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ABSTRACT

Pathogen emergence is a complex phenomenon that, despite its public health relevance,
remains poorly understood. Vibrio vulnificus, an emergent human pathogen, can cause
a deadly septicaemia with over 50% mortality rate. To date, the ecological drivers that
lead to the emergence of clinical strains and the unique genetic traits that allow these
clones to colonize the human host remain mostly unknown. We recently surveyed a large
estuary in eastern Florida, where outbreaks of the disease frequently occur, and found
endemic populations of the bacterium. We established two sampling sites and observed
strong correlations between location and pathogenic potential. One site is significantly
enriched with strains that belong to one phylogenomic cluster (C1) from which the
majority of clinical strains belong to. Interestingly, strains isolated from this site exhibit
phenotypic traits associated with clinical outcomes, whereas strains from the second site
belong to a cluster that rarely causes disease in humans (C2). Analyses of C1 genomes
indicate unique genetic markers in the form of clinical-associated alleles with potential
role in virulence. Finally, metagenomic and physicochemical analyses of the sampling
sites indicate that this marked cluster distribution and genetic traits are strongly
associated with distinct biotic and abiotic factors (e.g. salinity, nutrients, or biodiversity),
revealing how ecosystems generate selective pressures that facilitate the emergence of
specific strains with pathogenic potential in a population. This knowledge can be applied
to assess the risk of pathogen emergence from environmental sources, and integrated

towards the development of novel strategies for the prevention of future outbreaks.
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SIGNIFICANCE STATEMENT

Our study addresses one main question: What are the ecological and genetic factors
that drive pathogen emergence? To date, systematic experimental approaches to
address this phenomenon are very limited. Here, we implemented a holistic approach to
dissect the ecological, genetic and evolutionary drivers that foster the selection of
virulence traits and pathogenic clones within an environmental population using Vibrio
vulnificus, an aquatic bacterium that can cause a deadly septicemia in humans, as a
model system. Our results suggest how ecosystems may generate selective pressures
that facilitate the emergence of specific strains with pathogenic potential in a natural
population and can be applied towards predictive frameworks to assess the risk of

pathogen emergence from environmental sources.
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INTRODUCTION

The emergence of human pathogens is one of the most concerning public health topics
of modern times (1—4). According to the World Health Organization, over 300 emerging
infectious diseases have been reported in the 1940-2004 period, a trend that has
continued steadily with recent outbreaks of Ebola in West Africa, Cholera in Yemen, and
the global pandemic caused by COVID-19 (3-5). Even though classical molecular
approaches have advanced our understanding of bacterial pathogenesis, to date, the
genetic adaptations and ecological drivers that facilitate selected strains within a species
to emerge as pathogens and successfully colonize the human host remain poorly
understood. Given the magnitude and complexity of this urgent threat, it is critical to
develop tractable organismal model systems and theoretical frameworks that allow us to
dissect the molecular adaptations and environmental factors that lead to the emergence
of such human pathogens.

Vibrio vulnificus, an emergent human pathogen, is one of the leading causes of
non-Cholera, Vibrio-associated deaths globally (6). Despite being a natural inhabitant of
estuarine, coastal, and brackish waters (7), this flesh-eating bacterium has gained
particular notoriety as one of the fastest killing pathogens (8, 9). Humans are typically
infected with V. vulnificus through ingestion of contaminated raw seafood or by direct
exposure of open wounds to seawater (6). V. vulnificus infections often result in fulminant
septicaemia with an alarming mortality rate exceeding 50% (6, 10—13). The bacterium is
particularly lethal in some susceptible hosts, such as immunocompromised patients or
those with alcohol-associated liver cirrhosis, diabetes mellitus, or hemochromatosis (14).
The annual case counts of V. vulnificus infections have steadily increased over the past
20 years in the USA (15). An upsurge in its worldwide distribution over the past three
decades, in correlation with climate change, has led to disease outbreaks in regions with
no history of V. vulnificus infections (16—18). Furthermore, models predict this trend to
continue resulting in a steady expansion of its geographical range and the subsequent

increased risk of human infections (16, 19-21).
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Based on a series of biochemical and phenotypic traits, V. vulnificus strains have
been historically classified into three Biotypes (BT): BT1, mostly associated with human
infections (22, 23), BT2, primarily pathogenic to eels (24, 25), and BT3, which is
geographically restricted to Israel and possesses hybrid characteristics from BT1 and
BT2 (26, 27). In contrast to Vibrio cholerae, where all strains capable of causing cholera
belong to a single clade, genomic comparisons of V. vulnificus reveal a more complex
pattern in the distribution of its clinical strains (28-30). Phylogenomic analyses indicate
that the population of V. vulnificus is composed of four distinct groups or clusters (Cluster
1-4), which largely overlap with the classical Biotype classification system (23, 26, 28,
31, 32). Our analyses indicate that the two largest clusters, C1 and C2, exhibit high
genomic divergence and appear to be speciating (28), with clinical strains from BT1
predominantly belonging to C1 (22, 23), whereas strains from C2 primarily associated
with BT2 (6, 24, 25). C3 is highly clonal and fully overlaps with BT3, and the rare C4
contains only four non-clonal strains and belongs to BT1 (28, 31). Interestingly, despite
patients showing conserved clinical symptoms, C1 clinical strains arise from different
clades within the cluster, suggesting independent emergence events of this deadly
pathogen (28, 31, 32). To date, the unique genetic traits that allow certain C1 strains to
cause severe septicemia remain mostly unknown, posing a daunting public health risk
as it hinders our ability to detect potentially pathogenic V. vulnificus (33).

Recently, using a combination of bioinformatic and phenotypic analyses that
surveyed more than one hundred strains of V. vulnificus, we determined that V. vulnificus
C1 appears to be associated with a unique ecological lifestyle or ecotype (28).
Nonetheless, to date, the ecological drivers that lead to the emergence of clinical V.
vulnificus C1 and their pathogenic traits remain poorly understood. In order to start
untangling the complex in-situ interactions between genotypes and the environment that
underlie the emergence of clinical strains, in this study we recently surveyed a large
estuary in eastern Florida, the Indian River Lagoon (IRL), where outbreaks of the disease
frequently occur (7, 34). We found endemic populations of V. vulnificus in the estuary

5
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and established two sampling locations to study the environmental dynamics of this
bacterium in several natural reservoirs such as water, sediment, oysters and
cyanobacteria. Interestingly, the two sampling sites show major differences in the
distribution of V. vulnificus clusters. One of them, Feller’s house (Site A), appears to be
significantly enriched with C1 strains whereas in the second sampling site, Shepard Park
(Site B), we mostly recovered strains from C2. Genomic analyses of these strains
indicate that, despite these major differences in distribution, high recombination rates as
well as frequent exchange of mobile genetic elements and virulence factors between
these V. wulnificus populations occur. Microdiversity analyses of these genomes
revealed unique genomic markers among C1 strains in the form of clinical-associated
alleles with potential direct role in virulence. The isolated V. vulnificus strains are
resistant to numerous commonly used antibiotics irrespective of cluster or site of
isolation, however, phenotypic analyses indicate that strains from Site A exhibit traits
associated with clinical outcomes, including the ability to resist serum and catabolize
sialic acid, unlike those from Site B. Finally, metagenomic and physicochemical analyses
of the sampling sites indicate that this marked cluster distribution is strongly associated
with distinct biotic and abiotic factors (e. g. salinity, nutrients or biodiversity) revealing
how ecosystems might generate selective pressures that facilitate the emergence of

specific strains in a population as with pathogenic potential.

RESULTS AND DISCUSSION

Gene marker, thiF, can detect V. vulnificus and distinguish between clusters.
Before initiating our sampling protocol, we looked for specific markers to rapidly screen
environmental samples on a large scale. Specifically, we needed reliable genetic
markers that could a) detect specifically V. vulnificus, b) accurately characterize them
based on their cluster, and c) discriminate between clonal and non-clonal strains. The
hemolysin gene vvhA, typically used to detect V. vulnificus, although species specific, is

limited in its potential to distinctly classify strains into clusters or discriminate between
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non-clonal strains (35-37) (Fig. 1A and Supplementary Fig. 1A). Other approaches, such
as MLST, although effective in characterizing strains, require the PCR amplification,
assembly, and concatenation of several housekeeping genes (32, 37—40), which is
resource intensive and impractical for the rapid screening of V. vwvulnificus in
environmental samples. In order to identify potential markers that meet all the
requirements above, we compared all available C1 and C2 genomes in public databases
through pangenome analysis. The number of gene families shared was 978 (accounting
for ~22% average number of genes in a V. vulnificus genome), which we consider the
core genome. We performed individual phylogenetic trees for these gene clusters and
identified, across both chromosomes, a total of 47 genes that clearly differentiated C1
and C2 clusters. We compared these genes, using representative strains from all
clusters (Table S1), based on percentage of sequence identity, against CMCP6, a
reference V. vulnificus strain. We singled out the genes that had the highest percentage
identity with strains from C1 but the least identity with those from C2 and viceversa, and
compared them against vvhA. We finally selected a total of six candidate genes (yycF,
pfeS, acuB, yqhD, uvrY and thiF), three from each chromosome, as potential markers
(Table S2). Although all six candidate marker genes clearly differentiate C1 V. vulnificus
strains from C2 (Fig. S1A), the response regulator uvrY, and the sulfur carrier protein
adenylyltransferase thiF, had the maximum resolution in distinguishing all four clusters
(C1-C4) as well as individual strains within each cluster, which serves as a proxy for
discrimination of clonal populations (Fig. 1A). Additionally, the relative distances of the
four clusters in the phylogenetic tree of thiF most accurately corresponds to the
evolutionary tree of V. wulnificus built using single nucleotide polymorphisms and
average nucleotide identities of all known V. vulnificus strains (28). Upon testing the
species specificity of thiF with Vibrio parahaemolyticus RMID2210633 or V. cholerae
0395, thiF was found to be specific to V. vulnificus (Fig. S1D). Thus, thiF has the
potential to a) detect V. wvulnificus strains, b) separate them by clusters, and c)
discriminate between clonal and non-clonal strains based on their whole genome.

7
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Furthermore, the concatenation of all six genes had at least twice the resolution and
discriminatory power to differentiate all four clusters than vvhA making it an accurate set

of genes for MLST analyses of V. vulnificus strains (Fig. 1A).

Detection of V. vulnificus along the Indian River Lagoon (IRL). The Indian River
Lagoon (IRL, Easter Florida, USA) is one of the most biodiverse estuaries spanning an
expansive geographic range with contrasting environments in Florida, where outbreaks
of the disease frequently occur (Fig. 1B) (7, 34, 41). We recently surveyed this large
estuary and we stablish two sampling sites at environmentally distinctive locations along
the IRL (Fig. 1B). We collected samples in three sampling events (15-November-2018;
24-July-2019 and 22-August-2019) including biotic reservoirs such as oysters and
cyanobacteria. V. wulnificus was isolated by sequential plating of the enriched
populations on Chromoagar Vibrio (CaV) and TCBS as described in the Materials and
Methods section (42). From a total of 1,856 colonies screened, only 245 were identified
as potential V. vulnificus isolates based on the chromogenic plating method. An overall
higher proportion of V. vulnificus was detected at Site B (Fig. S1B). At Site A, the
distribution of V. vulnificus was found to be highest in oysters (45.3%) and water (43.4%),
in contrast to sediments, which contain on average only 11.32% (Fig. S1B). Furthermore,
a higher proportion of V. vulnificus was observed during the summer at both sites (Fig.
S1B; 96.3% at Site A, 91.7% at Site B), likely as a consequence of increased water
temperatures (>20°C). The 245 potential V. vulnificus isolates were further confirmed
using the novel gene marker thiF. PCR amplification of the thiF gene yielded 141
confirmed V. vulnificus isolates. We sequenced these PCR products and constructed a
phylogenetic tree to determine cluster affiliation. To minimize further examination of
strains of clonal origin that might have proliferated during enrichment, we only analyzed
one strain within a group if a) the thiF alignment looked identical within the group, b) the
strains came from the same replicate and fraction, and c) they were isolated during the
same sampling event. As a result, 87 out of the 141 confirmed V. vulnificus isolates were

8
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selected for further analyses (39 isolates from Site A and 48 from Site B) (Fig. 1C).
Strikingly, phylogenetic analysis using gene marker thiF showed that most isolates from
Site A, belong to C1 (97.4%, 38/39), whereas the maijority of isolates from Site B belong
to C2 (87.5%. 42/48) (Fig. 1C). This clear ecological separation between the two clusters
provides an ideal framework to examine evolutionary processes underlying the
emergence of pathogenic traits within a population and a platform to understand how
ecosystems generate pressures that facilitate the selection of strains with pathogenic
potential. In order to address this, we first dissect the genomic determinants and
population structure of these environmental V. vulnificus strains, assess their pathogenic
potential, and finally link these results with environmental factors (abiotic and biotic)

associated with their marked cluster distribution.

Genomic determinants of V. vulnificus emergence. a) Ecological preferences of V.
vulnificus clusters. To investigate the genomic determinants that potentially drive the
ecological niche preferences of the clusters, we selected several strains for genome
sequencing to obtain a proportionate representation of each cluster, reservoir, fraction,
host and date of isolation. This resulted in a total of 27 V. vulnificus isolates sequenced
(Table S3), 13 from Site A (2 sediment, 6 oyster, and 5 water isolates, one of which
belonged to C2) and 14 from Site B (4 sediment, 4 cyanobacteria, and 6 water isolates
including two from C1). For a robust phylogenomic association we included 74
dereplicated V. vulnificus genomes (e. g. genomes >99% Average Nucleotide Identity;
ANI) currently available in public databases. We used both phylogenomic trees and ANI-
based clustering of both chromosomes separately to group the genomes into the
previously defined clusters (C1 to C4; (28)) (Figs. S2A and S3). Based on these results
we decided to use the ANI of chromosome | as a reference for taxonomic classification
since coverage is high (>70%), even among the most divergent clusters (C1 and C2).
Interestingly, we found the first evidence of mixing or transfer of chromosomes between
clusters of V. wulnificus. For instance, while chromosome | from FORC _ 037, an

9
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environmental strain isolated from soft-shell clam, had an ANI > 98% with members of
C2 and ca 95% with C1, for chromosome |l was the other way around (Figs. S2A and
S2B).

Whole genome phylogeny confirmed the marked differences in the distribution of
V. wulnificus clusters obtained with thiF gene, corroborating the enrichment of C1 strains
in Site A (Fig. 2A), except for the strain IRLE0015 that together with NV22 clustered
closely to BT3 strains from the Israel outbreak (Fig. 2A). As aforementioned, we selected
one non-clonal strain from Site A that belong to C2 (IRLA0043), and two from Site B
belonging to C1 (IRLE0056 and IRLE0004). These gave us the opportunity to investigate
the presence of potential genomic determinants specifically associated with each site,
that is, whether C1 and C2 strains from site A have a unique pool of genes that is absent
in strains from site B irrespective of cluster. The common part of the pangenome of all
C2 strains from Site B was subtracted from the genome of the IRLA0043 strain, the only
one in this cluster isolated from Site A. More than 500 genes were specific to this strain,
apart from the capsule glycosylation genes we found a second cluster of genes (rtxB-
rtxD-rtxE) encoding a type | secretion system (T1SS) with a high similarity (99%) to
several strains of V. coralliilyticus. Specifically, this system appears to be associated with
excretion of an enterotoxin (Efa-1/LifA) (43). Within these specific genes we also found
a second type VI secretion system (T6SS) (28) and an Integrative conjugative element
(ICE). On the other hand, C1 strains from Site B (IRLE0004 and IRLE0056) had only 200
unique genes compared to C1 strains from Site A. Among the specific genes of
IRLEOOO4, we found a gene cluster conferring the ability to utilize tetrathionate as an
electron acceptor, a common sulfur compound present in most soils (44), interestingly,
this strain has been isolated from sediment. The ability to utilize tetrathionate has been
associated with virulence in Salmonella enterica by providing a growth advantage to the
bacterium in the inflamed gut (45). The functional annotation associated with the specific
part of IRLEO056 was limited to the use of rhamnose, several toxin-antitoxin systems
and the gene encoding the HipA involved in dormancy (46). Although it highlights the
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presence in the environment of some virulence factors that can be easily shared between
the two clusters, our analysis did not identify any specific genomic determinants that may
explain the differential distribution of these strains.

b) Ecologically meaningful populations of V. vulnificus. Despite the marked
environmental preferences and genomic divergence between C1 and C2 clusters, our
recent in silico studies indicate frequent exchange of mobile genetic elements (28). Here,
we have the opportunity to study potential recombination in natural V. vulnificus
populations in an endemic area. Recombination is particularly worrisome as novel
practices such as aquaculture can lead to the emergence of hybrid strains, as evidenced
by a deadly outbreak in Israel caused by an entirely new cluster (C3) (27) and the
presence of a C3-like strain isolated in this study (IRLE0015) (Fig. 2A). To evaluate this
phenomenon, we used a novel approach for assessing recent recombination events that
enables the delineation of ecologically relevant populations, i.e groups with the potential
to exchange genetic material (47). Our analyses revealed the presence of 15 major
recombining populations. Some of these populations coincide with the cluster
classification indicative of high intra-cluster recombination e. g. C3 and C4 (Fig. 2A).
However, C2 is made up of 12 populations. Eleven of them formed by a single member
and therefore indicating that there are no recombination events that connect these
strains with the rest of the cluster (48). Interestingly, all members of C1 form a single
population (P15) with the majority of C2 representatives indicating that, despite
divergence (ca. 95% ANI), these clusters are connected by recent recombination events
(Fig. 2A).

The capsular polysaccharide (CPS) cluster is an essential virulence factor of V.
vulnificus (49). Our previous analyses suggest that recombination may be a major
evolutionary mechanism leading to the high diversity of the CPS cluster (28). Thus, we
investigated the genomic diversity of the CPS between both clusters in these natural
populations. Strain IRLA0152 (C1) isolated from the free-living fraction at Site A, had a
similar variant of the CPS found in an infected patient isolate (FDAARGOS_119) (Fig.

11
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2B). One of the hypervariable parts of the CPS from the oyster isolate OH0023 was
identical to that found in the reference clinical strain CMCP6, highlighting the
environment as a reservoir of these essential virulence genes (Fig. 2B). Furthermore,
certain CPS clusters are distributed in the population irrespective of cluster of origin and
sampling location. Specifically, we found the same CPS in one C1 strain from Site B
(IRLEO0S6) and three C2 strains, one of them from Site A (IRLE0043) and two from Site
B (IRLE0O062 and IRLE0057) (Fig. 2B). The only variation was a small insertion in
IRLEOO43 due to several IS elements, which suggests that this may be another
mechanism that can introduce variability within the CPS cluster (Fig. 2B). Overall, our
results indicate that despite the genomic divergence and their marked ecological
differences, there is a wide recombination among the clusters in an endemic area such
as the IRL including the transfer of major virulence factors within their natural
environment.

c) Pangenome analyses reveal genetic drivers associated with virulence
emergence. The majority of clinical V. vulnificus strains belong to C1, similarly to most
strains isolated from Site A. To date, the specific genomic determinants that allow some
C1 strains to successfully colonise human remain mostly unknown. In order to elucidate
genetic factors associated with the emergence of clinical V. wulnificus C1 from
environmental gene pools and to determine whether C1 strains from Site A encoded
clinical associated traits, we compared genomes from strains isolated in this study
against those from bona fide clinical C1 and non-pathogenic strains (50, 51). Specifically,
we selected genomes from four distinct groups, a) nine C1 strains isolated from Site A
and b) nine C2 strains from Site B together with ¢) nine C1 strains that are bona fide
clinical i.e. isolated from patients with septicaemia, as well as d) nine non-pathogenic
strains from C2, i.e. isolated from environmental sources and susceptible to the
bactericidal effect of serum and monocytes (50, 51). Microbial species diversity was
analysed via a Partitioned PanGenome Graph Of Linked Neighbours (PPanGGOLIN,
(52)). The estimated size of the “persistent genome” (gene families present in almost all
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genomes) is similar for each individual group as well as for all the groups combined
together, ca. 3,700 gene families (ca. 52% of the total genes families per genome). This
is quite remarkable given the genomic divergence between groups (Fig. 3A). The
proportion of gene families that formed the “shell genome” (genes families present in 3-
7 genomes) was only 1% of the total for both C1 groups and 2% for C2 groups. The
remaining gene families present in low frequency (1-3 genomes) were classified as the
"cloud genome” (Fig. 3A). As predicted, the percentage of gene families assigned to
functional categories (SEED subsystems database) for each pangenome partition varied
significantly: from 64% assigned to the persistent genome, to ca. 20% for the cloud and
shell. The latter being typically associated with diverse environmental adaptations
including pathogenesis, which highlights the enormous genomic plasticity that remains
to be addressed for these organisms.

Next, we compared the functional classifications of the gene coding sequences
from the persistent genomes of the nine reference C1 clinical strains against the nine C1
strains analysed from site A. We found that both groups only differ in ~2% of the total
gene content of their persistent genome. Most of these differences were associated with
the presence of genes belonging to the “Sialic Acid Metabolism” classification in the
clinical C1 strains (Fig. 3B). This group of genes code for a complete tripartite ATP-
independent periplasmic transport system (TRAP) involved in the transport of sialic acid,
for the enzymes responsible for its catabolism (N-acetylneuraminate lyase, N-
acetylmannosamine kinase and N-acetylmannosamine-6-phosphate 2-epimerase) as
well as a sialic acid mutarotase (YjhT family) and sialic acid utilization regulator, RpiR
family (563). The ability to scavenge, decorate their surface and utilize sialic acid as a
carbon source is an important virulence factor for pathogenic and opportunistic bacteria
including V. vulnificus (564-57). Using the C1 clinical reference genome CMCP6 we found
that the complete cluster was located in a genomic island on chromosome Il (Fig. 3B).

The same gene cluster can be found in other Vibrio species (ca. 70% BLASTN identity)
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such as V. cholerae O1, Vibrio mimicus or Vibrio anguillarum, however, unlike V.
vulnificus, in these species the cluster was flanked by insertion sequence elements.
Given the frequent horizontal gene transfer in V. vulnificus populations it is
unlikely that presence/absence of genes or gene clusters is sufficient to explain the
emergence of virulence traits that lead to clinical outcomes in this pathogen. Our
previous investigations with V. cholerae suggest that allelic variations of core genes can
be major drivers of virulence emergence (29). Thus, we evaluated the patterns of
microdiversity of the persistent genome by estimating the ratio of non-synonymous (dN)
to synonymous (dS) substitution rates in pairwise genome comparison. We found six
genes within the C1 clinical strains which showed a strong positive selection compared
to the C1 IRL strains which on average exhibited a strong purifying selection (Fig. 3C
and Table S4). In addition, average dN/dS values for these genes within C2 groups, both
in the environmental references and the ones isolated from the IRL also exhibited very
low dN/dS values (Table S4). The genes encoding these clinical-associated alleles
(CAAs) differ between clinical strains and are involved in virulence associated processes
and host related nutrient metabolism (Table S4). For instance, one of these genes
encodes the outer membrane porin regulator OmpR, which regulates virulence in V.
cholerae via aphB (58, 59). Another, encoding the subunit EntD, forms part of the
enterobactin-synthetase enzyme complex, an iron acquisition system essential for
virulence in Escherichia coli (60) and was proposed to play a role in the late stages of
enterobactin biosynthesis in V. cholerae (61). The endonuclease vvn, identified as a
periplasmic nuclease in V. vulnificus, prevents uptake of foreign DNA (62), thus hindering
introduction of plasmids by transformation. Riboflavin synthase, ribE, catalyses the final
step in the biosynthesis of riboflavin or vitamin B2. Riboflavin is involved in a number of
metabolic pathways e.g. iron bioavailability and acquisition (63) in many pathogens
including V. cholerae. Pyridoxal phosphate, PdxA, the catalytically active form of vitamin
Bs, is an important cofactor for many enzymatic pathways involving breakdown of amino
acids (64) and the sulfur transfer complex TusBCD TusB component. On average these
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genes had lower dN/dS values in the C1 IRL strains in comparison to clinical C1,
however, given that clinical V. vulnificus are endemic to this area, it is possible that some
individual C1 IRL strains encode CAAs. To determine this, we analysed their presence
by identifying individual allelic variants that deviate from the average values (Fig. 3D).
Interestingly, even though none of the alleles from C1 IRL stains were identical to those
found in the clinical strains, each of them encoded at least one gene with a dN/dS above
the average. Those ranged from strain OH0003 encoding one (tusB gene) to IRLA0186
that encodes four of them (ompR, ribE, entD and pdxA) (Fig. 3D). Overall, our results
demonstrate that a) clinical strains encode unique CAAs, and b) allelic variants of these

genes circulate in natural populations.

Assessment of pathogenic potential of V. vulnificus strains. In order to evaluate the
pathogenic potential of IRL environmental strains and their association with phylogeny
and location, we phenotypically tested their a) antibiotic resistance profile, b) survival in
the presence of human serum, and c) ability to use sialic acid as a sole carbon source.
For these assays, we included V. vulnificus CMCP6 (clinical C1) and V. vulnificus SS108-
A3A (environmental non-pathogenic C2) as bona fide reference strains. Furthermore, we
constructed three isogenic mutant strains in the background of V. vulnificus CMCP6
where we deleted the genes encoding: a) the CPS transport protein Wza (Awza), which
has been shown to play a role in serum survival and capsule production (65), b) N-
acetylneuraminate lyase (AnanA), first enzyme in the catabolic pathway of sialic acid
(54), and the c) sialic acid TRAP transporter large permease (AsiaM), which is associated
with sialic acid uptake and is also involved in serum resistance (66).

a) Antibiotic resistance. First, we examined the antibiotic resistance profile of
the IRL strains to determine whether there were patterns associated with the differential
distribution of the clusters, as both sites have vastly different exposure to manmade
perturbances including antibiotics (67, 68). We tested several antibiotics recommended
by the Centres for Disease Control and Prevention for the treatment of Vibrio spp. (69).
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While V. vulnificus CMCP6 showed resistance or intermediate resistance to virtually all
the antibiotics tested (Fig. 4A), Awza, AnanA, and AsiaM showed increased sensitivity to
several of them compared to the wild-type (Fig. 4A). The capsule typically confers
resistance to antibiotics (70, 71), however, the mechanisms by which sialic acid
catabolism and uptake are involved in antibiotic resistance remains to be elucidated.
Most IRL strains are resistant to polymyxin B, gentamycin, sulfadiazine and imipenem,
a B-lactam antibiotic. In contrast, virtually no IRL strain was resistant to chloramphenicol
or oxytetracycline (Fig. 4A). Seven strains from Site B exhibited intermediate resistance
to nalidixic acid and/or trimethoprim while only two of the isolates from Site A were
resistant to these compounds. Strikingly, a C1 strain isolated from Site B (IRLE0004),
showed varied resistance levels to all antibiotics tested with the exception of
oxytetracycline. Interestingly, two C1 strains from Site A (IRLA0161 and IRLA0152) that
belonged to the same clonal frame i.e ANI>99%, showed different antibiotic resistance
patterns (Fig. 4A). Unlike IRLA0152, IRLA0161 is resistant to oxytetracycline, nalidixic
acid and trimethoprim. Genome analysis showed the presence of a 172 Kb plasmid in
this strain, in which we identified a coding gene for a trimethoprim-resistant dihydrofolate
reductase, DfrA family. Although the genes directly responsible for the other two
resistances were not identified, we found several genes related to efflux pumps encoded
in the same plasmid. It appears, from our analysis, that selective pressures at Site B, the
site with most anthropogenic exposure, favour the emergence of antibiotic resistance,
particularly to the folate inhibitor, trimethoprim, and the quinolone, nalidixic acid (Fig. 4A).
Furthermore, the presence of resistant plasmids and their ease of transmission between
the two clusters (28), increases the likelihood that strains from C1 to acquire these genes
through horizontal gene transfer.

b) Serum resistance. Some studies have previously reported the ability of
clinical V. wulnificus strains to resist the bactericidal effect of serum, while most
environmental strains tested being susceptible to it (50, 51). Given that serum resistance
is an essential virulence trait for V. wvulnificus pathogenesis, we analysed the
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susceptibility of the IRL isolates to this primary host defence. As expected, the wild-type
clinical C1 strain was resistant to serum, whereas the non-pathogenic C2 strain was
sensitive to its bactericidal effect (3-4 log decreases in CFUs) (Fig. 4B). Only three out
of twelve strains from Site A were sensitive to serum whereas in Site B we found the
opposite pattern, with most of the strains (eight out of fourteen) being sensitive (Fig. 4B).
These differences were strongly associated with cluster distribution and provided us with
an opening to examine the possible genomic determinants that lead to serum resistance
in V. vulnificus. We first compared the gene content between serum resistant C1 strains
(OH0023 and IRLA0152) against sensitive ones (OH0012 and IRLA0153). Among those
unique genes in the resistant strains we found several related to type | restriction-
modification systems, capsule synthesis and those involved in sialic acid metabolism.
Subsequently, we analysed the presence of the sialic acid cluster in the genomes of all
IRL isolates in our study. We found that 12 out of 15 strains that were resistant to serum
(8 Site A; 4 Site B) encoded the cluster, whereas only 1 out of 11 sensitive strains did
(Fig. 4B). Given this clear association, we tested the serum resistance of Awza and the
two sialic acid mutants, AnanA and AsiaM. As expected, Awza was sensitive to serum.
Interestingly, while AsiaM exhibited a 2-log decrease in CFU compared to the wild-type,
AnanA was not affected by the bactericidal effect of serum, the mechanism behind the
difference in survival between these two mutants remains to be addressed.

c) Sialic acid catabolism. Sialic acid, besides playing an important role in host-
pathogen interactions (54, 56) is critical for the interaction of several pathogenic Vibrios
with some of their environmental reservoirs such as Cyanobacteria potentially linking
different lifestyles of bacterial pathogens (72, 73). Both our pangenome and phenotypic
analyses suggest that catabolism of this aminosugar appears to be an essential factor
associated with clinical outcomes. In order to initially test our findings, we examined the
ability of the IRL strains to utilize N-acetylneuraminic acid (NANA) as a sole carbon
source. We tested their growth in M9 minimal media supplemented with NANA at two
salinities reflective of the two sampling sites (1% and 3% NaCl; Table S5). Neither the
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AnanA and AsiaM mutants nor the IRL isolates that did not encode the sialic acid cluster
were able to grow in these media. All strains from Site A that possessed the sialic acid
cluster (eight of the twelve) exhibited similar growth patterns to the clinical reference
CMCP6 at both salinities. At Site B, only six of the fourteen isolates were able to grow,
all containing the sialic acid cluster (Fig. 4C).

Taken together, our genomic and phenotypic analyses of the IRL strains, and
their comparisons against clinical strains, showed differential potential for pathogen
emergence in these natural populations. For instance, strain IRLA0186 exhibits several
traits that indicate its strong capability for emergence as a clinical strain such as its ability
to resist serum, catabolize sialic acid, resistance to most of the antibiotics tested, as well
as encoding variations in four of the six CAAs. On the other hand, OH0008, isolated from
the same site IRLA0186 (ANI 98,3%) is sensitive to both serum and most of the
antibiotics we tested, but cannot grow on sialic acid and only encodes one allelic variation

similar to CAAs, suggesting limited likelihood of pathogenic outcomes.

Environmental factors associated with cluster divergence. Our analyses revealed
distinct genomic and phenotypic signatures associated with the emergence of clinical-
associated traits in environmental V. vulnificus. In order to uncover ecological drivers
leading to the selection of these traits and the skewed distribution of V. vulnificus
clusters, we investigated the abiotic and biotic parameters associated with each site.
First, we measured several abiotic factors from the aquatic samples collected during
strain isolation such as temperature, dissolved oxygen, pH, dissolved organic matter,
salinity, phosphorous, among others (Table S5). Next, water samples were sequentially
filtered through 20, 5, and 0.22 um pore size filters. DNA was obtained from the 0.22um
filter that contain the free-living microbial fraction to analyse the microbial community
structure (biotic factors) associated with each sampling site (Fig. 5A). We used a
Principle Coordinate Analysis (PCoA) to examine possible correlations between cluster
distribution and both abiotic (physicochemical parameters) and biotic factors (taxonomic
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classification from 16S rRNA gene metagenomic fragments) (Fig. 5B). The community
structure from Site A is very similar to that found in marine environments where the main
taxa were Cyanobacteria, SAR11, Bacteriodetes, Oceanospirillales or Ca. Actinomarina
(Fig. 5A). In fact, salinity at this location was 29 ppm, slightly lower than seawater (35
ppm) (Table S5). The percentage of 16S rRNA reads associated with the genus Vibrio
accounted for a total of 1.8% of the total population (Fig. 5A). However, they are
undetectable at Site B, where the salinity was much lower than in Site A (5 to 18 ppm),
signatures of a brackish environment. We also found in Site B higher concentrations of
phosphates, nitrates and dissolved organic matter compared to Site A likely due to
runoffs from nearby Lake Okeechobee, which experiences influx of fertilizers from
nearby agricultural farms (Table S5). These variations in environmental factors likely
change the microbial community by predominantly low-salinity adapted microbes such
as the genera Polynucleobacter and Limnohabitans within the family Burkholderiales or
the Microtrichal and Frankial families within the order Actinobacteria (Fig. 5A). Microbial
diversity, measured as Shannon index, indicated that diversity was higher in Site A than
in Site B (Fig. 5C). These data suggest that C1 members prefer a more oligotrophic
marine-like environment with higher salinity and greater microbial diversity dominated by
cyanobacteria, whereas C2 members appear to be better adapted to nutrient-rich
brackish environments marked by the presence of several families of Actinobacteria (Fig.
5). Overall, our metagenomic and physicochemical analyses of the sampling sites
indicate that the marked cluster distribution and genetic traits are strongly associated
with distinct biotic and abiotic factors (e. g. salinity, nutrients or biodiversity) revealing
how ecosystems generate selective pressures that facilitate the emergence of specific

strains with pathogenic potential in a population.

CONCLUSIONS
Elucidating the factors associated with the emergence and spread of human pathogens
is critical in order to develop tools to predict potential sources of disease outbreaks and
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to establish effective surveillance strategies. Pathogen emergence is a complex and
multifactorial phenomenon that requires analytic methods and tools that can consider
large and highly diverse data. Therefore, it is essential to develop tractable model
systems that allow us to dissect the ecological, genetic and evolutionary drivers that
foster the selection of virulence traits and pathogenic clones within an environmental
population. In this study, we used V. wvulnificus, an emerging coastal pathogen that
causes fatal sepsis, as a model system to investigate the genetic and ecological forces
leading to pathogen emergence. The high genome plasticity of V. vulnificus paired with
the unexpected outcomes associated with manmade environmental changes make this
bacterium a major threat to human health for which no effective vaccines or therapeutic
strategies are available (16, 28, 74). Here, we implemented a holistic approach that
combines fields such as genomics, metagenomics, ecology, molecular biology and
bacterial pathogenesis to address this problem. Overall, we found a strong correlation
between ecological factors (e.g. site of isolation, physicochemical parameters and
community structure) and pathogenic potential, as exemplified by skewed cluster
distribution, and genetic and phenotypic traits associated with clinical outcomes.

The layers of selection imposed by the different abiotic and biotic factors likely
act as a major selective pressure driving the development of pathogenic features in V.
vulnificus populations. From our analyses, there is a clear association between cluster
distribution and abiotic (e.g. salinity or dissolved nutrients) and biotic factors (community
structure, oysters or cyanobacteria). Give their relevance, investigating the association
of V. vulnificus and the specific role of these and other abiotic factors and biotic reservoirs
such as protists (e.g. amoeba) and other metazoans (e.g. fish and crustaceans) in cluster
selection, will shed substantial light on the process of emergence of pathogenic traits in
V. wulnificus.

Furthermore, each sampling site is exposed to different anthropogenic
influences. For instance, Site A is located in a protected area with limited access in Cape
Canaveral. Whereas Site B experiences nutrient over-enrichment due to urbanization
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and agricultural expansion, as well as, other manmade contamination such as faecal
waste discharges. Given the drastic differences in the anthropogenic exposure between
the two locations, it is likely that they play a role in cluster selection and distribution. It
would be of interest for future studies to address the role of these anthropogenic
disturbances in the emergence of pathogenic Vibrios.

Overall, our results indicate how ecosystems may generate selective pressures
that facilitate the emergence and selection of specific strains within a population with
pathogenic potential. Our study closely aligns with the One Health initiative (75) by a)
focusing on the connection between a disease agent and the environmental factors that
lead to its emergence, and b) creating a combined approach to understand disease
emergence from an integrated and tractable perspective. Our approach can serve to
develop ecological and genetic markers for surveillance systems to predict sources of
outbreaks or identify emergent human pathogens. Overall, we offer a general paradigm
and methodology for studying and understanding disease emergence that can be

naturally extended to other human pathogens.

MATERIALS AND METHODS

Strains and culture conditions. An extended version of the Material and Methods can
be found as part of the Supplementary Material. Strains of V. vulnificus (Tables S1 and
S3) were routinely cultured on Luria-Bertani (LB) agar plates supplemented with 2%
NaCl (wt/vol; LB-2%), inoculated in LB-2% broth, and cultured for 16 hours aerobically
at 37°C, unless otherwise specified. V. vulnificus strains CMCP6 and SS108-A3A were
used as C1 clinical and C2 environmental controls, respectively, for all phenotypic
assays. E. coli 32155, a diaminopimelic acid (DAP) auxotroph, was used for mutant
construction and was cultured in LB supplemented with 0.3mM DAP (LB-DAP).
Sampling sites. Samples were collected at two environmentally distinctive locations
along the IRL (Easter Florida, USA) in three sampling events. The first location, Fellers
House Field Station (N28°54°25.315”; W80°49°15.017”; Northern IRL; Site A), is located
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within the federally-protected Canaveral National Seashore. The second sampling site,
Shepard Park, is located in Port St. Lucie (N27°11°48.864”; W80°15’'33.172”: Southern
IRL; Site B), which due to urbanization and agricultural expansion, experiences nutrient
over-enrichment leading to excessive macroalgal bloom (Fig. 1B) (76, 77).

Isolation of V. vulnificus from environmental sources. Water samples: V. vulnificus
was isolated from water samples using a modified protocol from Huq et al (42). 500ml of
each sample was filtered successively through 20 ym, 5 ym, and 0.2 ym membrane
filters (Sterlitech) to separate planktonic and free-living fractions. The filters were
suspended in Phosphate buffered saline, pH 7.5 (PBS), vortexed vigorously and cultured
in alkaline peptone water (APW) overnight at 37°C. Sediment samples: V. vulnificus was
isolated from sediment using a modified protocol from Schuster et al (78). Samples were
collected using a universal corer. Samples were suspended in PBS (1:1), homogenized
and enriched in APW. Oyster samples: Isolation of V. vulnificus from oysters was carried
out by a protocol adopted and modified from the U.S. Food and Drug Administration's
Bacteriological Analytical Manual for Vibrio (79). Briefly, oysters collected from Feller’s
House were washed to remove sediment or dirt. Each oyster was individually shucked,
homogenized in 30 ml PBS using the SCILOGEX D160 Homogenizer (Connecticut,
USA), and cultured in APW. Cyanobacterial samples: Cyanobacteria collected from
Shepard Park were pelleted, supernatant removed, and cultured in APW. All samples
were collected in triplicate. Enriched cultures in APW from water, sediment, oyster, and
cyanobacteria samples were serially diluted and plated on CHROMagar Vibrio (CaV;
CHROMagar, Paris, France), a Vibrio spp. selective agar. Turquoise blue colonies were
further screened on Thiosulfate Citrate Bile Salts Sucrose (TCBS; Sigma) agar plates on
which V. vulnificus appear as green colonies. Colonies that appeared turquoise blue on
CaV and green on TCBS were considered potential V. vulnificus isolates.

Verification of V. vulnificus isolates. Potential V. vulnificus IRL isolates were verified
by PCR using primers for the thiF marker gene (Table S2). PCR products of isolates
positive for thiF were sequenced (GENEWIZ, AT, GA) to determine cluster affiliation. A
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number of diverse V. wulnificus isolates, from both clusters and from each of the
environmental reservoirs, were selected for whole genome sequencing. Genome
Sequencing: Libraries of whole genomes were prepared using the Nextera DNA Flex
Library Prep Kit from lllumina, following the manufacturer’s instructions, and sequenced
using the lllumina iSeq100 Sequencing System. Sequenced genomes were analyzed
using lllumina BaseSpace Sequence Hub. Reads obtained for each Biosample were
assembled into contigs and scaffolds using the SPAdes Genome Assembler Version
3.9.0 and Velvet de novo Assembly Version 1.0.0.

Assembly, gene prediction and annotation. Reads were trimmed using Trimmomatic
v0.36 (80) and assembled de novo with SPAdes v3.11.1 (81). ORFs from the assembled
contigs were predicted using Prodigal v2.6 (82). tRNA and rRNA genes were predicted
using tRNAscan-SE v1.4 (83), ssu-align v0.1.1 (84) and meta-rna (85). Using DIAMOND
(86) predicted protein were compared against the NCBI nr database, and against COG
(87) and TIGFRAM (88) using HMMscan v3.1b2 (89) for taxonomic and functional
annotation.

Phylogenomic reconstructions. The assembled contigs were assigned a chromosome
by comparison to this group of reference genomes using Blastn (90). Genes were
predicted using Prodigal (82) and clustered using the software MMseqgs (91). The
resulting protein clusters that were present in all analyzed genomes were divided into
two groups according to the chromosome they are encoded in, resulting in a group of
257 and 62 proteins for chromosomes 1 and 2, respectively. Protein clusters were then
aligned with QuickProbs2 (92), trimmed with BGME (93) and concatenated. Finally, a
phylogenetic tree was constructed using igtree (94) with automatic model selection and
1,000 bootstrap replicates.

Genomic pairwise comparisons. Reciprocal BLASTN and TBLASTXs searches
between genomes were carried out, leading to the identification of regions of similarity,
insertions, and rearrangements. Average nucleotide identity (ANI) and coverage
between pairs of genomes were calculated using the PYANI software (95).

23



620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Pangenome and recombination analysis. To analyze the gene family prevalence
across all genomes, we used the software PPanGGOLIN to divide the gene families into
persistent/shell/cloud partitions (52). The genes constituted each partition were then
annotated against the SEED subsystem database (96) using DIAMOND (86), keeping
all matches with E < 0.001 and alignment length > 0.5 for both subject and query. Finally,
dN/dS values for the different protein partitions were obtained using the Orthologr
package in R (97). The PopCOGenT pipeline (47) was used to define the recombinant
populations based on gene flow between the different sequenced genomes.

Mutant construction. In-frame deletions of genes of interest, wza, nanA and siaM, were
constructed via homologous recombination (98) (Primer list can be found in Table S6).
Briefly, two approx. 500 bp PCR fragments flanking the genes of interest were cloned
into the sacB-counterselectable plasmid, pDS132, and electroporated into donor E. coli
strain, 32155. The donor strains harbouring the knockout vectors were conjugated with
wild-type V. vulnificus CMCP6 on LB-DAP and transconjugants were selected on LB-2%
plates supplemented with chloramphenicol (Cm) (25 pg/ml). CmR exconjugant colonies
were cultured in LB-2% without antibiotics, and serial dilutions were plated on LB-2%
plates containing 10% (wt/vol) sucrose. Potential double-crossover deletion mutants
were screened by PCR and putative deletions were confirmed by DNA sequencing.
Antibiotic resistance. V. vulnificus isolates were examined for susceptibilities to the
antibiotics highlighted in Fig. 4 at the highest concentrations in the breakpoint
concentration range recommended by Clinical and Laboratory Standards Institute in
M45-A (99-102) (Supplementary Methods). Briefly, individual colonies of each strain
were transferred sequentially using sterile toothpicks onto LB-2% plates supplemented
with respective antibiotics and incubated at 37°C overnight. The diameter of the growth
was measured and resistance was defined as growth of at least 2mm in the respective
antibiotics. Strains exhibiting no growth were taken as sensitive, and any intermediate
growth diameter was considered as intermediate resistance. Experiments were
performed in three independent biological replicates.
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Serum Resistance. In vitro serum survival assay was adapted from Bogard and Oliver
(103). Briefly, overnight cells were sub-cultured in LB-2% to obtain log-phase cells at an
OD of 0.15-0.25. Cells were then washed in PBS and inoculated at a 100-fold dilution
into normal pooled human serum (Fisher Bioreagents, Fair Lawn, NJ, USA) and
incubated at 37°C for 2 hours. Resistance to serum was assessed by comparing the
CFU/ml before and after exposure to serum. Experiments were performed in three
independent biological replicates.

Sialic acid catabolism. The ability to catabolize sialic acid by V. vulnificus isolates was
assessed by growth in N-acetylneuraminic acid, the predominant form of sialic acid in
human cells, as the sole carbon source (57). Briefly, overnight cultures of each strain
were washed and resuspended in M9 minimal media, and a 100-fold dilution of cells
were made in M9 minimal medium supplemented with N-acetylneuraminic acid (2 mg/ml)
(Chem-Impex International, Wood Dale, IL). 200-ul aliquots of each sample were added
per well to a 96-well microtiter plate and incubated at 37°C with shaking. Optical density
at 595 nm (OD595) was measured every hour for 24 h using a Tecan Sunrise microplate
reader (Tecan US, Durham, NC) and the results were evaluated using the Magellan plate
reader software. Growth assays were performed in triplicate across three independent
biological replicates.

Measurement of physicochemical parameters. Measurements of water temperature
(°C), salinity (g/L), dissolved oxygen (%), pH, pressure (mmHg), dissolved organic matter
(QSU), chlorophyll-a (pg/L) and total algae (ug/L) were made during the isolations. The
measurements were recorded using a YSI EX02 sonde deployed at the sites at the time
of sampling that was calibrated within 24 hours prior to each sampling event. Water
samples, collected in triplicates, were also examined for the concentration of phosphates
(o-Phosphate—P, method 365.1), and nitrates (Nitrate—N, method 353.2; Ammonia—N,
method 350.1) according to the standard protocols described by the USEPA (104, 105).
Briefly, collected water samples filtered through a 0.2 ym membrane filter were acidified
to a pH < 2 with double distilled H.SO4, and stored at 4°C until analysis. Samples were
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analysed for nitrate + nitrite (NO3-), ammonium (NH4+), and ortho-phosphate (PO43-)
on a SEAL AQ2 Automated Discrete Analyzer (Seal Analytical, Mequon, WI).

Metagenomic analysis. DNA extraction was performed from the 0.22 uym filter. Attached
cells were disrupted using CTAB lysis buffer and glass beads followed by lysozyme
treatment. The nucleic acids were then extracted using the phenol-chloroform extraction
method (106). Metagenomes were sequenced using lllumina Hiseq-4000 (150 bp,
paired-end read). To analyse the phylogenetic classification of the samples, candidate
16S rRNA gene sequences in the raw metagenomes were identified using USEARCHG6
(107) (E-value < 10-5) against a database containing non-redundant 16S rRNA
sequences downloaded from the RDP database (108). These sequences were then
aligned to archaeal and bacterial 16S rRNA HMM models (109) using ssu-align to identify
true sequences (84). Only hits to 16S rRNA sequences were then classified into a high-
level taxon if the sequence identity was =280% and the alignment length =290 bp.
Sequences failing these thresholds were discarded. Information on data availability can

be found in the supplementary methods.

FIGURE LEGENDS

Fig. 1. Isolation of Vibrio vulnificus from Eastern Florida. A) Maximum likelihood
phylogenetic tree of hemolysin gene, vvhA, Sulfur carrier protein adenylyltransferase,
thiF and the concatenation of the six candidate genes (yycF, pfeS, acuB, yqhD, uvrY and
thiF) for representative strains from all 4 cluster. Members of the same cluster (C1 to C4)
are indicated with the same color. Trees are unrooted and drawn to scale. Branch lengths
indicate number of substitutions per site. B) Map of Florida indicating the sampling sites:
Fellers house and Shepard Park. C) Maximum likelihood phylogenetic tree of V.
vulnificus isolates based on thiF. Branches containing members that belongs to the same
cluster are indicated with the same color, green for C1 representatives and blue for C2.

The names of the strains are colored in relation to the location from which they originate.
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The colored circles represent where they were isolated from and the red stars represent
those strains that have been sequenced.

Fig. 2. Phylogenomic and population structure of V. vulnificus. A) Maximum
likelihood phylogenomic tree of V. vulnificus strains obtained in this study (highlighted in
red) together with all available reference genomes using core genome of chromosome
I. Branches containing members that belongs to the same cluster (C1 to C4) (ANI>97%)
are indicated with the same color. The color chart of the circles of the plot indicates the
isolated source and the host of the corresponding strains. Gray box shows the 15
recombinant populations detected among all strains. The orange box highlights the
strains belonging to subpopulation 15. B) Schematic representation of the capsular
polysaccharide (CPS) genomic island. Color-coded arrows show locations of important
genomic features. Variable regions 1 and 2 are highlighted in blue and green,
respectively.

Fig. 3. Pangenome analysis of V. vulnificus strains. A) Pangenome analysis for
groups, i) nine C1 strains isolated from Site A (C1 IRL), ii) nine C2 strains from Site B
(C2 IRL) iii) nine reference C1 strains that are bona fide clinical (C1 Clinical) iv) nine
reference environmental strains from C2 (C2 environmental). The proportions of gene
families in the persistent, cloud and shell genome are highlighted in orange, green and
blue respectively. B) Schematic representation comparing the genomic island of the
gene cluster involve in sialic acid catabolism. C) Comparison of the ratio of
nonsynonymous to synonymous substitutions (dN/dS ratio) between reference clinical
strains and C1 strains isolated from Site A in the IRL D) Comparison of the dN/dS values
of each individual strain versus the rest in the C1 IRL group for genes encoding these
clinical-associated alleles (CAAs). Those with a value above the average have been
highlighted in red.

Fig. 4. Assessment of pathogenic potential of V. vulnificus IRL isolates. A) Patterns
of antibiotic resistance of 27 V. vulnificus isolates to commonly used 12 antibiotics. Red,
resistant; pink, intermediate resistance; white, sensitive. B) Serum resistance of V.
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vulnificus exposed to normal pooled human serum for 2 hours and assessed for survival
in terms of CFU/mI. Resistant strains, similar CFU/ml as input; sensitive strains, lower of
CFU/ml than input; resistant and growth on serum, higher CFU/ml than input. C) Ability
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Fig. 5. Environmental factors associated with cluster divergence. A) Taxonomic
classification based on 16S rRNA gene fragments (raw reads) of the different
metagenomes obtained from seawater 0.22um filter. Only those groups with abundance
values larger than 1% in any of the metagenomes are shown. The size of the diameter
of the circles indicates the percentage of the total reads for each taxon. B) Principle
Coordinate Analysis (PCoA) between physicochemical parameters and abundance of
the different taxon’s based on 16S rRNA gene metagenomic fragments. C) Box-plots

illustrating microbial community diversity measure using Shannon index.
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