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Background: Both (e, e′ p) and (p, 2p) reactions have been performed to study the proton single-particle character of nuclear states
with its related spectroscopic factor. Recently, the dispersive optical model (DOM) was applied to the (e, e′ p) analysis revealing that
the traditional treatment of the single-particle overlap function, distorted waves, and nonlocality must be further improved to achieve
quantitative nuclear spectroscopy.

Purpose: We apply the DOM wave functions to the traditional (p, 2p) analysis and investigate the consistency of the DOM spectroscopic
factor that describes the (e, e′ p) cross section with the result of the (p, 2p) analysis. Additionally, we make a comparison with a
phenomenological single-particle wave function and optical potential. Uncertainty arising from a choice of p-p interaction is also
investigated.

Method: We implement the DOM wave functions to the nonrelativistic distorted-wave impulse approximation (DWIA) framework for
(p, 2p) reactions.

Results: DOM + DWIA analysis on 40Ca(p, 2p) 39K data generates a proton 0d3/2 spectroscopic factor of 0.560, which is meaningfully
smaller than the DOM value of 0.71 shown to be consistent with the (e, e′ p) analysis. Uncertainties arising from choices of single-particle
wave function, optical potential, and p-p interaction do not explain this inconsistency.

Conclusions: The inconsistency in the spectroscopic factor suggests there is urgent need for improving the description of p-p scattering in
a nucleus and the resulting in-medium interaction with corresponding implications for the analysis of this reaction in inverse kinematics.

DOI: 10.1103/PhysRevC.105.014622

I. INTRODUCTION

The independent particle picture provides an excellent first
characterization of the structure of a nucleus. An important
indicator of this picture is the spectroscopic factor for valence
orbitals, which represents the removal probability for each
nucleon orbital to a low-lying state of the system with one
proton less. The nucleon knockout reaction has been one of
the best tools to study this aspect of nuclei. The electron-
induced proton knockout reaction, (e, e′ p) [1–9], has been
considered the cleanest spectroscopic method for decades.
Despite some concerns about the uncertainties associated with
proton-induced proton knockout reactions, (p, 2p) [10–17], a
recent review [16] established (p, 2p) as an complementary
spectroscopic tool to (e, e′ p) with about 15% uncertainty for
incident energy above 200 MeV.

As discussed in Ref. [16], the effect of nonlocality on the
distorted waves and the bound-state wave function is consid-
ered to be a major source of the theoretical uncertainties in
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the description of the (p, 2p) reactions. Usually, the effect is
phenomenologically taken into account by including the Perey
factor [18]; the Darwin factor is used when an optical poten-
tial based on the Dirac phenomenology [19–21] is adopted.
However, the validity of this phenomenological treatment of
nonlocality has not been estimated quantitatively. Recently, a
fully nonlocal dispersive optical model (DOM) has been de-
veloped [22,23], extending the original work by Mahaux and
Sartor [24]. The DOM describes the nucleon scattering poten-
tial and the binding potential that gives single-particle levels
on the same footing, making use of a subtracted dispersion
relation. The single-particle wave function (SPWF) and its
spectroscopic factor as well as the distorted waves obtained by
the present DOM framework were applied to the nonrelativis-
tic distorted-wave impulse approximation (DWIA) analysis
of 40,48Ca(e, e′ p) 39,47K reactions [8,9] without any further
adjustment. It was concluded that an accurate treatment of the
nonlocality as practised in the DOM is necessary to generate
spectroscopic factors that automatically describe the (e, e′ p)
knockout cross sections after the DOM potential has been
constrained by all available elastic scattering data (up to
200 MeV) and relevant ground-state information.
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The finding in Refs. [8,9] demonstrates the importance
of the implementation of the DOM wave functions to the
DWIA analysis of (p, 2p) processes in which three proton
distorted waves are present. Therefore, the use of the DOM
wave functions is expected to clarify the role of the effective
interaction that is involved in the extraction of spectroscopic
factors from (p, 2p) data. In this study, we report the first
application of such a DWIA analysis with the DOM wave
functions to 40Ca(p, 2p) 39K data at 200 MeV [25].

The organization of this paper is as follows. In Sec. II, we
briefly introduce the present DOM + DWIA framework. In
Sec. III, a theoretical analysis of 40Ca(p, 2p) 39K data and the
consistency between DOM proton spectroscopic factors that

automatically describe (e, e′ p) cross sections and those ob-
tained from (p, 2p) analyses are discussed. We also compare
the present framework with a conventional DWIA analysis
employing a phenomenological SPWF and optical potentials.
Finally, a summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Distorted-wave impulse approximation

In the present study, the factorized form of the nonrela-
tivistic DWIA with the spin degrees of freedom is employed.
The transition matrix T within the distorted-wave impulse
approximation framework is given by

Tµ1µ2µ0µ j =
∑

µ′
1µ

′
2µ

′
0µp

t̃µ′
1µ

′
2µ

′
0µp

∫
dR χ (−)∗

1,µ′
1µ1

(R)χ (−)∗
2,µ′

2µ2
(R)χ (+)

0,µ′
0µ0

(R)e−iαRK0·R
∑

m

(lmspµp| jµ j )ψn
l jm(R). (1)

The incident and two emitted protons are labeled as particle
0–2, while the bound proton in the initial state is labeled as
p. χi,µ′

iµi is a distorted wave of particle i = 0, 1, 2 having
the asymptotic (local) third component µi (µ′

i) of its spin
si = 1/2. The outgoing and incoming boundary conditions
of the distorted waves are denoted by superscripts (+) and
(−), respectively. K0 is the momentum (wave number) of the
incident proton and αR is the mass ratio of the struck particle
and the target, 1/40 in this study. n is the radial quantum
number, and l, j, m are the single-particle orbital angular mo-
mentum, total angular momentum, and third component of l ,
respectively. ψn

l jm is the SPWF normalized to unity. t̃µ′
1µ

′
2µ

′
0µp

is the matrix element of the p-p effective interaction tpp,

t̃µ′
1µ

′
2µ

′
0µp = 〈κ′, µ′

1µ
′
2 | tpp | κ, µ′

0µp〉, (2)

where κ and κ′ are relative momenta of two protons in the
initial and the final states, respectively. The factorization
procedure of tpp is explained using the local semiclassical
approximation (LSCA) and the asymptotic momentum ap-
proximation (AMA) in the Appendix. It should be noted that
the factorized DWIA is often regarded as a result of the zero-
range approximation but tpp is finite-range interaction in the
present study.

The triple differential cross section (TDX) with respect to
the emitted proton energy T L

1 and emission angles $L
1 and $L

2
is given as

d3σ L

dT L
1 d$L

1 d$L
2

=Zn
l jJLGFkin

(2π )4

h̄vα

1
(2s0 + 1)(2 j + 1)

×
∑

µ1µ2µ0µ j

|Tµ1µ2µ0µ j |2, (3)

with Zn
l j , JLG, Fkin, vα being the spectroscopic factor, the

Jacobian from the center-of-mass frame to the Laboratory
frame, kinetic factor, and the relative velocity of the incident
proton and the target, respectively. Quantities with superscript
L are evaluated in the laboratory frame while the others are in
the center-of-mass frame. See Sec. 3.1 of Ref. [16] for details.

B. Dispersive optical model

The distorted waves and SPWF in Eq. (1) as well as the
spectroscopic factor in Eq. (3) are calculated using the DOM.
The nonlocal DOM uses both bound and scattering data to
constrain the nucleon self-energy '∗ for a given nucleus. This
self-energy is a complex and nonlocal potential that unites
the nuclear structure and reaction domains [22,24]. The DOM
was originally developed by Mahaux and Sartor [24], em-
ploying local real and imaginary potentials connected through
dispersion relations. However, only with the introduction of
nonlocality can realistic self-energies be obtained [22,23,26–
28]. The Dyson equation then determines the single-particle
propagator, or Green’s function, from which bound-state and
scattering observables can be deduced.

Using the DOM self-energy, a Schrödinger-like equa-
tion can be generated to calculate the SPWF in Eq. (1),

∑

γ

〈α| T) + '∗
) j (E ) |γ 〉ψn

) j (γ ) = ε−
n ψn

) j (α), (4)

where α and γ are arbitrary basis variables, ) j correspond to
the orbital and total angular momentum of the orbital, n is the
principle quantum number of the orbital, and 〈α| T) |γ 〉 is the
kinetic-energy matrix element, including the centrifugal term
[8]. These wave functions correspond to overlap functions

ψn
) j (α) =

〈
+A−1

n

∣∣ aα) j
∣∣+A

0

〉
, ε−

n = EA
0 − EA−1

n . (5)

Such discrete solutions to Eq. (4) exist where there is no
imaginary part of the self-energy, so near the Fermi energy.
The normalization for these wave functions corresponds to the
same spectroscopic factor of Eq. (3), which is given by [29]

Zn
) j =

(
1 −

∂'∗
) j (αqh,αqh; E )

∂E

∣∣∣∣
ε−

n

)−1

, (6)

where αqh represents the quasihole state that solves Eq. (4).
Note that because of the presence of imaginary parts of the
self-energy at other energies, there is also strength located
there, and thus the spectroscopic factor will be less than
1 and also less than the occupation probability. The DOM
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Kramer + KD
Kramer + DP
DOM
exp

FIG. 1. TDX with different optical potentials. The solid, dashed,
and dotted lines are TDXs with the Koning-Delaroche optical poten-
tial (KD) and Dirac phenomenology (DP), respectively. The result
with DOM ingredients is also shown as the dot-dashed line. All re-
sults reflect cross sections that are normalized with the spectroscopic
factors shown in Table I. The experimental data taken by the E258
experiment at RCNP [25] are also shown.

self-energies of 40Ca and 48Ca were used in Refs. [8,9,30]
to reproduce 40Ca(e, e′ p) 39K and 48Ca(e, e′ p)47K momentum
distributions, respectively. The corresponding 40Ca spectro-
scopic factor of ZDOM

0d3/2
= 0.71 ± 0.04, which is consistent

with 40Ca(e, e′ p) 39K data, will now be used alongside
the DOM SPWF and distorted waves to analyze the
40Ca(p, 2p) 39K knockout reaction.

III. RESULTS AND DISCUSSION

In this section, we discuss extracted spectroscopic factors
from the 40Ca(p, 2p) 39K reaction in comparison with the
DOM result that is consistent with the 40Ca(e, e′ p) 39K data.
We also address uncertainties arising from the choice of the
optical potential and the effective p-p interaction. The theo-
retical knockout cross section is calculated using the DWIA
framework with the DOM SPWF and distorted waves. Re-
sults using phenomenological inputs are also discussed for
comparison.

The spectroscopic factor of 0d3/2 is extracted from the
ratio of the theoretical cross section and the experimental
data of the 40Ca(p, 2p) 39K reaction at 197 MeV. The reaction
kinematics is in a coplanar kinematics and the opening angles
of the emitted protons are fixed at the same angle: φL

1 = 0◦,
φL

2 = 180◦, and θL
1 = θL

2 = 42.0◦ in the Madison convention
[31]. The kinematics of the three particles is then uniquely
determined once T L

1 is given.
The DOM-DWIA result is compared with those of the

phenomenological SPWF and the optical potential in Fig. 1.
For this comparison, the DOM-DWIA cross section is ad-
justed to the data and the DOM spectroscopic factor was not
utilized. The phenomenological SPWF suggested by Kramer

TABLE I. Setup and resulting spectroscopic factors.

SPWF Optical pot. p-p int. Z0d3/2

Kramer KD FL 0.623 ± 0.006
Kramer Dirac FL 0.672 ± 0.006
DOM DOM FL 0.560 ± 0.005
DOM DOM Mel 0.489 ± 0.005
DOM DOM Mel (free) 0.515 ± 0.005

et al. [7], the Koning-Delaroche optical potential parameter
set (KD) [32], and the Dirac phenomenology (DP) [19–21]
are also considered. Calculated TDXs and the experimental
data are shown in Fig. 1. Spectroscopic factors are therefore
extracted from the ratio of the present calculations and the
experimental data taken by the E258 experiment at RCNP [25]
by minimizing

χ2(Z0d3/2 ) =
∑

i

(
Z0d3/2σ

DWIA
i − σi

)2

δ2
i

. (7)

σ DWIA
i and σi are theoretical and experimental cross sec-

tions at data points, respectively, and δi is associated error
of the experimental data. Obtained spectroscopic factors are
summarized in Table I. Following Ref. [16], only the data
points around the peak, larger than 25 µb/(MeV sr2), are fitted
to reduce the uncertainty.

The spectroscopic factors obtained from the phenomeno-
logical (p, 2p) analysis are consistent with the phenomeno-
logical (e, e′ p) analysis which gave 0.65 ± 0.06 [8]. On the
other hand, the spectroscopic factor obtained using the DOM
wave functions to reproduce the (p, 2p) cross section is in
disagreement with the DOM-calculated [using Eq. (6)] value
of 0.71 ± 0.04. One of the reasons for this inconsistency may
lie in a difference in the peripherality of the reaction probes,
but it is not yet well understood.

The importance of having to deal with three distorted pro-
ton waves in the (p, 2p) reaction as compared to just one in
the (e, e′ p) case remains an issue. There is an uncertainty
associated with the DOM distorted waves due to the experi-
mental data points used in the DOM fit. Considering the strong
correlation between the proton reaction cross section and the
48Ca(e, e′ p)47K cross section demonstrated in Ref. [9], we
look to uncertainties in the experimental proton reaction cross
section data points in energy regions corresponding to those
of the distorted proton waves to get a rough estimate of the
uncertainty associated with the DOM distorted waves. The
proton reaction cross-section data points from Refs. [33,34]
suggest an uncertainty in the corresponding DOM distorted
waves around 3%. Furthermore, due to the kinematics of the
reaction, one of the proton energies is as low as 36 MeV.
In the DOM analysis of 40Ca(e, e′ p) 39K, the description of
the experimental cross section for outgoing proton energies
of 70 MeV, the lowest of the considered proton energies, is
unsatisfactory [8]. This indicates that the impulse approxi-
mation may not be applicable at proton energies of 70 MeV
and below. Since one of the outgoing proton energies in
this 40Ca(p, 2p) 39K reaction is even less than 70 MeV, it is
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DOM(FL)
DOM(Mel)
DOM(Mel free)
exp

FIG. 2. TDX with different p-p effective interactions. The solid,
dashed, and dotted lines are TDXs with the Franey-Love effective
interaction [35] (FL), Melbourne g-matrix interaction at mean den-
sity [36] (Mel), and that at zero density (Mel free), respectively. The
experimental data are the same as in Fig. 1.

reasonable to expect some discrepancy in the 40Ca(p, 2p) 39K
TDX. This discrepancy may be reduced when higher proton
beam energies are considered but this implies that the DOM
analysis has to be extended to higher energies.

As a further step to clarify this issue, we also investi-
gated the uncertainty arising from a different choice of the
p-p effective interactions. Three different types of the p-p
effective interactions, the Franey-Love effective interaction
(FL) [35], the Melbourne g-matrix interaction at mean density
(Mel) [36], and that at zero density (Mel free) were utilized.
The mean density of the reaction is defined in Sec. 6.1. of
Ref. [16]. The SPWF and the distorted waves from the DOM
are adopted in this analysis. The choice of the p-p effective
interaction only changes the magnitude of the TDX, keeping
their shapes unchanged as shown in Fig. 2. Extracted spectro-
scopic factors are summarized in Table. I. An uncertainty of
the choice of the p-p effective interaction results in Z0d3/2 =
0.489–0.560 and does not explain the inconsistency between
the DOM (p, 2p) result and the successful DOM description
of the (e, e′ p) cross section [8].

Validity of the finite-range treatment of tpp and factoriza-
tion approximation as well as the nonlocality correction and
the relativistic correction in nonrelativistic DWIA have been
discussed for decades [37–40]. They make certain change in
the cross section, but it is still not quantitatively conclusive.
In Ref. [41], it is reported that TDX with AMA only dif-
fers 6% of that with LSCA in 120Sn(p, pα) 116Cd reaction
case. Considering this situation, it is very important that we
obtained good agreement in spectroscopic factors deduced
from phenomenological (e, e′ p) and (p, 2p) analyses before
discussing DOM + DWIA analysis. It should be noted that the
finite-range treatment of tpp is more crucial in the relativistic
DWIA framework, as pointed out in Ref. [42].

Ideally, the spectroscopic factor should not depend on the
reactions to be adopted. As shown in Ref. [16], the spectro-
scopic factors for the SP levels near the Fermi energies of
stable nuclei extracted from (p, 2p) reactions above 200 MeV
are consistent with those from (e, e′ p) with uncertainties rang-
ing from 10% to 15%. It should be noted that the nonlocality
correction to the SPWF and distorted waves are considered to
be a primary source of the uncertainties of the spectroscopic
factor [16]. As mentioned above, Z0d3/2 obtained with the
DOM-DWIA analysis of the 40Ca(p, 2p) data at 200 MeV, in
which the nonlocality is treated in a sophisticated manner, dif-
fers by at least 21% from the value used to reproduce (e, e′ p)
data using the same SPWF and proton distorted wave calcu-
lated with the DOM. This implies the necessity of improving
the treatment of p-p scattering inside a nucleus beyond the
standard t- or g-matrix approach. One immediate concern is
that present treatments of the effective interaction do not allow
for energy transfer in the elementary process. Since in the
(p, 2p) reaction a substantial excitation energy is involved, it
implies that the mediators of the strong interaction, in partic-
ular the pion, must be allowed to propagate in the system and
are certainly not static [43].

The ability of the DOM to provide both bound and scat-
tering nucleon wave functions is opening a door to a new
research opportunity for the nucleon-nucleon scattering pro-
cess in many-body systems. This is of particular importance
as the (p, 2p) reaction can be employed in inverse kinematics
[44,45]. There is therefore a clear need to pursue an improved
description of the effective interaction in the medium which
will also depend on the nucleon asymmetry that is studied in
exotic systems.

IV. SUMMARY

The DOM SPWF and distorted waves have been applied
to the DWIA analysis of (p, 2p) reaction for the first time.
The proton 0d3/2 spectroscopic factor Z0d3/2 = 0.56 ± 0.005
of 40Ca was extracted from 40Ca(p, 2p) 39K analysis with
the present framework. The obtained spectroscopic factor
is inconsistent with the DOM supplied one that reproduces
40Ca(e, e′ p) 39K data, 0.71 ± 0.04. We tested several types
of input for the p-p effective interaction: the Franey-Love
interaction, the Melbourne g-matrix at mean density, and that
at zero density. In addition to using the DOM wave func-
tions, Kramer’s SPWF and distorted waves obtained by the
Koning-Delaroche and Dirac phenomenology optical poten-
tials were considered. We conclude from the present analysis
that the gap between the above-mentioned (p, 2p) and (e, e′ p)
spectroscopic factors cannot be explained by the uncertainties
arising from these inputs. This result implies there is room for
improving the treatment of the p-p binary scattering beyond
the traditional t- and g-matrix approach combined with the
impulse approximation.
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APPENDIX: FACTORIZATION OF T MATRIX

In this Appendix, the factorization procedure of the T
matrix is explained by means of the LSCA, following previous
research [46–49]. Equation (1) is originally an integral over
two coordinates R and s:

Tµ1µ2µ0µ j =
∑

µ′
1µ

′
2µ

′
0µp

∫
dR ds χ (−)∗

1,µ′
1µ1

(R1)χ (−)∗
2,µ′

2µ2
(R2)tpp(s)

× [1 − P]χ (+)
0,µ′

0µ0
(R0)

×
∑

m

(lmspµp| jµ j )ψn
l jm(R2). (A1)

R, s, R0, R1, and R2 are defined as shown in Fig. 3. tpp(s)
is a p-p effective interaction and P is the exchange operator
for the colliding two protons; thus, as usual, both the direct
and exchange terms are considered. R, s, R0, R1, and R2 are
rewritten in terms of R and s as

R0 = (1 − αR)R + A + 1
2A

s, (A2)

R1 = R + 1
2 s, (A3)

R2 = R − 1
2 s. (A4)

The nucleon and the target mass number are 1 and A, re-
spectively. The factorization of the p-p t-matrix is done by
considering three approximations as follows. First, for a short
distance 0R, the local semiclassical approximation (LSCA)
[46–49] can be applied to the distorted waves:

χ (R + 0R) ≈ χ (R)eiK(R)·0R. (A5)

K(R) is the local momentum of the scattering particle at R.
Further approximation is made by replacing the local mo-
mentum K(R) with its asymptotic one K. This is called the
asymptotic momentum approximation (AMA) In Ref. [49], in

which the AMA was referred to as LSCA-A, the AMA was
shown to work with almost the same accuracy as of LSCA for
a short propagation of the distorted waves of about 1.5 fm. It
should be noted that for the factorization of the p-p transition
matrix, the propagation range of about the half the range
of tpp(s) needs to be approximated. According to the result
of Ref. [49], both the LSCA and AMA are expected to be
sufficiently accurate for this purpose. Furthermore, it is re-
ported in Ref. [41] that the knockout cross section with AMA
differs only ≈6% from that with LSCA in 120Sn(p, pα) 116Cd
reaction at 392 MeV.

Thus, the AMA (and the LSCA as well) can safely be
applied to the distorted waves in Eq. (A1), which reads

χ (+)
0,µ′

0µ0
(R0) ≈ χ (+)

0,µ′
0µ0

(R)e−αRK0·R × ei(A+1)K0·s/2A, (A6)

χ (−)∗
1,µ′

1µ1
(R1) ≈ χ (−)∗

1,µ′
1µ1

(R)eiK1·s/2, (A7)

χ (−)∗
2,µ′

2µ2
(R2) ≈ χ (−)∗

2,µ′
2µ2

(R)e−iK2·s/2, (A8)

with K i (i = 0, 1, 2) being the asymptotic momenta of particle
i. Note that in Eq. (A6), we have also used the fact that αR is
small. As for the single-particle wave function, the Fourier
transformation is applied to factorize out the s dependence

ψn
l jm(R2) = 1

(2π )3

∫
dKN ψ̃n

l jm(KN )eiKN ·R2

= 1
(2π )3

∫
dKN ψ̃n

l jm(KN )eiKN ·(R−s/2). (A9)

The second approximation is to assume the quasifree p-p
collision in the (p, 2p) reaction. Although the distorted waves
are not eigenstates of momenta, the initial (final) p-p relative
momentum κ (κ′) relevant to the (p, 2p) reaction are approxi-
mately given by the asymptotic momenta K i as

κ ≈ A + 1
2A

K0 − 1
2

KN , (A10)

κ′ ≈ 1
2 K1 − 1

2 K2. (A11)

It should be noted that this is a natural outcome of the use
of the AMA mentioned above. Similarly, as the last approx-
imation, the momentum conservation of the p-p collision is
assumed:

A + 1
A

K0 + KN ≈ K1 + K2. (A12)

Again, the appearance of the asymptotic momenta in
Eq. (A12) is due to the use of the AMA.

Under these approximations, once the (p, 2p) kinematics
is fixed, KN and κ are uniquely determined by K0, K1, and
K2. Inserting Eqs. (A6)–(A9) into Eq. (A1) and applying
the inverse Fourier transform of ψ̃n

nlm(KN ), one obtains the
factorized form of the T matrix

Tµ1µ2µ0µ j =
∑

µ′
1µ

′
2µ

′
0µp

∫
ds e−iκ′·stpp(s)[1 − P]eiκ·s

∫
dR χ (−)∗

1,µ′
1µ1

(R)χ (−)∗
2,µ′

2µ2
(R)χ (+)

0,µ′
0µ0

(R)e−iαRK0·R
∑

m

(lmspµp| jµ j )ψn
l jm(R).

(A13)

This is equivalent to Eqs. (1) and (2), if one takes account of the spin degrees of freedom in the p-p t matrix.
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