

1 **Ecological diversification reveals routes of pathogen emergence in**
2 **endemic *Vibrio vulnificus* populations**

3

4 Mario López-Pérez^{a,b,c#}, Jane M. Jayakumar^{a,b#}, Trudy-Ann Grant^{a,b}, Asier Zaragoza-
5 Solas^c, Pedro J. Cabello-Yeves^c, and Salvador Almagro-Moreno^{a,b*}.

6

7 ^aBurnett School of Biomedical Sciences, College of Medicine, University of Central
8 Florida, Orlando, Florida, USA; ^bNational Center for Integrated Coastal Research,
9 University of Central Florida, Orlando, Florida, USA; ^cEvolutionary Genomics Group,
10 División de Microbiología, Universidad Miguel Hernández, Alicante, Spain.

11

12 [#]These authors contributed equally to this work

13 *Address correspondence to: Salvador Almagro-Moreno, samoreno@ucf.edu

14

15 Running title: Ecosystem perspective on pathogen emergence

16

17

18

19

20 **Keywords:**

21 Pathogen emergence / *Vibrio vulnificus* / aquatic pathogen / virulence evolution /
22 population genomics / ecological divergence

23

24

25

26

27

28 **ABSTRACT**

29 Pathogen emergence is a complex phenomenon that, despite its public health relevance,
30 remains poorly understood. *Vibrio vulnificus*, an emergent human pathogen, can cause
31 a deadly septicaemia with over 50% mortality rate. To date, the ecological drivers that
32 lead to the emergence of clinical strains and the unique genetic traits that allow these
33 clones to colonize the human host remain mostly unknown. We recently surveyed a large
34 estuary in eastern Florida, where outbreaks of the disease frequently occur, and found
35 endemic populations of the bacterium. We established two sampling sites and observed
36 strong correlations between location and pathogenic potential. One site is significantly
37 enriched with strains that belong to one phylogenomic cluster (C1) from which the
38 majority of clinical strains belong to. Interestingly, strains isolated from this site exhibit
39 phenotypic traits associated with clinical outcomes, whereas strains from the second site
40 belong to a cluster that rarely causes disease in humans (C2). Analyses of C1 genomes
41 indicate unique genetic markers in the form of clinical-associated alleles with potential
42 role in virulence. Finally, metagenomic and physicochemical analyses of the sampling
43 sites indicate that this marked cluster distribution and genetic traits are strongly
44 associated with distinct biotic and abiotic factors (e.g. salinity, nutrients, or biodiversity),
45 revealing how ecosystems generate selective pressures that facilitate the emergence of
46 specific strains with pathogenic potential in a population. This knowledge can be applied
47 to assess the risk of pathogen emergence from environmental sources, and integrated
48 towards the development of novel strategies for the prevention of future outbreaks.

49

50 **SIGNIFICANCE STATEMENT**

51 Our study addresses one main question: What are the ecological and genetic factors
52 that drive pathogen emergence? To date, systematic experimental approaches to
53 address this phenomenon are very limited. Here, we implemented a holistic approach to
54 dissect the ecological, genetic and evolutionary drivers that foster the selection of
55 virulence traits and pathogenic clones within an environmental population using *Vibrio*
56 *vulnificus*, an aquatic bacterium that can cause a deadly septicemia in humans, as a
57 model system. Our results suggest how ecosystems may generate selective pressures
58 that facilitate the emergence of specific strains with pathogenic potential in a natural
59 population and can be applied towards predictive frameworks to assess the risk of
60 pathogen emergence from environmental sources.

61 **INTRODUCTION**

62 The emergence of human pathogens is one of the most concerning public health topics
63 of modern times (1–4). According to the World Health Organization, over 300 emerging
64 infectious diseases have been reported in the 1940-2004 period, a trend that has
65 continued steadily with recent outbreaks of Ebola in West Africa, Cholera in Yemen, and
66 the global pandemic caused by COVID-19 (3–5). Even though classical molecular
67 approaches have advanced our understanding of bacterial pathogenesis, to date, the
68 genetic adaptations and ecological drivers that facilitate selected strains within a species
69 to emerge as pathogens and successfully colonize the human host remain poorly
70 understood. Given the magnitude and complexity of this urgent threat, it is critical to
71 develop tractable organismal model systems and theoretical frameworks that allow us to
72 dissect the molecular adaptations and environmental factors that lead to the emergence
73 of such human pathogens.

74 *Vibrio vulnificus*, an emergent human pathogen, is one of the leading causes of
75 non-Cholera, Vibrio-associated deaths globally (6). Despite being a natural inhabitant of
76 estuarine, coastal, and brackish waters (7), this flesh-eating bacterium has gained
77 particular notoriety as one of the fastest killing pathogens (8, 9). Humans are typically
78 infected with *V. vulnificus* through ingestion of contaminated raw seafood or by direct
79 exposure of open wounds to seawater (6). *V. vulnificus* infections often result in fulminant
80 septicaemia with an alarming mortality rate exceeding 50% (6, 10–13). The bacterium is
81 particularly lethal in some susceptible hosts, such as immunocompromised patients or
82 those with alcohol-associated liver cirrhosis, diabetes mellitus, or hemochromatosis (14).
83 The annual case counts of *V. vulnificus* infections have steadily increased over the past
84 20 years in the USA (15). An upsurge in its worldwide distribution over the past three
85 decades, in correlation with climate change, has led to disease outbreaks in regions with
86 no history of *V. vulnificus* infections (16–18). Furthermore, models predict this trend to
87 continue resulting in a steady expansion of its geographical range and the subsequent
88 increased risk of human infections (16, 19–21).

89 Based on a series of biochemical and phenotypic traits, *V. vulnificus* strains have
90 been historically classified into three Biotypes (BT): BT1, mostly associated with human
91 infections (22, 23), BT2, primarily pathogenic to eels (24, 25), and BT3, which is
92 geographically restricted to Israel and possesses hybrid characteristics from BT1 and
93 BT2 (26, 27). In contrast to *Vibrio cholerae*, where all strains capable of causing cholera
94 belong to a single clade, genomic comparisons of *V. vulnificus* reveal a more complex
95 pattern in the distribution of its clinical strains (28–30). Phylogenomic analyses indicate
96 that the population of *V. vulnificus* is composed of four distinct groups or clusters (Cluster
97 1–4), which largely overlap with the classical Biotype classification system (23, 26, 28,
98 31, 32). Our analyses indicate that the two largest clusters, C1 and C2, exhibit high
99 genomic divergence and appear to be speciating (28), with clinical strains from BT1
100 predominantly belonging to C1 (22, 23), whereas strains from C2 primarily associated
101 with BT2 (6, 24, 25). C3 is highly clonal and fully overlaps with BT3, and the rare C4
102 contains only four non-clonal strains and belongs to BT1 (28, 31). Interestingly, despite
103 patients showing conserved clinical symptoms, C1 clinical strains arise from different
104 clades within the cluster, suggesting independent emergence events of this deadly
105 pathogen (28, 31, 32). To date, the unique genetic traits that allow certain C1 strains to
106 cause severe septicemia remain mostly unknown, posing a daunting public health risk
107 as it hinders our ability to detect potentially pathogenic *V. vulnificus* (33).

108 Recently, using a combination of bioinformatic and phenotypic analyses that
109 surveyed more than one hundred strains of *V. vulnificus*, we determined that *V. vulnificus*
110 C1 appears to be associated with a unique ecological lifestyle or ecotype (28).
111 Nonetheless, to date, the ecological drivers that lead to the emergence of clinical *V.*
112 *vulnificus* C1 and their pathogenic traits remain poorly understood. In order to start
113 untangling the complex *in-situ* interactions between genotypes and the environment that
114 underlie the emergence of clinical strains, in this study we recently surveyed a large
115 estuary in eastern Florida, the Indian River Lagoon (IRL), where outbreaks of the disease
116 frequently occur (7, 34). We found endemic populations of *V. vulnificus* in the estuary

117 and established two sampling locations to study the environmental dynamics of this
118 bacterium in several natural reservoirs such as water, sediment, oysters and
119 cyanobacteria. Interestingly, the two sampling sites show major differences in the
120 distribution of *V. vulnificus* clusters. One of them, Feller's house (Site A), appears to be
121 significantly enriched with C1 strains whereas in the second sampling site, Shepard Park
122 (Site B), we mostly recovered strains from C2. Genomic analyses of these strains
123 indicate that, despite these major differences in distribution, high recombination rates as
124 well as frequent exchange of mobile genetic elements and virulence factors between
125 these *V. vulnificus* populations occur. Microdiversity analyses of these genomes
126 revealed unique genomic markers among C1 strains in the form of clinical-associated
127 alleles with potential direct role in virulence. The isolated *V. vulnificus* strains are
128 resistant to numerous commonly used antibiotics irrespective of cluster or site of
129 isolation, however, phenotypic analyses indicate that strains from Site A exhibit traits
130 associated with clinical outcomes, including the ability to resist serum and catabolize
131 sialic acid, unlike those from Site B. Finally, metagenomic and physicochemical analyses
132 of the sampling sites indicate that this marked cluster distribution is strongly associated
133 with distinct biotic and abiotic factors (e. g. salinity, nutrients or biodiversity) revealing
134 how ecosystems might generate selective pressures that facilitate the emergence of
135 specific strains in a population as with pathogenic potential.

136

137 RESULTS AND DISCUSSION

138 **Gene marker, *thiF*, can detect *V. vulnificus* and distinguish between clusters.**
139 Before initiating our sampling protocol, we looked for specific markers to rapidly screen
140 environmental samples on a large scale. Specifically, we needed reliable genetic
141 markers that could a) detect specifically *V. vulnificus*, b) accurately characterize them
142 based on their cluster, and c) discriminate between clonal and non-clonal strains. The
143 hemolysin gene *vvhA*, typically used to detect *V. vulnificus*, although species specific, is
144 limited in its potential to distinctly classify strains into clusters or discriminate between

145 non-clonal strains (35–37) (Fig. 1A and Supplementary Fig. 1A). Other approaches, such
146 as MLST, although effective in characterizing strains, require the PCR amplification,
147 assembly, and concatenation of several housekeeping genes (32, 37–40), which is
148 resource intensive and impractical for the rapid screening of *V. vulnificus* in
149 environmental samples. In order to identify potential markers that meet all the
150 requirements above, we compared all available C1 and C2 genomes in public databases
151 through pangenome analysis. The number of gene families shared was 978 (accounting
152 for ~22% average number of genes in a *V. vulnificus* genome), which we consider the
153 core genome. We performed individual phylogenetic trees for these gene clusters and
154 identified, across both chromosomes, a total of 47 genes that clearly differentiated C1
155 and C2 clusters. We compared these genes, using representative strains from all
156 clusters (Table S1), based on percentage of sequence identity, against CMCP6, a
157 reference *V. vulnificus* strain. We singled out the genes that had the highest percentage
158 identity with strains from C1 but the least identity with those from C2 and viceversa, and
159 compared them against *vhvA*. We finally selected a total of six candidate genes (*yyCF*,
160 *pfeS*, *acuB*, *yqhD*, *uvrY* and *thiF*), three from each chromosome, as potential markers
161 (Table S2). Although all six candidate marker genes clearly differentiate C1 *V. vulnificus*
162 strains from C2 (Fig. S1A), the response regulator *uvrY*, and the sulfur carrier protein
163 adenylyltransferase *thiF*, had the maximum resolution in distinguishing all four clusters
164 (C1-C4) as well as individual strains within each cluster, which serves as a proxy for
165 discrimination of clonal populations (Fig. 1A). Additionally, the relative distances of the
166 four clusters in the phylogenetic tree of *thiF* most accurately corresponds to the
167 evolutionary tree of *V. vulnificus* built using single nucleotide polymorphisms and
168 average nucleotide identities of all known *V. vulnificus* strains (28). Upon testing the
169 species specificity of *thiF* with *Vibrio parahaemolyticus* RMID2210633 or *V. cholerae*
170 O395, *thiF* was found to be specific to *V. vulnificus* (Fig. S1D). Thus, *thiF* has the
171 potential to a) detect *V. vulnificus* strains, b) separate them by clusters, and c)
172 discriminate between clonal and non-clonal strains based on their whole genome.

173 Furthermore, the concatenation of all six genes had at least twice the resolution and
174 discriminatory power to differentiate all four clusters than *vvhA* making it an accurate set
175 of genes for MLST analyses of *V. vulnificus* strains (Fig. 1A).

176

177 **Detection of *V. vulnificus* along the Indian River Lagoon (IRL).** The Indian River
178 Lagoon (IRL, Easter Florida, USA) is one of the most biodiverse estuaries spanning an
179 expansive geographic range with contrasting environments in Florida, where outbreaks
180 of the disease frequently occur (Fig. 1B) (7, 34, 41). We recently surveyed this large
181 estuary and we establish two sampling sites at environmentally distinctive locations along
182 the IRL (Fig. 1B). We collected samples in three sampling events (15-November-2018;
183 24-July-2019 and 22-August-2019) including biotic reservoirs such as oysters and
184 cyanobacteria. *V. vulnificus* was isolated by sequential plating of the enriched
185 populations on Chromoagar *Vibrio* (CaV) and TCBS as described in the Materials and
186 Methods section (42). From a total of 1,856 colonies screened, only 245 were identified
187 as potential *V. vulnificus* isolates based on the chromogenic plating method. An overall
188 higher proportion of *V. vulnificus* was detected at Site B (Fig. S1B). At Site A, the
189 distribution of *V. vulnificus* was found to be highest in oysters (45.3%) and water (43.4%),
190 in contrast to sediments, which contain on average only 11.32% (Fig. S1B). Furthermore,
191 a higher proportion of *V. vulnificus* was observed during the summer at both sites (Fig.
192 S1B; 96.3% at Site A, 91.7% at Site B), likely as a consequence of increased water
193 temperatures (>20°C). The 245 potential *V. vulnificus* isolates were further confirmed
194 using the novel gene marker *thiF*. PCR amplification of the *thiF* gene yielded 141
195 confirmed *V. vulnificus* isolates. We sequenced these PCR products and constructed a
196 phylogenetic tree to determine cluster affiliation. To minimize further examination of
197 strains of clonal origin that might have proliferated during enrichment, we only analyzed
198 one strain within a group if a) the *thiF* alignment looked identical within the group, b) the
199 strains came from the same replicate and fraction, and c) they were isolated during the
200 same sampling event. As a result, 87 out of the 141 confirmed *V. vulnificus* isolates were

201 selected for further analyses (39 isolates from Site A and 48 from Site B) (Fig. 1C).
202 Strikingly, phylogenetic analysis using gene marker *thiF* showed that most isolates from
203 Site A, belong to C1 (97.4%, 38/39), whereas the majority of isolates from Site B belong
204 to C2 (87.5%. 42/48) (Fig. 1C). This clear ecological separation between the two clusters
205 provides an ideal framework to examine evolutionary processes underlying the
206 emergence of pathogenic traits within a population and a platform to understand how
207 ecosystems generate pressures that facilitate the selection of strains with pathogenic
208 potential. In order to address this, we first dissect the genomic determinants and
209 population structure of these environmental *V. vulnificus* strains, assess their pathogenic
210 potential, and finally link these results with environmental factors (abiotic and biotic)
211 associated with their marked cluster distribution.

212

213 **Genomic determinants of *V. vulnificus* emergence. a) Ecological preferences of *V.***
214 ***vulnificus* clusters.** To investigate the genomic determinants that potentially drive the
215 ecological niche preferences of the clusters, we selected several strains for genome
216 sequencing to obtain a proportionate representation of each cluster, reservoir, fraction,
217 host and date of isolation. This resulted in a total of 27 *V. vulnificus* isolates sequenced
218 (Table S3), 13 from Site A (2 sediment, 6 oyster, and 5 water isolates, one of which
219 belonged to C2) and 14 from Site B (4 sediment, 4 cyanobacteria, and 6 water isolates
220 including two from C1). For a robust phylogenomic association we included 74
221 dereplicated *V. vulnificus* genomes (e. g. genomes >99% Average Nucleotide Identity;
222 ANI) currently available in public databases. We used both phylogenomic trees and ANI-
223 based clustering of both chromosomes separately to group the genomes into the
224 previously defined clusters (C1 to C4; (28)) (Figs. S2A and S3). Based on these results
225 we decided to use the ANI of chromosome I as a reference for taxonomic classification
226 since coverage is high (>70%), even among the most divergent clusters (C1 and C2).
227 Interestingly, we found the first evidence of mixing or transfer of chromosomes between
228 clusters of *V. vulnificus*. For instance, while chromosome I from FORC_037, an

229 environmental strain isolated from soft-shell clam, had an ANI > 98% with members of
230 C2 and *ca* 95% with C1, for chromosome II was the other way around (Figs. S2A and
231 S2B).

232 Whole genome phylogeny confirmed the marked differences in the distribution of
233 *V. vulnificus* clusters obtained with *thiF* gene, corroborating the enrichment of C1 strains
234 in Site A (Fig. 2A), except for the strain IRLE0015 that together with NV22 clustered
235 closely to BT3 strains from the Israel outbreak (Fig. 2A). As aforementioned, we selected
236 one non-clonal strain from Site A that belong to C2 (IRLA0043), and two from Site B
237 belonging to C1 (IRLE0056 and IRLE0004). These gave us the opportunity to investigate
238 the presence of potential genomic determinants specifically associated with each site,
239 that is, whether C1 and C2 strains from site A have a unique pool of genes that is absent
240 in strains from site B irrespective of cluster. The common part of the pangenome of all
241 C2 strains from Site B was subtracted from the genome of the IRLA0043 strain, the only
242 one in this cluster isolated from Site A. More than 500 genes were specific to this strain,
243 apart from the capsule glycosylation genes we found a second cluster of genes (*rtxB*-
244 *rtxD-rtxE*) encoding a type I secretion system (T1SS) with a high similarity (99%) to
245 several strains of *V. corallilyticus*. Specifically, this system appears to be associated with
246 excretion of an enterotoxin (Efa-1/LifA) (43). Within these specific genes we also found
247 a second type VI secretion system (T6SS) (28) and an Integrative conjugative element
248 (ICE). On the other hand, C1 strains from Site B (IRLE0004 and IRLE0056) had only 200
249 unique genes compared to C1 strains from Site A. Among the specific genes of
250 IRLE0004, we found a gene cluster conferring the ability to utilize tetrathionate as an
251 electron acceptor, a common sulfur compound present in most soils (44), interestingly,
252 this strain has been isolated from sediment. The ability to utilize tetrathionate has been
253 associated with virulence in *Salmonella enterica* by providing a growth advantage to the
254 bacterium in the inflamed gut (45). The functional annotation associated with the specific
255 part of IRLE0056 was limited to the use of rhamnose, several toxin-antitoxin systems
256 and the gene encoding the HipA involved in dormancy (46). Although it highlights the

257 presence in the environment of some virulence factors that can be easily shared between
258 the two clusters, our analysis did not identify any specific genomic determinants that may
259 explain the differential distribution of these strains.

260 **b) Ecologically meaningful populations of *V. vulnificus*.** Despite the marked
261 environmental preferences and genomic divergence between C1 and C2 clusters, our
262 recent *in silico* studies indicate frequent exchange of mobile genetic elements (28). Here,
263 we have the opportunity to study potential recombination in natural *V. vulnificus*
264 populations in an endemic area. Recombination is particularly worrisome as novel
265 practices such as aquaculture can lead to the emergence of hybrid strains, as evidenced
266 by a deadly outbreak in Israel caused by an entirely new cluster (C3) (27) and the
267 presence of a C3-like strain isolated in this study (IRLE0015) (Fig. 2A). To evaluate this
268 phenomenon, we used a novel approach for assessing recent recombination events that
269 enables the delineation of ecologically relevant populations, i.e groups with the potential
270 to exchange genetic material (47). Our analyses revealed the presence of 15 major
271 recombining populations. Some of these populations coincide with the cluster
272 classification indicative of high intra-cluster recombination e. g. C3 and C4 (Fig. 2A).
273 However, C2 is made up of 12 populations. Eleven of them formed by a single member
274 and therefore indicating that there are no recombination events that connect these
275 strains with the rest of the cluster (48). Interestingly, all members of C1 form a single
276 population (P15) with the majority of C2 representatives indicating that, despite
277 divergence (ca. 95% ANI), these clusters are connected by recent recombination events
278 (Fig. 2A).

279 The capsular polysaccharide (CPS) cluster is an essential virulence factor of *V.*
280 *vulnificus* (49). Our previous analyses suggest that recombination may be a major
281 evolutionary mechanism leading to the high diversity of the CPS cluster (28). Thus, we
282 investigated the genomic diversity of the CPS between both clusters in these natural
283 populations. Strain IRLA0152 (C1) isolated from the free-living fraction at Site A, had a
284 similar variant of the CPS found in an infected patient isolate (FDAARGOS_119) (Fig.

285 2B). One of the hypervariable parts of the CPS from the oyster isolate OH0023 was
286 identical to that found in the reference clinical strain CMCP6, highlighting the
287 environment as a reservoir of these essential virulence genes (Fig. 2B). Furthermore,
288 certain CPS clusters are distributed in the population irrespective of cluster of origin and
289 sampling location. Specifically, we found the same CPS in one C1 strain from Site B
290 (IRLE0056) and three C2 strains, one of them from Site A (IRLE0043) and two from Site
291 B (IRLE0062 and IRLE0057) (Fig. 2B). The only variation was a small insertion in
292 IRLE0043 due to several IS elements, which suggests that this may be another
293 mechanism that can introduce variability within the CPS cluster (Fig. 2B). Overall, our
294 results indicate that despite the genomic divergence and their marked ecological
295 differences, there is a wide recombination among the clusters in an endemic area such
296 as the IRL including the transfer of major virulence factors within their natural
297 environment.

298 **c) Pangenome analyses reveal genetic drivers associated with virulence**
299 **emergence.** The majority of clinical *V. vulnificus* strains belong to C1, similarly to most
300 strains isolated from Site A. To date, the specific genomic determinants that allow some
301 C1 strains to successfully colonise human remain mostly unknown. In order to elucidate
302 genetic factors associated with the emergence of clinical *V. vulnificus* C1 from
303 environmental gene pools and to determine whether C1 strains from Site A encoded
304 clinical associated traits, we compared genomes from strains isolated in this study
305 against those from *bona fide* clinical C1 and non-pathogenic strains (50, 51). Specifically,
306 we selected genomes from four distinct groups, a) nine C1 strains isolated from Site A
307 and b) nine C2 strains from Site B together with c) nine C1 strains that are *bona fide*
308 clinical i.e. isolated from patients with septicaemia, as well as d) nine non-pathogenic
309 strains from C2, i.e. isolated from environmental sources and susceptible to the
310 bactericidal effect of serum and monocytes (50, 51). Microbial species diversity was
311 analysed via a Partitioned PanGenome Graph Of Linked Neighbours (PPanGGOLiN,
312 (52)). The estimated size of the “persistent genome” (gene families present in almost all

313 genomes) is similar for each individual group as well as for all the groups combined
314 together, ca. 3,700 gene families (ca. 52% of the total genes families per genome). This
315 is quite remarkable given the genomic divergence between groups (Fig. 3A). The
316 proportion of gene families that formed the “shell genome” (genes families present in 3-
317 7 genomes) was only 1% of the total for both C1 groups and 2% for C2 groups. The
318 remaining gene families present in low frequency (1-3 genomes) were classified as the
319 “cloud genome” (Fig. 3A). As predicted, the percentage of gene families assigned to
320 functional categories (SEED subsystems database) for each pangenome partition varied
321 significantly: from 64% assigned to the persistent genome, to ca. 20% for the cloud and
322 shell. The latter being typically associated with diverse environmental adaptations
323 including pathogenesis, which highlights the enormous genomic plasticity that remains
324 to be addressed for these organisms.

325 Next, we compared the functional classifications of the gene coding sequences
326 from the persistent genomes of the nine reference C1 clinical strains against the nine C1
327 strains analysed from site A. We found that both groups only differ in ~2% of the total
328 gene content of their persistent genome. Most of these differences were associated with
329 the presence of genes belonging to the “Sialic Acid Metabolism” classification in the
330 clinical C1 strains (Fig. 3B). This group of genes code for a complete tripartite ATP-
331 independent periplasmic transport system (TRAP) involved in the transport of sialic acid,
332 for the enzymes responsible for its catabolism (N-acetylneuraminate lyase, N-
333 acetylmannosamine kinase and N-acetylmannosamine-6-phosphate 2-epimerase) as
334 well as a sialic acid mutarotase (YjhT family) and sialic acid utilization regulator, RpiR
335 family (53). The ability to scavenge, decorate their surface and utilize sialic acid as a
336 carbon source is an important virulence factor for pathogenic and opportunistic bacteria
337 including *V. vulnificus* (54–57). Using the C1 clinical reference genome CMCP6 we found
338 that the complete cluster was located in a genomic island on chromosome II (Fig. 3B).
339 The same gene cluster can be found in other *Vibrio* species (ca. 70% BLASTN identity)

340 such as *V. cholerae* O1, *Vibrio mimicus* or *Vibrio anguillarum*, however, unlike *V.*
341 *vulnificus*, in these species the cluster was flanked by insertion sequence elements.

342 Given the frequent horizontal gene transfer in *V. vulnificus* populations it is
343 unlikely that presence/absence of genes or gene clusters is sufficient to explain the
344 emergence of virulence traits that lead to clinical outcomes in this pathogen. Our
345 previous investigations with *V. cholerae* suggest that allelic variations of core genes can
346 be major drivers of virulence emergence (29). Thus, we evaluated the patterns of
347 microdiversity of the persistent genome by estimating the ratio of non-synonymous (dN)
348 to synonymous (dS) substitution rates in pairwise genome comparison. We found six
349 genes within the C1 clinical strains which showed a strong positive selection compared
350 to the C1 IRL strains which on average exhibited a strong purifying selection (Fig. 3C
351 and Table S4). In addition, average dN/dS values for these genes within C2 groups, both
352 in the environmental references and the ones isolated from the IRL also exhibited very
353 low dN/dS values (Table S4). The genes encoding these clinical-associated alleles
354 (CAAs) differ between clinical strains and are involved in virulence associated processes
355 and host related nutrient metabolism (Table S4). For instance, one of these genes
356 encodes the outer membrane porin regulator OmpR, which regulates virulence in *V.*
357 *cholerae* via *aphB* (58, 59). Another, encoding the subunit EntD, forms part of the
358 enterobactin-synthetase enzyme complex, an iron acquisition system essential for
359 virulence in *Escherichia coli* (60) and was proposed to play a role in the late stages of
360 enterobactin biosynthesis in *V. cholerae* (61). The endonuclease *vvn*, identified as a
361 periplasmic nuclease in *V. vulnificus*, prevents uptake of foreign DNA (62), thus hindering
362 introduction of plasmids by transformation. Riboflavin synthase, *ribE*, catalyses the final
363 step in the biosynthesis of riboflavin or vitamin B2. Riboflavin is involved in a number of
364 metabolic pathways e.g. iron bioavailability and acquisition (63) in many pathogens
365 including *V. cholerae*. Pyridoxal phosphate, PdxA, the catalytically active form of vitamin
366 B₆, is an important cofactor for many enzymatic pathways involving breakdown of amino
367 acids (64) and the sulfur transfer complex TusBCD TusB component. On average these

368 genes had lower dN/dS values in the C1 IRL strains in comparison to clinical C1,
369 however, given that clinical *V. vulnificus* are endemic to this area, it is possible that some
370 individual C1 IRL strains encode CAAs. To determine this, we analysed their presence
371 by identifying individual allelic variants that deviate from the average values (Fig. 3D).
372 Interestingly, even though none of the alleles from C1 IRL stains were identical to those
373 found in the clinical strains, each of them encoded at least one gene with a dN/dS above
374 the average. Those ranged from strain OH0003 encoding one (*tusB* gene) to IRLA0186
375 that encodes four of them (*ompR*, *ribE*, *entD* and *pdxA*) (Fig. 3D). Overall, our results
376 demonstrate that a) clinical strains encode unique CAAs, and b) allelic variants of these
377 genes circulate in natural populations.

378

379 **Assessment of pathogenic potential of *V. vulnificus* strains.** In order to evaluate the
380 pathogenic potential of IRL environmental strains and their association with phylogeny
381 and location, we phenotypically tested their a) antibiotic resistance profile, b) survival in
382 the presence of human serum, and c) ability to use sialic acid as a sole carbon source.
383 For these assays, we included *V. vulnificus* CMCP6 (clinical C1) and *V. vulnificus* SS108-
384 A3A (environmental non-pathogenic C2) as *bona fide* reference strains. Furthermore, we
385 constructed three isogenic mutant strains in the background of *V. vulnificus* CMCP6
386 where we deleted the genes encoding: a) the CPS transport protein Wza (Δwza), which
387 has been shown to play a role in serum survival and capsule production (65), b) N-
388 acetylneuraminate lyase ($\Delta nanA$), first enzyme in the catabolic pathway of sialic acid
389 (54), and the c) sialic acid TRAP transporter large permease ($\Delta siaM$), which is associated
390 with sialic acid uptake and is also involved in serum resistance (66).

391 **a) Antibiotic resistance.** First, we examined the antibiotic resistance profile of
392 the IRL strains to determine whether there were patterns associated with the differential
393 distribution of the clusters, as both sites have vastly different exposure to manmade
394 perturbances including antibiotics (67, 68). We tested several antibiotics recommended
395 by the Centres for Disease Control and Prevention for the treatment of *Vibrio* spp. (69).

396 While *V. vulnificus* CMCP6 showed resistance or intermediate resistance to virtually all
397 the antibiotics tested (Fig. 4A), Δwza , $\Delta nanA$, and $\Delta siaM$ showed increased sensitivity to
398 several of them compared to the wild-type (Fig. 4A). The capsule typically confers
399 resistance to antibiotics (70, 71), however, the mechanisms by which sialic acid
400 catabolism and uptake are involved in antibiotic resistance remains to be elucidated.
401 Most IRL strains are resistant to polymyxin B, gentamycin, sulfadiazine and imipenem,
402 a β -lactam antibiotic. In contrast, virtually no IRL strain was resistant to chloramphenicol
403 or oxytetracycline (Fig. 4A). Seven strains from Site B exhibited intermediate resistance
404 to nalidixic acid and/or trimethoprim while only two of the isolates from Site A were
405 resistant to these compounds. Strikingly, a C1 strain isolated from Site B (IRLE0004),
406 showed varied resistance levels to all antibiotics tested with the exception of
407 oxytetracycline. Interestingly, two C1 strains from Site A (IRLA0161 and IRLA0152) that
408 belonged to the same clonal frame i.e ANI>99%, showed different antibiotic resistance
409 patterns (Fig. 4A). Unlike IRLA0152, IRLA0161 is resistant to oxytetracycline, nalidixic
410 acid and trimethoprim. Genome analysis showed the presence of a 172 Kb plasmid in
411 this strain, in which we identified a coding gene for a trimethoprim-resistant dihydrofolate
412 reductase, DfrA family. Although the genes directly responsible for the other two
413 resistances were not identified, we found several genes related to efflux pumps encoded
414 in the same plasmid. It appears, from our analysis, that selective pressures at Site B, the
415 site with most anthropogenic exposure, favour the emergence of antibiotic resistance,
416 particularly to the folate inhibitor, trimethoprim, and the quinolone, nalidixic acid (Fig. 4A).
417 Furthermore, the presence of resistant plasmids and their ease of transmission between
418 the two clusters (28), increases the likelihood that strains from C1 to acquire these genes
419 through horizontal gene transfer.

420 **b) Serum resistance.** Some studies have previously reported the ability of
421 clinical *V. vulnificus* strains to resist the bactericidal effect of serum, while most
422 environmental strains tested being susceptible to it (50, 51). Given that serum resistance
423 is an essential virulence trait for *V. vulnificus* pathogenesis, we analysed the

424 susceptibility of the IRL isolates to this primary host defence. As expected, the wild-type
425 clinical C1 strain was resistant to serum, whereas the non-pathogenic C2 strain was
426 sensitive to its bactericidal effect (3-4 log decreases in CFUs) (Fig. 4B). Only three out
427 of twelve strains from Site A were sensitive to serum whereas in Site B we found the
428 opposite pattern, with most of the strains (eight out of fourteen) being sensitive (Fig. 4B).
429 These differences were strongly associated with cluster distribution and provided us with
430 an opening to examine the possible genomic determinants that lead to serum resistance
431 in *V. vulnificus*. We first compared the gene content between serum resistant C1 strains
432 (OH0023 and IRLA0152) against sensitive ones (OH0012 and IRLA0153). Among those
433 unique genes in the resistant strains we found several related to type I restriction-
434 modification systems, capsule synthesis and those involved in sialic acid metabolism.
435 Subsequently, we analysed the presence of the sialic acid cluster in the genomes of all
436 IRL isolates in our study. We found that 12 out of 15 strains that were resistant to serum
437 (8 Site A; 4 Site B) encoded the cluster, whereas only 1 out of 11 sensitive strains did
438 (Fig. 4B). Given this clear association, we tested the serum resistance of Δwza and the
439 two sialic acid mutants, $\Delta nanA$ and $\Delta siaM$. As expected, Δwza was sensitive to serum.
440 Interestingly, while $\Delta siaM$ exhibited a 2-log decrease in CFU compared to the wild-type,
441 $\Delta nanA$ was not affected by the bactericidal effect of serum, the mechanism behind the
442 difference in survival between these two mutants remains to be addressed.

443 **c) Sialic acid catabolism.** Sialic acid, besides playing an important role in host-
444 pathogen interactions (54, 56) is critical for the interaction of several pathogenic Vibrios
445 with some of their environmental reservoirs such as Cyanobacteria potentially linking
446 different lifestyles of bacterial pathogens (72, 73). Both our pangenome and phenotypic
447 analyses suggest that catabolism of this aminosugar appears to be an essential factor
448 associated with clinical outcomes. In order to initially test our findings, we examined the
449 ability of the IRL strains to utilize N-acetylneuraminic acid (NANA) as a sole carbon
450 source. We tested their growth in M9 minimal media supplemented with NANA at two
451 salinities reflective of the two sampling sites (1% and 3% NaCl; Table S5). Neither the

452 $\Delta nanA$ and $\Delta siaM$ mutants nor the IRL isolates that did not encode the sialic acid cluster
453 were able to grow in these media. All strains from Site A that possessed the sialic acid
454 cluster (eight of the twelve) exhibited similar growth patterns to the clinical reference
455 CMCP6 at both salinities. At Site B, only six of the fourteen isolates were able to grow,
456 all containing the sialic acid cluster (Fig. 4C).

457 Taken together, our genomic and phenotypic analyses of the IRL strains, and
458 their comparisons against clinical strains, showed differential potential for pathogen
459 emergence in these natural populations. For instance, strain IRLA0186 exhibits several
460 traits that indicate its strong capability for emergence as a clinical strain such as its ability
461 to resist serum, catabolize sialic acid, resistance to most of the antibiotics tested, as well
462 as encoding variations in four of the six CAAs. On the other hand, OH0008, isolated from
463 the same site IRLA0186 (ANI 98,3%) is sensitive to both serum and most of the
464 antibiotics we tested, but cannot grow on sialic acid and only encodes one allelic variation
465 similar to CAAs, suggesting limited likelihood of pathogenic outcomes.

466

467 **Environmental factors associated with cluster divergence.** Our analyses revealed
468 distinct genomic and phenotypic signatures associated with the emergence of clinical-
469 associated traits in environmental *V. vulnificus*. In order to uncover ecological drivers
470 leading to the selection of these traits and the skewed distribution of *V. vulnificus*
471 clusters, we investigated the abiotic and biotic parameters associated with each site.
472 First, we measured several abiotic factors from the aquatic samples collected during
473 strain isolation such as temperature, dissolved oxygen, pH, dissolved organic matter,
474 salinity, phosphorous, among others (Table S5). Next, water samples were sequentially
475 filtered through 20, 5, and 0.22 μm pore size filters. DNA was obtained from the 0.22 μm
476 filter that contain the free-living microbial fraction to analyse the microbial community
477 structure (biotic factors) associated with each sampling site (Fig. 5A). We used a
478 Principle Coordinate Analysis (PCoA) to examine possible correlations between cluster
479 distribution and both abiotic (physicochemical parameters) and biotic factors (taxonomic

480 classification from 16S rRNA gene metagenomic fragments) (Fig. 5B). The community
481 structure from Site A is very similar to that found in marine environments where the main
482 taxa were Cyanobacteria, SAR11, Bacteriodetes, Oceanospirillales or *Ca. Actinomarina*
483 (Fig. 5A). In fact, salinity at this location was 29 ppm, slightly lower than seawater (35
484 ppm) (Table S5). The percentage of 16S rRNA reads associated with the genus *Vibrio*
485 accounted for a total of 1.8% of the total population (Fig. 5A). However, they are
486 undetectable at Site B, where the salinity was much lower than in Site A (5 to 18 ppm),
487 signatures of a brackish environment. We also found in Site B higher concentrations of
488 phosphates, nitrates and dissolved organic matter compared to Site A likely due to
489 runoffs from nearby Lake Okeechobee, which experiences influx of fertilizers from
490 nearby agricultural farms (Table S5). These variations in environmental factors likely
491 change the microbial community by predominantly low-salinity adapted microbes such
492 as the genera *Polynucleobacter* and *Limnohabitans* within the family Burkholderiales or
493 the Microtrichal and Frankial families within the order Actinobacteria (Fig. 5A). Microbial
494 diversity, measured as Shannon index, indicated that diversity was higher in Site A than
495 in Site B (Fig. 5C). These data suggest that C1 members prefer a more oligotrophic
496 marine-like environment with higher salinity and greater microbial diversity dominated by
497 cyanobacteria, whereas C2 members appear to be better adapted to nutrient-rich
498 brackish environments marked by the presence of several families of Actinobacteria (Fig.
499 5). Overall, our metagenomic and physicochemical analyses of the sampling sites
500 indicate that the marked cluster distribution and genetic traits are strongly associated
501 with distinct biotic and abiotic factors (e. g. salinity, nutrients or biodiversity) revealing
502 how ecosystems generate selective pressures that facilitate the emergence of specific
503 strains with pathogenic potential in a population.

504

505 CONCLUSIONS

506 Elucidating the factors associated with the emergence and spread of human pathogens
507 is critical in order to develop tools to predict potential sources of disease outbreaks and

508 to establish effective surveillance strategies. Pathogen emergence is a complex and
509 multifactorial phenomenon that requires analytic methods and tools that can consider
510 large and highly diverse data. Therefore, it is essential to develop tractable model
511 systems that allow us to dissect the ecological, genetic and evolutionary drivers that
512 foster the selection of virulence traits and pathogenic clones within an environmental
513 population. In this study, we used *V. vulnificus*, an emerging coastal pathogen that
514 causes fatal sepsis, as a model system to investigate the genetic and ecological forces
515 leading to pathogen emergence. The high genome plasticity of *V. vulnificus* paired with
516 the unexpected outcomes associated with manmade environmental changes make this
517 bacterium a major threat to human health for which no effective vaccines or therapeutic
518 strategies are available (16, 28, 74). Here, we implemented a holistic approach that
519 combines fields such as genomics, metagenomics, ecology, molecular biology and
520 bacterial pathogenesis to address this problem. Overall, we found a strong correlation
521 between ecological factors (e.g. site of isolation, physicochemical parameters and
522 community structure) and pathogenic potential, as exemplified by skewed cluster
523 distribution, and genetic and phenotypic traits associated with clinical outcomes.

524 The layers of selection imposed by the different abiotic and biotic factors likely
525 act as a major selective pressure driving the development of pathogenic features in *V.*
526 *vulnificus* populations. From our analyses, there is a clear association between cluster
527 distribution and abiotic (e.g. salinity or dissolved nutrients) and biotic factors (community
528 structure, oysters or cyanobacteria). Given their relevance, investigating the association
529 of *V. vulnificus* and the specific role of these and other abiotic factors and biotic reservoirs
530 such as protists (e.g. amoeba) and other metazoans (e.g. fish and crustaceans) in cluster
531 selection, will shed substantial light on the process of emergence of pathogenic traits in
532 *V. vulnificus*.

533 Furthermore, each sampling site is exposed to different anthropogenic
534 influences. For instance, Site A is located in a protected area with limited access in Cape
535 Canaveral. Whereas Site B experiences nutrient over-enrichment due to urbanization

536 and agricultural expansion, as well as, other manmade contamination such as faecal
537 waste discharges. Given the drastic differences in the anthropogenic exposure between
538 the two locations, it is likely that they play a role in cluster selection and distribution. It
539 would be of interest for future studies to address the role of these anthropogenic
540 disturbances in the emergence of pathogenic Vibrios.

541 Overall, our results indicate how ecosystems may generate selective pressures
542 that facilitate the emergence and selection of specific strains within a population with
543 pathogenic potential. Our study closely aligns with the One Health initiative (75) by a)
544 focusing on the connection between a disease agent and the environmental factors that
545 lead to its emergence, and b) creating a combined approach to understand disease
546 emergence from an integrated and tractable perspective. Our approach can serve to
547 develop ecological and genetic markers for surveillance systems to predict sources of
548 outbreaks or identify emergent human pathogens. Overall, we offer a general paradigm
549 and methodology for studying and understanding disease emergence that can be
550 naturally extended to other human pathogens.

551

552 MATERIALS AND METHODS

553 **Strains and culture conditions.** An extended version of the Material and Methods can
554 be found as part of the Supplementary Material. Strains of *V. vulnificus* (Tables S1 and
555 S3) were routinely cultured on Luria-Bertani (LB) agar plates supplemented with 2%
556 NaCl (wt/vol; LB-2%), inoculated in LB-2% broth, and cultured for 16 hours aerobically
557 at 37°C, unless otherwise specified. *V. vulnificus* strains CMCP6 and SS108-A3A were
558 used as C1 clinical and C2 environmental controls, respectively, for all phenotypic
559 assays. *E. coli* β2155, a diaminopimelic acid (DAP) auxotroph, was used for mutant
560 construction and was cultured in LB supplemented with 0.3mM DAP (LB-DAP).

561 **Sampling sites.** Samples were collected at two environmentally distinctive locations
562 along the IRL (Eastern Florida, USA) in three sampling events. The first location, Fellers
563 House Field Station (N28°54'25.315"; W80°49'15.017"; Northern IRL; **Site A**), is located

564 within the federally-protected Canaveral National Seashore. The second sampling site,
565 Shepard Park, is located in Port St. Lucie (N27°11'48.864"; W80°15'33.172": Southern
566 IRL; Site B), which due to urbanization and agricultural expansion, experiences nutrient
567 over-enrichment leading to excessive macroalgal bloom (Fig. 1B) (76, 77).

568 ***Isolation of V. vulnificus from environmental sources.*** *Water samples:* *V. vulnificus*
569 was isolated from water samples using a modified protocol from Huq et al (42). 500ml of
570 each sample was filtered successively through 20 µm, 5 µm, and 0.2 µm membrane
571 filters (Sterlitech) to separate planktonic and free-living fractions. The filters were
572 suspended in Phosphate buffered saline, pH 7.5 (PBS), vortexed vigorously and cultured
573 in alkaline peptone water (APW) overnight at 37°C. *Sediment samples:* *V. vulnificus* was
574 isolated from sediment using a modified protocol from Schuster et al (78). Samples were
575 collected using a universal corer. Samples were suspended in PBS (1:1), homogenized
576 and enriched in APW. *Oyster samples:* Isolation of *V. vulnificus* from oysters was carried
577 out by a protocol adopted and modified from the U.S. Food and Drug Administration's
578 Bacteriological Analytical Manual for *Vibrio* (79). Briefly, oysters collected from Feller's
579 House were washed to remove sediment or dirt. Each oyster was individually shucked,
580 homogenized in 30 ml PBS using the SCILOGEX D160 Homogenizer (Connecticut,
581 USA), and cultured in APW. *Cyanobacterial samples:* Cyanobacteria collected from
582 Shepard Park were pelleted, supernatant removed, and cultured in APW. All samples
583 were collected in triplicate. Enriched cultures in APW from water, sediment, oyster, and
584 cyanobacteria samples were serially diluted and plated on CHROMagar Vibrio (CaV;
585 CHROMagar, Paris, France), a *Vibrio* spp. selective agar. Turquoise blue colonies were
586 further screened on Thiosulfate Citrate Bile Salts Sucrose (TCBS; Sigma) agar plates on
587 which *V. vulnificus* appear as green colonies. Colonies that appeared turquoise blue on
588 CaV and green on TCBS were considered potential *V. vulnificus* isolates.

589 ***Verification of V. vulnificus isolates.*** Potential *V. vulnificus* IRL isolates were verified
590 by PCR using primers for the *thiF* marker gene (Table S2). PCR products of isolates
591 positive for *thiF* were sequenced (GENEWIZ, AT, GA) to determine cluster affiliation. A

592 number of diverse *V. vulnificus* isolates, from both clusters and from each of the
593 environmental reservoirs, were selected for whole genome sequencing. *Genome*
594 *Sequencing*: Libraries of whole genomes were prepared using the Nextera DNA Flex
595 Library Prep Kit from Illumina, following the manufacturer's instructions, and sequenced
596 using the Illumina iSeq100 Sequencing System. Sequenced genomes were analyzed
597 using Illumina BaseSpace Sequence Hub. Reads obtained for each Biosample were
598 assembled into contigs and scaffolds using the SPAdes Genome Assembler Version
599 3.9.0 and Velvet de novo Assembly Version 1.0.0.

600 **Assembly, gene prediction and annotation.** Reads were trimmed using Trimmomatic
601 v0.36 (80) and assembled de novo with SPAdes v3.11.1 (81). ORFs from the assembled
602 contigs were predicted using Prodigal v2.6 (82). tRNA and rRNA genes were predicted
603 using tRNAscan-SE v1.4 (83), ssu-align v0.1.1 (84) and meta-rna (85). Using DIAMOND
604 (86) predicted protein were compared against the NCBI nr database, and against COG
605 (87) and TIGFRAM (88) using HMMscan v3.1b2 (89) for taxonomic and functional
606 annotation.

607 **Phylogenomic reconstructions.** The assembled contigs were assigned a chromosome
608 by comparison to this group of reference genomes using Blastn (90). Genes were
609 predicted using Prodigal (82) and clustered using the software MMseqs (91). The
610 resulting protein clusters that were present in all analyzed genomes were divided into
611 two groups according to the chromosome they are encoded in, resulting in a group of
612 257 and 62 proteins for chromosomes 1 and 2, respectively. Protein clusters were then
613 aligned with QuickProbs2 (92), trimmed with BGME (93) and concatenated. Finally, a
614 phylogenetic tree was constructed using iqtree (94) with automatic model selection and
615 1,000 bootstrap replicates.

616 **Genomic pairwise comparisons.** Reciprocal BLASTN and TBLASTXs searches
617 between genomes were carried out, leading to the identification of regions of similarity,
618 insertions, and rearrangements. Average nucleotide identity (ANI) and coverage
619 between pairs of genomes were calculated using the PYANI software (95).

620 **Pangenome and recombination analysis.** To analyze the gene family prevalence
621 across all genomes, we used the software PPanGGOLiN to divide the gene families into
622 persistent/shell/cloud partitions (52). The genes constituted each partition were then
623 annotated against the SEED subsystem database (96) using DIAMOND (86), keeping
624 all matches with $E < 0.001$ and alignment length > 0.5 for both subject and query. Finally,
625 dN/dS values for the different protein partitions were obtained using the Orthologr
626 package in R (97). The PopCOGenT pipeline (47) was used to define the recombinant
627 populations based on gene flow between the different sequenced genomes.

628 **Mutant construction.** In-frame deletions of genes of interest, *wza*, *nanA* and *siaM*, were
629 constructed via homologous recombination (98) (Primer list can be found in Table S6).
630 Briefly, two approx. 500 bp PCR fragments flanking the genes of interest were cloned
631 into the *sacB*-counterselectable plasmid, pDS132, and electroporated into donor *E. coli*
632 strain, β 2155. The donor strains harbouring the knockout vectors were conjugated with
633 wild-type *V. vulnificus* CMCP6 on LB-DAP and transconjugants were selected on LB-2%
634 plates supplemented with chloramphenicol (Cm) (25 μ g/ml). Cm^R exconjugant colonies
635 were cultured in LB-2% without antibiotics, and serial dilutions were plated on LB-2%
636 plates containing 10% (wt/vol) sucrose. Potential double-crossover deletion mutants
637 were screened by PCR and putative deletions were confirmed by DNA sequencing.

638 **Antibiotic resistance.** *V. vulnificus* isolates were examined for susceptibilities to the
639 antibiotics highlighted in Fig. 4 at the highest concentrations in the breakpoint
640 concentration range recommended by Clinical and Laboratory Standards Institute in
641 M45-A (99–102) (Supplementary Methods). Briefly, individual colonies of each strain
642 were transferred sequentially using sterile toothpicks onto LB-2% plates supplemented
643 with respective antibiotics and incubated at 37°C overnight. The diameter of the growth
644 was measured and resistance was defined as growth of at least 2mm in the respective
645 antibiotics. Strains exhibiting no growth were taken as sensitive, and any intermediate
646 growth diameter was considered as intermediate resistance. Experiments were
647 performed in three independent biological replicates.

648 **Serum Resistance.** *In vitro* serum survival assay was adapted from Bogard and Oliver
649 (103). Briefly, overnight cells were sub-cultured in LB-2% to obtain log-phase cells at an
650 OD of 0.15-0.25. Cells were then washed in PBS and inoculated at a 100-fold dilution
651 into normal pooled human serum (Fisher Bioreagents, Fair Lawn, NJ, USA) and
652 incubated at 37°C for 2 hours. Resistance to serum was assessed by comparing the
653 CFU/ml before and after exposure to serum. Experiments were performed in three
654 independent biological replicates.

655 **Sialic acid catabolism.** The ability to catabolize sialic acid by *V. vulnificus* isolates was
656 assessed by growth in N-acetylneuraminic acid, the predominant form of sialic acid in
657 human cells, as the sole carbon source (57). Briefly, overnight cultures of each strain
658 were washed and resuspended in M9 minimal media, and a 100-fold dilution of cells
659 were made in M9 minimal medium supplemented with N-acetylneuraminic acid (2 mg/ml)
660 (Chem-Impex International, Wood Dale, IL). 200-µl aliquots of each sample were added
661 per well to a 96-well microtiter plate and incubated at 37°C with shaking. Optical density
662 at 595 nm (OD595) was measured every hour for 24 h using a Tecan Sunrise microplate
663 reader (Tecan US, Durham, NC) and the results were evaluated using the Magellan plate
664 reader software. Growth assays were performed in triplicate across three independent
665 biological replicates.

666 **Measurement of physicochemical parameters.** Measurements of water temperature
667 (°C), salinity (g/L), dissolved oxygen (%), pH, pressure (mmHg), dissolved organic matter
668 (QSU), chlorophyll-a (µg/L) and total algae (µg/L) were made during the isolations. The
669 measurements were recorded using a YSI EX02 sonde deployed at the sites at the time
670 of sampling that was calibrated within 24 hours prior to each sampling event. Water
671 samples, collected in triplicates, were also examined for the concentration of phosphates
672 (o-Phosphate-P, method 365.1), and nitrates (Nitrate-N, method 353.2; Ammonia-N,
673 method 350.1) according to the standard protocols described by the USEPA (104, 105).
674 Briefly, collected water samples filtered through a 0.2 µm membrane filter were acidified
675 to a pH < 2 with double distilled H₂SO₄, and stored at 4°C until analysis. Samples were

676 analysed for nitrate + nitrite (NO₃-), ammonium (NH₄⁺), and ortho-phosphate (PO₄³⁻)
677 on a SEAL AQ2 Automated Discrete Analyzer (Seal Analytical, Mequon, WI).

678 **Metagenomic analysis.** DNA extraction was performed from the 0.22 µm filter. Attached
679 cells were disrupted using CTAB lysis buffer and glass beads followed by lysozyme
680 treatment. The nucleic acids were then extracted using the phenol-chloroform extraction
681 method (106). Metagenomes were sequenced using Illumina Hiseq-4000 (150 bp,
682 paired-end read). To analyse the phylogenetic classification of the samples, candidate
683 16S rRNA gene sequences in the raw metagenomes were identified using USEARCH6
684 (107) (E-value < 10⁻⁵) against a database containing non-redundant 16S rRNA
685 sequences downloaded from the RDP database (108). These sequences were then
686 aligned to archaeal and bacterial 16S rRNA HMM models (109) using ssu-align to identify
687 true sequences (84). Only hits to 16S rRNA sequences were then classified into a high-
688 level taxon if the sequence identity was ≥80% and the alignment length ≥90 bp.
689 Sequences failing these thresholds were discarded. Information on data availability can
690 be found in the supplementary methods.

691

692 FIGURE LEGENDS

693 **Fig. 1. Isolation of *Vibrio vulnificus* from Eastern Florida.** A) Maximum likelihood
694 phylogenetic tree of hemolysin gene, *vvhA*, Sulfur carrier protein adenylyltransferase,
695 *thiF* and the concatenation of the six candidate genes (*yycF*, *pfeS*, *acuB*, *yqhD*, *uvrY* and
696 *thiF*) for representative strains from all 4 cluster. Members of the same cluster (C1 to C4)
697 are indicated with the same color. Trees are unrooted and drawn to scale. Branch lengths
698 indicate number of substitutions per site. B) Map of Florida indicating the sampling sites:
699 Feller's house and Shepard Park. C) Maximum likelihood phylogenetic tree of *V.*
700 *vulnificus* isolates based on *thiF*. Branches containing members that belongs to the same
701 cluster are indicated with the same color, green for C1 representatives and blue for C2.
702 The names of the strains are colored in relation to the location from which they originate.

703 The colored circles represent where they were isolated from and the red stars represent
704 those strains that have been sequenced.

705 **Fig. 2. Phylogenomic and population structure of *V. vulnificus*.** A) Maximum
706 likelihood phylogenomic tree of *V. vulnificus* strains obtained in this study (highlighted in
707 red) together with all available reference genomes using core genome of chromosome
708 I. Branches containing members that belongs to the same cluster (C1 to C4) (ANI > 97%)
709 are indicated with the same color. The color chart of the circles of the plot indicates the
710 isolated source and the host of the corresponding strains. Gray box shows the 15
711 recombinant populations detected among all strains. The orange box highlights the
712 strains belonging to subpopulation 15. B) Schematic representation of the capsular
713 polysaccharide (CPS) genomic island. Color-coded arrows show locations of important
714 genomic features. Variable regions 1 and 2 are highlighted in blue and green,
715 respectively.

716 **Fig. 3. Pangenome analysis of *V. vulnificus* strains.** A) Pangenome analysis for
717 groups, i) nine C1 strains isolated from Site A (C1 IRL), ii) nine C2 strains from Site B
718 (C2 IRL) iii) nine reference C1 strains that are *bona fide* clinical (C1 Clinical) iv) nine
719 reference environmental strains from C2 (C2 environmental). The proportions of gene
720 families in the persistent, cloud and shell genome are highlighted in orange, green and
721 blue respectively. B) Schematic representation comparing the genomic island of the
722 gene cluster involve in sialic acid catabolism. C) Comparison of the ratio of
723 nonsynonymous to synonymous substitutions (dN/dS ratio) between reference clinical
724 strains and C1 strains isolated from Site A in the IRL D) Comparison of the dN/dS values
725 of each individual strain versus the rest in the C1 IRL group for genes encoding these
726 clinical-associated alleles (CAAs). Those with a value above the average have been
727 highlighted in red.

728 **Fig. 4. Assessment of pathogenic potential of *V. vulnificus* IRL isolates.** A) Patterns
729 of antibiotic resistance of 27 *V. vulnificus* isolates to commonly used 12 antibiotics. Red,
730 resistant; pink, intermediate resistance; white, sensitive. B) Serum resistance of *V.*

731 *vulnificus* exposed to normal pooled human serum for 2 hours and assessed for survival
732 in terms of CFU/ml. Resistant strains, similar CFU/ml as input; sensitive strains, lower of
733 CFU/ml than input; resistant and growth on serum, higher CFU/ml than input. C) Ability
734 to catabolise sialic acid assessed by growth of *V. vulnificus* isolates in M9 minimal media
735 supplemented with N-acetylneurameric acid as the sole carbon source at salinities
736 representing the two sampling locations. Growth was measured as a function of
737 increased optical density (OD595) of the cultures overtime.

738 **Fig. 5. Environmental factors associated with cluster divergence.** A) Taxonomic
739 classification based on 16S rRNA gene fragments (raw reads) of the different
740 metagenomes obtained from seawater 0.22µm filter. Only those groups with abundance
741 values larger than 1% in any of the metagenomes are shown. The size of the diameter
742 of the circles indicates the percentage of the total reads for each taxon. B) Principle
743 Coordinate Analysis (PCoA) between physicochemical parameters and abundance of
744 the different taxon's based on 16S rRNA gene metagenomic fragments. C) Box-plots
745 illustrating microbial community diversity measure using Shannon index.

746

747 **ACKNOWLEDGEMENTS**

748 We are thankful to the reviewers for their thoughtful comments and suggestions. We are
749 grateful to Drs. Paul Gulig, E. Fidelma Boyd and Linda Walters for kindly providing *V.*
750 *vulnificus* strains, plasmids and oyster samples. We thank Dr. Shibu Yooseph for critical
751 reading of the manuscript. This article was funded with Startup funds from the Burnett
752 School of Biomedical Sciences to SAM, a PhD fellowship from the Spanish Ministerio de
753 Economía y Competitividad (BES-2017-079993) to AZS, and a Post-Doctoral Fellowship
754 from Generalitat Valenciana (APOSTD/2019/009) to PJC-Y.

755

756 **COMPETING INTERESTS**

757 The authors declare no competing interests.

758

759 **AUTHOR CONTRIBUTIONS**

760 SAM conceived the study. JMJ and TAG collected samples, isolated *V. vulnificus* and
761 analyzed physicochemical and ecological parameters. JMJ performed phenotypic
762 assays. MLP, AZS and PJC-Y performed bioinformatic analyses. The manuscript was
763 written by MLP, JMJ and SAM. All authors read and approved the final version.

764

765 **REFERENCES**

- 766 1. O. Faye, *et al.*, Molecular Evolution of Zika Virus during Its Emergence in the
767 20th Century. *PLoS Negl. Trop. Dis.* (2014)
<https://doi.org/10.1371/journal.pntd.0002636>.
- 769 2. E. M. H. Wellington, *et al.*, The role of the natural environment in the emergence
770 of antibiotic resistance in Gram-negative bacteria. *Lancet Infect. Dis.* (2013)
[https://doi.org/10.1016/S1473-3099\(12\)70317-1](https://doi.org/10.1016/S1473-3099(12)70317-1).
- 772 3. K. A. Alexander, *et al.*, What factors might have led to the emergence of ebola in
773 West Africa? *PLoS Negl. Trop. Dis.* (2015)
<https://doi.org/10.1371/journal.pntd.0003652>.
- 775 4. S. Khan, *et al.*, The emergence of a novel coronavirus (SARS-CoV-2), their
776 biology and therapeutic options. *J. Clin. Microbiol.* (2020).
- 777 5. F. Qadri, T. Islam, J. D. Clemens, Cholera in Yemen — An Old Foe Rearing Its
778 Ugly Head. *N. Engl. J. Med.* (2017) <https://doi.org/10.1056/nejmp1712099>.
- 779 6. K. E. Phillips, K. J. F. Satchell, *Vibrio vulnificus*: From Oyster Colonist to Human
780 Pathogen. *PLoS Pathog.* **13** (2017).
- 781 7. S. P. Heng, *et al.*, *Vibrio vulnificus*: An environmental and clinical burden. *Front.*
782 *Microbiol.* (2017) <https://doi.org/10.3389/fmicb.2017.00997>.
- 783 8. M. K. Jones, J. D. Oliver, *Vibrio vulnificus*: Disease and pathogenesis. *Infect.*
784 *Immun.* **77**, 1723–1733 (2009).
- 785 9. S. R. Rippey, Infectious diseases associated with molluscan shellfish

786 consumption. *Clin. Microbiol. Rev.* (1994) <https://doi.org/10.1128/CMR.7.4.419>.

787 10. P. a Gulig, K. L. Bourdage, a M. Starks, Molecular Pathogenesis of *Vibrio*
788 *vulnificus*. *J. Microbiol. 43 Spec No*, 118–131 (2005).

789 11. W. G. Hlady, K. C. Klontz, The epidemiology of *Vibrio* infections in Florida, 1981–
790 1993. *J. Infect. Dis.* (1996) <https://doi.org/10.1093/infdis/173.5.1176>.

791 12. N. A. Daniels, *Vibrio vulnificus* oysters: Pearls and perils. *Clin. Infect. Dis.* (2011)
792 <https://doi.org/10.1093/cid/ciq251>.

793 13. M. S. Strom, R. N. Paranpype, Epidemiology and pathogenesis of *Vibrio*
794 *vulnificus*. *Microbes Infect.* (2000) [https://doi.org/10.1016/S1286-4579\(00\)00270-7](https://doi.org/10.1016/S1286-4579(00)00270-7).

795 14. M. A. Horseman, S. Surani, A comprehensive review of *Vibrio vulnificus*: An
796 important cause of severe sepsis and skin and soft-tissue infection. *Int. J. Infect.*
797 *Dis. 15* (2011).

798 15. C. Baker-Austin, J. D. Oliver, *Vibrio vulnificus*: new insights into a deadly
799 opportunistic pathogen. *Environ. Microbiol.* (2018) <https://doi.org/10.1111/1462-2920.13955>.

800 16. C. Baker-Austin, J. Trinanes, N. Gonzalez-Escalona, J. Martinez-Urtaza, Non-
801 Cholera Vibrios: The Microbial Barometer of Climate Change. *Trends Microbiol.*
802 *25*, 76–84 (2017).

803 17. C. W. Kaspar, M. L. Tamplin, Effects of temperature and salinity on the survival
804 of *Vibrio vulnificus* in seawater and shellfish. *Appl. Environ. Microbiol.* (1993)
805 <https://doi.org/10.1128/aem.59.8.2425-2429.1993>.

806 18. S. Paz, N. Bisharat, E. Paz, O. Kidar, D. Cohen, Climate change and the
807 emergence of *Vibrio vulnificus* disease in Israel. *Environ. Res.* (2007)
808 <https://doi.org/10.1016/j.envres.2006.07.002>.

809 19. L. Vezzulli, *et al.*, Climate influence on *Vibrio* and associated human diseases
810 during the past half-century in the coastal North Atlantic. *Proc. Natl. Acad. Sci.*
811 *U. S. A.* (2016) <https://doi.org/10.1073/pnas.1609157113>.

814 20. R. Deeb, D. Tufford, G. I. Scott, J. G. Moore, K. Dow, Impact of Climate Change
815 on *Vibrio vulnificus* Abundance and Exposure Risk. *Estuaries and Coasts* (2018)
816 <https://doi.org/10.1007/s12237-018-0424-5>.

817 21. E. K. Lipp, A. Huq, R. R. Colwell, Effects of global climate on infectious disease:
818 The cholera model. *Clin. Microbiol. Rev.* (2002)
819 <https://doi.org/10.1128/CMR.15.4.757-770.2002>.

820 22. J. D. Oliver, The Biology of *Vibrio vulnificus*. *Microbiol. Spectr.* (2015)
821 <https://doi.org/10.1128/microbiolspec.ve-0001-2014>.

822 23. D. L. Tison, M. Nishibuchi, J. D. Greenwood, R. J. Seidler, *Vibrio vulnificus*
823 biogroup 2: new biogroup pathogenic for eels. *Appl. Environ. Microbiol.* **44**, 640–
824 646 (1982).

825 24. J. D. Oliver, Wound infections caused by *Vibrio vulnificus* and other marine
826 bacteria. *Epidemiol. Infect.* **133**, 383–391 (2005).

827 25. C. Amaro, E. G. Biosca, *Vibrio vulnificus* biotype 2, pathogenic for eels, is also
828 an opportunistic pathogen for humans. *Appl. Environ. Microbiol.* (1996)
829 <https://doi.org/10.1128/aem.62.4.1454-1457.1996>.

830 26. N. Bisharat, *et al.*, Clinical, epidemiological, and microbiological features of
831 *Vibrio vulnificus* biogroup 3 causing outbreaks of wound infection and
832 bacteraemia in Israel. *Lancet* (1999) [https://doi.org/10.1016/S0140-6736\(99\)02471-X](https://doi.org/10.1016/S0140-6736(99)02471-X).

834 27. R. Zaidenstein, *et al.*, Clinical characteristics and molecular subtyping of *Vibrio*
835 *vulnificus* illnesses, Israel. *Emerg. Infect. Dis.* (2008)
836 <https://doi.org/10.3201/eid1412.080499>.

837 28. M. López-Pérez, *et al.*, Evolutionary model of cluster divergence of the emergent
838 marine pathogen *vibrio vulnificus*: From genotype to ecotype. *MBio* **10** (2019).

839 29. B. J. Shapiro, I. Levade, G. Kovacikova, R. K. Taylor, S. Almagro-Moreno,
840 Origins of pandemic *Vibrio cholerae* from environmental gene pools. *Nat. Microbiol.* **2** (2016).

842 30. S. N. Sakib, G. Reddi, S. Almagro-Moreno, Environmental role of pathogenic
843 traits in *Vibrio cholerae*. *J. Bacteriol.*, JB.00795-17 (2018).

844 31. F. J. Roig, *et al.*, Phylogeny of *Vibrio vulnificus* from the analysis of the core-
845 genome: Implications for intra-species taxonomy. *Front. Microbiol.* **8** (2018).

846 32. N. Bisharat, *et al.*, Hybrid *Vibrio vulnificus*. *Emerg. Infect. Dis.* **11**, 30–35 (2005).

847 33. P. C. Thiaville, *et al.*, Genotype is correlated with but does not predict virulence
848 of *Vibrio vulnificus* biotype 1 in subcutaneously inoculated, iron dextran-treated
849 mice. *Infect. Immun.* (2011) <https://doi.org/10.1128/IAI.01031-10>.

850 34. A. Newton, M. Kendall, D. J. Vugia, O. L. Henao, B. E. Mahon, Increasing rates
851 of vibriosis in the United States, 1996–2010: Review of surveillance data from 2
852 systems. *Clin. Infect. Dis.* **54** (2012).

853 35. V. J. Harwood, J. P. Gandhi, A. C. Wright, Methods for isolation and confirmation
854 of *Vibrio vulnificus* from oysters and environmental sources: A review. *J.*
855 *Microbiol. Methods* (2004) <https://doi.org/10.1016/j.mimet.2004.08.001>.

856 36. F. Han, B. Ge, Multiplex PCR assays for simultaneous detection and
857 characterization of *Vibrio vulnificus* strains. *Lett. Appl. Microbiol.* (2010)
858 <https://doi.org/10.1111/j.1472-765X.2010.02887.x>.

859 37. E. Sanjuán, B. Fouz, J. D. Oliver, C. Amaro, Evaluation of genotypic and
860 phenotypic methods to distinguish clinical from environmental *vibrio vulnificus*
861 strains. *Appl. Environ. Microbiol.* (2009) <https://doi.org/10.1128/AEM.01594-08>.

862 38. N. Bisharat, *et al.*, The evolution of genetic structure in the marine pathogen,
863 *Vibrio vulnificus*. *Infect. Genet. Evol.* (2007)
864 <https://doi.org/10.1016/j.meegid.2007.07.007>.

865 39. H. J. Kim, J. C. Cho, Genotypic diversity and population structure of *Vibrio*
866 *vulnificus* strains isolated in Taiwan and Korea as determined by multilocus
867 sequence typing. *PLoS One* (2015)
868 <https://doi.org/10.1371/journal.pone.0142657>.

869 40. N. González-Escalona, B. Whitney, L. A. Jaykus, A. DePaola, Comparison of

870 direct genome restriction enzyme analysis and pulsed-field gel electrophoresis
871 for typing of *Vibrio vulnificus* and their correspondence with multilocus sequence
872 typing data. *Appl. Environ. Microbiol.* (2007) <https://doi.org/10.1128/AEM.00738-07>.

873

874 41. D. J. Bradshaw, N. J. Dickens, J. H. Trefry, P. J. McCarthy, Defining the
875 sediment prokaryotic communities of the Indian River Lagoon, FL, USA, an
876 Estuary of National Significance. *PLoS One* (2020)
877 <https://doi.org/10.1371/journal.pone.0236305>.

878 42. A. Huq, *et al.*, Detection, isolation, and identification of *Vibrio cholerae* from the
879 environment. *Curr. Protoc. Microbiol.* (2012)
880 <https://doi.org/10.1002/9780471729259.mc06a05s>.

881 43. J. M. A. Klapproth, The role of lymphostatin/EHEC factor for adherence-1 in the
882 pathogenesis of gram negative infection. *Toxins (Basel)*. (2010)
883 <https://doi.org/10.3390/toxins2050954>.

884 44. V. L. Barbosa-Jefferson, F. J. Zhao, S. P. McGrath, N. Magan, Thiosulphate and
885 tetrathionate oxidation in arable soils. *Soil Biol. Biochem.* (1998)
886 [https://doi.org/10.1016/S0038-0717\(97\)00177-6](https://doi.org/10.1016/S0038-0717(97)00177-6).

887 45. S. E. Winter, *et al.*, Gut inflammation provides a respiratory electron acceptor for
888 *Salmonella*. *Nature* (2010) <https://doi.org/10.1038/nature09415>.

889 46. S. B. Korch, T. M. Hill, Ectopic overexpression of wild-type and mutant hipA
890 genes in *Escherichia coli*: Effects on macromolecular synthesis and persister
891 formation. *J. Bacteriol.* (2006) <https://doi.org/10.1128/JB.01740-05>.

892 47. P. Arevalo, D. Vanlnsberghe, J. Elsherbini, J. Gore, M. F. Polz, A Reverse
893 Ecology Approach Based on a Biological Definition of Microbial Populations. *Cell*
894 (2019) <https://doi.org/10.1016/j.cell.2019.06.033>.

895 48. M. López-Pérez, J. M. Haro-Moreno, F. H. Coutinho, M. Martinez-Garcia, F.
896 Rodriguez-Valera, The evolutionary success of the marine bacterium SAR11
897 analyzed through a metagenomic perspective. *mSystems* **5** (2020).

898 49. G. S. Pettis, A. S. Mukerji, Structure, function, and regulation of the essential
899 virulence factor capsular polysaccharide of *vibrio vulnificus*. *Int. J. Mol. Sci.*
900 (2020) <https://doi.org/10.3390/ijms21093259>.

901 50. T. C. Williams, M. Ayrapetyan, H. Ryan, J. D. Oliver, Serum survival of *Vibrio*
902 *vulnificus*: Role of genotype, capsule, complement, clinical origin, and in Situ
903 incubation. *Pathogens* (2014) <https://doi.org/10.3390/pathogens3040822>.

904 51. H. Y. Kim, M. Ayrapetyan, J. D. Oliver, Survival of *Vibrio vulnificus* genotypes in
905 male and female serum, and production of siderophores in human serum and
906 seawater. *Foodborne Pathog. Dis.* (2014) <https://doi.org/10.1089/fpd.2013.1581>.

907 52. G. Gautreau, *et al.*, PPanGGOLiN: Depicting microbial diversity via a partitioned
908 pangenome graph. *PLoS Comput. Biol.* (2020)
909 <https://doi.org/10.1371/journal.pcbi.1007732>.

910 53. S. Almagro-Moreno, E. F. Boyd, Sialic acid catabolism confers a competitive
911 advantage to pathogenic *Vibrio cholerae* in the mouse intestine. *Infect. Immun.*
912 **77**, 3807–3816 (2009).

913 54. S. Almagro-Moreno, E. F. Boyd, Insights into the evolution of sialic acid
914 catabolism among bacteria. *BMC Evol. Biol.* (2009) <https://doi.org/10.1186/1471-2148-9-118>.

916 55. V. Bouchet, *et al.*, Host-derived sialic acid is incorporated into *Haemophilus*
917 *influenzae* lipopolysaccharide and is a major virulence factor in experimental
918 otitis media. *Proc. Natl. Acad. Sci. U. S. A.* (2003)
919 <https://doi.org/10.1073/pnas.1432026100>.

920 56. E. Severi, D. W. Hood, G. H. Thomas, Sialic acid utilization by bacterial
921 pathogens. *Microbiology* (2007) <https://doi.org/10.1099/mic.0.2007/009480-0>.

922 57. J. B. Lubin, J. J. Kingston, N. Chowdhury, E. F. Boyd, Sialic acid catabolism and
923 transport gene clusters are lineage specific in *Vibrio vulnificus*. *Appl. Environ.*
924 *Microbiol.* (2012) <https://doi.org/10.1128/AEM.07395-11>.

925 58. D. E. Kunkle, X. R. Bina, J. E. Bina, *Vibrio cholerae* ompr contributes to

926 virulence repression and fitness at alkaline ph. *Infect. Immun.* (2020)
927 <https://doi.org/10.1128/IAI.00141-20>.

928 59. D. E. Kunkle, T. F. Bina, X. R. Bina, J. E. Bina, *Vibrio cholerae* OmpR represses
929 the ToxR regulon in response to membrane intercalating agents that are
930 prevalent in the human gastrointestinal tract. *bioRxiv* (2019)
931 <https://doi.org/10.1101/752626>.

932 60. J. Liu, K. Duncan, C. T. Walsh, Nucleotide sequence of a cluster of *Escherichia*
933 *coli* enterobactin biosynthesis genes: identification of *entA* and purification of its
934 product 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. *J. Bacteriol.* (1989)
935 <https://doi.org/10.1128/jb.171.2.791-798.1989>.

936 61. E. E. Wyckoff, J. A. Stoebner, K. E. Reed, S. M. Payne, Cloning of a *Vibrio*
937 *cholerae* vibriobactin gene cluster: Identification of genes required for early steps
938 in siderophore biosynthesis. *J. Bacteriol.* (1997)
939 <https://doi.org/10.1128/jb.179.22.7055-7062.1997>.

940 62. S. I. Wu, S. K. Lo, C. P. Shao, H. W. Tsai, L. I. Hor, Cloning and characterization
941 of a periplasmic nuclease of *Vibrio vulnificus* and its role in preventing uptake of
942 foreign DNA. *Appl. Environ. Microbiol.* (2001)
943 <https://doi.org/10.1128/AEM.67.1.82-88.2001>.

944 63. I. S. Cisternas, J. C. Salazar, V. A. García-Angulo, Overview on the bacterial
945 iron-riboflavin metabolic axis. *Front. Microbiol.* (2018)
946 <https://doi.org/10.3389/fimmu.2018.01478>.

947 64. J. Sivaraman, *et al.*, Crystal Structure of *Escherichia coli* PdxA, an Enzyme
948 Involved in the Pyridoxal Phosphate Biosynthesis Pathway. *J. Biol. Chem.*
949 (2003) <https://doi.org/10.1074/jbc.M306344200>.

950 65. A. Nakhamchik, C. Wilde, D. A. Rowe-Magnus, Identification of a *wzy*
951 polymerase required for group IV capsular polysaccharide and
952 lipopolysaccharide biosynthesis in *Vibrio vulnificus*. *Infect. Immun.* (2007)
953 <https://doi.org/10.1128/IAI.00932-07>.

954 66. E. Severi, *et al.*, Sialic acid transport in *Haemophilus influenzae* is essential for
955 lipopolysaccharide sialylation and serum resistance and is dependent on a novel
956 tripartite ATP-independent periplasmic transporter. *Mol. Microbiol.* (2005)
957 <https://doi.org/10.1111/j.1365-2958.2005.04901.x>.

958 67. B. P. Bougnom, L. J. V. Piddock, Wastewater for Urban Agriculture: A Significant
959 Factor in Dissemination of Antibiotic Resistance. *Environ. Sci. Technol.* (2017)
960 <https://doi.org/10.1021/acs.est.7b01852>.

961 68. S. Bin Zaman, *et al.*, A Review on Antibiotic Resistance: Alarm Bells are
962 Ringing. *Cureus* (2017) <https://doi.org/10.7759/cureus.1403>.

963 69. K. S. Shaw, *et al.*, Antimicrobial susceptibility of *Vibrio vulnificus* and *Vibrio*
964 *parahaemolyticus* recovered from recreational and commercial areas of
965 Chesapeake Bay and Maryland Coastal Bays. *PLoS One* (2014)
966 <https://doi.org/10.1371/journal.pone.0089616>.

967 70. M. A. Campos, *et al.*, Capsule polysaccharide mediates bacterial resistance to
968 antimicrobial peptides. *Infect. Immun.* (2004)
969 <https://doi.org/10.1128/IAI.72.12.7107-7114.2004>.

970 71. M. P. E. Slack, W. W. Nichols, Antibiotic penetration through bacterial capsules
971 and exopolysaccharides. *J. Antimicrob. Chemother.* (1982)
972 <https://doi.org/10.1093/jac/10.5.368>.

973 72. G. Reddi, K. Pruss, K. L. Cottingham, R. K. Taylor, S. Almagro-Moreno,
974 Catabolism of mucus components influences motility of *vibrio cholerae* in the
975 presence of environmental reservoirs. *PLoS One* **13** (2018).

976 73. S. N. Sakib, G. Reddi, S. Almagro-Moreno, Environmental role of pathogenic
977 traits in *Vibrio cholerae*. *J. Bacteriol.* (2018) <https://doi.org/10.1128/JB.00795-17>.

978 74. C. Baker-Austin, *et al.*, Emerging *Vibrio* risk at high latitudes in response to
979 ocean warming. *Nat. Clim. Chang.* **3**, 73–77 (2012).

980 75. J. S. Mackenzie, M. Jeggo, The one health approach-why is it so important?
981 *Trop. Med. Infect. Dis.* (2019) <https://doi.org/10.3390/tropicalmed4020088>.

982 76. G. C. Sigua, W. A. Tweedale, Watershed scale assessment of nitrogen and
983 phosphorus loadings in the Indian River Lagoon basin, Florida. *J. Environ.*
984 *Manage.* (2003) [https://doi.org/10.1016/S0301-4797\(02\)00220-7](https://doi.org/10.1016/S0301-4797(02)00220-7).

985 77. P. J. Barile, Widespread sewage pollution of the Indian River Lagoon system,
986 Florida (USA) resolved by spatial analyses of macroalgal biogeochemistry. *Mar.*
987 *Pollut. Bull.* (2018) <https://doi.org/10.1016/j.marpolbul.2018.01.046>.

988 78. B. M. Schuster, *et al.*, Ecology and genetic structure of a northern temperate
989 *Vibrio cholerae* population related to toxigenic isolates. *Appl. Environ. Microbiol.*
990 (2011) <https://doi.org/10.1128/AEM.00378-11>.

991 79. C. A. Kaysner, J. Angelo DePaola, Bacteriological Analytical Manual Chapter 9:
992 *Vibrio*. *Adm. U.S. Food Drug* (2004).

993 80. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: A flexible trimmer for Illumina
994 sequence data. *Bioinformatics* (2014)
995 <https://doi.org/10.1093/bioinformatics/btu170>.

996 81. A. Bankevich, *et al.*, SPAdes: A new genome assembly algorithm and its
997 applications to single-cell sequencing. *J. Comput. Biol.* (2012)
998 <https://doi.org/10.1089/cmb.2012.0021>.

999 82. D. Hyatt, *et al.*, Prodigal: prokaryotic gene recognition and translation initiation
1000 site identification. *BMC Bioinformatics* **11**, 119 (2010).

1001 83. T. M. Lowe, S. R. Eddy, TRNAscan-SE: A program for improved detection of
1002 transfer RNA genes in genomic sequence. *Nucleic Acids Res.* **25**, 955–964
1003 (1996).

1004 84. E. P. Nawrocki, “Structural RNA Homology Search and Alignment using
1005 Covariance Models.” (2009).

1006 85. Y. Huang, P. Gilna, W. Li, Identification of ribosomal RNA genes in metagenomic
1007 fragments. *Bioinformatics* **25**, 1338–1340 (2009).

1008 86. B. Buchfink, C. Xie, D. H. Huson, Fast and sensitive protein alignment using
1009 DIAMOND. *Nat. Methods* **12**, 59–60 (2015).

1010 87. R. L. Tatusov, *et al.*, The COG database: new developments in phylogenetic
1011 classification of proteins from complete genomes. *Nucleic Acids Res.* **29**, 22–8
1012 (2001).

1013 88. D. H. Haft, *et al.*, TIGRFAMs: a protein family resource for the functional
1014 identification of proteins. *Nucleic Acids Res.* **29**, 41–3 (2001).

1015 89. S. R. Eddy, Accelerated profile HMM searches. *PLoS Comput. Biol.* (2011)
1016 <https://doi.org/10.1371/journal.pcbi.1002195>.

1017 90. S. F. Altschul, *et al.*, Gapped BLAST and PSI-BLAST: A new generation of
1018 protein database search programs. *Nucleic Acids Res.* **25**, 3389–3402 (1997).

1019 91. M. Mirdita, *et al.*, UniClust databases of clustered and deeply annotated protein
1020 sequences and alignments. *Nucleic Acids Res.* (2017)
1021 <https://doi.org/10.1093/nar/gkw1081>.

1022 92. A. Gudýś, S. Deorowicz, QuickProbs 2: Towards rapid construction of high-
1023 quality alignments of large protein families. *Sci. Rep.* (2017)
1024 <https://doi.org/10.1038/srep41553>.

1025 93. A. Criscuolo, S. Gribaldo, BMGE (Block Mapping and Gathering with Entropy): A
1026 new software for selection of phylogenetic informative regions from multiple
1027 sequence alignments. *BMC Evol. Biol.* (2010) <https://doi.org/10.1186/1471-2148-10-210>.

1029 94. L. T. Nguyen, H. A. Schmidt, A. Von Haeseler, B. Q. Minh, IQ-TREE: A fast and
1030 effective stochastic algorithm for estimating maximum-likelihood phylogenies.
1031 *Mol. Biol. Evol.* (2015) <https://doi.org/10.1093/molbev/msu300>.

1032 95. L. Pritchard, R. H. Glover, S. Humphris, J. G. Elphinstone, I. K. Toth, Genomics
1033 and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant
1034 pathogens. *Anal. Methods* (2016) <https://doi.org/10.1039/c5ay02550h>.

1035 96. R. Overbeek, *et al.*, The subsystems approach to genome annotation and its use
1036 in the project to annotate 1000 genomes. *Nucleic Acids Res.* **33**, 5691–5702
1037 (2005).

1038 97. H. G. Drost, A. Gabel, I. Grosse, M. Quint, Evidence for active maintenance of
1039 phylotranscriptomic hourglass patterns in animal and plant embryogenesis. *Mol.*
1040 *Biol. Evol.* **32**, 1221–1231 (2015).

1041 98. J. B. Lubin, *et al.*, Host-Like carbohydrates promote bloodstream survival of
1042 *Vibrio vulnificus* in vivo. *Infect. Immun.* **83**, 3126–3136 (2015).

1043 99. C. Scarano, *et al.*, Antibiotic resistance of *Vibrio* species isolated from *Sparus*
1044 *aurata* reared in Italian mariculture. *New Microbiol.* (2014).

1045 100. F. Han, R. D. Walker, M. E. Janes, W. Prinyawiwatkul, B. Ge, Antimicrobial
1046 susceptibilities of *Vibrio parahaemolyticus* and *Vibrio vulnificus* isolates from
1047 Louisiana Gulf and retail raw oysters. *Appl. Environ. Microbiol.* (2007)
1048 <https://doi.org/10.1128/AEM.01116-07>.

1049 101. C. Baker-Austin, *et al.*, Multi-site analysis reveals widespread antibiotic
1050 resistance in the marine pathogen *Vibrio vulnificus*. *Microb. Ecol.* (2009)
1051 <https://doi.org/10.1007/s00248-008-9413-8>.

1052 102. CLSI, *M45. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of*
1053 *Infrequently Isolated or Fastidious Bacteria ; Proposed Guideline* (2015).

1054 103. R. W. Bogard, J. D. Oliver, Role of iron in human serum resistance of the clinical
1055 and environmental *Vibrio vulnificus* genotypes. *Appl. Environ. Microbiol.* (2007)
1056 <https://doi.org/10.1128/AEM.01551-07>.

1057 104. Environmental Monitoring Systems Laboratory, W. McDaniel, Methods for the
1058 Determination of Metals in Environmental Samples. *Methods Determ. Met.*
1059 *Environ. Samples* (1996).

1060 105. USEPA, Methods for the Determination of Metals in Environmental Sample,
1061 USEPA Office of Research and Development, 8/93. Cincinnati, OH, EPA 600/R-
1062 93/100s,. 1993 (2013).

1063 106. J. Sambrook, W. Russel, D, Molecular Cloning, 3-Volume Set : A Laboratory
1064 Manual. *Cold Spring Harboc Lab. Press* (2000).

1065 107. R. C. Edgar, Search and clustering orders of magnitude faster than BLAST.

1066 *Bioinformatics* **26**, 2460–2461 (2010).

1067 108. J. R. Cole, *et al.*, Ribosomal Database Project: Data and tools for high
1068 throughput rRNA analysis. *Nucleic Acids Res.* (2014)
1069 <https://doi.org/10.1093/nar/gkt1244>.

1070 109. S. R. Eddy, Multiple alignment using hidden Markov models. *Proc. Int. Conf.*
1071 *Intell. Syst. Mol. Biol.* (1995).

1072

1073