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Abstract

Caves and rock shelters contribute important records to local, regional and sub-continental reconstructions of
environment and climate change through the southern African Quaternary. Against a backdrop of pronounced climate
change, the archaeological record of the Marine Isotope Stage 6 to 1 period in southern Africa documents a remarkable
time in the behavioural and technological evolution of anatomically modern humans. Significant evidence of this
evolution is represented in diverse components of the sedimentary record in caves and rock shelters in the region. We
present a catalogue of published caves and rock shelters in southern Africa that preserve temporally-relevant clastic
and chemical palaeoclimatic proxies in order to: (1) facilitate the integration of cave and rock shelter sedimentary data
into broader, regional chronostratigraphically-correlated palaeoclimatic sequences; and (2) identify possible areas and
proxies that require focused research in the future. To demonstrate the complexity of the Marine Isotope Stage 6 to 1
stratigraphic record and use of palaecoenvironmental proxies, we present three case studies representing interior and
coastal contexts: Border Cave, Klasies River Mouth and Pinnacle Point. These examples aptly demonstrate the challenges
of these contexts, but also the opportunities for palacoenvironmental research in southern Africa when conducted
through integrated, multidisciplinary approaches. Published records of palacoenvironmental research from cave and
rock shelter sequences in southern Africa are heavily biased to the South African coastal areas and the record is
temporally and spatially fragmented. However, there are interesting patterns in the chronostratigraphic record and in
the distribution of sites within the context of the geology and vegetation ecology of southern Africa that require further
exploration. There are also promising techniques in stable isotope analysis that can be applied to abundant sedimentary
components found in the region’s caves and rock shelters, and in its museums.
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CAVE AND ROCK SHELTER SEDIMENTS OF SOUTHERN AFRICA: A REVIEW OF THE CHRONOSTRATIGRAPHIC
AND PALAEOENVIRONMENTAL RECORD FROM MARINE ISOTOPE STAGE 6 TO 1

Introduction

Clastic and chemical sediments yielded from caves and rock
shelters in southern Africa contribute important palaeo-
environmental records to local, regional and sub-continental
reconstructions of climate change through the southern African
Quaternary. In the period from Marine Isotope Stage (MIS) 6 to
MIS 1, these data also contextualise the behavioural and
technological evolution of anatomically modern humans
(Marean et al., 2014; Wadley, 2015; Stewart and Mitchell, 2018).
While much of the southern African interior has been prone to
gradual denudation for millions of years, the nature of caves and
rock shelters as clastic and chemical sediment traps means
they have the potential to yield high-resolution records of
climate change and biological evolution over long time periods
(e.g., Butzer, 1984; Klein, et al., 1991; Jacobs et al., 2008a; Bar-
Matthews et al., 2010; Matmon et al., 2012; Karkanas et al., 2021).

Biogenic components of clastic sediments include animal
and human (anthropogenic) accumulations of fauna and flora
and provide rich records that have been recognized as palaco-
environmentally-informative archives for over 50 years (e.g.,
Butzer, 1964; Klein, 1970). Across southern Africa, archaeological
excavations continue to generate the vast majority of
chronological and palacoenvironmental data from caves and
rock shelters. Through the 1970's and 1980’s, extensive
excavations, mostly in South Africa, started to provide sufficient
faunal and botanical assemblages to enable some of the first
syntheses of Quaternary environmental change (e.g., Klein,
1974, 1980; Avery, 1982, 1987, 1988; Butzer, 1984; Prior and
Williams, 1985; Thackeray, 1987; Deacon and Lancaster, 1988;
Dowson, 1988). More recently, palaeoenvironmental records
derived from caves have drawn on stable isotopes from a broad
range of components found in the clastic sedimentary record,
including terrestrial and marine shells (e.g., Johnson et al., 1997,
Cohen et al., 1992; Loftus et al., 2019a), bone and enamel (Sealy,
1996; Sealy et al., 2016 respectively), sedimentary organic matter
(Roberts et al., 2013), and leaf waxes (Collins et al., 2017),
which have facilitated reconstructions of vegetation cover
and composition, rainfall conditions (amount/seasonality),
and temperatures across glacial-interglacial cycles. When
anthropogenically accumulated assemblages are used for
climatological reconstructions (e.g., the use of botanical remains,
macrofauna, shellfish), they can produce records of ecological
exploitation that help correlate human movement on the
landscape to climatic conditions (e.g., Stewart et al., 2012). These
records are invaluable, but in any one site tend to be punctuated
glimpses, limited in completeness by diverse post-depositional
processes or by the nature of irregular and ephemeral occupation.

Geogenic processes (i.e., processes that are geological in
nature, e.g., fluvial, colluvial, aeolian) of cave sediment
accumulation include allogenic and autogenic components that
are also influenced by external climatological conditions (e.g.,
Karkanas et al., 2021). Consequently, host rock breakdown-
derived sedimentation, speleothem deposition and secondary
mineral accumulation have been used as proxies for
environmental conditions and change (e.g., Butzer, 1973b, 1984;
Butzer et al., 1978). Speleothem records from caves and rock
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shelters also provide important independent palaeoclimatic
records and when inter-stratified with clastic deposits can add
considerable chronostratigraphic control (e.g., Marean et al.,
2010; Karkanas et al., 2021). Here, we draw on the available
speleothem records as additional stratigraphic, chronological
and palaeoenvironmental components in the southern African
cave and rock shelter sequences from MIS 6 to 1. Geogenic
processes of weathering, erosion and sedimentation affect the
sequences found in cave deposits in diverse ways with complex
ties to changing geomorphology, hydrology and climate over
short and long timespans, leading to deposit deformation (e.g.,
Klasies River Main site), formation of significant unconformities
(sedimentary hiatuses e.g., Bushman Rock Shelter, Sibudu,
Wonderwerk Cave), and cave closure (e.g., Pinnacle Point 13B).

Here, we endeavour to provide an overview of cave and
rock shelter stratigraphies and the utilisation of proxies pertinent
to the study of southern African Quaternary climate change. This
is motivated by a need to understand the source of biases in
the current record resulting from the unequal distribution
(and sampling) of sites through the region, and from changes
in geochronological and palacoenvironmental analytical capacity,
procedures and resolution over many decades of research. In
doing so, we hope to highlight opportunities for future re-
sampling and re-analysis in light of under-utilised museum
collections and an inclination in the archaeological discipline to
frequently re-excavate sites. To this end, we present a catalogue
of published caves and rock shelters that preserve temporally-
relevant clastic and chemical palacoclimatic and palaco-
environmental proxies in southern Africa.

Table 1 presents a catalogue of 104 caves and rock shelters
in southern Africa dated to the last 200 ka (MIS 6 to 1) that have
published sedimentary sequences with palacoenvironmental
and paleoclimatic proxies. Archaeologically, this period spans
the Middle Stone Age (MSA) (~300 ka to 20 ka), Later Stone Age
(LSA) (~20 ka to historical period) and Iron Age (~2 ka to
historical period). Figure 1 presents this data in a map of
southern Africa. Individual maps of southern African sites and
associated proxies through each Marine Isotope Stage are
presented in the Supplementary Information (SI) Figures 1 to 6.
(Supplementary data files are archived in the South African
Journal of Geology repository (https://doi.org/10.25131/
sajg.124.0052.sup-mat)). This catalogue draws on important
syntheses of the archaeological record (e.g., Vogel and Visser,
1981; Thackeray, 1992; Wadley, 1993; Dewar, 2008; Lombard
et al., 2012; Scott et al., 2021) and individual publications of
sites from across southern Africa. It allows us to assess the
geographical distribution of published deposits dated from
MIS 6 to 1 inclusively, and comment on the availability and
utilisation of different palacoenvironmental proxies across
southern Africa by country and South African province. The list is
comprehensive, however, it must be noted that every site has
been excavated, documented and analysed differently. In many
cases, chronological data draw from 30-year-old publications
and with new analyses, these dates may change. We are,
however, confident that we have referred to the most recent
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dates available at the time of writing this contribution. It must
also be noted that date ranges for deposits, and sequences of
deposits, do not indicate sedimentary or occupational continuity
and all sites document sedimentary and occupational hiatuses
that may not be represented in the given dates. We have tried
to document major sedimentary breaks in sites from original
literature.

Although we have attempted to document all rock shelters
and caves in southern Africa with published chronologies and
published dedicated palacoenvironmental analyses, there are
two limitations to the list presented. First, there are many shelters
containing deposits of Holocene age with Later Stone Age
artefact assemblages in southern Africa (e.g., Deacon, 1974).

While relatively few have published dedicated palaeo-

MIS Palaeoenvironmental
proxy

Stable Isotopes
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environmental analyses, there is a chance we have missed
examples of these in older literature, contract archaeological site
reports or the grey literature. Second, there is a significant
distributional bias resulting from political and logistical
dynamics. For example, we could not find any records of sites
satisfying our criteria for inclusion in Zimbabwe. We are aware
of previous (e.g., Cooke, 1971; Deacon, 1974; Larsson, 1996) and
ongoing work in rock shelters and caves in the country, and we
await these important results. It must also be noted that there are
many caves that have been documented in the speleological
literature that do not contain anthropogenic deposits but may be
of significant palacoenvironmental value (e.g. Laumanns, 2017).

We also attempt to demonstrate the complexity of the MIS 6
to 1 stratigraphic record represented in cave and rock shelters by
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Figure 1. Map of southern Africa with locations of caves and rock shelter sites with published dates and palaeoenvironmental data yielded from clastic

sediments and speleothems between Marine Isotope Stage 6 and 1. Sites are listed in Table 1 and discussed in text. Table 1 includes site name

abbreviations. The * associated with GHN represents the use of tuff deposit growth as a palaeoenvironmental proxy.
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CAVE AND ROCK SHELTER SEDIMENTS OF SOUTHERN AFRICA: A REVIEW OF THE CHRONOSTRATIGRAPHIC
AND PALAEOENVIRONMENTAL RECORD FROM MARINE ISOTOPE STAGE 6 TO 1

presenting three case study sites, Border Cave, Klasies River Main
site and the Pinnacle Point site complex. The case study sites
present three of the most complete sedimentary sequences of the
period in southern Africa, represent interior and coastal contexts,
and provide useful examples of the utilisation of different
sedimentary components as palacoenvironmental proxies.

Case study 1: Border Cave

Border Cave is one of a handful of non-coastal caves and rock
shelters in southern Africa with a long clastic sedimentary
sequence spanning the last 250000 years — MIS 7 to MIS 1
(Figure 2; Table 2). Although only 82 km west of the Indian
Ocean, the site occupies a non-coastal ecological and
geomorphological context — located 600 m above mean sea
level on the west-facing steep slope of the rhyolitic Lebombo
Mountains of northern KwaZulu-Natal, overlooking the plains
of the Eswatini lowveld. Precipitation in the area fluctuates
greatly due to the highly variable topography but the mountains
presently receive between 550 to 1 000 mm per year (Schultz
and Lynch, 2007). The geomorphological and climatological
variability of the area also results in a diverse mosaic of local
vegetation with numerous vegetation types close to the cave,
including the Lebombo Summit Sourveld (SVI 17), Northern and
Southern Lebombo Bushveld (SVI 15 and 16 respectively)
(Mucina and Rutherford, 2006), and riverine and lowveld
vegetation in Eswatini. The potential for significant ecological
variability in this area can be extended to its past. Extensive

excavations at the site led by four different archaeologists since
1934 have yielded a rich record of human occupation and
exploitation of the local landscape that includes a human burial,
examples of ornamentation (Cooke et al., 1945), and bone tools
(d’Errico et al., 2012). Exceptional preservation of organic matter
has led to discoveries of plant exploitation beyond 170 000 years
ago (Wadley et al., 2020a, b).

Chemical sedimentation at Border Cave is minimal. The
sedimentary sequence consists of a mixture of autogenic and
allogenic clastic sediments including some anthropogenic and
biogenic inputs. Larger allogenic clastic particles are generally
anthropogenic in nature, accumulated through flora and fauna
collection and burning activities. Minor components of allogenic
soils incidentally accumulated by people and animals are also
present, although prolonged or regular occupation of the cave
by large numbers of animals is unlikely given the precipitous
access route into the cave (Butzer et al.,, 1978). Geogenic
autogenic clastic material comprises granulometrically variable
rhyolitic and sandstone components formed through decay of
the host rock and potentially minor aeolian inclusions into thick
units of minimally mobilised sediments (Butzer et al., 1978;
Backwell et al., 2018).

The stratigraphy of Border Cave (Figure 2 and Table 2) was
briefly described by Cooke (Cooke et al., 1945) and following
Beaumont’s earlier excavations (Beaumont, 1973) has been
described as a sequence of alternating units of “White Ash’ and
‘Brown Sand’. These units vary in thickness and lateral
continuity, but White Ash units can generally be described as

Material Available Major Palaeoenvironmental Mmis
Stratigraphic Unit Date (ka)* palaeoenvironmental  palaeoenvironmental | P
Culture o @ :
proxy trend A Clastic sediments )
1 BS Upper 0.6-2 Iron Age A A A A /. Shells (taxonomy)
.................................................................................... - " d A Macrofauna 3
B enerally modern
1BS Upper 20 * A A A A dJ A Macrobotanicals 4
1BSlowerAB&C 20-41 G AANA AT Pulse of ‘wet’ and A Micromammals ‘\;" 59
1WA 37-44 A A A A ‘dry’in 1WAto 1BS /\ Pollen ) |s»
"""""""""""""""""""""""""""""""""""""""""""""" Lower A Phytoiith @ |s
2 BS Upper 41-48 MSA 11 A A A A Phytoliths c
_____________________________________________________________________________________________________________ Stable Isotopes . 5d
Speleoth
2ESISWerR Bk 48-57 MSATII A A A A Warmer and initially B s 'Eo i @ s
__________________________________________________________________________________ dry with punctuated [ Mmarineshells @® ¢
cool period in MIS 3 ial shell
2 WA 53— 60 MSA 11 A AA A p B rerestrial shells . >6
___________________________________________________________________________________________________________________ - Fauna
3BS 54-76 MSAII A A A A D Sediments
------------------------------------------------------------------------------------------ Warm and wet Charcoal
3WA 64-66 MSA 11 potentially extending
_________________________________________________________ é _é__%__é_“______ into 1 RGBS. Mixed *For date source details see Table 2
evidence of cooling .
1RBGS 74-82 MSAII A AA A starting in 4 WA and Unconfoimity
_____________________________________________________________________________ 4BS
4 BS 71-91 MSAI A A A A
4 WA 105-173  MSAI A A A A
------------------------------------------------------------------------------------ Warm and wet
5BS 151-171 MSAI A A A A
5 WA 163-238 MSA| A A

Figure 2. Composite stratigraphic profile of the Border Cave deposits with dates, material culture associations, available palaeoenvironmental proxy

and major palaeoenvironmental trend interpretations. Table 2 includes major dating references for the deposits. Marine Isotope Stages are represented

as colours in the column and follow Figure 1 in sequence. 1 Brown Sand (BS) Upper remains poorly controlled.
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Table 2. Stratigraphic, cultural and chronological sequence at Border Cave.

D. STRATFORD, K. BRAUN AND P. MORRISSEY

Material Member Method Age of deposits (ka) MISSf References
Culture
Tron Age Pits and rubble in 14C on bone charcoal, vegetation, 0.6 — 2 1 1,2
1 BS Upper? and ceramic typology
* 1 BS Upper 14C on charcoal (poorly controlled) 1-2 1,2
Early LSA 1 BS Lower A, B &C 14C on charcoal ~20 - 41 2-3 3 4
1 WA 14C on charcoal 37 — 44 3 3,4
MSA 11T 2 BS Upper 14C on charcoal and ESR 41 — 48 3 3, 4
2 BS Lower AB & C 14C (uncal) on charcoal and ESR 48 - 57 3 3,4
2 WA 14C (uncal) on charcoal and ESR 53 — 60t 3-4 3,4,5
MSA 11 3 BS ESR 54 - 76 3 —5a (5a) 6, 7, but see 8
MSA I 3 WA ESR 64 + 2 4 (5a) 6,7
MSA I 1 RGBS ESR 74 - 82 Sa 6,7,8
MSA I 4 BSP ESR 71 -91 5a —5b (5b) 6,7,8
MSA I 4 WA ESR 105 - 173 Sc— 6 (5¢c-e) 6,7,8
MSA I 5 BS¢ ESR 151 - 171 6 (5¢) 6,7,8
MSA 1 5 WAd ESR 163 - 238 6-7(5d) 6,7,8%

References: Butzer et al., 1978 (1); Beaumont, 1980 (2); d’Errico et al., 2012 and references therein (3); Villa et al., 2012 and references therein (4); Bird et al.,
2003 (5); Griin and Beaumont, 2001 (6); Griin et al., 2003 (7); Millard, 2006 (8). Previously named Layer 1a (Butzer et al., 1978); bF'rcviously named 1GBS
(Butzer et al. 1978); CPreviously named 1GBS.LR.B (Beaumont 1978) and BACO A and B Upper (Butzer et al., 1978); d Previously named BACO B Lower (Butzer
et al., 1978). € Dates for Marine Isotope Stage boundaries follow Lisiecki and Raymo (2005). Boundaries for MIS 5 Substages follow Otvos (2015). ftalicised and

bracketed Marine Isotope Stages follow Avery (1992a) where these differ from Lisiecki and Raymo (2005) and Otvos (2015). ‘BS’ is an abbreviation of Brown

Sand and ‘WA’ is an abbreviation of White Ash, the major alternating units of the stratigraphic framework defined by Beaumont (1973) and currently used.

*considered ‘sterile’ by Beaumont (1980). " References 3, 4, 5 and Backwell et al. (2018) generally propose an age of about 60 Ka for 2 WA. ¥Significant error

margins are found on some ESR samples from stratigraphic unit 5 WA. 1 BS Upper remains poorly controlled.

interdigitating the Brown Sands. Different geometries of the
two deposits suggest slightly different depocenter locations
(Beaumont, 1978). Significant stratigraphic complexity is present
across major unit contacts but also at the sub-unit scale where
White Ash units in particular are often comprised of many sub-
cm lenses and strata (Cooke et al., 1945; Beaumont, 1973; Butzer
et al., 1978). More recently, closer inspection has revealed great
intra-unit stratigraphic complexity and sub-unit unconformities
(Backwell et al., 2018; Wadley et al., 2020).

It is clear from Table 2 that some significant sedimentary
hiatuses are present in the depositional sequence at Border Cave
(Figure 2). Butzer et al. (1978) identified eight such hiatuses. Of
particular importance is the long hiatus in 1 Brown Sand Upper
that may span 18 ka and date to between about 20 ka to 2 ka
(d’Errico et al., 2012; Villa et al., 2012), resulting in an absence
of an LSA-age assemblage at the site. Part of the stratigraphic and
chronological challenge in this part of the sequence is a result
of disturbance of the 1 Brown Sand Upper deposit by Iron Age
use of the cave for both small livestock management and storage
pits (Beaumont, 1978). This is perhaps the most significant gap
in the record given its importance in reconstructing the local
MIS 2 to MIS 1 climate change. The cause of the other hiatuses in
the Border Cave sequence is unclear, but recent research

suggests erosional and depositional processes occurred at
multiple temporal and spatial scales (Backwell et al., 2018).

Palaeoenvironmental proxies and interpretations

In the absence of isotope-yielding chemical precipitates at
Border Cave, palacoenvironmental reconstructions have drawn
on other suitable proxies from the clastic sedimentary
components. These include particles accumulated through a
range of geogenic and allogenic biogenic and anthropogenic
processes. Three key studies at Border Cave establish the
palaeoclimatic interpretation for the site. Butzer et al. (1978)
utilises ‘éboulis” (rubble lenses and strata, or ‘horizons’) presence
and frequency to propose a sequence of frost-weathering
deposits formed in colder periods at Border Cave from MIS 6 to 1.
Avery (1992a) utilises micromammal remains yielded from
excavations at Border Cave to propose proportions of local
climatically diagnostic vegetation through the Border Cave
sequence. In addition, Avery (1992a) proposes mean temperatures,
precipitation and general prevailing climate from 5 White Ash
to 1 Brown Sand. Klein (1977; also synthesised in Butzer et al.,
1978) uses mammalian fauna (macrofauna) from 4 Brown Sand
(MSA D to 1 Brown Sand Lower (ELSA) to propose not only
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human subsistence strategies but also the prevailing climate.
It should be noted that Klein (1977) calibrates his sequence
to material culture, not MIS and so his sequence starts with MSA I
as represented in the lower part of 4 Brown Sand (Previously
1 GBS). Preliminary analyses of seeds and charcoal yielded from
a new series of excavations sampling the whole sequence provide
tentative new palaeoenvironmental information (Backwell et al.,
2018). Dedicated publications of these proxies are emerging
(e.g., wood charcoal from 1 RGBS; Zwane and Bamford, 2021)
and phytolith and pollen analyses are forthcoming.

The published studies can be synthesised as follows:
Sediments, micromammal and macrofaunal proxies indicate
warmer, wetter conditions during the earlier phases of
deposition at Border Cave, during accumulation of units 5 White
Ash, 5 Brown Sand, 4 White Ash and 4 Brown Sand - MIS 6
through 5a and b (MSA 1 and Figure 2). This has been further
supported by anthracological analyses focusing on the 1 RGBS
unit (MIS 5a), which also suggest microenvironmental variability
in the vicinity (Zwane and Bamford, 2021). However, woody
species’ representation in the vicinity of the cave as evidenced
by anthropogenically-gathered charcoal recovered from 5 Brown
Sand and 4 White Ash (Backwell et al., 2018) suggests a similar
vegetation regime to today and challenges Avery’s (1992a)
proposal that miombo woodland or miombo savanna woodland
occupied the Lebombo Mountain during early phases of Border
Cave occupation. Both the micromammal (Avery, 1992a) and
sedimentary data (Butzer et al., 1978) identify a cooling period
in 3 White Ash and 3 Brown Sand spanning the early MIS 5a
stages to the MIS 4 to 3 transition (MSA ID), with micromammal
data indicating a reduction in rainfall during this period. From
the upper 3 Brown Sand unit into 2 White Ash and 2 Brown
Sand Lower deposit (MIS 4 transitioning into 3; about 76 to
50 ka), both sediments and micromammal data identify a
warming of the climate with an initially dryer phase. In the same
period, macrofaunal remains suggest a prevailing climate largely
similar to today’s (Klein, 1977). Recently, seed and charcoal data
suggest that a mosaic of vegetation similar to that of today
existed around the site before 100 ka (Backwell et al., 2018).
Butzer et al. (1978) propose a short colder period within a
2 Brown Sand lower sub-unit (within MIS 3), which potentially
correlates with a similar cooler period identified by Avery
(1992a), although the micromammal data indicate this to be a
period of higher rainfall. Butzer et al. (1978) also identify a cold
‘wet” and ‘dry’ period in the 1 White Ash and 1 Brown Sand
Lower deposits and correlate this to MIS 3 to 2. We await new
information from current research at the cave to augment these
interpretations with more botanical evidence.

Case study 2: Klasies River Main site

Klasies River Main site (KRM) represents a complex of closely
associated caves and rock shelters on the southern coast of the
Eastern Cape Province (Figure 1) that have yielded evidence for
human occupation from MIS 5e to 3 and again in MIS 1 (Tables 1
and 3). The sites are hosted within a quartzarenite cliff, with cave
openings at elevations between 6 m and 18 m above mean sea
level (Deacon and Geleijnse, 1988). The area has a mild,
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temperate climate with relatively high rainfall (~1000 mm per
year; Schultz and Lynch, 2007), and the natural vegetation is a
mosaic of different biomes, including species from Mucina and
Rutherford’s (2006) Southern Afrotemperate Forest (FOz 1),
Southern Coastal Forest (FOz 6), Subtropical Dune Thicket (AZs
3), Gamtoos Thicket (AT 4), Cape Seashore Vegetation (AZd 3),
Algoa Dune Strandveld (AZs 1), and Southern Cape Dune Fynbos
(FFd 11) biomes (Van Wijk et al., 2017). KRM is one of a group
of significant sites in the Greater Cape Floristic Region (GCFR)
of the southern and western Cape that records early utilisation
of coastal resources by human populations (Marean et al., 2014).
This behaviour (along with other complex subsistence
behaviours) has been suggested to be a significant step in the
evolution of modern human cognitive abilities (e.g., Marean,
2014; Wadley, 2015; Will et al., 2016), and it has not been
recorded outside of this region until after 100 ka, except for
potential evidence at a group of sites around East London
(Morrissey et al., 2020) and a single occurrence in Eritrea (Walter
et al., 2000). The occupation of KRM took place during multiple
isotope stages, in an area with significant climatic and
environmental differences from most of the other GCFR sites,
including a steeper coastal shelf and the site’s location in the
year-round rainfall zone (Deacon, 1992; Fisher et al., 2010;
Langejans et al., 2017; Reynard and Wurz, 2020). Therefore,
understanding the palaeoenvironmental context of the human
behaviour recorded at KRM is useful not only for site-specific
reconstructions of human-environment interactions, but also
for elucidating the impact of spatial and temporal changes
in palacoenvironmental conditions on human subsistence
behaviours across the GCFR and southern Africa more generally.

Broadly speaking, the clastic deposits at KRM can be divided
into discrete anthropogenic deposits (such as hearths and shell
middens) and the surrounding geogenic deposits (including
sands and colluvial rubble). Anthropogenic inputs (also found
in geogenic deposits as reworked components or isolated i situ
particles) include palaeoenvironmental proxies such as faunal
remains exploited for subsistence (e.g., bovids and marine
shellfish) and carbonised plant material (e.g., charcoal) (Deacon,
1993; Langejans et al., 2017; Larbey et al., 2019; Reynard and
Wurz, 2020).

The ocean played a significant role in the earliest phases of
deposition, starting with the formation of beach deposits in the
caves (Butzer, 1978). Beach deposits outside the caves then
provided the main source of sand, likely through aeolian
processes, for some time (Deacon and Geleijnse, 1988).
A marked shift occurred when the colluvial transport of
sediments from the Geelhoutboom palacodune above the site
became the main source of geogenic inputs. This eventually led
to the formation of sloped deposits in Cave 1, which are rich in
secondary-context anthropogenic materials eroded from
deposits in Cave 1A (Deacon and Geleijnse, 1988). The main
biogenic input was the deposition of micromammal bones by
owls, a significant palacoenvironmental proxy (Nel et al., 2018).

Chemical deposits at Klasies include dripstone and
flowstone (‘crusts’), and tufa (Deacon and Geleijnse, 1988; Wurz
et al., 2018). Their presence or absence in particular deposits
has been used to identify wet and dry phases in the sedimentary
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sequence (Butzer, 1978). Isotopic analysis of the speleothems,
an important palaeoenvironmental proxy at other sites in the
region (e.g. Braun et al., 2019), has been unsuccessful due to
partial dissolution and recrystallisation of these deposits.

A single stratigraphic system (Figure 3) is applied across the
KRM complex. Individual lithostratigraphic units (sometimes just
millimetres thick) are grouped into named members and sub-
members based on broad lithological similarities (Deacon and
Geleijnse, 1988; Wurz et al., 2018). However, the grouping of
units both within and between caves has been heavily influenced
by cultural stratigraphy. There are seven recognised cultural
phases — defined based on lithic (stone tool) technologies —
consisting of five MSA and two LSA industries (Wurz, 2002).
The major stratigraphic groupings and their ages are presented
in Table 3. Several hiatuses have been inferred based on
sedimentary structures, speleothem growth, dating, and cultural
stratigraphy (Deacon and Geleijnse, 1988). These are discussed
below with the palaeoenvironmental data. The chronology of the
deposits is somewhat unclear, with overlapping ages for many
phases (Table 3). This is due in part to the impacts of the
geochemistry of the site on the accuracy and interpretation of
some dating techniques and their results (Vogel, 2001; Feathers,
2002). However, there are broad ages available for the entire
sequence. For more detailed reviews of the stratigraphy and
dating see Wurz (2002) and Grine et al. (2017).

Palaeoenvironmental proxies and interpretations

The basal beach deposits (MIS 5e; MSA D in Cave 1 indicate a
sea-level highstand up to +7 m (Butzer, 1978). Speleothem

Member (Cave) Date (ka)* Material  Available Major Palaeoenvironmental Mis
Culture  palaeoenvironmental  palaeoenvironmental prowy @
proxy trend A Clastic sediments -
A 2
. . \ Shells (taxonomy)
Climate wet, vegetation open  §
LSA(1) 4.7-25 LSA A A A Sea warm, sealevel high A Macrofauna 3
e cavelwetthendry A Macrobotanicals @ _*
Vegetati A Micromammals ) | 5a
‘egetation open ®
ws(1) 70-56  wmsav A\ /A Sea cool A polien *»
Cave 1 wet A Phytoliths @ |se
________________________________________________________________________________________________________________________________________ Stable Isotopes ’ 5d
. Speleothems 54
Upper (1A) MSA 111 Vegetation closed but then more open E e shell . ¢
66— 43 ﬁ A A I:] Sea relatively warm then cooling Marine shells ®:
Sea level falling . Terrestrial shells . 3
Upper (1A&?2) HP
Cave 1dry W rouna
----------------------------------------------------------------------------------------------------------------------------------- [:] Sediments
RF(1A& 2 81-72 MSAI |
(1A&2) L seacodl B chare

101-66 MSAII

RBS (1)
120-106
LBS (1,1A, 1B) MSAI
Basal gravels (1, 1A & 1B) ~120 MSA | A

D. STRATFORD, K. BRAUN AND P. MORRISSEY

formation between the gravels and the overlying deposits has
been suggested to represent a hiatus in clastic sedimentation
(Hendey and Volman, 1986). The dominance of beach sand in
the Light Brown Sand Member (LBS) deposits (MIS 5e to 5d;
MSA D), that overlie the basal beach deposits, indicates that the
shoreline was close to the site (Deacon and Geleijnse, 1988).
This is supported by the taxonomic composition and 80 values
of anthropogenically-accumulated marine shell assemblages,
which suggest relatively high contemporary sea surface
temperatures (SSTs) and sea levels (Shackleton, 1982; Langejans
et al., 2017; Thackeray, 2018). Reconstructions of SSTs suggest
they were 5°C cooler (14°C average) and had 1.8°C lower
seasonal amplitude (4.9°C) than the present (Loftus et al., 2017).
The mammalian assemblages suggest a mosaic of vegetation,
but a dominance of open grassland, and a relatively dry climate
(Klein, 1976; Nel et al., 2018; Reynard and Wurz, 2020).
Correspondingly, dry conditions inside Cave 1 are evidenced by
a lack of speleothem formation (Butzer, 1978). An unconformity
between the LBS and the overlying Shell and Sand Member
(SAS) deposits across the site corresponds with the change in
sand source from beach deposits to the Geelhoutboom dunes
(Deacon and Geleijnse, 1988; Rightmire and Deacon, 1991).
Butzer (1978) interpreted the presence of beach cobbles in
the SAS (MIS 5c to 4; MSA 1D as representing a coeval sea-level
highstand up to +5 m. However, the cobbles were almost
certainly anthropogenically introduced and there is no other
evidence for this highstand (Singer and Wymer, 1982; Deacon
and Geleijnse, 1988). Sea levels were initially relatively high, but
decreased through the period in which the SAS was deposited
(Langejans et al., 2017; Thackeray, 2018). Average SSTs increased

*For date source details seeTable 3

Vegetation closed

Sea warm then cooling

Sea level relatively high then falling
Cave 1 wet then dry

— (Jnconformity

C———— Interbedded flowstone

Climate dry, vegetation open
Sea warm, sea level high

Highstandto +7 m

Figure 3. Composite stratigraphic profile of the deposits at Klasies River Main site with dates, material culture association, available palaeoenvironmental

proxy and major palaeoenvironmental trend interpretation. Major dating references for the deposits are provided in Table 3. Marine Isotope Stages are

represented as colours in the column and follow Figure 1 in sequence.
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Table 3. The major stratigraphic groupings at Klasies River Main site, including both the cultural stratigraphy (Singer and Wymer, 1982; Wurz, 2002)

and the members (Deacon and Geleijnse, 1988).

Lithic Culture Member Cave Method Age of deposits MIS References
(ka)
LSA T * 1 14C on charcoal and shell 2.81t0 2,57 1 1,2
LSA T * 1 14C on charcoal 4.7 to0 3.47 1 1,23
MSA IV White Sand (WS) 1 AAR on bone, TL-OSL, SG-OSL 70 to 56 4-3 2,4,5
MSA 11T Upper 1A TL, OSL, SG OSL, LU ESR on teeth 60 to 437 5,6,7,8,9
Howiesons Poort  Upper 1A, 2 TL-OSL, TL, SG OSL, LU-ESR on 66 to 46 4-3 5,6,8,9, 10,
teeth, U-series on calcite crust, 11, 12
combined U-series and ESR on teeth
MSA 1I (Mossel Rockfall (RF) 1A, 2 OSL/IRSL, SG OSL, 60 on shell 81 to 72 5a 5,8, 13
Bay Sub-Stage)
Shell and Sand 1, 1A, 1B AAR on bone, TL-OSL, LU ESR on 101 to 66 S5c—4 4,5,6, 10,11,
(SAS) teeth, U-series on speleothem and 13, 14
calcite crust, combined U-series
and ESR on teeth, 880 on shell
MSA T (Klasies Rubble Brown Sand (RBS) 1 AAR on bone ~907 5b
River Sub-Stage)  Light Brown Sand (LBS) 1, 1A, 1B AAR on bone, TL-OSL, U-series 120 to 106 5e — 5d 4,5, 10, 13,
on speleothem, 30O on shell 14
Basal Gravels* 1, 1A, 1B Sea level® ~1207 Se 15

References: Singer and Wymer, 1982 (1); Nami et al., 2016 (2); Binneman, 1995 (3); Bada and Deems, 1975 (4); Feathers, 2002 (5); Griin et al., 1990 (6); Tribolo,
2003 (7); Jacobs et al., 2008a (8); Tribolo et al., 2013 (9); Vogel, 2001 (10); Eggins et al., 2005 (11); Tribolo et al., 2005 (12); Deacon et al., 1988 (13); Shackleton,
1982 (14); Butzer, 1978 (15). *Neither the LSA deposits nor the basal gravels have been included in Deacon’s members. Several dates require brief discussion.
MSA TII: the results of 8O shell analysis suggest an upper age limit in MIS 5a or 5b (Shackleton, 1982; Deacon et al., 1988) but this is considered unlikely.
RBS (MSA D: AAR dating on bone is considered unreliable (Miller et al., 1999). Basal gravels (MSA D: these deposits could relate to an earlier event than the
MIS 5Se highstand as a flowstone crust and stalagmites formed on the surface of the gravels prior to the formation of the LBS Member, suggesting a hiatus in

clastic deposition (Hendey and Volman, 1986).

slightly from 13.2°C to 13.3°C over the same period, with
seasonal amplitude increasing from 4.9°C to 5.9°C (Loftus et al.,
2017), but some data suggest a gradual decrease in SSTs at the
end of the SAS (Thackeray, 2018). The interior of Cave 1 was
wetter than during the LBS period, but gradually dried through
the phase (Butzer, 1978). The vegetation appears to have been
relatively closed (more forested), with the presence of a wetland
environment near the site (Klein, 1976; Nel et al., 2018; Reynard
and Wurz, 2020). Deposition in Cave 1 ceased following the
formation of the SAS due to sediments in Cave 1A blocking
the entrance of Cave 1 (Deacon and Geleijnse, 1988). It only
resumed with the formation of the White Sand Member (WS).

Marine shell isotopic values from the overlying Rockfall
Member (RF) in Cave 1A (MIS 5a; MSA ID) suggest particularly
low SSTs (Thackeray, 2018), but little specific information is
available for these deposits.

The Upper Member (MIS 4 to 3) includes the Howiesons
Poort (HP) and MSA III cultural phases. SSTs were initially
warmer than the RF, but lower temperatures and/or sea levels
followed during the MSA IIT (Langejans et al., 2017; Thackeray,
2018). The interior of Cave 1 was dry throughout this period
(Butzer, 1978). Mammalian assemblage composition suggests a
relatively closed environment during the early parts of the HP,
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followed by a shift to markedly more open conditions in the
later HP and the MSA III (Avery, 1987; Reynard and Wurz, 2020).
There is also evidence for the presence of both a wetland and
dunes around the site during the MSA TII. It is unclear if this is
due to changing conditions or a mix of contemporaneous local
environments (Reynard and Wurz, 2020).

The WS deposits (MIS 4 to 3; MSA IV) in Cave 1 were
initially interpreted as a regressional aeolian deposit, indicative
of a fall from a highstand (Butzer, 1978). However, they are more
likely the product of colluvial deposition, and they cannot be
assumed to provide any information on local sea-level change
(Deacon and Geleijnse, 1988). Evidence for ponding at the rear
of Cave 1 indicates a relatively wet environment inside the cave
(Butzer, 1978). The shellfish and large mammal assemblages
suggest relatively low SSTs (Voigt, 1982), and fairly open
vegetation (Klein, 1976). There was a significant hiatus of ~40 ka
between the deposition of the WS and the formation of the
LSA deposits. The only surviving deposits from this period are
archaeologically sterile screes in Cave 1A (Deacon and Geleijnse,
1988) and a late Holocene age flowstone separating the WS and
LSA deposits in Cave 1 (Vogel, 2001), neither of which have
received much research attention. This hiatus is likely due to
shoreline regression in MIS 2, reducing the attractiveness of
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the site for coastal hunter-gatherers, and/or the filling up of the
shelters rendering them unusable (Deacon, 1995).

The Holocene deposits (MIS 1; LSA T and I are indicative
of relatively high sea levels, including an estimated +1 m to +2 m
highstand evidenced by an erosional unconformity in the LSA 11
(Butzer, 1978), while the shellfish assemblages suggest warmer
SSTs (Voigt, 1982; Binneman, 1995). Cave 1 was relatively wet
during the LSA I, followed by a drier LSA 11 (Butzer, 1978).
However, the tree species identified from charcoal fragments
suggest wet conditions around the site during LSA II (Zwane,
2018), suggesting that moisture conditions inside the cave did
not necessarily correlate with the hydroclimate of the broader
landscape. The large mammal assemblage is characteristic of a
mosaic of vegetation, but with relatively open conditions (Klein,
1976). A capping flowstone marks the end of the archaeological
sequence (Butzer, 1978).

Case study 3: Pinnacle Point

Pinnacle Point is a rocky headland about 10 km west of Mossel
Bay on the south coast of South Africa (Figure 1). The present-
day climate is mild with year-round rainfall. Vegetation on top
of the cliffs is mainly Canca Limestone Fynbos (FF13) and Groot
Brak Dune Strandveld (FS9) grows along the slopes (Mucina
and Rutherford, 2006). The area is most well-known for
two archaeological sites, PP13B and PP5-6, which preserve
archaeological deposits dating to the period between MIS 6 and
early MIS 3. However, smaller excavations have investigated a
number of sites at Pinnacle Point and their geogenic deposits.
Sea levels are an important influence for the sedimentological
and anthropogenic environment at Pinnacle Point. High sea
levels are responsible for the initial formation of the caves with
some higher lying sites (>20 m above sea level) having deposits
dating back as far as 1.0 to 1.1 Ma (Pickering et al., 2013). Lower
lying sites in the coastal cliffs are also affected by the erosional
forces of high sea levels (Marean et al., 2010; Karkanas et al.,
2021). Much of the Pleistocene, however, had lower sea levels
than the present-day and during these times the wide and
gently sloping shelf to the south of Pinnacle Point was exposed
in varying degrees, with a maximum distance to the ocean
of 90 km during the Last Glacial Maximum (~21 ka ago;
Fisher et al., 2010). Glacial-interglacial changes in climate,
environment and sea levels affected geogenic clastic and
chemical processes such as beach formation, spring water
infiltration, aeolian activity, roofspalling, speleothem formation
and root encrustation, and cementation at the caves (Karkanas
et al., 2021). These factors also had a major impact on the
resources available for hunter-gatherers inhabiting the caves
(Marean et al., 2007, 2020).

Anthropogenic deposits at Pinnacle Point have been
excavated mainly at PP13B and PP5-6 (Marean et al., 2010;
Karkanas et al., 2015; Smith et al., 2018). Smaller excavations
were also conducted in PP13A, PP9A and PP9C (Marean et al.,
2004; Matthews et al., 2011). The stratigraphy of the main
archaeological excavations at Pinnacle Point was subdivided into
units based on macroscopic criteria like sediment texture and
colour. These stratigraphic units were later grouped into
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stratigraphic aggregates (StratAggs) based on general geogenic
and/or anthropogenic characteristics such as the proportion of
sand and roof spall and the density of anthropogenic elements
like shells or hearths (Figure 4 and Table 4).

The oldest archaeological deposits at Pinnacle Point were
excavated at PP13B and the stratigraphy is summarized here from
Marean et al. (2010). OSL ages are drawn from Jacobs (2010).
The back of the cave preserves a boulder beach at the base of
the sequence that is overlain by a laminated freshwater seep
deposit. The Laminated Facies consists mainly of roof spall and
dates to MIS 11 (Marean et al., 2010, Jacobs, 2010). While there
is a continued contribution of roof spall throughout the sequence
at PP13B, the proportion of aeolian silt and sand is generally
higher in levels above the Laminated Facies (Marean et al., 2010).
Human occupation layers are intercalated between these mixed
aeolian-roof spall layers. The oldest human occupation layers
date to MIS 6 (~164 ka) and the transition between MIS 6 and
MIS 5e (~135 to 130 ka, Marean et al., 2010; Jacobs, 2010). Proxies
for past climates and environments have mainly been recovered
from these levels and OSL dating efforts focussed on occupation
layers. The ages of sediments in between occupation layers
therefore are based on their stratigraphic position leaving some
uncertainty with respect to the continuity of sedimentation at
PP13B. There is evidence of sediment deformation and slumping
near the front of the cave at about the time of the sea level
highstand during MIS 5e (122 to 127 ka, Marean et al., 2010;
Jacobs, 2010). Rather than erosion by the waves removing
sediment, slumping was probably caused by sea spray wetting
the sediment (Marean et al., 2010). Clastic sedimentation with
little evidence of human occupation continued after the
highstand into MIS 5d with variable proportions of aeolian sand
and roof spall in different parts of the cave (Marean et al., 2010).
Intense human occupation marks the MIS 5c¢ levels of PP13B
before the site is closed by an aeolian dune at ~91 ka (Marean
et al., 2010; Jacobs, 2010). A flowstone that formed on top of this
dune suggests that the cave was closed until at least ~39 ka
(Marean et al., 2010). U-Th ages of this flowstone were used to
constrain the closing dates of the cave, but no palaeoclimate
proxies were analysed on these samples. The erosion of the
closing dune and re-opening of the cave was also associated with
removal of some sediment from the front of the cave and the
deposit forming from the erosional truncation mainly consisted
of reworked MSA material from within the cave (Marean et al.,
2010). A radiocarbon date from a charcoal fragment within this
truncation fill yields an age of ~35 ka, suggesting it formed
shortly after the opening of the cave (Marean et al., 2010). Smaller
erosional features in the deposits have fills of late Holocene and
modern ages (Marean et al., 2010).

The sequence of archaeological occupation that ends
abruptly in PP13B due to closure of the cave by the dune
making the site inaccessible continues at PP5-6. The stratigraphy
of PP5-6 is summarized from Karkanas et al. (2015) and an age
model based on OSL ages and tephrostratigraphy is published
in Smith et al. (2018). The base of the deposits at PP5-6 consists
of a thick sterile aeolian sand that dates to 96 + 6 ka and
overlaps in age with the dune that closed PP13B (Karkanas
et al., 2015; Smith et al., 2018). Above this dune deposit, acolian
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deposition continued and was mixed with roof spall. Human
occupation during MIS 5b and 5a is mainly represented by
isolated combustion features that probably represent several
burn events in short succession (Karkanas et al., 2015). Although
there are a large number of these combustion features in
random locations around the site, they are usually separated
from subsequent combustion features by sand layers and show
little disturbance from trampling or raking (Karkanas et al.,
2015). This suggests that people used the site frequently but for
short periods (Karkanas et al., 2015). The upper sections of the
PP5-6 sequence dating from the beginning of MIS 4 (72 + 3 ka)
to early MIS 3 (51 + 2 ka) maintained high but episodic aeolian
input intercalated with layers of ashy and burnt material and a
few hearths remaining in situ (Karkanas et al., 2015; Smith et al.,
2018). This change suggests that human occupation was longer
lasting and intensive, with trampling and raking destroying
hearth structures (Karkanas et al., 2015). The change in site use
intensity and density of ashy deposits is also associated with a
marked shift in the preferred lithic raw material from quartzite
to heat-treated silcrete (Brown et al., 2009). Erosion and
reworking by debris flows affected mainly the youngest deposits
at PP5-6 dating to the latter part of MIS 4 and early MIS 3
(Karkanas et al., 2015).

PP9 consists of a number of small cavities that have been
much less extensively excavated (Marean et al., 2004). PP9C is
a small tunnel about 5 m long located near the south side of the
main opening of PP9 and about 7 m above its cave floor. Small
excavations were conducted near the front of the site, where
sediment fill causes a constriction, and in the back of the cave.
The deposits have not been formally described, but they are rich
in micromammal remains that were accumulated by owls during
the MIS 6-5 transition (Matthews et al., 2011).

A rescue excavation was conducted at PP30 when large
mammal bones were discovered during trenching to install
piping for development. The deposits most likely accumulated
as part of a hyena den over a short period of time in MIS 6
(~151 ka). The stratigraphy shows no major subdivisions (Rector
and Reed, 2010).

Palaeoenvironmental proxies and interpretations

At Pinnacle Point, palaeoclimatic and environmental proxy
records were recovered from the archaeological sequences as
well as from sites that have not been formally excavated. The
main findings of these proxy records from PP5-6, PP9C, PP13B,
PP29, PP30, Crevice Cave and Staircase Cave are briefly
summarized here. As the Pinnacle Point records were compiled
from multiple sites, we present the information based on MIS
and sub-stages rather than organized by stratigraphic units.
Micromammal assemblages were analysed from sequences at
all excavated sites described here, but their applicability as a
palacoenvironmental proxy is hampered by their large ecological
niches and behavioural flexibility (Matthews et al., 2020).
Staircase cave is a collapsed cave located along a staircase
that was built for easier access to PP13B between PP13B and
PP5-6. The stable oxygen and carbon isotopes of speleothems
from Staircase Cave suggest that the seasonality of rainfall and
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the abundance of C; and C, plants in the vegetation are related
to rainfall amount in the interior summer rainfall area of
southern Africa during MIS 8 and 7 (Braun et al., 2019). The
speleothem record from Staircase Cave covers the interval
between 195 and 163 ka in early-middle MIS 6. Rainfall
seasonality continues to change in phase with inland
rainfall, however the vegetation composition does not show
considerable variations and indicates a mixed vegetation with a
slight dominance of C; plants over C, grasses (Braun et al.,
2019). Large mammal faunas dating to the later parts of MIS 6
and possibly MIS 5 between 174 and 117 ka (Lightly cemented-
MSA Lower and Dark Brown Sand 4a) have low numbers of
individuals but suggest a consistent presence of grasslands near
Pinnacle Point (Rector and Reed, 2010). Phytoliths from PP13B
(Dark Brown Sand 4¢) indicate overall shrubby vegetation near
the cave probably Limestone or Sand Fynbos with dominant
C, plants (Esteban et al., 2020c). The large mammal faunas
from PP30 dated to ~151 ka suggest Pinnacle Point was located
either in a mosaic of grassland and shrubland vegetation types,
or that the current coastline represented an ecotone between
shrublands on the coastal lowlands and grasslands on the
currently flooded shelf (Rector and Reed, 2010). Stable isotope
analyses of small and large mammal remains from PP30 suggest
C, grassland within the foraging radius of the hyenas that
accumulated the bones whereas local microhabitats were
dominated by C, plants (Williams et al., 2020).

Part of the transition from the glacial MIS 6 to the interglacial
MIS 5Se is covered by the Staircase Cave speleothems (137 to
130 ka). A steep increase in 880 and 8°C to the highest
recorded values of any speleothem record in the region suggests
a dominance of summer rainfall and C, vegetation, but part of
this signal could also be generated by kinetic isotope effects
due to the opening cave (Braun et al., 2019). Micromammal
assemblages from PPIC date to between 130 and 120 ka and
suggest a shift from somewhat more open grassy environments
to warm and humid conditions with dense vegetation (Matthews
et al., 2011). High sea levels during MIS 5e probably caused the
collapse of Staircase Cave and slumping of sediments in PP13B
(Braun et al., 2019; Marean et al., 2010).

Speleothem deposition commenced in PP29 (about 200 m
west of PP13B) during MIS 5d and the stable isotopic records
suggest high summer rainfall with mixed vegetation. The
transition from MIS 5d into MIS 5c¢ shows a peak of C,
vegetation followed by intermediate year-round rainfall and C,
dominated vegetation during MIS 5c¢ (Braun et al., 2019).
Phytolith assemblages from the latter part of MIS 5¢ at PP13B
(StratAggs Upper Roof Spall and Shelly Brown Sand) on the
other hand suggest a mix of coastal thicket, riparian, fynbos
and grassland vegetation with substantial C, grass presence near
the cave (Esteban et al., 2020a). Large mammal communities
from PP13B in MIS 5¢ (Dark Brown Sand 2 and 3) also support
the presence of grasslands, probably on the partly exposed
Palaco-Agulhas Plain with somewhat wetter conditions than in
MIS 6. The latter part of MIS 5¢ (Upper Roof Spall) might have
been somewhat drier based on the PP13B fauna (Rector and
Reed, 2010). The end of MIS 5c¢ at ~92 ka is associated with a
major phase of dune mobility at Pinnacle Point, which led to
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Table 4. List of StratAggs identified in excavations and the respective cave location, dating method and results.

StratAgg Cave Method Age of MIS Reference
deposits (ka)
Northeast Cut Fill PP13B (west) OSL 2-3 1 1,2
South Pit Fill PP13B (west) 0-39* 1-3 1
Truncation Fill PP13B (east) 14Ch 35-39 3 1
Lightly cemented MSA Upper Flowstone (LC-MSA Upper) PP13B (northeast) U-Th 39 -92 3-5b 1
Reddish Brown Sand and Roof Spall (RBSR) PP5-6 OSL 52-45 3 3
Black and Brown Compact Sand and Roof Spall (BBCSR) PP5-6 OSL 62 -50 3-4 3
Black Ashy Sand (BAS) PP5-6 OSL 63 - 60 4 3,4
Orange Brown Sand 2 (OBS 2) PP5-6 OSL 65 - 61 4 3,4
Dark Brown Compact Sand (DBCS) PP5-6
Shelly Gray Sand (SGS) PP5-6 OSL 68 - 62 4 3,4
Orange Brown Sand 1 (OBS 1) PP5-6 OSL 71 - 65 4 3,4
Shelly Ashy Brown Sand (SADBS) PP5-6 OSL 73 - 68 4 3,4
Aeolian Light Brown Sand (ALBS) PP5-6 OSL, tephro-stratigraphy 76 - 71 5a 3,4
Light Brown Sand and Roof Spall (LBSR) PP5-6 OSL 89 -75 5a-b 3,4
Light Brown Sand 1 (LB Sand1) PP13B (west) OSL 94 - 91 5b-c¢ 1,2
Yellow Brown Roofspall and Sand (YBSR) PP5-6 OSL 95 - 84 5b-c¢ 3,4
Lightly cemented MSA (LC-MSA Upper) Upper Dune PP13B (northeast) OLS 98 - 91 5b - ¢ 1,2
Yellow Brown Sand (YBS) PP5-6 OSL 98 5¢ 3
Shelly Brown Sand (SBS) PP13B (east) OSL 98 - 92 5¢ 1,2
Upper Roof Spall (URS) PP13B (east) OSL 98 - 92 5¢ 1,2
Dark Brown Sand 2 (DB Sand 2) PP13B (west) 102 - 91* 5¢ 1
Light Brown Sand 2 (LB Sand 2) PP13B (west) 102 - 91* 5¢ 1
Dark Brown Sand 3 (DB Sand 3) PP13B (west) OSL 102 - 91 5¢ 1,2
Lower Roof Spall (LRS) PP13B (east) OSL 114 - 106 5d 1,2
Olive Yellow Cave Sand (OYCS) PPIC (front) OSL 120 7 5e 5
Brown Yellow Dune Sand (BYDS) PPIC (front) OSL 126 £ 9 Se 5
Brown Yellow Surface Sand (BYSS) PPIC (rear) * 5
Brown Yellow Cave Sand (BYCS) PPIC (rear) OSL 130+ 9 6 - 5e 5
Lightly cemented MSA Upper (LC-MSA Upper) Lower Dune  PP13B (northeast) OSL 133 - 115 6 - 5e 1,2
Lightly cemented MSA Middle (LC-MSA Middle) PP13B (northeast) OSL 130 - 120 6 - 5e 1,2
Light Brown Grey Sand 1 (LBG Sand 1) PP13B (west) OSL 134 - 94 6-5¢ 1,2
- PP30 OSL 151 6 6
Dark Brown Sand 4a (DB Sand 4a) PP13B (west) 166 - 117* 6 - 5e 1
Light Brown Grey Sand 2 (LBG Sand 2) PP13B (west) 166 - 117* 6 - 5e 1
Lightly cemented MSA Lower (LC-MSA Lower) PP13B (northeast) OSL 174 - 153 6 1,2
Dark Brown Sand 4b (DB Sand 4b) PP13B (west) OSL 199 - 152 6 1,2
Light Brown Grey Sand 3 (LBG Sand 3) PP13B (west) 349 - 152* 11-6 1
Dark Brown Sand 4c (DB Sand 4c¢) PP13B (west) OSL 349 - 152 11-6 1,2
Light Brown Grey Sand 4 (LBG Sand 4) PP13B (west) 349 - 152* 11-6 1
Light Brown Silt (LB Silt) PP13B (west) OSL 349 - 152 11-6 1,2
Laminated Facies PP13B (west) OSL 414 - 349 11 1,2
Boulder Facies PP13B (west) Unknown-349* 11

References: Marean et al., 2010 (1); Jacobs, 2010 (2); Smith et al., 2018 (3); Karkanas et al., 2015 (4); Matthews et al., 2011 (5); Rector and Reed, 2010 (0); *age

was determined based on the stratigraphic position and measured ages on over- and under-lying StratAggs rather than by direct dating. ¥ Radiocarbon age was

not calibrated.

the closure of PP13B to human occupation (Marean et al.,
2010). Crevice Cave, which is located between PP13B and PP5-6
at Pinnacle Point, was also closed by a dune of similar age
enabling speleothem deposition inside the cave (Bar-Matthews
et al., 2010; Karkanas et al., 2021) and dune sands of this age
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are also deposited near the bottom of the sequence in PP5-6
(Karkanas et al., 2015).

The speleothem records from PP29 and Crevice Cave show
somewhat different trends in MIS 5b and 5a. In MIS 5b, PP29
records increased summer rain and C; grasses followed by mixed
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rainfall and C; vegetation in MIS 5a (Braun et al., 2019). Crevice
Cave speleothem stable isotopes suggest winter rain and mixed
vegetation with more C; plants in MIS 5b and an increase of
summer rain and C, grasses in MIS 5a (Bar-Matthews et al., 2010).
Phytolith assemblages from PP5-6 during MIS 5b (Yellow Brown
Roof Spall and Sand and Light Brown Sand and Roof Spall)
represent a mosaic of Fynbos and Renosterveld vegetation types
with a high grass component dominated by C, grasses as well as
coastal thicket (Esteban et al., 2020c¢). Overall, this points to a
variable environment with a mosaic of vegetation types.
Temperature reconstructions based on stable isotope analyses of
the opercula of marine snail Turbo sarmanticus from PP5-6
suggest a coastal sea surface temperature decrease relative to the
present day of about 3.2°C in MIS 5b and a (Loftus et al., 2017).

The phytolith record from PP5-6 suggests an increase in the
abundance of C, grasses during MIS 4 (Aeolian Light Brown
Sand and Shelly Ashy Brown Sand) and a mixture of coastal
thicket, riparian vegetation and fynbos being present in the
surrounding of the site (Esteban et al., 2020¢). Both speleothem
records support an increase in C, vegetation alongside an
increase of summer rainfall for much of MIS 4 (Bar-Matthews
et al., 2010; Braun et al., 2019). Stable isotope analyses of
1. sarmanticus from the MIS 5-4 transition and MIS 4 layers at
PP5-6 (Aeolian Light Brown Sand, Shelly Ashy Brown Sand,
Orange Brown Sand 1, Dark Brown Comact Sand) indicated
reductions of coastal sea surface temperatures by between 4.6
and 6.0°C (Loftus et al., 2017).

Phytolith records from early MIS 3 levels at PP5-6 (Black
Ashy Sand, Black and Brown Compact Sand and Roof Spall;
63 to 51 ka) indicate a continued abundance of C, grasses with
grassy fynbos growing on top of the cliffs and coastal thicket
along the slopes (Esteban et al., 2020c). Both speleothem
records show a shift of rainfall systems to mixed/winter rainfall
conditions and a mixed vegetation with a slight dominance of
C, plants (Bar-Matthews et al., 2010; Braun et al., 2019).

Trends in the chronostratigraphic record

As can be seen in Figures 1 and 5 and Table 1 (and SI Figures 1
to 0), representation of chronostratigraphic units is not evenly
distributed temporally or spatially. MIS 1 age deposits with
published palaecoenvironmental records are the most abundant,
represented in 33% of the sites documented. This abundance is
heavily biased towards the coastal regions, while the interior is
poorly represented (Wadley, 2000), particularly in the western
regions (i.e., Namibia and the Northern Cape province of South
Africa; Mitchell, 1997; Lombard et al., 2012; Loftus et al., 2019b).
Consequently, interior climatological reconstructions for this
period rely on chemical precipitate-derived isotope records from
a few key caves (e.g., Cango Cave and Cold Air Cave; Table 1)
and proxies deriving from surficial records (e.g., Lyons et al.,
2014). Limited studies in Eswatini and the Lebombo Mountains
(e.g., Price-Williams, 1981; Price-Williams et al., 1982; Deacon
and Lancaster, 1988; Barham, 1989a; Wadley, 2000) provide a
little information on this poorly represented area.

A rapid decrease in deposit frequency is seen in MIS 2 with
an equal number of sites with deposits dating to MIS 3 across

D. STRATFORD, K. BRAUN AND P. MORRISSEY

southern Africa. Many of the caves with longer sequences from
coastal and interior southern Africa are missing MIS 2 age
deposits from their stratigraphic records (Table 1 and Figure 5b)
— as recognised by Klein (1974; 1984), who noted that a
significant and recurrent sedimentary hiatus is found between
the Middle Stone Age and Later Stone Age deposits at many
shelters throughout South Africa. Examples of this MIS 2 age
sedimentary hiatus can be seen at the sites of Nelson Bay Cave,
Bushman Rock Shelter, Klasies River, Olieboomspoort, Sibudu,
Kangkara Cave, Melikane Rock Shelter, Ngalue Cave, and briefly
at Border Cave and Sehonghong. Important Later Stone Age
shelter sites have been excavated in Gauteng (e.g., Cave James,
Hope Hill Shelter; Wadley, 1986, 1987, 1996), but no dedicated
palacoenvironmental studies have been published to date.

The frequency of deposits with palaeoenvironmental
records continues to decrease beyond MIS 3. With the exceptions
of Eswatini and Zimbabwe, all countries have sites with deposits
that have published palacoenvironmental data spanning MIS 4
and 1 (178 deposits in 100 sites with at least one deposit dating
to between MIS 4 and 1) and South Africa contributes the
greatest proportion of those deposits (n = 126; 70%). South
African sites contribute the largest number of deposits with
palaeoenvironmental data dated to older than MIS 5a (n = 76,
85% of the southern African sample [n = 89]). Outside South
Africa, only Namibia has deposits of MIS 6 age, from the sites of
Apollo 11 and Erb Tanks.

Within South Africa, sites in the Western Cape, Eastern
Cape and KwaZulu-Natal document the most deposits with
palaeoenvironmental data spanning MIS 6 to 1 (number of sites
= 63, number of deposits = 158) (Table 1 and Figure 5b), while
no sites with published palacoenvironmental data were
documented in the North West Province. The Western Cape
documents more deposits with palacoenvironmental data in this
age range and arguably more complete sequences (96 deposits
in 33 sites) than the Eastern Cape and KwaZulu-Natal (62 deposits
in 30 sites; 29 deposits in the 15 Eastern Cape sites; 33 deposits
in the 15 KwaZulu-Natal sites). Interior South African provinces
have only sporadic palacoenvironmental records dated to
MIS 5 and older. Gauteng has two sites (Lincoln Cave and
Plover’s Lake) dating to 5d and 5b respectively. MIS 5c¢ is
represented at Rose Cottage Cave in the Free State and in the
Northern Cape at Ga-Mohana, dated to 5b and 5c¢. Wonderwerk
Cave’s MSA palaeoenvironmental records date to MIS 6.

Trends in the spatial distribution of sites

The spatial distribution of caves and rock shelters with published
palaeoenvironmental data dating to between MIS 6 and 1 is
far from even (Figure 1 and SI Figures 1 to 6). The absence of
adequately researched sites from a large area of the region —
across most of Botswana, all of Zimbabwe, and through
Mozambique to the isolated Ngalue Cave — is the most significant
geographical gap. There are sites in these parts of southern
Africa (e.g., Deacon, 1974; Larsson, 1996) for which palaeo-
environmental research is yet to be conducted or published.
Figure 6 presents the distribution of the 104 catalogued cave and
rock shelter sites within the geological context of southern Africa.
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Figure 5. Number of deposits in southern Africa (A) and in South African provinces (B) with published dates and palaeoenvironmental proxies per

Marine Isotope Stage.

The scale of the map limits the geological resolution (to mitigate
this issue SI Table 1 provides a list of major contributing
lithologies to each unit presented in the map), and there are
clearly challenges relating to consistency of geological mapping
across national borders, but a number of major trends can be
clearly observed. First, most caves and shelter sites are hosted
within sedimentary rocks, in which the region is extremely rich.
However, the distribution of sites across major sedimentary
complexes is not uniform and is correlated with the local
topographic and geomorphological context, and, by extension,
geological history. For example, the majority of sites hosted within
the enormous Karoo Supergroup sedimentary complex are
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associated with the Drakensberg/ Lesotho mountain area and not
the interior of the Western Cape or the western and coastal
Eastern Cape, areas worthy of further exploration. Contrastingly,
there is an abundance of sites in the Cape Fold Mountains, where
dramatic geological contortion creates opportunities for fault-
guided cave and rock shelter formation locally assisted by
coastal erosion. Second, very few sites with the relevant data are
documented within the carbonates of the Transvaal Supergroup
that stretches through the South African interior and into Botswana,
despite the abundance of karstic caves known from this area.
A similar observation can be made for the Damara Complex in
western and central Namibia, where speleological surveys have
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documented many caves (e.g., Marais and Irish, 1997; Pickford and
Senut, 2010; Laumanns, 2017), and the Cheringoma and Grudja
Formations in central Mozambique (Pena et al., 2019).

Figure 7 presents the distribution of the 104 catalogued cave
and rock shelter sites within the modern vegetation context
of southern Africa. Each of the three case studies presented
here demonstrates the capacity for local-scale climate and
environmental conditions to develop within larger climate
fluctuations. Each biome, and associated local and regional
ecology, responds to climatological drivers at different temporal
and geographical scales, making intra- and inter-biome
correlations across areas of variable topography and hydrology
difficult. Changing ecologies have significant human implications

PHANEROZOIC
:] Recent to Neogene surficial deposits

PROTEROZOIC

- Chiure Group

- Karoo Supergroup igneous
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for resource availability, technological adaptation and population
movement. Prevailing vegetation and precipitation also tangibly
affects the availability and preservation potential of different
proxies. It is evident from Figure 7 that many sites occupy areas
near current boundaries of major vegetation biomes, while large
central areas remain underrepresented. The available data
distribution (as presented here) demonstrates the limitations of
the current record and opportunities for future research.
Limitations include:
* challenges in isolating changes within single biomes, without
the influence of nearby expanding and contracting ecotones,
and
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Figure 6. Simplified geological map of southern Africa with the locations of the 104 cave and rock shelter sites discussed in this paper. Map is based
primarily on simplified geological maps published by Schliiter, 2008 and McCourt, 2016 (see SI Table 1 for associated lithologies and additional sources,
and methodology for the map assembly and limitations).
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« difficulties in building representative intra-biome records for
any period that enable local topographical and hydrological
influences to be explored.

Opportunities include:

e exploring human resource exploitation choices and
technological responses to changes within ecotones, and

¢ human mobility patterns in extreme periods of climatological
change (e.g., MIS 2), a subject that continues to be explored
in the Lesotho Highlands (e.g., Stewart et al., 2012; Roberts

et al., 2013; Pargeter et al., 2017).

Palaeoenvironmental proxy availability and utilisation
across southern Africa

The most widely used palacoenvironmental proxies are faunal
assemblages (macrofauna and micromammals), representing
52% of utilised proxies in sites across southern Africa (Figure 8a)
and across South African provinces (Figure 8b), aptly
demonstrating the abundance (and suitability of preservation
conditions) of this form of evidence in caves and shelters of all
ages. However, stable isotope analyses on fauna (bone or tooth
enamel) represents only 5% of proxies published. This may be

due to limited access to specialist analytical equipment and
skills, or preservation issues of suitable tissue (for discussion see
Koch et al., 2001; Trueman et al., 2004; Koch, 2007), but suggests
there is great potential for this technique across southern Africa
both in primary research and in the resampling of the abundant
faunal assemblages curated in museums and universities across
the region.

Botanical remains in general, including macrobotanicals,
pollen, phytoliths and stable isotope analysis of charcoal, are
the next most abundantly published palacoenvironmental proxy
(n = 43; 20% of all proxy publication in southern Africa). South
African studies utilise these more than any other southern
African country (n = 36; 16% of all proxy publication), with
caves and rock shelters of the Eastern and Western Cape
provinces publishing the bulk of data (n = 19; 52% of the South
African botanical proxy record). Several factors may play a role
in the spatial distribution of data. First, plant taphonomy is
complex, with chemical and mechanical processes in the shelter
often leading to differential preservation of charcoal, pollen and
phytolith remains based on size, shape and taxon (e.g., Esteban
et al.,, 2020b). Consequently, host rock lithology and local
hydrology may play a role in regional preservation bias. Second,
approaches to the collection and sampling of botanical remains
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Figure 7. Simplified map of different vegetation formations of southern Africa with the locations of the 104 cave and rock shelter sites discussed in this

paper (redrawn from Biondi et al., 2015 with vegetation classifications based on Sayre et al., 2013).
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Figure 8. Relative frequency of published palaeoenvironmental proxy use in southern Africa (A) and South African provinces (B). ‘SI' represents stable

isotope studies. N=number of sites with published chronologies and palaeoenvironmental proxy use.

vary greatly across excavated sites and through the history of
excavation and debate continues about sampling strategies for
macrobotanical remains (e.g., Puech et al., 2021). Studies of
microbotanical remains (pollen and phytoliths) are rare in
southern Africa (n = 16; n = 15 in South Africa). This may be
because these proxies are susceptible to contamination through
mixing and during sampling, and large reference collections and
specialist knowledge are needed for their analysis.

Stable isotope analysis on a range of clastic and chemical
sediments represents 17% of the published palacoenvironmental

record from caves and rock shelters, with speleothems, bone and
tooth enamel representing the most frequently used materials.
Stable isotope analysis of sedimentary organic material has been
applied in the Lesotho Highlands and provides an encouraging
example of the potential of systematic and coordinated regional
palacoenvironmental research (e.g., Roberts et al., 2013), where
similar methods have been applied between relatively close sites
with chronostratigraphically correlated deposits. Apart from
faunal material, which is well represented through caves and rock
shelters of all regions and periods, availability of stable isotope-
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suitable materials is also potentially spatially and temporally
biased. For example, speleothem growth is limited to particular
geological contexts, while the presence of shellfish is limited
to coastal and near-coastal sites, and organic remains are
particularly prone to cumulative mixing or destruction within
increasingly old deposits.

Clastic sediment type and stratigraphy as an environmental
proxy has been utilised relatively infrequently (n = 20; 9%) and
mostly by geoarchaeologist Karl Butzer (e.g., Butzer, 1973a,b;
Butzer et al.; 1978), who proposed several regional scale
correlations between clastic sedimentation rates and climate
changes (e.g., Butzer et al., 1978 at Border Cave). More recently,
specialist multiscale sedimentological studies have focused on
the patterns in anthropogenic and non-anthropogenic sediment
accumulation at Pinnacle Point (Karkanas et al., 2015, 2021).

Discussion
Limitations and stratigraphic completeness of the record

At the landscape scale, Figures 1 and 6 (and Supplementary
Information Figures 1 to 6) demonstrate the uneven distribution
of sites across southern Africa. Regionally, this reflects many
factors from the geological and geomorphological context, to
logistical constraints and the political and economic environment.

In every site, it is evident that dynamic depositional and
post-depositional processes have affected the stratigraphic and
sedimentary record differently, as exemplified in the multiple
minor and significant hiatuses evident in the three presented
case studies. At Border Cave, up to eight significant hiatuses are
documented, with one potentially spanning 18 ka (based on
dates from 1 Brown Sand Lower; d’Errico et al., 2012; Villa et al.,
2012) from the middle of MIS 2 to MIS 1. At Klasies River,
a major hiatus lasting perhaps as long as 40 ka, resulted in no
representation of MIS 2 age deposits, and is attributed to either
a lack of occupation, or the caves being closed by sediments.
At the Pinnacle Point site complex, PP13B was closed for
perhaps as long as 30 ka during MIS 5a and 4, a period
documented by clastic deposits in nearby caves PP 5-6, and
speleothems in PP29 and Crevice Cave. Minor sedimentary
hiatuses and complex processes that impact the integrity of the
stratigraphic sequence and the deposits are abundant, spatially
highly variable within sites and potentially of great significance
for sampling and stratigraphic correlation, as has been
demonstrated through micromorphological studies (e.g., Karkanas
and Goldberg, 2010). When considering the implications of a
hiatus, attempts should be made to distinguish between
occupational hiatuses and sedimentary hiatuses (unconformities)
because their distinction is of primary importance to
interpretations of the completeness of the stratigraphic (as
opposed to archaeological) record. The nature of hiatuses in the
archaeological literature is not always clear.

Although hiatuses are spatially and temporally irregularly
distributed, even in closely associated cave complexes like
Pinnacle Point, the widespread absence of MIS 2 age deposits
in coastal and interior sites warrants further study and expanded
landscape-wide sampling. Generally, records from rock shelters
and caves should be considered snippets of fragmented records.
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Various palaeoenvironmental proxies are deposited through
different processes and preserved under specific conditions.
This can lead to disparate signals from stratigraphically and
chronologically correlated proxies on intra-site, local and
broader scales — as seen in speleothem and clastic sedimentary
components from all three case studies presented here. For
example, charcoal is generally only deposited abundantly during
human occupation of a cave or rock shelter and so inter-site and
regional-scale correlations of single proxy data are difficult if
occupational periods cannot be correlated. Anthropogenic
components also generally represent not only the environmental
resources and conditions around the cave but also human
behaviour. For example, the taxonomic and elemental
composition of a macrofauna assemblage found inside a cave
will depend on which animals live in the surrounding areas,
which of these animals humans exploit, and how and where
these animals are butchered.

In all of the cave and rock shelter sites listed here, and
in many cave sites documented in the speleological literature,
non-anthropogenic clastic sediments represent significant
components of deposits, or entire units in sequences. The
correlation between clastic cave sedimentation and different
spatial scales of environmental change has been explored in
Europe and beyond (e.g., Zhou et al., 2000; Courty and Vallverdu,
2001; Karkanas, 2001; Woodward and Goldberg, 2001; White,
2007) and authors consistently comment on the difficulty of
proposing deterministic correlations between sedimentation
and climate. Although these sediments have generally not
received dedicated chronological and palaeo-environmental
research attention in southern Africa, they provide interesting
opportunities to explore sedimentary processes, palaeo-
environments (e.g., Karkanas et al.,, 2021) and potentially
address the phenomenon of the missing MIS 2 age deposits
through systematic sampling.

When considering the completeness of the stratigraphic
record derived from caves and rock shelters, the reduction in
abundance of older deposits (n = 49, 18% of cave and rock
shelter deposits in southern Africa with palacoenvironmental
records date beyond MIS 5b) is not surprising given the
increasing probability of record destruction resulting from
cumulative post-depositional processes. However, several
alternative causes could be suggested, for example:

» fewer caves and shelters were open before MIS 5b, with
erosion over the last 90 ka contributing to the destruction
or collapse of older caves, or the formation or opening of
new shelters;

* older deposits are preserved but remain buried, beyond the
extent of excavations;

* older deposits have been eroded and replaced by younger
units;

* older deposits are preserved in non-anthropogenic cave
deposits and so have escaped dedicated chronological and
palaeoenvironmental study.

Dedicated geoarchaeological and chronological research is
needed to test these hypotheses, any one of which may bias the
sedimentary record from caves and rock shelters. Testing these
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hypotheses is particularly pertinent in the interior of southern
Africa, where incomplete stratigraphic records may erroneously
insinuate an absence of humans between MIS 6 and 3 and limit
our understanding of the palaeoclimatic conditions during this
important period. Recent publication of new archaeological
deposits dated to MIS 5¢ and 5d in the Northern Cape (Wilkins
et al., 2020) associated with wetter inland conditions (Wilkins
et al., 2021) indicates the presence of people inland during at
least some periods of MIS 5 and suggests intermittently wetter
environmental conditions.

Implications of chronological resolution

Chronological resolution also plays an important role in limiting
fine-scale correlations across space and time, with many
sites reporting large errors on their dates (see Feathers et al.,
2020 for a discussion of variability of OSL data interpretation in
Middle Stone Age sites). In areas where sites with palaco-
environmentally-informative sedimentary sequences are known,
the depositionally isolated nature of cave deposits means that
chronological control remains the only tangible way to correlate
stratigraphic units, assemblages and associated proxies across
the landscape. The resolution and reliability of that record is
crucial and easily affected by analytical procedural refinements
(e.g., changing calibrations for radioisotopic methods - see
asterisks associated with 14C data in Table 1) or the innovation
of new methods (e.g., U-series dating), considerations that are
particularly pertinent for an archaeological record built over the
last five decades. This is not a simple issue to mitigate because
every cave deposit will be more or less suitable to different
dating methods, each with their own inherent sampling and
analytical idiosyncrasies influencing the resolution of the result.
Significant efforts have been made to synthesise chronological
records (e.g., Deacon, 1974; Jacobs et al., 2008a; Loftus et al.,
2019b) and ideally these should be expanded on in a systematic
way, while bearing in mind that a date range for a deposit or
sequence of deposits does not necessarily represent continuity
in sedimentation or occupation. Relatively large errors on dates,
differing analytical techniques and taphonomic processes all
serve to distil the palacoenvironmental record into variably time-
averaged mosaics that draw on differently biased proxies, and it
is clear that many sites require resampling and chronological re-
assessment using modern methods and calibrations. This is
particularly true for the abundant MIS 2 to 1 age sites bearing
Later Stone Age deposits, which in many cases haven’t been
revisited in the last 30 years or longer (e.g., Deacon, 1974).
From a historical perspective, the data presented provides
some interesting insights into where, when and who contributed
to the development of the palaeoenvironmental record and how
it has been diversified over the last 50 years. Publications of
25 years old or older are unsurprisingly dominated by faunal
studies during prolific research activity by Avery, Klein, Mazel,
Opperman and Thackeray through the late 1970’s to early 1990’s.
This work has formed the backbone of palacoenvironmental
interpretation throughout the region and has seen limited
augmentation in some provinces. For example, publications of
palacoenvironmental research on chronologically controlled
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sites have only increased by 7% in the Eastern Cape, and 13%
in KwaZulu-Natal in the last 25 years, while no new work has
been published from Eswatini. Conversely, in the Western Cape,
publications of palacoenvironmental research on chronologically
controlled sites have increased by 67% in the last 25 years,
indicating a significant focus in this area and associated bias in
the chronological and palacoenvironmental resolution of those
records. This bias can be attributed partly to the discovery of
archaeological evidence for modern (or near-modern) cognitive
abilities in early human populations at sites on the Cape coast
(e.g., Marean et al., 2007; Henshilwood et al., 2011), which has
driven multi-disciplinary palaeoenvironmental and palaeo-
climatic studies aimed at contextualising these finds (e.g.,
Cleghorn et al., 2020). In comparison, the ostensible lack of this
evidence at interior sites has resulted in less potential for, and
research interest in, studies of inland conditions. Additionally,
as a cautionary note for the future of palacoenvironmental
research, it is clear that the frequency of publications focused
on faunal analyses have fallen radically in the last 25 years.

Conclusions

Clastic and chemical sediments from caves and rock shelters
provide important and potentially multi-proxy and multi-faceted
perspectives of climate change in southern Africa between
MIS 6 and 1. The record is not complete, and is heavily
geographically biased to South Africa, and coastal areas within
South Africa. There are important sites in Namibia and Botswana
and the landlocked Lesotho, and it is unlikely that the dearth of
publications of dated cave and rock shelter deposits in Eswatini,
Zimbabwe and Mozambique reflects an absence of these sites
and records given their geological and topographical contexts
(see Barham, 1989b; Figure 6). There are also ongoing studies
of rock shelters and caves in these regions as part of both
academic and contract archaeology projects and the publication
of this data will help augment the record in the coming years.
As demonstrated in the case studies and the 104 sites presented
here, all sedimentary sequences in sites spanning beyond MIS 3
contain major to minor occupational and sedimentary hiatuses.
These are related to a wide range of processes, some of which
include local and regional environmental changes (e.g., Butzer
et al., 1978), and some of which relate to in situ biogenic or
anthropogenic activity.

Of particular interest in the reconstruction of a southern
African palacoenvironmental record is a consistent MIS 2 age
sedimentary hiatus observed in many caves and rock shelters
throughout the region. The conspicuous absence of MIS 2 age
sedimentary data limits our capacity to assess the environmental
context of human behaviour and resource exploitation across the
region at a key period in our technological and cultural evolution.
The processual implications of this period on sedimentation,
erosion and occupation of caves and rock shelters is an
important aspect to explore, but limited by an absence of data in
comparative sedimentary sequences. This period coincides
with significant climatological changes associated with the last
glacial maximum, and systematic chronological and palaco-
environmental sampling of the many non-anthropogenic cave and

SOUTH AFRICAN JOURNAL OF GEOLOGY 905

Downloaded from http://pubs.geoscienceworld.org/gssa/sajg/article-pdf/124/4/879/5479846/879_0052_stratford_et_al.pdf
bv Geoloaical Societv of South Africa RBAC user



CAVE AND ROCK SHELTER SEDIMENTS OF SOUTHERN AFRICA: A REVIEW OF THE CHRONOSTRATIGRAPHIC
AND PALAEOENVIRONMENTAL RECORD FROM MARINE ISOTOPE STAGE 6 TO 1

rock shelter deposits in southern Africa would be an important
endeavour to address this dearth of data. It is also important to
expand comparable sedimentological and palacoenvironmental
studies out of the caves and rock shelters and onto the landscape
to help span the geographical and ecological gaps (e.g.,
Blydefontein Rock Shelter; Scott et al., 2005).

The advantage of cave and rock shelter clastic sedimentary
records is the diversity of included evidence suitable for palaeo-
environmental analyses. Fauna, a temporally and regionally
abundant form of evidence in cave and rock shelter sediments,
has been the most widely used proxy in southern Africa and
one drawn on for over 40 years, providing a long and broad
record across the region. Although not extensively applied yet,
modern stable isotope studies focusing on faunal remains (e.g.,
Williams et al., 2020) have a very large, well-distributed and
temporally extensive sample with which to work. Exploration
of the palaeoenvironmental record through stable isotope
analysis of sedimentary organic material has proven to be
effective in the Lesotho Highlands (e.g., Roberts et al., 2013)
where sites with correlatable stratigraphic records are relatively
closely situated. It is difficult to assess the distribution of
botanical remains through southern Africa due to a significant
spatial bias in the application of modern analyses.

There is a long history of archaeological research across
southern Africa that has used cave sedimentary components
for palaeoclimate reconstructions with great success. Spatial,
temporal and analytical inconsistency in the published
record leads to interpretations drawn on data with different,
not necessarily comparable, resolutions. Ideally, palaeo-
environmental specialists should endeavour to align the
resolution of research questions with the resolution of the
evidence to most appropriately utilise the available data, but
also identify where additional resolution is most needed (Faith
et al., 2021). There remain important opportunities to advance
our understanding of past climates in southern Africa by
gathering data from underrepresented areas and deposits, and
applying emerging methods on existing and new evidence from
across the region.
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