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Abstract—Property preserving encryption techniques have significantly advanced the utility of encrypted data in various data
outsourcing settings (e.g., the cloud). However, while preserving certain properties (e.g., the prefixes or order of the data) in the
encrypted data, such encryption schemes are typically limited to specific data types (e.g., prefix-preserved IP addresses) or
applications (e.g., range queries over order-preserved data), and highly vulnerable to the emerging inference attacks which may greatly
limit their applications in practice. In this paper, to the best of our knowledge, we make the first attempt to generalize the prefix
preserving encryption via prefix-aware encoding that is not only applicable to more general data types (e.g., geo-locations, market
basket data, DNA sequences, numerical data and timestamps) but also secure against the inference attacks. Furthermore, we present
a generalized multi-view outsourcing framework that generates multiple indistinguishable data views in which one view fully preserves
the utility for data analysis, and its accurate analysis result can be obliviously retrieved. Given any specified privacy leakage bound, the
computation and communication overheads are minimized to effectively defend against different inference attacks. We empirically
evaluate the performance of our outsourcing framework against two common inference attacks on two different real datasets: the
check-in location dataset and network traffic dataset, respectively. The experimental results demonstrate that our proposed framework
preserves both privacy (with bounded leakage and indistinguishability of data views) and utility (with 100% analysis accuracy).

Index Terms—Privacy, Prefix Preserving, Utility, Outsourcing
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1 INTRODUCTION

W ITH the significant development of cloud computing,
an increasing number of data-related services such as

data analysis and storage have been prevalently outsourced
to the cloud [1]. In practice, outsourcing data analyses to
service providers (e.g., the cloud) would request the data
owner to share their original data. This may result in im-
mense privacy concerns of the data owners with severe con-
sequences for the enterprises [2]. As data leaking incidents
become even more severe, a GDPR article [3] states that en-
terprises cannot share their sensitive data without sufficient
protection, while acquiring the third-party services.

To date, different types of encryption algorithms may
be applied to protect the outsourced data. First, encrypting
the datasets using a traditional algorithm like AES [4] or
3DES [5] may prevent the external service providers from
conducting useful data analysis, whereas Homomorphic en-
cryption (including fully) [6], [7], [8] might be too expensive
and inflexible for different analyses. The recent property
preserving encryption schemes [9], [10], [11] have enabled
service providers to perform efficient and accurate data
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analyses on the encrypted data, which are deterministic
ciphertexts to retain a certain property of their plaintexts.
Examples include hashing where the ciphertexts reveal the
equality of messages, order preserving encryption (OPE)
[11], [12], where the ciphertexts retain the ordering of data,
and prefix preserving encryption (PrefixPE) [10], where the
ciphertexts share the same length of prefixes as shared
between the plaintexts. However, most existing property
preserving encryption schemes [9], [10], [11] as mentioned
above have the following two major limitations.

First, property preserving encryption is typically limited
to specific data or applications. For instance, OPE is mostly
applied in range queries based analysis on numerical data.
While achieving more prefix-based utility (e.g., network
trace analysis [13]), PrefixPE (e.g., CryptoPAn [10]) is only
applicable to IP addresses, which is an important limitation
since PrefixPE may potentially benefit a wide variety of
outsourced data analyses on different datasets. As discussed
in Section 2.2, besides IP addresses, some other data types
(e.g., geo-location data, DNA sequences, market basket
items, and timestamps) can be encoded with meaningful
prefixes to retain very high utility in the encrypted data. For
instance, in a dataset collected from location based services
(LBS), two places which are close in the plaintexts (e.g.,
central park and the empire state building in New York)
can be converted to ciphertexts (sharing the same length of
prefix to maintain the same spatial distance) as two places
in another city. Thus, it is highly desirable for a service
provider to analyze the prefix preserving encrypted data.

Second, it is well known that most property preserving
encryption techniques are vulnerable to various forms of
inference attacks [14], [15], [16], [17], which attempt to link
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the encrypted data to original data with background knowl-
edge or auxiliary data. As discussed in Section 3.1, due to
the deterministic ciphertexts, PrefixPE (e.g., CryptoPAn [10])
is also vulnerable to the emerging inference attacks [14]. We
have also conducted experiments on the inferences attacks
in Section 7.1 to validate this limitation.

In this paper, we first propose a novel scheme to encode
a variety of data types into bit strings (prefix-aware encoding),
and then propose a framework for outsourcing different
types of prefix preserving encrypted datasets by generaliz-
ing a multi-view approach [13] to significantly reduce the in-
formation leakage against inference attacks. Specifically, the
proposed prefix-aware encoding converts various types of
data into the prefix-aware data (viz. bit strings with prefix-
based utility), and then the prefix preserving encryption, i.e.,
CryptoPAn [10] (originally on 32-bit IPv4 addresses or 128-
bit IPv6 addresses) can be generalized to encrypt any type of
data that can be encoded into the bit strings with utility resulted
from the preserved prefixes. Essentially, if any data is naturally
hierarchical (e.g., IP addresses as bit strings) or can be indexed
by a prefix-aware tree (e.g., location data, and market basket data.
See Section 2.2), the prefixes in the encoded bit strings could
be preserved to ensure utility when directly analyzing the
outsourced data. For instance, the distance between any two
locations can be fully preserved in the outsourced data.

Furthermore, to address the inference attacks, the multi-
view outsourcing framework will generate multiple indistin-
guishable data views in which one real data view fully pre-
serves the utility (ensuring 100% accuracy while performing
data analyses on the prefix preserved data), and its corre-
sponding analysis result can also be privately retrieved.

Contributions. The primary contributions focus on the gen-
eralization of the CryptoPAn to broader data types and ap-
plications from two aspects. First, we revise the CryptoPAn
by extending the input size of block cipher function (crypto-
graphic building block) to encrypt any length of bit strings
rather than fixed 32-bit IPv4 addresses or 128-bit IPv6 ad-
dresses. Second, we generalize the multi-view outsourcing
framework [13] with the following major improvements: (1)
encrypting multiple types of data with the new prefix-aware
encoding scheme and the above generalized CryptoPAn (for
any length of data), (2) incorporating more and stronger
inference attacks [14], [18], [19], [20] into the threat model,
and (3) generating a minimum number of data views given
formally defined privacy leakage bound (say Γ-Leakage).
Moreover, other contributions are summarized as below.

• To our best knowledge, we propose the first general
purpose prefix encryption scheme, which can poten-
tially be applied to a wide variety of data types and
applications such as geo-locations, DNA sequences,
market basket datasets, and timestamps.

• The generalized multi-view outsourcing framework
provides an additional layer of protection that can
make the vulnerable PrefixPE scheme (i.e., Cryp-
toPAn) sufficiently secure against various inference
attacks (e.g., [14], [18], [19], [20]).

• Besides privacy and utility guarantees, our approach
offers negligible communication overheads, and the
computational costs can be easily adjusted based on
any bounded leakage w.r.t. inference attacks.

• We empirically evaluate the performance of numer-
ous inference attacks [14], [18], [19], [20] on the Pre-
fixPE encrypted data using real datasets (the check-
in location dataset and the network traffic dataset)
and our generalized multi-view outsourcing frame-
work. The experimental results demonstrate that our
proposed framework preserves both privacy (with
bounded leakage and indistinguishability of data
views) and utility (with 100% analysis accuracy).

The rest of this paper is organized as follows. Section
2 presents the prefix-aware encoding scheme for different
data types and the corresponding data analysis. Section
3 illustrates the inference attacks on PrefixPE (i.e., Cryp-
toPAn), the threat model for our outsourcing framework.
Section 4 overviews the generalized multi-view outsourcing
framework and the privacy properties. Section 5 gives the
details of the generalized outsourcing framework and theo-
retical analyses. Section 6 discusses relevant issues. Section
7 presents the experimental results. Section 8 reviews the
related work. Finally, Section 9 concludes the paper.

2 PREFIXPE AND PREFIX-AWARE ENCODING

2.1 Generalized CryptoPAn
As a PrefixPE scheme, CryptoPAn [10] was originally de-
signed to generate deterministic ciphertexts for IP addresses
(32-bit ciphertexts for IPv4 and 128-bit ciphertexts for IPv6).
We first generalize CryptoPAn for any n-bit data as below:

Definition 2.1 (Generalized Prefix Preserving Encryption
[10]). Given two n-bit strings a = a1a2a3...an and b =
b1b2b3...bn, if a and b share a k-bit (0 ≤ k ≤ n) prefix, we
have a1a2...ak = b1b2...bk and ak+1 6= bk+1. An encryption
function f(·) : {0, 1}n → {0, 1}n is said to be prefix-preserving,
if f(a) and f(b) also share a k-bit prefix.

To encrypt each bit, CryptoPAn applies a cryptographic
function (including padding, a block cipher function such
as Rijndael [4] with a 256/128-bit key K , and the least
significant bit function) to the bits, and then XOR with the
current bit to ensure the prefix preserving property [10].

Theorem 2.1. CryptoPAn has the following two properties [10]:
(1) associative property: given an n-bit string a ∈ {0, 1}n,

1 ≤ i, j ≤ n : f j(f i(a,K)) = f (i+j)(a,K) (1)

and (2) inverse property: given two n-bit strings a and b,

if f(a,K) = b, f−1(b,K) = a (2)

Similar to f(·), for each bit in b, the inverse CryptoPAn
f−1(·) applies the same cryptographic function to the bit’s corre-
sponding prefix in a (which was computed while applying f−1(·)
to the previous bits) and XOR with the current bit.

Theorem 2.1 can be directly proven with the extension
from 32-bit IP addresses in [13] to generalized CryptoPAn.

2.2 Prefix-aware Encoding
We can directly apply CryptoPAn to encrypt the sensitive
IP addresses [10], [13] for outsourcing the network traffic
since IP addresses automatically hold the prefix property
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(32-bit IPv4 addresses or 128-bit IPv6 addresses). The utility
of preserving prefixes in the encrypted IP addresses can
be realized for many analyses since the ciphertexts can
preserve all the subnet structure of the original data (sharing
a prefix in the original IP addresses also results in sharing
the same length of prefix in the encrypted IP addresses).

Motivated by such prefix properties, many other type
of datasets can also be encoded into prefix-aware bits such
as the geo-location data [21], DNA sequences [22], items in
market baskets [23], numerical data [24], and timestamps
[25] (ensuring utility for performing different analyses on
the encrypted data) using a prefix-aware tree:

Definition 2.2 (Prefix-aware Tree). Given the data domain, we
generate a balanced tree in which nodes (from the root to leaf)
signify a sequence of prefixes, all the sibling nodes share the same
prefix. Then, each value in the domain can be represented by the
bits concatenated from the top (except the root) to each leaf node.

Example 2.1 (Prefix-aware Tree for IPv4). IPv4 adopts 32 bits
to form the 232 addresses, thus its prefix-aware tree is a full binary
tree with 33 levels (including the root node), where each IP address
is formed by concatenating the bits from the top to each leaf node.

In the following, we will discuss the prefix-aware en-
coding for some representative data types, and illustrate the
corresponding prefix preserving data analysis.

2.2.1 Locations in Location-based Services (LBS)

The location data usually include the 2-dimensional latitude
and longitude coordinates of different places, which are
highly precise float numbers (up to 8 decimal digits) for
representing the locations in map applications, e.g., Google
Map and Bing Map. In the Bing Map Tiles System [26], the
map is recursively divided into four tiles equally to reach
the required resolution for users to quick map zoom in/out.
Specifically, given the resolution, the system can map the
longitude and latitude coordinates to bit strings called quad
key, which is uniquely represented as the index of tile for the
coordinates (can be used for map image retrieval).

Motivated by such hierarchical structure, we encode the
coordinates into bit strings by concatenating the index of
each level for one specific location. As shown in Figure 1,
there is a root node at the top. At each level, the four children
of each node can be encoded using two bits 00, 01, 10, 11 to
represent four tiles, respectively. Thus, after concatenating
the bits from the first level, every location can be encoded
by a leaf node, and all the locations can be encoded with the
same length of bits if the coordinates use the same precision.
Location precision can be increased with additional levels
and longer bit strings. Our experimental location data uti-
lizes a length of 46 bits (23 levels) with a ground resolution
4.78m×4.78m (tile) at the finest level, which is sufficiently
accurate for precise location coordinates.

Prefix Preserving Data Analysis for LBS. As discussed
above, for the encoded bit strings of coordinates, utility can
be fully preserved for data analysis since prefixes can be
preserved in the encrypted locations (while preserving the
privacy). For instance, “central park” and “the empire state
building” in New York share a prefix, and the encrypted
data for these two locations should also share the same
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Fig. 1. A Prefix-aware Tree for Location Data

length of prefix (e.g., might be two other places in Lon-
don with the same proximity). Thus, the structure of the
locations and the distance between such locations (besides
other features such as frequency) can be preserved in the
outsourced data. Besides the basic queries (e.g., counting),
the location data analysis which uses distance-based metrics
can achieve the same utility while analyzing the encrypted
prefix preserving data, e.g., user mobility prediction [21].

Thus, the PrefixPE on the encoded locations can fully
preserve the utility in the general data analyses for LBS. We
have conducted experiments to validate such utility with
prefix preserving encrypted location data in Section 7.3.

2.2.2 Market Basket Dataset [23]
This dataset includes the purchased items by the customers.
With the item generalization hierarchy [23], we can encode
the items into the bit strings with the same length. Similar
to the location hierarchy (assigning 2 bits to each level since
it is partitioned into 4 blocks), in each level of the item
hierarchy, we assign log(n) bits to the n generalized items.
The bit string of each item can be encoded by concatenating
all the bits assigned in each level. The PrefixPE can fully
preserve the item generalization path (e.g., the encrypted
values of “apples” and “pears” also share a long prefix to
make them close). With such prefix-aware encoding, data
mining applications (e.g., frequent itemset mining [27]) can
be performed on the prefix preserving encrypted data. Thus,
PrefixPE on the encoded data/items can fully preserve the
utility of the market basket data in the related data mining.

2.2.3 Numerical Data [24] and Timestamps [25]
Numerical data and timestamps are commonly included
in a wide variety of datasets, e.g., network traffic [13],
transaction data [28], and search logs [29]. Such values in
different datasets can be simply converted into bit strings
with meaningful prefix (aka. the converted binary num-
bers). Encrypting such bit strings with PrefixPE can also
fully preserve the prefixes in numerical values and day-
time formats (e.g., “yyyy-mm-dd hh:mm:ss[.nnnnnnnnn]”)
for outsourcing. The proximity between any two values of
these two data types can be preserved in the ciphtertexts
(but not preserving the order of them). For instance, the
ciphertexts of two close numerical values (or timestamps)
also possess the same degree of proximity. Since the order
of two numerical values and timestamps cannot be fully
preserved, PrefixPE can preserve the partial utility in the
encoded data of numerical and timestamp data.

2.2.4 Genome Dataset [30]
Genomic features (e.g., DNA sequences) of different organ-
isms are studied to significantly advance the biological and
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TABLE 1
Prefix-aware Encoding for Representative Data

Data Type IP Data Location Data Market Basket Numerical Data/Timestamps Genome Data
Encoding Default (IPv4/6) 4 Tiles (00, 01, 10, 11) log(n)-bit Binary Format AGCT

PrefixPE Utility Fully Fully Fully Partially (Proximity) Partially (Prefix Analysis)

medical research. For instance, DNA sequencing studies the
order of adenine (A), guanine (G), cytosine (C), and thymine
(T). Thus, each of A, G, C, T can be encoded using two
bits, and the sequence can be concatenated with all the
bit in order. In the encrypted DNA sequences for analysis,
e.g., Private Edit Distance [22], PrefixPE on such encoded
data can preserve the prefixes (order of nucleotide in the
shared prefixes), but cannot preserve the full distance (e.g.,
Hamming distance) between two random sequences. Thus,
PrefixPE using such simple encoding can partially preserve
the utility on the genome data. We will also explore other
encoding schemes in conjunction with PrefixPE to fully
preserve the utility of the DNA sequences in the future.

2.2.5 Summary
Table 1 summarizes the prefix-aware encoding for some rep-
resentative data and the utility preservation in the generic
analyses. Note that the prefix-aware encoding can be tai-
lored with different prefix definitions if necessary.

3 SECURITY MODELS

3.1 Inference Attacks
The inference attacks on the property preserving encryption
schemes [13], [14], [31], [32], [33], [34] have been extensively
studied recently. We then introduce two typical inference
attacks on the PrefixPE encrypted data, and briefly discuss
other inference attacks [32], [33], [34].

Inference Attacks using Frequency and `p-Optimization.
Frequency analysis [18] is the most well known inference
attack with the auxiliary background knowledge. Extended
from frequency analysis, `p-optimization [14] is further
utilized to form a family of attacks that maximally infer
the original data from property preserving encrypted data
(e.g., order preserving encryption (OPE) and deterministic
encryption (DTE)). Such attacks find the most matches from
ciphertexts to plaintexts by minimizing the `p distance be-
tween the histograms of the encrypted dataset and an aux-
iliary dataset (as the background knowledge). The auxiliary
dataset may be obtained by the adversary from some public
statistics or prior versions of the original dataset. We explain
such attacks on the encrypted location data as below:

Example 3.1 (Frequency and `p-Optimization based Infer-
ence Attacks [14], [18]). As shown in Figure 2, the geo-locations
can be encoded to bits (fully preserving the utility with the
preserved prefixes, see Section 2.2) which are represented in hex
format (for shortening the notations). The adversary may simply
get some auxiliary information from publicly known data sources,
e.g., top 50 most popular spots in New York. Then, the adversary
can match the auxiliary location list (sorted by frequency) with
the ciphertext of the locations also sorted by frequency [18].

Inference Attacks using Fingerprinting. Adversaries can
perform strong inference attacks by injecting data into the
original data collection and fingerprinting the records in the

CryptoPAn
48c2127683
48c21a7d29
48c21627e0
48c2187173

48c2193fe3

Central Park:5000 
Broadway:621, 

Empire Building:67 
Wall Street: 1957

Brooklyn Bridge:230

Auxiliary Data

Count
856
314
120
30

5

Frequency Analysis and
lp-optimization based 

Inference attacks

Fig. 2. Frequency and `p-Optimization

encrypted data [19], [31], [35]. Then the adversary could
identify his/her own data from the encrypted data via
the combination of other information, e.g., the timestamps
and frequencies of the injected checked-in locations, the
timestamps, port numbers and protocols of the network
traffic data (with IP addresses). Then, the adversary can
obtain a set of matches between the original data and the
encrypted data, and eventually learn the prefixes of other
values that share the prefix with the identified prefixes.

Example 3.2 (Fingerprinting based Inference Attacks [19],
[20]). Some detailed information of the same check-in location
dataset in Example 3.1 are given in Figure 3. The leftmost table
shows such real world dataset, the table in the middle gives the
encoded bit strings for the GPS coordinates (see Section 2.2), and
the rightmost table is the bit strings encrypted by CryptoPAn.

ID Time Stamp Coordinates
2247 2010-10-19T23:55:27Z (30.23590911, -97.79513958)

2247 2010-10-12T15:57:20Z (40.64388453, -73.78280639)

41 2010-06-17T16:35:00Z (30.26910295, -97.74939537)

9054 2010-07-02T17:51:31Z (30.25104620, -97.74932429)

345 2010-06-04T17:45:21Z (40.64388453, -73.78280639)

CryptoPAn
368cb6e196
2450d167f2
368cb6ea02
368cb6e1b7
2450d167f2

Encoding
48c2167d23
868cb6e196
48c2167fe0
48c2167173

868cb6e196

1. Identify two data records via ID and timestamp

2. Compare prefixes

3. Recognize more data

Fig. 3. Fingerprinting based Inferences

The adversary can inject his/her tuples in such real data (e.g.,
using the application with its account). Then, he/she can identify
two of his/her encrypted bit strings (w.r.t. his/her two location
records) via other original information which are retained for
utility (e.g., combination of timestamps and pseudonyms). Then,
he/she can infer more prefixes and subprefixes by comparing the
identified prefixes with other encrypted locations (bit strings). For
instance, as “368cb6e196” and “2450d167f2” in the first two rows
are known (the adversary knows the location he/she has visited at
that time), the location data of the first row (“368cb6e196”) also
shares 28-bit prefix (“368cb6e”, 7 digits in hex) with the location
in the 4th row. Similarly, the 6th record can also be breached since
the encrypted bit string is identical to “2450d167f2”.

Inference Attacks and Defense. Some other inference at-
tacks [32], [33], [34] have been recently identified for OPE,
such as exploiting the correlations among attributes [32] and
learning query pattern access via statistical learning [34].
All these inference attacks (including the two detailed in the
above examples) share some similarities, e.g., identifying the
similar patterns from the original data and the encrypted
data. We will propose a generalized multi-view outsourcing
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framework which effectively obfuscates such patterns. The
details are given in Section 4 and 5.

3.2 Threat Model and Privacy Notion

In our framework, the data owner outsources its encrypted
data to the service provider, which is assumed to be honest-
but-curious. The service provider has possessed background
knowledge to implement a given set of inference attacks
[13], [14], [19], [20] (can be any emerging inference attacks on
the property preserving encryption). Moreover, the adversary
is assumed to know the set of attributes in the outsourced
data, and the domain for the attributes. We also assume that
all the communications are in secure channel.

Then, we present the privacy notion in the threat model.
Since the degree of privacy is quantified w.r.t. different infer-
ence attacks, we first formally give the following definition.

Definition 3.1 (Inference Attack Function). Function
I(Enc(D), {α}) is defined to quantify the leakage derived from
performing a given set of inference attacks on encrypted data
Enc(D) with a set of background knowledge parameters {α}.

Example 3.3. Assume that the adversary pose two kinds of in-
ference attacks: (1) frequency and `p-optimization based inference
attacks, and (2) fingerprinting based inference attacks, with two
background knowledge parameters αf , αs, respectively:

• the adversary holds a public auxiliary dataset including
any αf of the original data (percent between 0% and
100% of the domain) and their similar count distribution.

• the adversary has already identified any αs of the original
data (percent between 0% and 100% out of the domain)
via injecting data before encryption.

As a result, the attack function I(Enc(D), {αf , αs})
returns the information leakage, which is defined as below:

Definition 3.2 (Information Leakage [10]). The percent of bits
in D (encoded as bit strings) inferred from the encrypted data
Enc(D) (including the partially inferred prefixes).

Then, we bound the leakage derived from the inference
attacks with the following privacy notion.

Definition 3.3 (Γ-Leakage). While performing a given set of
inference attacks on the encrypted data Enc(D) (generated by
encrypting the original data D using PrefixPE), the information
leakage is upper bounded by Γ ∈ [0, 1].

4 SYSTEM AND PRIVACY PROPERTIES

In this section, we present the system and privacy proper-
ties. Table 4 summarizes the frequently used notations.

4.1 System Model

As illustrated in Figure 4, the proposed outsourcing frame-
work involves two entities: (1) data owner: the party owns
the original data and outsources the prefix preserving en-
crypted data to the service provider for data analysis, and (2)
service provider: a cloud platform or an external company
who provides data analysis services, which might intend to
infer the original data from the outsourced encrypted data.

D original data
A number of distinct values in D
Dp prefix-aware data
D0 initially encrypted data
Ds seed data

D1 . . .DN N generated data views

αf
background knowledge parameter on frequency
and `p-optimization based inference attacks

αs
background knowledge parameter on
fingerprinting based inference attacks

fr(·) executing r times CryptoPAn

I(·) inference attack function: returns the leakage
derived from the encrypted data in the attacks

p(x) number of partitions with x-bit shared prefix
R a pseudorandom matrix

G1 . . . GN vectors for generating data views
K0 non-shared key for CryptoPAn
K1 outsourced key for CryptoPAn
Pi data partition i

Specifically, Mohammady et al. [13] proposed a multi-
view approach to defend against inference attacks on the
PrefixPE encrypted data. The core idea is to hide the real
data view among other fake data views, where the ser-
vice provider cannot identify the real data view. However,
such approach is only limited to network traffic data. We
make the following key improvements on the multi-view
outsourcing:

• generalize the outsourcing framework to privately
outsource a wide variety of data types (any length
of the data vs. 32/128-bit IP addresses).

• generalize the defense (bounded leakage) against
any given set of inference attacks (to make the il-
lustration more concrete, we conducted experiments
on more inference attacks, compared to [13]).

• improve the privacy guarantee (by specifying a pri-
vacy bound Γ-Leakage) and computational over-
heads on analyzing the outsourced data (minimiz-
ing the number of views while satisfying Γ-Leakage
against a given set of inference attacks).

As shown in Figure 4, the generalized multi-view out-
sourcing framework is detailed as follows:

4.1.1 At the Data Owner
(1) Prefix-aware Encoding: encodes the sensitive attributes

of the original data (e.g., locations, IP addresses, set
of items) to prefix-aware data Dp with prefix-aware
encoding, as discussed in Section 2.2.

(2) Partitioning and Generating Seed Data: initially en-
crypts the encoded data Dp to D0 using CryptoPAn
with a non-shared CryptoPAn key K0 (for preventing
the brute force attack), and then partitions D0, as well
as generates a seed data Ds by executing CryptoPAn
in each partitions with a random number of iterations
using another key K1. This step obfuscates the data
in the seed data Ds, which is safe to share and can
be used to generate multiple data views by the service
provider (note that K1 is shared to the service provider
for generating the data views). See details in Section 5.1.

(3) Outsourcing: the Seed Data Ds, the key K1 and some
other required parameters for generating multiple data
views will be outsourced to the service provider.
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Fig. 4. Generalized Outsourcing Framework on the Multi-view Approach [13]

4.1.2 At the Service Provider
(4) Generating N Data Views: generates N data views

using Ds, the CryptoPAn key K1 and other parameters,
where exactly one out of N data views is the real data
view (which fully preserves the prefixes).

(5) Analyzing N Data Views: performs the required data
analysis on the N data views (note that N is minimized
for satisfying Γ-Leakage). The real data views fully
preserves the prefixes with the 100% analysis accuracy.
The details are given in Section 5.2.

4.1.3 Both Data Owner and Service Provider
(6) Obliviously Retrieving Analysis Result: the data

owner leverages an oblivious random access memory
(ORAM) protocol [36] to retrieve the correct analysis
result out of N results while the service provider does
not know which result is retrieved by the data owner.

4.2 Privacy Guarantees
We now summarize two desired privacy properties against
the inference attacks in semi-honest model.

4.2.1 Indistinguishability
The proposed framework first ensures thatN data views are
indistinguishable (inspired from differential privacy [37]):

Definition 4.1. [13] The generated N data views are ε-
indistinguishable against inference attacks if and only if

∃ ε ≥ 0, s.t. ∀i, j ∈ {1, 2, · · · , N} ⇒

e−ε ≤ Pr[data view i may be real ]

Pr[data view j may be real]
≤ eε (3)

As ε is smaller, the N different data views would be
more indistinguishable. As a result, a smaller number of
fake data views will be filtered out by the adversary. For
instance, e−ε = 0.9 means that at least 90% of the fake
data views are indistinguishable from the real one. We
give the indistinguishability analysis in Section 5.2.4 and
experimentally validate that ε is quite small in Section 7.2.

4.2.2 Bounded Leakage against Inference Attacks
Besides ε-indistinguishability, our framework can ensure
that all the encrypted data held by the adversary satisfy Γ-
Leakage (Definition 3.3) as an additional layer of protection:

I(Ds,D1, . . . ,DN , {α}) ≤ Γ (4)

where the adversary performs the inference attacks
with background knowledge {α} on the seed data Ds
(received by the service provider) and N different data

views D1, . . . ,DN (generated by itself). In the outsourcing
framework, the information leakage is bounded by a very
small Γ, as experimentally validated in Section 7.

Remark. The first privacy notion ε-indistinguishability is
defined to measure how indistinguishable the generated N
data views can be (hiding the real data view). Indeed, all
the fake data views and one real data view could possibly
leak information (though they are indistinguishable) if the
adversary is armed with background knowledge to perform
inference attacks. Thus, another privacy notion Γ-Leakage
is defined to bound the overall information leakage in all
the data obtained and generated by the adversary. Two
privacy notions measure different aspects of the privacy
and complement each other in the generalized multi-view
outsourcing framework.

5 GENERALIZED FRAMEWORK DESIGN

5.1 Prefix-based Partition
The initially encrypted data D0 is partitioned by assigning
all the values sharing at least x-bit prefix into the same
partition. Specifically, given D0, the data (e.g., location) has
been encoded into L bits. We first traverse D0 to get the
set of distinct values. Given the prefix length x ∈ [1, L], we
generate a mapping set by grouping all the values sharing
length-x prefix to one subset. Finally, we obtain the parti-
tions in D0 using the mapping set. Denote the number of
partitions in D0 created with length-x prefix as p(x). Thus,
we have partitions Pi with length-x prefix di, i ∈ [1, p(x)].

This prefix-based partitioning scheme can potentially
result in the identification of the real data view by the
adversary due to the collision property of CryptoPAn [10].
In [13], the identification of the real data view was proposed
by the collision of the encrypted full IP addresses. Indeed,
there also exists subprefix collision of the prefix which can
possibly help identify the real data view. We generalize such
attack and name it as Subprefix Collision Attack, which is
caused by similar prefixes or subprefixes (“close prefix”).

Closeness of Prefixes. The data in the same partition share
a common prefix (length-x), the prefixes of two different
partitions may also share a length-y subprefix where y < x.
We use the following measure to define such relationship
between such two partitions (with close prefix).

Definition 5.1 (β-closeness). While partitioning D0 using the
shared length-x prefix, given two prefixes di and dj where i, j ∈
[1, p(x)], if di and dj also share a length-y subprefix (y < x)
such that |x − y| ≤ β, the two partitions Pi and Pj are said to
satisfy β-closeness (or Pi and Pj are β-close).

As mentioned before, applying CryptoPAn in real data
view would also preserve such closeness relationship across
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different partitions inD0, which may cause subprefix collision
attack: the real data view will preserve all the prefixes
(including subprefixes) among all the partitions whereas the
fake data views would not retain them (see Example 5.1).

Example 5.1 (Subprefix Collision Attack). As shown in Figure
5, the original data are encoded into prefix-aware bit strings and
represented in hexadecimal (for simplicity of notations). The prefix
length of the partition is x = 20 bits (dash line) in binary (5-digit
in hexadecimal). The original data is divided into two partitions,
P1 with prefix 38456 and P2 with 38457, both of which share
a common subprefix of length 19; only the the least significant
bit (LSB) is different (i.e., 0 and 1) – these two partitions satisfy
1-closeness. The real data view can be readily distinguished from
other data views with the prefix 27c27 and 27c26, which still keep
the subprefixes across partitions. Considering that CryptoPAn has
collision-resistant property [10], the probability that every fake
data view generates a common subprefix in different partitions (by
executing random number of iterations CryptoPAn) is negligible.
Then, the adversary can directly identify the real data view.

3845613f50

38457240b3

3a3a781be8

39499adaae

26cb852df5

254a19daac

27c26e5b6f

27c27e3eb3
Execution 

Times [2, 4]T

Fake Data View Fake Data View Real Data View

P1

P2

Execution 
Times [5, 3]T

Execution 
Times [1, 1]T

Fig. 5. Subprefix Collision Attack
Notice that, β-closeness has the following characteristics

for this subprefix collision attack:
1) for a small β (different partitions share a longer subpre-

fix), if many β-close partitions are identified, then the
real data view can be simply identified;

2) for a large β (short subprefix; an extreme case, many
partitions share the first bit), then the β-close partitions
would not increase the confidence of such attack.

To tackle such attacks, the proposed scheme aims to cre-
ate more similar collisions among β-close partitions while
generating data views, thus the adversary cannot identify
the real view from the subprefix collision (see Section 5.2).

5.2 Multiple Data Views Generation
5.2.1 Seed Data for Generating Views
The objective of partitioning D0 is to obfuscate the encrypted
data across different partitions in the outsourced data but
still be able to reconstruct the encrypted data with fully
prefix preservation (D0 or similar data) for analysis. Thus,
the next step is to generate the “Seed Data” which is safe
to outsource (obfuscated) and oblivious to reconstruct a real
data (fully prefix preserved).

Specifically, the framework applies CryptoPAn f(·) to
different partitions in D0 with random number of iterations
to generate the seed data Ds. Given shared prefix length x,
there are p(x) partitions, D0 = {P1, P2, ..., Pp(x)}. Then, we
define a random vectorG0 = [v0

1 , v
0
2 , ..., v

0
p(x)]

T , where entry
v0
i , i ∈ [1, p(x)] is an integer representing the number of

iterations applying CryptoPAn on the partition Pi. Thus, we
have f(D0, G0,K1) = [fv

0
1 (P1), fv

0
2 (P2), . . . , fv

0
p(x)(Pp(x))],

where K1 is the CryptoPAn key for obfuscating the data
across p(x) partitions in the seed data Ds (the same key

will be used for reconstructing prefix preserving data). Note
that v0

i , i ∈ [1, p(x)] can be chosen from the domain [−h, h]
where h is comparable to p(x).

5.2.2 N Data Views
As discussed in Section 4.1, generating multiple data views
(say N ) which include only one real data view (fully prefix
preserving) andN−1 fake data views (non prefix preserving
across partitions) could mitigate the leakage against infer-
ence attacks (since the probabilities of matching the encrypted
data to true values can be greatly reduced by providing more data
views). This is experimentally validated in Section 7.

To this end, the service provider generates N different
data views based on the seed data and N pseudorandom
vectors (similar to the procedure of generating the seed data
Ds). The data owner generates N pseudorandom vectors
which form a matrix R = [G1, . . . , GN ], and then outsources
the seed data Ds, pseudorandom matrix R, and the Cryp-
toPAn key K1 used for generating N views.

Definition 5.2 (data view). Given pseudorandom vectors Gi =
[vi1, v

i
2, . . . , v

i
p(x)], i ∈ [1, N ] in the matrix R, the ith data view

can be represented as:

Di = [f
∑i
j=0 v

j
1(P1), f

∑i
j=0 v

j
2(P2), . . . , f

∑i
j=0 v

j
p(x)(Pp(x))]

With the associative and inverse property of CryptoPAn
encryption f(·), the ith data view can be the prefix preserv-
ing if the entries in the pseudorandom vectors satisfy:

i∑
j=0

vj1 =
i∑

j=0

vj2 = · · · =
i∑

j=0

vjp(x) (5)

In other words, if the aggregated pseudorandom vectors
for the ith data view G0 + G1 + · · · + Gi have equivalent
entries, the ith data view can be prefix preserving (real data
view); otherwise, not prefix preserving (fake data view). If
G0 + G1 + · · · + Gi = 0, then the real data view would
be the initially encrypted data D0. Note that only one
prefix preserving data is necessarily generated out of N
data views (for reducing the probability of identifying it
and the leakage). Since the data owner generates all the
pseudorandom vectors G0, G1, . . . , GN and the first vector
G0 (for generating the seed data) is not shared to the
service provider, the service provider would not know when
Equation 5 holds for generating the real data view.

Mitigate Subprefix Collision Attacks. As discussed before,
our multi-view outsourcing creates more collisions among
these prefixes which have common subprefixes (in β-close
partitions) to address the subprefix collision attack. Specif-
ically, when generating the pseudorandom number of exe-
cutions of CryptoPAn on the partitions, we can generate the
same execution times (aggregated pseudorandom) for the
β-close partitions in the fake data views while generating
different aggregated pseudorandom numbers for partitions
with different subprefixes or β is too large (collisions may
naturally occur in this case). Thus, the random matrix R
(G1, . . . , GN ) to determine the execution times for each data
view is generated as below:

1) the data owner first generates a random vector G0 with
the size p(x). Then the data owner will determine the
minimum N as illustrated in Section 5.2.3.
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2) the data owner then generates N pseudorandom vec-
tors (as p(x) × N matrix). r ∈ [1, N ] is the ran-
domly generated index for the real data view (only data
owner knows), and the generated pseudorandom vector
Gr, r ∈ [1, N ] satisfies Equation 5 (e.g.,

∑r
i=0Gi =

[0, 0, ..., 0]T ) to preserve all the original prefixes.
3) finally, the data owner generates a set of N − 1 pseu-

dorandom vectors for the fake data views. Recall that
we expect to create as much collisions among the par-
titions as possible (for also satisfying β-closeness in the
fake data views). Each aggregated vector of G0 and
Gi, i ∈ [1, N ] (e.g., G0 + G1, G0 + G1 + G2, . . . , G0 +
G1 +· · ·+GN ) should have at least two equal execution
times for each pair of β-close partitions.

Input : x, N , β, G0

Output: pseudo random matrix R = [G1, . . . , GN ]
1 Generate the set of prefixes with length-x
2 Group the β-close partitions (a reasonable β)
3 for i = 1 : n do
4 if i 6= r then
5 generate a length-p(x) pseudorandom vector

Gi such that the vector
∑i

j=0Gi includes
two identical values if the corresponding
two partitions are β-close

6 if i = r then
7 generate a length-p(x) pseudorandom vector

Gi: the entries in
∑i

j=0Gi are identical

Algorithm 1: Pseudorandom Matrix Generation

Algorithm 1 gives the details for generating such pseu-
dorandom vectors/matrix. Example 5.2 illustrates how such
pseudorandom matrix can address the subprefix collision
attacks and hide the real data view.

Example 5.2. Figure 6 shows 5 partitions with 20-bit prefixes.
The initial random vector G0 = [−2, 2, 3, 0,−1]T , and the pseu-
dorandom vectors G1 = [3, 0,−2, 2, 3]T , G2 = [2, 1, 2, 1, 1]T ,
and G3 = [1, 1,−1,−2,−2]T are generated by the data owner.
D2 is the real data view while D1 and D3 are the fake data
view. G0 will be held privately, only the pseudorandom matrix
R = [G1, G2, G3] are outsourced. Thus, we have:

• generating D1 (fake) executes CryptoPAn for G0 +
G1 = [1, 2, 1, 2, 2]T times in 5 partitions, resp. (G1 =
[3, 0,−2, 2, 3]T times by the service provider).

• generating D2 (real) executes CryptoPAn for G0 +G1 +
G2 = [3, 3, 3, 3, 3]T times in 5 partitions, resp. (G1 +
G2 = [5, 1, 0, 3, 4]T times by the service provider).

• generating D3 (fake) executes CryptoPAn for G0 +G1 +
G2 + G3 = [4, 4, 2, 1, 1]T times in 5 partitions, resp.
(G1 + G2 + G3 = [6, 2,−1, 1, 2]T times by the service
provider).

Note that G0 for 5 partitions are locally executed to generate
the seed data Ds by the data owner, and the service provider
cannot reconstruct G0 from the received data.

Example 5.3. In Fig 6, the seed data generates 3 data views.
The two fake data views have at least 2 subprefix collisions, e.g.,
368cb and 368c8 in fake data view D1 and 5a502 and 5a503
in fake data view D3. Thus, D1,D2,D3 are subjected to some
indistinguishablity (which will be formally analyzed below).

Fake Data ViewReal Data ViewFake Data View

[3, 0, -2, 2, 3]T

[2, -2, -3, 0, 1]T

[5, 1, -1, 1, 2]T

48c2167f23

48c228df14

48c2040f03

2450d167f2

46f39e49c5

387e710dd4

39738300f8

2450d167f2

46f39e49c5

368cb6e196

368c85f0fc

29af4a4e0c

29af5e555c

39739e4236

3973becaa7

46f383ef04

5a502a49ed

5a503e65bb

Execution Times
[1, 2, 1, 2, 2]T

Execution Times 
[4, 4, 2, 1, 1]T

Execution Times
[-2, 2, 3, 0, -1]T

48c2167f23

48c228df14

48c2040f03

2450d167f2

Execution Times
[3, 3, 3, 3, 3]T

5a503e65bb

P1

P2

P3

P4

P5

G0=[-2, 2, 3, 0, -1]T G1=[3, 0, -2, 2, 3]T G2=[2, 1, 2, 1, 1]T G3=[1, 1, -1, -2, -2]T

Initially Encrypted 
Data

Seed Data

2450c2197b 2450c2197b

G1
G2
G3G0

Fig. 6. Utilizing Pseudorandom Matrix to Generate 3 Data Views (nega-
tive execution times refer to repeating inverse CryptoPAn execution)

5.2.3 Minimum N with Bounding Γ-Leakage
As shown in Equation 4, the leakage drawn from inference
attacks is determined by background knowledge parame-
ters {αs, αf}, the received seed data Ds and generated data
views D1, . . . ,DN . As N grows, leakage can be smaller,
but more data views should be generated for the same
data analysis (more computation). Thus, our multi-view
outsourcing seeks a minimum N while satisfying Γ-leakage.

More specifically, the prefix length x determines the
partitions P1, . . . , Pp(x). Then, given any x ∈ [1, L], there
exists a minimum N while bounding the leakage with Γ
in our experiments (fixing {αf , αs} for the background
knowledge). As a result, before partitioning the data, the
data owner can find an x such that the required minimumN
for Γ-leakage is minimized – searching the x and minimum
N takesO(n log(n)) since the leakage derived from the fixed
inference attacks is anti-monotonic on N .

5.2.4 Privacy Analysis
In practice, an adversary will exploit any related informa-
tion (received data, background knowledge, etc.) to identify
whether a data view is the real or fake one. Recall that
only the sensitive attributes (prefix-aware encoded) are en-
crypted with CryptoPAn while other attributes are identical
among all the data views. Thus, identifying the real data
view only depends on the encrypted partitions, such as
comparing N different data views and the leakage derived
from them via inference attacks.

Theorem 5.1. The N data views (generated by the service
provider) satisfy ε-indistinguishability where

ε = ln[

∑b
k=1(

∏p(x)αs
k=1 |Pk|)(p(x)αs)!∏Aαf+p(x)αs−1

j=0 (A− j)
] (6)

, b =
(p(x)−pf )!
(p(x)αs)!

, k ∈ [1, p(x)] and A is the number of distinct
values in D.

Proof. The adversary is armed with αf knowledge of the
original data for the frequency and `p-optimization attacks,
and the αs knowledge for the fingerprinting attacks. Then,
we derive the indistinguishability bound ε as follows.

Recall that we generate p(x) partitions in D0 based on
the prefix length x. Denote the cardinality of each partition
Pi as |Pi|, i ∈ [1, p(x)]. Then, the total number of possibil-
ities (denoted as O) of dividing A distinct values into the
p(x) partitions is: O = A!

|P1|!|P2|!···|Pp(x)|!
.

Next, all the possible outcomes of the real data views
for the adversary (denoted as T ) depends on it’s armed
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background knowledge (αs, αf ), we thus need to consider
the following two aspects: (1) the adversary can reconstruct
A ∗ αf out of A distinct values by `p-optimization based
inference attacks while these compromised A ∗ αf distinct
values are possibly across pf ∈ [1, A ∗ αf ] partitions, which
will eleminate a number of partitions for at most p(x)− pf ;
(2) the adversary matches the remaining partitions with
the p(x)αs inferred prefixes via the fingerprinting based
inference attacks. Thus, we have the following equation:

T =

∑b
k=1(

∏p(x)αs
k=1 |Pk|)(A ∗ (1− αf )− p(x)αs)!(p(x)αs)!

|P1|!|P2|! · · · |Pp(x)|!
(7)

where b =
(p(x)−pf )!
(p(x)αs)!

, k ∈ [1, p(x)].
Finally, we thus have:

∀i, j ∈ {1, 2, · · · , N},P r[data view i may be real ]

Pr[data view j may be real]
=
T

O

=

∑b
k=1(

∏p(x)αs
k=1 |Pk|)(p(x)αs)!∏Aαf+p(x)αs−1

j=0 (A− j)
(8)

where b =
(p(x)−pf )!
(p(x)αs)!

, k ∈ [1, p(x)]. Per Definition 4.1, we
can complete the proof.

In Section 7.2, the experiments on the real datasets show
ε ≤ 1.5 in general. Furthermore, the overall information
leakage is also upper bounded as below.

Theorem 5.2. Given the attacker with background knowledge
{αf , αs}, the information leakage from the seed data and N data
views (D = {Ds,D1, . . . ,DN}) satisfies the Γ-leakage where

I(D, {αf , αs}) ≤ Γ =
αf
N

+
x(

∑
∀Pk∈C |Pk| −A · αf )

A · L ·N
(9)

where A is the number of distinct values in D, L is the length
of the encoded bit strings, x is the prefix length used for partition-
ing, C is the union of the two sets of data partitions derived by
the inference attacks with background knowledge {αf , αs}, and
∀Pk ∈ C, |Pk| is the number of distinct values in partition Pk.

Proof. The adversary is armed with αf knowledge of the
original data for the frequency and `p-optimization attacks,
and the αs knowledge for the fingerprinting attacks. Ac-
cording to Definition 3.3, to derive the upper bound Γ of
information leakage, we consider the worst case scenario by
assuming that the unique data or prefixes inferred by two
types of inference attacks are disjoint (to derive the highest
leakage). Note that we also assume that the adversary
attacks all the data D (seed data and N data views) and
the adversary does not know which data view is the real
one (indistinguishability). Then, we compute the leakage on
the two types of inference attacks, respectively.

As depicted before, the adversary can reconstruct A · αf
out of A distinct values by `p-optimization based infer-
ence attacks while the adversary can matches p(x) · αs
inferred prefixes by the fingerprinting based inference at-
tacks. Then, we get the bits of information leakage (as
percents) by `p-optimization based inference attacks: Aαf ·
L + x(

∑
∀Pk |Pk| − A · αf ), where ∀k ∈ [1, |Aαf |], |Pk| are

the number of distinct values across all the A ·αf partitions.

Similarly, we can compute the bits of information leakage
(as percents) by the fingerprinting based inference attacks∑
|Pj | · x, where ∀j ∈ [1, |p(x)αs|], |Pj | are the number of

distinct values across all the p(x)αs partitions. To sum up,
we can get the leakage (the percent of bits inferred by the
adversary, Definition 3.2) as below:

Aαf · L+ (Σ|Pk| −Aαf ) · x+ Σ|Pj | · x
N ·A · L

(10)

Thus, the overall leakage is upper bounded by

Γ =
αf
N

+
x(

∑
∀Pk∈C |Pk| −A · αf )

A · L ·N
(11)

where C is the union of the two sets of data partitions
inferred by the two types of inference attacks with back-
ground knowledge {αf , αs}. This completes the proof.

We also demonstrate the defense performance (on
bounded leakage) of our proposed framework with the
given inference attacks in Section 7.1.2. To sum up, our
framework can ensure any bounded leakage against any
given set of inference attacks, whereas the existing multi-
view approach [13] cannot strictly bound it.

5.3 Privately Retrieving Analysis Result

In Step (7), the service provider performs the same analysis
on all the N data views to derive N analysis results. Then,
in Step (8), the data owner can privately retrieve the analysis
result of the real data view (Dr) via the oblivious random
access memory (ORAM) [36] without letting the service
provider know which analysis result has been retrieved.

Proposition 5.1. The generalized outsourcing framework (with
the prefix-aware encoding) ensures 100% accuracy for analyzing
the prefix preserving encrypted data.

Proof. Equation 5 ensures that exactly one real data view
with fully prefix preserving encrypted data will be gener-
ated out of N data views. The accuracy for analyzing such
real data view is 100%. Since the data owner knows the
end-to-end data encryption (with two CryptoPAn keys K0

andK1 for multiple rounds of prefix preserving encryption),
it knows the index for the real data view with its locally
generated pseudorandom matrix R = [G1, . . . , GN ].

Thus, the data owner can privately retrieve the analysis
result of the real data view, which ensures 100% utility on
the fully preserved prefixes (validated in Section 7.3).

6 DISCUSSION

Worst Case Leakage and Amplification Effect. We bound
the worst leakage for all the attacks with Γ, e.g., the maxi-
mum leakage resulted from different combinations of back-
ground knowledge in different inference attacks. Moreover,
amplification effect of different inference attacks are also
considered in the experiment. For instance, as fingerprinting
based inference attacks have recovered some encrypted
data with background knowledge αs, then the accuracy of
frequency and `p-optimization based inference attacks can
be improved. Thus, the leakage bounded by Γ is derived
from multiple attacks with the amplification effect.
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New Inference Attacks. Our generalized outsourcing de-
fines Γ to bound the leakage from any combinations of
the inference attacks. In case of other threat models (e.g.,
other inference attacks [35], [38], or newly identified attacks
[32], [33], [34], the data owner only needs to simulate the
inference attacks to estimate the leakage and specify the x
which results in the minimum N to bound the leakage.

Communication Overheads. Although the framework gen-
erates N (could be hundreds) data views to ensure privacy,
the data owner only sends one seed data Ds with the same
size as the original data, some pseudorandom vectors (matrix)
R and the CryptoPAn key K1 to the service provider. More-
over, the data owner privately retrieves the corresponding
analysis result (with a small size in general) via ORAM.
Thus, the total communication overheads are quite close to
that of a regular data outsourcing.

7 EXPERIMENTAL EVALUATIONS

We implemented our outsourcing framework on the Cloud-
Lab platform [39] where one server works as the client and
another as the service provider. We utilize two different real
world datasets in the experiments.

Traveler Check-in Location Data. It includes 6,442,890
check-ins records of 196,591 users on a social network
(http://snap.stanford.edu/data/loc-gowalla.html). We in-
tegrated the data into 633,743 distinct locations in total.
A single data record consists of the user IDs, timestamps,
locations (GPS coordinates) and location IDs.

Network Traffic Data. It is collected from DoS attacks
(https://www.unb.ca/cic/datasets/dos-dataset.html). We
extracted the source/destination IPs, timestamps, packet
types, and port numbers from a 4.8GB raw dataset. 104,820
records are attributed to 778 distinct source IPs.

We encode the traveler check-in location data (i.e., GPS
locations) into bit strings with prefix-aware encoding. For
the network traffic data, IP addresses can also be binarized.
Then, CryptoPAn can be applied to preserve prefixes in the
encrypted bit strings for both datasets.

7.1 Experiments on the Inference Attacks
We have implemented two common inference attacks on the
encrypted data: 1) Frequency and `p-optimization (p = 2)
based inference attacks [14]; 2) Fingerprinting based infer-
ence attacks [13], [19] and set the background knowledge
parameters as αf and αs. While attacking two encrypted
datasets, leakage [10] out of the original data (Definition
3.3) is adopted as the metric to evaluate the confidence of
the attacks.

To model the background knowledge of the adversary in
the frequency or `p-optimization based inference attacks, we
setup the corresponding auxiliary dataset (including αf of
the original locations/IP addresses’ similar frequencies). In
addition, any αs of the original locations/IP addresses are
assumed to be identified by the adversary via fingerprint-
ing. We repeated each attacking experiment for 100 times
and average the results as the leakage. The average runtimes
of different inference attacks on two datasets are shown in
Table 2 (all the attacks can be efficiently performed by the
service provider and simulated by the data owner).

TABLE 2
Average Runtime of Attacks (sec)

Data Attacks Frequency `2-opt `3-opt Fingerprinting
Location Data 2.64 15.19 18.73 5.24
Network Data 0.12 3.17 4.38 1.23

7.1.1 Attacking CryptoPAn
We first implement the attacks on the two datasets en-
crypted by CryptoPAn (keys are randomly generated).

1) fixing the fingerprinting-based background knowledge
αs = 10%, 50%, and measure the leakage via varying
the other background knowledge αf ∈ [10%, 90%]
(from weak to very strong background knowledge);

2) fixing the background knowledge for frequency and `p-
optimization based inference attacks αf = 50%, 90%
and varying the fingerprinting inference αs ∈
[10%, 50%] (data injection does not exceed 50% in general).

In Figure 7(a) and 7(c), the leakage grows from 40% to
80% of the original locations/IP addresses as αf increases
from 10% to 90% (changing αs = 10% to 50% does not
increase the leakage much, compared to αf ). In Figure 7(b)
and 7(d), we learn a similar trend for both datasets. These
empirical results demonstrate that encrypted locations/IP
addresses (by CryptoPAn) are very vulnerable to both `p-
optimization and fingerprinting based inference attacks.
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Fig. 7. Inference Attacks on Data Encrypted by CryptoPAn

7.1.2 Attacking Multi-view Outsourcing
Intuitively, the more N data views are generated, the less
the leakage will be derived from the inference attacks since
the adversary cannot distinguish them.

To validate this, we consider the worst case scenario.
Given the indistinguishability bound ε, the real data view
is ε-distinguishable with other generated N − 1 fake data
views. We also assume that the adversary attacks all the
data views. Denote the probability of identifying any data
view as the real data view as Prr and the leakage as γr .
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Also, denote the probability of identifying any data view as
a fake data view as Pri, i ∈ [1, N ], i 6= r and the leakage
as γi (γr might be larger while γi might be smaller since
the data is fake). Then, the leakage in the worst case can be
obtained as γtotal =

∑N
i=1,i 6=r γi ∗ Pri + γr ∗ Prr , where

Pri = 1
N−1+eε , Prr = eε

N−1+eε in the worst case (since
∀i ∈ [1, N ], i 6= r, PrrPri

≤ eε).
We now examine the bounded leakage of multi-view

outsourcing against the same inference attacks. Figure 8
presents the required minimum number of data views N on
the encrypted location and network traffic data, respectively.
Specifically, if the leakage bound Γ increases (from 0.1% to
5%), the required minimum number N declines from ∼ 300
to ∼ 50 (against strong attackers αf = 50% and αs = 50%),
and declines from ∼ 50 to ∼ 5 (against weak attackers
αf = 10% and αs = 10%). While increasing the background
knowledge αf from 10% to 90%, the required minimum N
increases for all the leakage bound and αs (Figure 8(c)).
Similarly, while increasing the background knowledge of
fingerprinting from 10% to 50%, the required minimum N
also increases for all the leakage bound and αf in the multi-
view outsourcing (see Figure 8(e)). Figure 8 (b,c,d) shows
a similar trend on network traffic data. Table 3 shows the
optimal x for different leakage bound Γ ∈ [0.1%, 5%] on the
location data, and different background knowledge of two
types of inference attacks (αf , αs). Most x values are greater
than 20 (out of 46). Such long prefixes in the optimal case
(minimum N ) would generate more partitions.

TABLE 3
Optimal x for Encrypting Locations

(αf , αs)
Γ (%) 0.1 0.5 1 1.5 2 2.5 3 3.5 4 5

(0.1, 0.1) 30 25 27 29 20 26 27 20 28 23
(0.1, 0.5) 22 27 29 26 20 29 30 22 25 30
(0.5, 0.1) 24 26 26 23 26 29 21 29 26 29
(0.5, 0.5) 26 27 26 28 26 24 25 26 23 24

7.2 Indistinguishability
We also demonstrate the indistinguishablity bound ε w.r.t.
different αf , αs and leakage bound Γ. As illustrated in
Figure 9 (a,c) and (b,d), ε increases as αs or αf grows. This
indicates that a stronger attacker would be more likely to
identify the real data view. Moreover, ε is relatively small
even if the adversary holds a strong background knowledge.
For instance, in case of αf = 90%, αs = 50%, ε only equals
1.47 (which is also proven to be bounded in Theorem 5.1).
Note that the leakage bound has no significant effect on
ε since the indistinguishability among the data views is
mainly determined by the background knowledge.

7.3 Utility of the Outsourced Data
Furthermore, we evaluate the utility for the outsourced
location data using the Periodic Mobility Model (PMM) [21],
which can be used to predict the mobility of the users in one
week by analyzing their historical check-in data.

First, in Figure 10(a), we plot the location distribution
of 100 blocks (each block includes multiple locations) at
different times in the original data, real data view and fake
data view. We observe that the distributions between the
original data and the real data view are identical. Such
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Fig. 9. Indistinguishability on Location Data (a,b) and Network Data (c,d)

100% accuracy is ensured by the prefix preserving property
in the outsourced data. Second, we evaluate the accuracy
and relative error distance for the real data view and one
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randomly selected fake data view. In Figure 10(b), the av-
erage accuracy of the real data views is exactly the same as
the original dataset, both of which have a better accuracy
than the fake data view. This also matches the fact that
the outsourced data can fully preserve the prefixes of the
real data without changing other attributes. Figure 10(c)
demonstrates the results for relative error of distance, which
also validate such excellent utility.
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Fig. 10. Utility Evaluation on Location Data

7.4 System Performance
Finally, we also evaluate the computational and communica-
tion overheads for outsourcing different datasets. In Figure
11(a), as the number of data views N grows, the runtime
increases almost linearly for fixing different x as the prefix
length to generate data partitions. While enlarging the prefix
length x, the runtime also increases since the number of
partitions also increases. Then, the overall computational
costs become higher (with more CryptoPAn execution in
more data partitions). Figure 11(b) shows the experimental
results of runtime versus different data sizes with fixed
prefix length x = 16 (which is also a linear increase). We
leverage the Path-ORAM [40], [41] to implement private
result retrieval. The communication bandwidth is around
0.93MB and runtime is only 289ms for outsourcing the
location data on average. Such experimental results are
reasonable since the data owner only retrieves the analysis
result corresponding to the real data view rather than the
entire dataset. This is also confirmed in [41].

Finally, bounded by the same information leakage Γ,
the proposed generalized framework requires less number
of data views compared to [13], and thus reduces the
computational overheads at the service provider end (on
analyzing all the generated data views). Thus, we also
validate this using two real datasets. Specifically, given the
prefix length, we apply both our generalized framework
and multi-view framework for generating the data views
to ensure the same bounded information leakage Γ. For
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Fig. 11. Running Time on Location Data

the multi-view framework, we fix the length of prefix to be
16/23 for the network traffic and location data, respectively.
Table 4 summarizes the running time of conducting the
analysis on all the generated data views by both approaches
with different leakage bound Γ. We can observe that our
generalized framework needs less time to analyze all the
data views on both two datasets.

TABLE 4
Running Time (sec) vs. Information Leakage

Dataset Scheme
Leakage 1% 3% 5% 7% 10%

Network Multi-view [13] 11.6 8.3 6.7 4.5 3.2
Ours 8.2 6.5 5.8 3.7 2.8

Location Multi-view [13] 16.2 13.3 11.0 7.5 5.4
Ours 11.3 10.4 8.3 5.9 3.6

8 RELATED WORK

Securely Outsourcing Analysis. Securely outsourcing data
analysis to third-party service providers has recently grown
rapidly, especially with the increasing popularity of cloud
technology [42], [43]. For this purpose, provably secure
outsourcing has attracted significant attention during past
decade. For instance, Sion et al. [44] define the requirements
to build a secure outsourcing mechanism. Zhou et al. [45]
propose a secure key management scheme which ensures
that the source of the data can be securely accessed by
different parties under different requirements. Alternatively,
oblivious random access memory (ORAM) [46] aims to hide
the access patterns of the users, which has been well devel-
oped on different topics [40], [47], [48], [49]. In addition,
Franz et al. [50] propose a method which can make the
data owner delegate rights to new clients for accessing to
the outsourced data via a curious server based on ORAM.
Stefanov et al. [40] propose a simple ORAM protocol with a
small amount of client storage, which is formally proven to
require small bandwidth and overheads.

Property Preserving Encryption Schemes. Broadly, various
encryption schemes have been proposed to protect the data
in different security levels, including fully homomorphic
encryption (FHE) [7], [51], functional encryption [52], [53],
searchable symmetric encryption [54], [55] and oblivious
RAM (ORAM) [36], [41]. Moreover, there are a number
of property preserving encryption schemes based on the
CryptDB [56], such as order preserving encryption [11], [12]

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on April 19,2022 at 14:37:39 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3078099, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. XX, AUGUST 2015 13

and deterministic encryption [9]. CryptoPAn [10] was pro-
posed by Xu et al. to ensure the prefix preserving property
on IP addresses from the cryptographic view. Kerschbaum
[57] proposes a new order preserving encryption scheme
which can hide the frequency pattern of plaintexts via
randomizing the ciphertexts to mitigate frequency analysis.
Wang et al. [58] design a more efficient oblivious data
structure which achieves a high efficiency.

Inference Attacks. Brekne et al. [20] presents the attacks via
frequency analysis to compromise IP addresses under two
prefix preserving anonymization schemes. There are several
works which focus on the practical attacks to the encrypted
data [14], [15], [59], [60]. Islam et al. [60] introduce the
first inference attack which leverages the leakage of access
pattern and auxiliary information to get more information
about the remaining queries. Naveed et al. [14] present a
series of inference attacks on the property preserving en-
crypted database and implement the attacks on the medical
databases to show the effectiveness of the attacks. Recently,
Kellaris et al. [15] develop a generic reconstruction attacks
on the range queries in the outsourced databases where the
access patterns and communication volume are leaked.

9 CONCLUSION

In this paper, we have proposed a general-purpose prefix
preserving encryption scheme that generalizes the previous
encryption scheme for only encrypting IP addresses to many
other datasets (e.g., geo-locations, market basket datasets,
and timestamps) with appropriate prefix-aware encoding.
To address the privacy concerns in the encrypted data such
that the utilities of prefix preservation can be fully realized,
we have proposed a generalized multi-view outsourcing
framework that generates multiple indistinguishable data
views in which one data view fully preserves the utility
(prefixes) and its data analysis result can also be obliviously
retrieved. We have also empirically evaluated the perfor-
mance of different inference attacks on two different real
datasets encrypted using CryptoPAn and our multi-view
outsourcing. The experimental results have demonstrated
that our proposed framework preserves both privacy (with
bounded leakage and indistinguishability of data views)
and utility (with fully preserved prefixes).
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