 20%
videos are used for the test dataset. Note that we keep
the test videos clean to evaluate model accuracy under
different model setting (poisoned or clean). For stealthiness,
a successful poisoning attack is also expected to maintain
the original model accuracy (inference) after training on
clean/poisoned training dataset, besides obtaining human-
imperceptible perturbations.
Target Models. We mainly evaluate our attack on two state-
of-the-art DNNs for video recognition, C3D [2] and I3D
[25]. For both C3D and I3D, we first train the models on
kinetic-400 dataset [44] as pre-trained models (working as
feature extractor). Then we jointly fine-tune the last layer
of models and a SVM classifier on UCF101 and HMDB51
datasets for video classification, respectively. Note that our
target models only consider the RGB inputs (modifying the
RGB values at the pixel level).
Baselines. Recall that there are very few works on the
poisoning attack in the video domain, we utilize the most
recent clean-label video attack [19] (denoted as “Baseline1”).
We also extend a recent state-of-the-art image poisoning
attack [18] to the video domain as the baseline (denoted as
“Baseline2”). In addition, we downgrade our proposed 3D
poisoning attack to 2D image and compare with Baseline2
[18]. The experimental results (Section 6.6) show that our
attack can also effectively attack in image domain.
Attack Methodology. For both UCF101 [29] and HMDB51
dataset [30], we split the dataset into 80% training set
and 20% test dataset (remain intact to evaluate the model
accuracy). Take the first group of experiments (attack effec-
tiveness) as an example, we randomly choose 50 pairs of
source and target categories from the UCF101 dataset. For
every source/target pair, we randomly select 20% videos
of source category as the source video set Vsrc, to which
we aim to attack, i.e., the source video patched with the
3D trigger during the test phase will be misclassified into
the target class. We also randomly select 20% (as poisoning

percentage, ∼ 0.2% out of the entire training set) videos
from target category as target video set Vtar . Then, we
generate the poisoned videos following Algorithm 1 (unless
explicitly specified, the parameters will keep the same). The
poisoning trigger size is 30× 30 out of the 320× 240 video
frame. we set the upper bound ϵ is 8. We use Adam [43]
with a relatively large learning rate of 0.05, and perform at
most 3000 iterations on crafting poisoned videos for each
experiment.

6.2 Attack Performance
To fully evaluate attack performance of the poisoning attack,
our evaluation include the following three aspects:

1) The impact on model performance with clean data.
2) The effectiveness (attack success rate) with various

models/datasets/attack parameters.
3) The comparison with baselines on attack success

rate/transferability.

1) Impact on model performance. As depicted above, the
poisoning attack should not impact the normal performance
of victim’s model (with poisoned training data) too much
to keep stealthy. We evaluate the accuracy of the retrained
model training with poisoned video dataset and normal
training model with the clean dataset. we report both ac-
curacy on the clean test dataset (excluded from the training
videos), with UCF101 and HMDB51 dataset, respectively.

TABLE 2
Test accuracy of the clean and poisoned models.

Dataset
Model C3D I3D

Clean Poisoned Clean Poisoned
UCF101 82.7% 81.5% 87.5% 86.3%

HMDB51 52.3% 51.1% 63.7% 62.4%

Table 2 summarizes the results for both C3D and I3D. We
can observe that the poisoned video can maintain almost
same accuracy compared with the original model, which
shows that our 3D poisoning attack will not arouse too
much change (slight drop) on the model prediction (only
fool the model while presenting with poisoning trigger).
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Fig. 4. Attack success rate vs. poisoning percentage (a) and perturba-
tion bound ϵ (b) on the UCF101 and HMDB51.

2) Attack effectiveness. We first evaluate the attack per-
formance for specific pairs of source and target video cate-
gories with the fixed poisoning trigger size and poisoning
percentage. The poisoning trigger size is 20 × 20 out of the
320× 240 video frame. We set trigger’s magnitude K = 10.
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TABLE 3
Attack performance of our 3D poisoning attack on the 9 randomly selected pairs of source/target video categories from the UCF101 dataset

against the C3D and I3D models. ϵ = 8 and poisoning percentage: 20%.

Source/ BrushTeeth/ Biking/ CliffDiving/ Fencing/ Hammering/ LongJump/ Knitting/ Punch/ Skiing/
Target ApplyEyeMake HairCut Rowing JumpingJack Archery Skiing Punch Typing Tachi
C3D 90.7% 86.2% 89.2% 89.9% 96.1% 93.4% 87.0% 94.7% 96.2%
I3D 89.1% 88.3% 93.1% 92.5% 88.3% 86.7% 93.1% 88.5% 92.0%

TABLE 4
Attack performance of our attack vs. the baseline attacks [19] and [18], denoted as “Baseline1” and “Baseline2”. Target category: “Apply

EyeMakeup”. ϵ = 8 and poisoning percentage: 30%.

Model/ Method Brush Biking CleanAnd Frisbee Horse Long Playing Punch Skiing TaichiDataset Teeth Jerk Catch Race Jump Dhol

I3D/
UCF101

Baseline1 71.0% 76.2% 87.5% 88.0% 70.2% 74.9% 91.3% 82.5% 81.7% 86.0%
Baseline2 80.5% 83.0% 86.2% 85.0% 76.2% 78.5% 84.2% 86.0% 87.4% 88.0%

Ours 95.0% 90.4% 93.6% 91.7% 89.5% 94.0% 92.3% 96.5% 94.4% 93.8%

We randomly select 20% videos from the source category
as the source video set Vsrc. We also randomly select 20%
(as poisoning percentage, ∼ 0.2% out of the entire training
set) videos from target category as target video set Vtar . The
upper bound ϵ = 8. Table 3 summarizes the results of our
3D poisoning attack applied to 9 randomly selected pairs
of source/target video categories in the UCF101 dataset
against the C3D/I3D models. We can observe that our attack
achieves high success rates on both C3D and I3D models,
even with a small poisoning percentage, which shows both
effectiveness and efficiency of our attack (note that small
poisoning percentage reflects high efficiency).

We also evaluate the attack performance with the vary-
ing poisoning percentage and perturbation bound. As
shown in Figure 4(a), the attack success rate also increases
as the poisoning percentage grows. Our poisoning attack
still achieves high success rates (>80%) even though the
poisoning percentage is only 15%. This is consistent with
the former results. From Figure 4(b), we observe that the
attack success rate at first increases and then does not
change as perturbation bound increases from 8 to 16. This is
because the craft poisoned video will be easier with a high
perturbation bound. Note the perturbations with poisoned
video are still small (8 out of 255).

3) Comparison with Baselines. Table 4 demonstrates the
results of our 3D poisoning attack applied to the UCF101
dataset (against the I3D model) comparing with the two
baselines [18], [19], denoted as “Baseline1” and “Baseline2”.
We set “Apply EyeMakeup” as the target category, and the
source categories (e.g., “biking”) as [19]. The trigger size is
20× 20 and the poisoning percentage is 30%.

As shown in Table 4, our attack achieves high suc-
cess rates (>89%). For example, our attack can achieve
95.0% success rate on the source category of “Brush Teeth”
and 90.4% on the “Biking” while Baseline1 only achieves
71.0%(<95.0%) and 76.2%(<90.4%) on such two categories,
respectively (the third and forth columns). Moreover, com-
paring the remaining results, we can observe that our 3D
poisoning attack can perform much better than both base-
lines. Such results are reasonable since our attack obtains
good attack generalization for crafting poisoned videos.
Attack Transferability. For poisoning attack, we refer to
the tranferability of poisoned data to be applied to another

model. Then we evaluate the transferability of our attack
compared with baselines (the same notations as above).
Specifically, we choose one model (e.g., C3D) as substitute
to generate poisoned videos, and we evaluate attack success
rate on another model (e.g., I3D) trained with the poisoned
videos, and vice versa. Figure 4(b) summarizes the overall
results. The results show that our poisoning attack obtains
high transferability across different models while the base-
lines lack such transferability (no more than 12% success
rate). For example, our attack can achieve 50.5% success
rate while Baseline1 only 8.6% on UCF101 dataset. Such
results are reasonable. Considering the conventional poi-
soning attacks focus on the feature collision [18], [19] with
fixed feature extractor function, the poisoning attack only
obtain less transferability (the feature extractor of different
models can be different, i.e., one successful crafted poisoned
video for one feature extractor may not work for another).
On the contrary, our attack can craft the poisoned videos
(ensured by Eq. 9) which obtain good generalization and
transferability. This also conforms with the previous results.
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Fig. 5. Attack transferability of our attack vs. baselines.

Computational Overheads. Table 5 demonstrates the av-
erage running time for crafting 10 poisoned videos for 8
randomly selected pairs of source/target category in the
UCF101 dataset. From the table, we can see that the average
running time for one videos is around 1 minute at most.
Considering our poisoning attack only injects very small
number of poisoned videos, the computation overhead for
crafting poisoned video is tolerable.
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TABLE 5
Average runtime for crafting poisoned videos (sec).

Biking/ CliffDiving/ Fencing/ Hammering/
HairCut Rowin JumpingJack Archery

35 39 28 62
LongJump/ Knitting/ Punch/ Skiing/

SKiing Punch Typing Tachi
47 35 40 32

6.3 Attack Stealthiness
Recall that we reveal stealthiness issue of current poisoning
attacks at inference phase can be caused by the highly-
deviated poisoning trigger. That is, the videos patched
with poisoned trigger can be easily identified by human
(visual impact) or detection schemes. Thus we evaluate the
stealthiness of our attack on the following aspects. For visual
impact, we conduct both quantitative and human study. We
adopt the state-of-the-art detection scheme for detecting the
poisoning trigger.

1) Quantitative perceptual metric, i.e., SSIM [45].
2) Human-imperceptibility survey study.
3) Video poisoning detection, i.e., AdvIT [20].

1) SSIM. Structural Similarity (SSIM) is a perceptual metric
to quantify the visibility of errors between a distorted image
and the original image based on the degradation of struc-
tural information [45]. The range of SSIM is (0, 1]. A higher
SSIM value indicates a better quality of the distorted image.
Then we can utilize SSIM to quantify the visual impact of
poisoning trigger. We choose the average SSIM for all the
frames of one video as the SSIM of the video. Recall that
our poisoning trigger is upper bounded by K (Equation 4).
We set K as {5, 8, 10, 12}. Next, we randomly choose 100
poisoned video with one 3D trigger from each category, and
average the SSIM as the final result.

TABLE 6
Average SSIM of 100 poisoned videos with varying K.

K 5 8 10 12
SSIM 0.997 0.994 0.986 0.984

In Table 6, the SSIM of the videos is very close to 1,
which shows that the 3D poisoning trigger rarely affects the
visual information. Thus, the attacker can simply adjust the
parameters of the poisoning trigger function (e.g., K) with
no significant visual changes in the poisoning attack. Note
we also conduct extensive ablation study of 3D poisoning
trigger in Section 6.4.
2) Human study. We conducted a human survey study to
evaluate whether our poisoning attack could cause visual
effect to humans (with the IRB exempt approval).

For the setup of study, we first generate the videos
(including original videos, patched videos with trigger)
by our attack. Specifically, we randomly pick 500 videos
from the UCF101 and HMDB51 datasets. To avoid bias on
the distribution of data samples, we first randomly choose
250 videos to generate 250 pairs of videos (the poisoned
videos and original clean videos), and the remaining for
250 pairs of clean videos and their duplicates. Then we
distribute an online survey to 50 anonymous students (not

record any personal information, e.g., major, age or gender),
which ask each participant to annotate 10 pairs of videos as
(“visual difference” or “no visual difference”). Finally, we
received 490 valid annotations of video pairs (49 students
have submitted their results), including 244 poisoned pairs.
Figure 6 demonstrates the results (left-side). We found that
97.5% (238) out of such 244 poisoned videos are annotated
as “no visual difference”, while only 2.5% are identified (as
“visual difference”). There also exist 8 annotations identified
as “visual difference” in the remaining 246 pairs of original
videos and their duplicates.
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Fig. 6. Results of human survey on our attack vs. baseline [19].

We also repeat the same group of study for baseline
attack [19] but selecting different videos from the dataset,
which aims to avoid the connection with the previous study
for our attack. That is, the previous annotation of our attack
will enable the participants to have prior knowledge and
then make biased annotation on the same pair of videos
for baseline attack (vice versa). From Figure 6, we observe
that 63.8% (157 out of 246 valid poisoned videos) are
identified by the same group of participants. All the above
results have indicated that our attack achieve high human-
imperceptibility (significantly better than the baseline [19]).

Figure 10 gives two example pairs of source and tar-
get videos in categories “PlayingDhol” and “Apply Eye-
Makeup”. Due to strictly bound perturbations, the poisoned
target video is visually similar to the target video. The
patched source video with 3D poisoning trigger is also very
similar to the clean source video.
3) Poisoning detection. Recall that we observe the poi-
soning triggers can directly cause the stealthiness issue by
temporal video frame. We adopt a state-of-the-art detection
scheme AdvIT [20] to detect the video patched with poison-
ing trigger (thus validate the limitation of previous attack
[19]). AdvIT is originally designed to identify adversarial
perturbation in the videos. Based on the assumption that
perturbations can destroy the video frame consistency, Ad-
vIT can find the temporal inconsistency among video frames
by the optical flow information.

We identify the poisoning triggers of highly-deviated
pixels [19] could be potentially destroy temporal inconsis-
tency of video frames as adversarial perturbations. Then
we adopt AdvIT to detect the poisoning trigger in the
videos. Specifically, AdvIT first utilizes a DNN-based optical
flow estimator, i.e., FlowNet [46], which can compute the
optical flow information of suspicious video (usually a few
video frames since the poisoning trigger is patched on the
whole video). Then such optical flow information can be
used to reconstruct some pseudo frames. We can output
a inconsistency score between the suspicious video frames
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and pseudo video frames. Since the perturbations/triggers
usually consists of deviated pixels, the optical flow informa-
tion along with video frame will be destroyed. That is, the
higher inconsistency score, the higher possibility poisoning
trigger’s existence. Note that the trigger is usually fixed,
e.g., bottom right. We can always separate the video with
different regions for more precise detection.

TABLE 7
SSIM and Detection AUC of AdvIT.

Trigger
Dataset UCF101 HMDB51

SSIM AUC SSIM AUC
Baseline1 0.804 98.5% 0.822 99.3%
Baseline2 0.841 99.2% 0.865 98.4%

Ours 0.956 61.3% 0.973 58.6%

In the experiments, we choose other two types of poison-
ing trigger from the baselines: i) randomly generated static
trigger [18]; ii) universal adversarial trigger from video
poisoning attack [19] for comparison. We fix the trigger size
as 20 × 20 and patch location is bottom right (as fixed in
[19]). we randomly select 400 clean videos from the UCF101
and HMDB51 (200 each dataset), and apply both our 3D
poisoning trigger and two baselines’ trigger to generate
patched videos. We set the upper bound of poisoning trigger
to be K = 8. We report the Area Under Curve (AUC) values
of AdvIT for detecting trigger and the average SSIM values
of the corresponding videos for detection in Table 7 .

From the table, we can observe that the SSIM of our
poisoned videos is close to 1, which shows that our 3D poi-
soning trigger rarely affects the visual information. Besides,
the AUC values of ours are close to random guess (e.g.,
61.3% for UCF101 dataset) while all other two baselines can
be almost fully detected by AdvIT (the AUC values are close
to 1). This is reasonable since the temporal consistency could
be destroyed with the baseline’s (highly deviated pixels).

6.4 Understandings of 3D Poisoning Trigger

We also perform ablation studies with 3D poisoning trigger
in aspects of the stealthiness and attack performance with
various trigger size, upper bound and patched location.
Specifically, for every experiment, we will vary one param-
eter independently while fixing others and report the corre-
sponding results. Figure 7 first visualizes the 3D poisoning
trigger patched on 16 consecutive frames of the video.

Table 8 shows the attack performance of various trig-
ger parameters on UCF101. We observe that both upper
bound K and trigger location do not influence our attack
performance much. Then we can adjust the trigger location
to match with the background/objects (to improve stealthi-
ness). Moreover, we see that the increase of trigger size can
slightly improve the attack performance (as a larger trigger
patch can help construct adversarial subspaces and attack
easier to some extent), which also degrades stealthiness.

To evaluate the effect of patched trigger location on the
attack performance, we choose 5 different locations, i.e.,
top/bottom + left/right and center on the video frames. We
perform the same attack evaluation as previous experiments
and report attack success rate. Trigger size is 20. Poisoning
percentage is 20% and upper bound is 8. Table 9 shows

TABLE 8
Attack performance vs. varying trigger parameters.

Trigger Size K
10 20 30 8 10 12

82.3% 82.7% 83.0% 82.7% 82.7% 82.6%

Fig. 7. One example visualization of 3D poisoning trigger (the first 12
consecutive frames). Trigger size: 30× 30.

that trigger location cannot impact the attack performance
too much. This is reasonable since the poisoning trigger
will not directly be used for crafting poisoned videos to
cause feature collision (as a backdoor in the victim’s model).
Besides the temporal consistency, we can further utilize the
natural-like texture of our proposed trigger to increase the
stealthiness, i.e., match the trigger with the background or
the objects. The SSIM values of our poisoned videos also
validate this point.

TABLE 9
Attack rate (AR) vs. varying trigger locations.

Location Top
Left

Top
Right

Bottom
Left

Bottom
Right Center

AR 82.6% 83.1% 83.0% 82.7% 82.9%

6.5 Resistance of Attack against Defenses
Besides adopting video detection scheme (Section 6.3), we
also conduct extensive experiments to evaluate the resis-
tance of our attack by adopting several state-of-the-art de-
fense schemes: i) Fine-Pruning [23]; ii) Neural Cleanse [24];
iii) Spectral Signature [22], respectively. Additionally, we
also design an adaptive defense scheme to fully evaluate
the proposed poisoning attack.

Fine Pruning. We evaluate the resistance of all three attacks
against the state-of-the-art Fine-Pruning [23]. We set the
poisoning percentage to be 30%. The trigger size is 20 and
upper bound is 8. We train C3D with the poisoned UCF101
dataset compared with other two baselines. For pruning,
we prune the last convolutional layer of C3D model (i.e.,
Conv5b 512) to evaluate the corresponding accuracy and
attack success rate. As shown in Figure 8(a), the attack
success rates of both baselines drop drastically when 30%
neuron are removed, e.g., Baseline1 from 84.2% to 30.4%.
While our poisoning attack can still maintain 80% attack
rate, which shows that our attack is more resistant to the
neural pruning.

Neural Cleanse. Neural Cleanse [24] can detect whether
a trained model is poisoned or not, where it assumes the
training instance would require minor modifications by the
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attacker. The tested model by Neural Cleanse will output
an anomaly index (score) and a score higher than 2 indi-
cates the poisoned model with backdoor trigger. We set the
poisoning percentage to be 30%. The trigger size is 20 and
upper bound is 8. We train both C3D and I3D model with
the UCF101 dataset, respectively. Then we apply Neural
Cleanse to detect both C3D and I3D model trained with
the UCF101 dataset (by our attack). From Figure 8(b), we
can observe that Neural Cleanse fails to detect the poisoned
model for both cases, i.e., anomaly index <2 (>2 indicates
detected poisoned model) [24].
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Fig. 8. Attack results against defenses. Left: Fine-pruning [23]. Right:
Neural Cleanse [24]

Spectral Signature. We also apply one state-of-the-art detec-
tion scheme Spectral Signature [22], to detect the poisoned
data in the training dataset, of which the intuition is that the
poisoned data can be outliers in some latent spaces (thus can
be removed). It uses statistical methods, e.g., SVD to detect
the posioned samples as outliers. For experimental setup,
we evaluate this scheme with the C3D model on the UCF101
and HMDB51 dataset, respectively. We set the poisoning
percentage of the training dataset as 30% as a higher ratio.
The trigger size is 20 and upper bound is 8. Then, we apply
the detection on the 1000 videos in UCF101 dataset (consist-
ing of 800 clean target videos and 200 generated poisoned
videos) and 500 videos in HMDB51 dataset (400 clean target
videos and 100 poisoned videos). Figure 9 demonstrates the
detection results. From the figure (lefthand), taking UCF101
as an example, we observe that the detection method can
only identify a small percentage (∼11%) of poisoned videos
while also reporting false positive rate (∼9%) from the clean
videos. The result of HMDB51 shows similar results. The
above results indicate that such detection cannot mitigate
our attack. Also, the attack success rate only downgrades
about 4% even we remove the poisoned data as experiments
and retrain the model. Note that the two baselines also
report the similar results for this detection.
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Fig. 9. Detection results of Spectral Detection [22].

Adaptive Defense. To fully evaluate our proposed attack,
we also adopt current defense method as adaptive defense
to tailor with the attack properties [47]. That is, we facilitate
the defender with the knowledge for the 3D poisoning
attack, e.g., the computer graphic primitive procedural noise
is utilized for constructing poisoning triggers for our 3D
poisoning attack. For the defense method, we improve
Spectral Signature [22] by applying procedural noise-based
poisoning triggers to its learning scheme.

Specifically, the defender will generate poisoned video
samples with the procedural noise as a part of the training
set for the detector. Thus it would potentially increase
the detection performance considering the detector could
achieve more generalization with the newly added poisoned
videos. Since the defender does not necessarily know the
poisoning trigger parameter, we assume that the poisoning
triggers are randomly generated and patched on the videos.
We follow the same setting as the detection experiments
above. We report the final detection results in Table 10 for
both UCF101 (first row) and HMDB51 (second row) dataset,
respectively. From the table, we can observe that adaptive
defense achieves a higher detection rate and also a lower
false positive rate on both datasets, e.g., 27% > 11% and
5.6%>9%. Such results show that the adaptive defense can
defend our attack to some extent. However, our proposed
attack can also change its attack strategy, such as adjusting
trigger generation function with another procedural noise
to bypass the detection, which would require more robust
and adaptive defense schemes.

TABLE 10
Detection results of adaptive defense on UCF101 and HMDB51

Clean Poisoned Removed Clean Removed Poisoned
800 200 47/5.6% 53 /27%
400 100 15/3.8% 32 /32%

6.6 Application on Image Poisoning Attack

Considering that the image can be viewed as a one-frame
video, we can simply extend our 3D poisoning attack to
images, i.e., downgrading the 3D poisoning generation to
the 2-dimension by setting the time dimension to be 1. Then,
we implement our poisoning attack on the CIFAR10 dataset
[48] by benchmarking with the recent image poisoning
work, “Baseline2” [18]. Under same experimental setting
of the baseline attack (see details in [18]), we choose 10
randomly selected pairs of image categories, such as bird-
dog, dog-plane and cat-truck (specific information of image
categories pairs refers to Table 7 in [18]). The model is a
simplified AlexNet which has four convolutional layers (64,
192, 384, and 256) kernels and two fully connected layers
(512 and 10) neurons. The size of poisoning trigger 8 × 8
and the bound of trigger is 16. The size of images evaluation
dataset for each category is 1000. We average all the success
rates of 10 randomly selected pairs via our attack compared
with the baseline attack.

We present the attack results for four representative pairs
of image categories in Table 11. We observe that our down-
graded 3D poisoning attack can still achieve high success
rate on the image compared with the baseline. Such results
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(a) Clean Target Video (b) Clean Source Video

(c) Poisoned Target Video (d) Patched Source Video

Fig. 10. Visualization of selected frames of clean target video (a), clean source (b), poisoned target video (c), and patched source video (d) of one
specific pair, i.e., “Apply EyeMakeup” and “PlayingDhol”. With strictly bounded perturbation, the poisoned target video (c) is visually no difference
compared with the clean target video (a), but close (in feature space) to the patched source video (d) with 3D poisoning trigger, where the trigger
(in “red frame”) is human-imperceptible.

have shown the flexibility and effectiveness of our attack.
Again, our poisoning attack can also ensure the stealthiness
of poisoning trigger in the inference phase, whereas the
baseline only focuses on hiding the poisoning trigger prior
to training and still reveals the trigger pattern for testing.

TABLE 11
Comparison of attack results on the CIFAR10. Baseline attack [18].

Source/Target bird/dog dog/ship frog/plane cat/truck
Baseline 94.3% 87.6% 90.1% 93.0%

Ours 92.7% 90.4% 90.8% 94.4%

7 DISCUSSION

We will discuss the potential mitigation of our 3D poison-
ing attacks and advanced attacks to motivate more robust
defense schemes as the following.

7.1 Potential Mitigation
Considering the poisoning attack is a data-intensive at-
tack, The potential defense schemes can be studied in the
following aspects: 1) the detection of input videos with
poisoning trigger during the inference phase, e.g., utilizing
the property of trigger in the video domain; 2) the data
filtering/detection of the poisoned training data (training
phase), e.g., using the adversarial outliers of poisoned train-
ing data; 3) the certified robustness [36], [49], [50] against
poisoned training data. The first two aspects aim to detect
or mitigate the poisoning attack empirically with state-of-
the-art schemes, while the last one is theoretical defense
scheme against norm-bounded adversarial attack. Consid-
ering that the poisoning attack could depend on some
intrinsic attributes, e.g., attack by the feature collision of
feature representations, we may extend such certified robust
scheme to defend against poisoning attacks.
Detection. Recall that we have designed a detection scheme
adopting from AdvIT [20], it could effectively detect the
poisoned instances with poisoning trigger of the baselines.
Thus, to mitigate the risks of the proposed attack, we may
utilize the knowledge of the procedural noise as the main
defense primitive. That is, we could utilize the procedural

noise as the defender’s knowledge to revise/adopt the cur-
rent poisoning or adversarial detection schemes adaptively,
such as Spectral Signature [22], AdvIT [20]. We have shown
an adaptive defense method based on spectral signature,
which can defend against our attack to some extent. Al-
ternatively, we can revise the AdvIT to train a detector by
adding procedural noise to increase the detection accuracy,
e.g., to enable the detector to memorize the change of optical
flow aroused by the procedural-based trigger. We can also
leverage ensemble-based [51], [52] method to improve the
performance of the detector. For instance, we can choose
multiple video models as base models to train multiple
detectors and then get an average score for detecting the
poisoned videos. Finally, we could leverage a reference
database to classify the poisoned videos by k-NN. How-
ever, it could bring extra both storage and computational
overheads.
Certified scheme. Certified robustness [36], [50] schemes
have been shown to defend against adversarial attacks
with additive ℓp bounded perturbations theoretically. More
specifically, the certified scheme, e.g., random smoothing
[50], can provide consistent predictions with guarantee for
some norm-bounded input sets around one data instance,
i.e., ℓp ball. That is, such ℓp ball could provide a “safe”
space to resist such adversarial perturbed inputs. Similarly,
we can enforce the trained classifier to form a “anti”-
convex polytope [36] against such convex polytope-based
poisoning attacks. That is, we can utilize the randomized
smoothing method provided by certified schemes to trap
the poisoned training data with a larger convex polytope.
Thus after training, the model can still classify the poisoned
video into the correct label instead of wrong label with
high confidence. However, it should be noted the curse of
high-dimensionality [53] still exists for certified robustness
scheme, e.g., randomized smoothing, especially in video
domain. We will work in this direction.

7.2 Advanced Attacks
We propose a general attack framework based on 3D poison-
ing trigger, which can improve the stealthiness of poisoning
attack in the video domain (new modeling of poisoning
trigger). Besides, our framework also integrates new attack
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ensemble to improve attack performance in both generaliza-
tion and transferability. This can bring more flexibility. For
example, there will be some new or unknown video models
(black-box), we can attack such models with the transferabil-
ity. Also, our 3D trigger attack framework can also readily
integrate other new attack optimizations or powerful attacks
from adversarial attack domain in the future to obtain more
attack performance. Note our poisoning attack can achieve
good human-imperceptibility (according to the quantitative
or human servery results), we can also further integrate our
attack into the physical-world attacks [17], [54] based on
the natural-like texture or style of poisoning trigger. For
example, we can utilize visual light technology, such as
smart LED [55], which could help to realize 3D poisoning
trigger by programmable building blocks. This can pose a
practical threat in the physical world.

8 CONCLUSION

In this paper, we propose a novel 3D poisoning attack
on the video recognition models, which improves both
attack stealthiness and effectiveness. Specifically, we utilize
a computer graphic primitive to construct the 3D poisoning
trigger, which results in significantly less visual changes
for stealthiness. Furthermore, we design an optimization
method on an ensemble attack objective to craft more effec-
tive poisoned videos. We also experimentally validate the
performance of our attack, which outperforms the state-
of-the-art methods. Since the defenses against the video
poisoning attacks are rather limited, our 3D poisoning attack
can advance the development of the defense schemes for
sake of robustness in the video domain.
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