
Challenges and opportunities of advanced
gliomodulation technologies for excitation-inhibition
balance of brain networks
Keying Chen1,2, Kevin C Stieger1,2 and Takashi DY Kozai1,2,3,4,5

Available online at www.sciencedirect.com

ScienceDirect
Recent neuroscience studies have highlighted the critical role

of glial cells in information processing. This has increased the

demand for technologies that selectively modulate glial cells

that regulate the excitation-inhibition balance of neural network

function. Engineered technologies that modulate glial activity

may be necessary for precise tuning of neural network activity

in higher-order brain function. This perspective summarizes

how glial cells regulate excitation and inhibition of neural

circuits, highlights available technologies for glial modulation,

and discusses current challenges and potential opportunities

for glial engineering technologies.
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Introduction
While traditionally neurons have been considered solely

responsible for maintaining balance between excitation

and inhibition in the nervous system [1,2], recent evi-

dence highlights the crucial role of glia in regulating

neural network activity and neuronal health within the

brain [3]. Originally, glia were only considered to be the

‘glue’ that hold neurons in place in the brain [4]. How-

ever, glia are functionally integrated into the network to

precisely monitor and modulate neuronal excitability in
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brain circuits [5]. Emerging discoveries indicate that glial

cells offer a dynamic role across an array of information

processing for high-order functions [6�,7–9]. Therefore,

there is an increasing demand of cutting-edge tools spe-

cifically target glia-neuron, gliovascular-neuron, and even

glial subtype interactions to drive novel excitatory and

inhibitory neural circuit activity in neuroscience research

and clinical applications [10��,11]. This perspective

briefly summarizes the state-of-the-art knowledge about

glia-neuron interactions, how these interactions can be

modulated by advanced glial technologies, and current

engineering challenges and future development oppor-

tunities in this new multidisciplinary field of gliomodula-
tion technologies.

Glial modulation of brain network
Microglia can sense and regulate neuronal

hyperexcitability

a) Microglia normally surveil surrounding environment

and prune synaptic structures, which in turn change

connectivity patterns among neurons during normal acti-

vation. b) When networks receive hyper-excitable input,

microglia can sense extracellular ATP levels through

microglial purinergic receptor, P2Y12R, which in turns

triggers adenosine production through CD39 and CD73

on microglial surface. The microglial-dependent adeno-

sine binds to neuronal Gi/o-protein coupled adenosine A1

receptors (A1Rs), which suppresses hyper-excitatory neu-

ronal responses through A1R-mediated protein kinase A

(PKA) inhibition [6�,12,13��,14��]. Alternatively, they can

extend their processes to physically block presynaptic

GABAergic neurons causing stabilization of network

activity [15,16]. c) Pro-inflammatory microglia activation

and retraction of microglial processes can disrupt their

suppression of neuronal over excitability, resulting in

functional hyperexcitability [17].

Microglia are understood to regulate synaptic maturation

through elimination of synapses; however, they have also

received attention due to their critical influence on inhib-

itory signal transmission (Figure 1) [13��]. Ablation of

microglia disrupts inhibitory synaptic transmission critical

for neural development [18,19]. Additionally, because

microglia are highly motile cells, they can extend pro-

cesses and regulate synaptic transmission by physically

blocking or displacing synapses. For example, microglial

P2Y12 receptors detect extracellular ATP/adenosine,

indicative of excessive excitation, and displace
www.sciencedirect.com
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Microglia modulation of network communication.
presynaptic GABAergic neurons terminating on glutama-

tergic soma to stabilize network activity [15,16] This

evidence [15,20] supports the idea that microglia can fine

tune neuronal activity through regulation of GABAergic

transmission.

Recent evidence has also shown that microglia detect and

secrete neurotransmitters to maintain network communi-

cation balance and prevent hyperexcitability, such as

during seizures [12,13��,14��]. In healthy subjects, micro-

glia monitor the extracellular ATP released by synapses.

When microglia detect elevated excitatory input, they

extend processes toward active neuronal compartments

via ATP-dependent purinergic signaling and release

adenosine, reducing synaptic activity of nearby neurons

[13��,14��]. Furthermore, release of inflammatory TNF-a
by microglia increases type 1 metabotropic glutamate

receptor (mGluR) signaling, thereby potentiating neuro-

nal intrinsic excitability [17,21], demonstrating that

microglia can also modulate the excitation of nearby

neuronal activity.

Alterations in microglia activity can have consequential

effects on behavior. Activation of pro-inflammatory

microglia can lead to the retraction or redirection of

processes away from neurons, such as towards injured

or inflamed vascular structures [22]. In turn, changes in

microglial morphology could result in a loss of inhibition

of neurons by microglial processes and increase the

hyperexcitability of local neurons [22]. As expected,

pro-inflammatory activation of microglia has been shown

to increase the excitability of nearby neurons, including

increasing the frequency of action potentials as well as the

amplitude and frequency of excitatory postsynaptic cur-

rents (EPSPs) [17]. Behaviorally, microglia activation can

result in depression-like phenotypes or increase innate

fear responses [12,17] and suppressing microglia activity

by inhibiting colony-stimulating factor 1 receptor can

rescue neuronal hyperexcitation and behavioral
www.sciencedirect.com 
abnormalities [17,21]. Together, these findings suggest

that modulation of microglia activity can regulate neural

network function and behavior (Figure 2).

Astrocytes play a key role in maintaining network

excitation-inhibition balance

a) An astrocyte, and a pre-synaptic and post-synaptic

neuron form the tripartite synapse allowing glial modula-

tion of neuronal synaptic activity. b–c) Astrocytes respond

to many of the same neurotransmitters in diverse ways,

promoting inhibition (b) or excitation (c). (b) In particular,

astrocytes can release gliotransmitters, which can depress

presynaptic activity (ATP), or inhibit post-synaptic activ-

ity (GABA). c) Astrocytes can also promote excitation by

releasing glutamate to increase presynaptic excitatory

transmission or promote synaptic activity by acting on

the post-synaptic neuron. Importantly, these actions are

specific to brain regions, circuits, and the pattern of neural

activity.

Recently astrocytes have been recognized as critical

mediators of excitation-inhibition balance in higher-order

brain functions such as learning and memory [23��,24–26],
attention [27], compulsive behaviors [28��], sensory acu-

ity [29��], and plasticity [30��,31�,32–34]. In fact, the idea

that astrocytes are significantly involved in the integration

of neural activity and excitatory/inhibitory modulation

and the influence on behavior has been extensively dis-

cussed in recent excellent reviews [35–37]. Here, we

emphasize a few recent examples that highlight the

diversity of astrocyte involvement in the regulation of

neural activity and behavior.

Astrocytes sense GABAergic transmission through the

expression of GABA receptors (GABAA, GABAB), regu-

late synaptic GABA uptake through the expression of

GABA transporters (GAT-1, GAT-3) [38], and modulate

inhibitory activity via secretion of gliotransmitters [32].

Inhibiting astrocyte GAT-1 and GAT-3 results in an
Current Opinion in Biotechnology 2021, 72:112–120
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Figure 2
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Astrocytes play a dual role in network computations.
increase in GABAergic transmission, demonstrating that

astrocyte regulation of synaptic GABA can decrease

GABAergic transmission [39]. Additionally, inhibitory

activity was demonstrated to elicit GABAB-mediated

activation of astrocyte calcium activity and release of

glutamate onto presynaptic inhibitory neurons to amplify

GABAergic inhibition of pyramidal neurons [40]. Thus,

astrocyte activity can modulate inhibitory transmission in

diverse ways ultimately influencing behavior.

Astrocytes also modulate excitatory transmission through

similar mechanisms such as glutamate transporters and

exocytosis of other neuroactive substances. Importantly,

release of glutamate from astrocytes can act on either pre-

synaptic or post-synaptic neurons to increase glutamater-

gic signaling and excitability [34,41–43]. On the other

hand, GAT-3 activity increases astrocytic calcium

through the Na/Ca2+ exchanger inducing a release of

ATP/adenosine, which acts on presynaptic neurons to

reduce glutamate release and downregulate excitatory

transmission [44]. Therefore, astrocyte activity can both

increase and decrease excitatory transmission through

different mechanisms.

Astrocytic modulation of inhibitory and excitatory activity

has diverse influences on behavior. For example, obses-

sive compulsive behaviors increased in response to

increased activity of astrocytic GAT-3. Specifically,

decreasing calcium activity increased the expression of

GAT-3 and caused excessive grooming, demonstrating a

critical role for astrocyte-mediated GABA uptake in reg-

ulating behavior [28��]. Alternatively, sensory discrimina-

tion was impaired when astrocytic production of GABA or

release through Best-1 channels was blocked, suggesting

that astrocyte modulation of GABAergic activity is critical

for sensory processing [29��]. Additionally, astrocytes can

regulate learning and memory through their modulation
Current Opinion in Biotechnology 2021, 72:112–120 
of excitatory transmission. Specifically, in fear-condition-

ing paradigms, astrocytes release ATP/adenosine in

response to endocannabinoids, which depress excitatory

synapses via presynaptic adenosine (A1) receptors and

reduce fear expression [25]. Moreover, disruption of

astrocyte GABAb receptor expression in the prefrontal

cortex was demonstrated to impair goal-directed behavior

through deficits in working memory [45��]. Modulating

astrocyte activity with advanced biotechnologies has been

proven to uncover important roles for astrocytes in mod-

ulating behavior [10��,35,37], therefore similar discoveries

could be made regarding oligodendrocyte lineage cells

that have not been fully investigated.

Myelinating oligodendrocytes act as a positive

modulator of networks

a) Oligodendrocytes have large, direct contact with neu-

ronal compartments by myelin sheath, enabling saltatory

propagation of action potentials. Myelinating oligoden-

drocyte thus modulate spike conduction velocity and

support network computations. Additionally, activity-

dependent neuronal activation increases metabolite

transportation from myelin processes to axons through

myelinic channel and monocarboxylate transporters to

maintain transmission efficacy [46,47]. b) Hypermyelina-

tion is likely to preserve signal conduction efficacy [48]. c)

Oligodendrocyte injury and/or myelin loss impair signal

conduction quality in functional network with reduced

transmission velocity and fast signal fatigue [49��].

Oligodendrocytes are responsible for propagating infor-

mation transmission by insulating axons with myelin in

white matter and cortex (Figure 3) [50�]. Recently, some

oligodendrocytes have been shown to preferentially mye-

linate inhibitory neurons [51�] and thus modulate infor-

mation processing of inhibitory networks [52�]. Addition-

ally, oligodendrocyte precursor cells, which are
www.sciencedirect.com
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Figure 3
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Oligodendrocytes support relay of information in brain networks.
responsible for maintaining oligodendrocyte densities,

can be situated in close proximity to neuronal soma

forming specialized OPC-neuron interactions and can

receive direct synaptic communication from inhibitory

neurons. Importantly, potentiating GABAB receptors with

baclofen, or blocking GABAA receptors with picrotoxin,

increased the number of OPC-neuron contacts using

stereological quantification [53–56]. These results dem-

onstrate the myelinating glia can provide support on

inhibitory network computation.

Oligodendrocytes maintain significant myelin coverage

over excitatory axons and therefore are critical for modu-

lation of excitatory networks [57]. The conduction veloc-

ity of action potentials propagating along an axon is

increased in myelinated excitatory axons [57]. The diver-

sity of myelination profiles such as length, thickness,

spacing between myelin sheaths, contributes to the com-

plexity of network excitation [57]. Also, oligodendrocytes

transport metabolites or energy to nearby neurons via

myelin processes and is essential to sustain elevated firing

activity and detect subtle differences in sensory input,

especially during periods of elevated excitation [49��].
Additionally, oligodendrocytes can regulate neuronal

excitation by synthesizing glutamate [50�], the major

excitatory input to network communication.

Damage to oligodendrocytes and myelin have been asso-

ciated with dysfunction of processing sensory input that

discriminate sensory stimuli [49��]. Demyelination due to

oligodendrocyte loss or injury can result in impairments in

signal transmission such as increased signal decay rates,

impaired firing rates, and reduced sustainability of neu-

ronal firing [49��,50�,58,59]. Depleting oligodendrocyte-

specific metabolic support to neurons by mutating mono-

carboxylate transporter 1 receptor has demonstrated sim-

ilar but moderate signal firing rate and sustainability

impairment [44]. Overall, modulation of oligodendrocytes
www.sciencedirect.com 
with available neural technologies may regulate excit-

atory and inhibitory networks that contribute to both

gross and fine-tuning of behaviors.

Advanced glial engineering technologies
Although the concept of glial modulation and gliomodu-

lation have existed for decades [36,45��,60–63], techno-

logical limitations have impeded advancements in scien-

tific knowledge. In contrast to neural activity which can

be easily detected or evoked with an electrode, glial

activity has been much more difficult to detect and

manipulate [11]. The development of tools that can

provide deeper insight into the physiology of glial cells

will help to accelerate us towards a comprehensive under-

standing of their influence over neural activity and ulti-

mately aid targeted therapeutics. Recent advancements

in technologies to image, manipulate, and electrically

record-specific cellular activity have made tremendous

strides in shifting the perspective of astrocytes as homeo-

static regulators to important components of information

processing [35–37,64]. Applying these concepts to micro-

glia, oligodendrocytes, OPCs, and even pericytes or endo-

thelial cells is likely to open important avenues for

scientific advancement and therapeutic development.

Molecular scale modulation technologies

Although it resulted in substantial and long-lasting debate

[65], the identification of astrocyte calcium signaling in

response to neural activity led to exciting opportunities

and interest in the investigation of their dynamic integra-

tion and modulation of neural activity [66–72]. While the

topic has been extensively reviewed [37,65,70], improve-

ments with in vivo calcium imaging, such as with two-

photon microscopy [70,73], has provided insight into the

diverse calcium signals throughout the specialized func-

tional domains of astrocytes. In particular, these tools

enabled the identification of astrocyte calcium signaling

as an important effector in many physiological processes
Current Opinion in Biotechnology 2021, 72:112–120
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involving communication with neurons and influencing

behavior [35,38,69,71,74�,75]. Additionally, genetic and

molecular tools that can induce targeted increases in

astrocyte calcium through light activated ion channels

(e.g. channelrhodopsin [75]), or g-protein coupled recep-

tors (e.g. melanopsin [45��,64]), referred to as optoge-

netics [76], has revealed neuronal subtype-specific com-

munication [75,77,78], as well as an influential role in

goal-directed behaviors [23��]. Furthermore, the applica-

tion of designer receptors exclusively activated by

designer drugs (DREADDs, chemogenetics [79]), which

induce slower and longer-lasting amplification of astro-

cyte calcium through g-protein coupled signaling, has also

highlighted astrocyte roles in sensory evoked oscillatory

activity in the gamma range [74�] and fear expression [24]

(See Yu et al. [37] for deeper discussion). On the other

hand, decreasing astrocyte calcium by disrupting intra-

cellular calcium processes (IP3 pathway [38,80]) or

expressing proteins that act to extrude calcium

[28��,81�] further implicated astrocytes in modulating

inhibitory activity as well as obsessive-compulsive phe-

notypes in mice. Because of the increasing number of

studies employing these tools to investigate astrocyte

activity, parallel experiments in other non-neuronal cells

could lead to comparable break throughs [82].

While microglia usually have less spontaneous calcium

activity, evidence suggests that these signals regulate

critical functions such as motility, phenotype polarization,

cytokine/chemokines releases, receptor trafficking/diffu-

sion, neural circuit plasticity, neurological disorders, and

brain injuries [83]. In contrast, investigation of calcium

signaling in oligodendrocytes and OPCs has only recently

begun [84]. With various receptors and channels that

allow calcium flux, oligodendrocyte lineage cells could

experience intracellular calcium elevation in response to

neuronal activity [84], leading to activity-driven myelina-

tion that alters information conduction in functional net-

works. While some microglial and oligodendroglia cal-

cium activity has been investigated in vitro and in situ
[83,84], there is limited number of in vivo studies that

utilize the advanced intracellular modulation technolo-

gies to explore the roles of microglia and oligodendrocyte

lineage cells in modulation of excitation-inhibition bal-

ance of functional networks. With pioneering applications

of optogenetics and chemogenetics that enable selective

manipulation of microglia [85�,86��], OPC [87] and peri-

cytes [88] and the growing catalogue of genetically

encoded fluorescent indicators [89], these technologies

could be further used to study microglia, oligodendro-

cytes, OPC, and even gliovascular or mural cell involve-

ment in circuit modulation in normal and pathological

conditions [82,90].

Cellular scale modulation technologies

While tools that aim to modulate astrocyte calcium activ-

ity have provided a greater appreciation beyond their
Current Opinion in Biotechnology 2021, 72:112–120 
homeostatic roles, advanced technologies that allow finer

interrogation of electrical and chemical signals will pro-

vide a more comprehensive understanding of glial com-

munication with neurons [10��,91��]. In particular, the use

of advanced, soft and ultrasmall electrode arrays such as

gold-coated silicon nanowires [92��], or graphene inter-

faces [93��] have been proposed as a strategy for uncover-

ing astrocyte-neuron coupling, but this has previously

been limited by technological constraints [10��]. Impor-

tantly, these newly developed technologies also allow

simultaneous imaging and electrophysiology, thus pro-

viding an opportunity for a multi-modal paradigm that can

establish a more comprehensive understanding of these

underappreciated cells [94–96]. The knowledge gained

from these ‘glial interfaces’ could help understand the

critical role of not only of astrocytes, but also of many

other non-neuronal cells in guiding therapeutic outcomes

for neuromodulation [10��,96,97��].

The knowledge gained would also contribute to next-

generation designs of stimulation paradigms that regulate

glia-neuron interactions to achieve excitatory and/or

inhibitory neural network modulation. Electrical brain

stimulation can drive cellular activity through activation

of voltage-gated receptors and channels, which are also

expressed on glia [38,98]. For example, Monai et al. [97��],
recently demonstrated that a non-invasive brain stimula-

tion paradigm elicited astrocyte activity with limited

influence on immediate neural activation. Importantly,

the authors suggested that this intervention modulated

the cortical metaplasticity through astrocytes, ultimately

improving depression phenotypes in mice [97��,99].
Thus, therapeutic electrical neuromodulation paradigms

could be improved by utilizing these newly developed

micro-scale and nano-scale tools to characterize the effect

of stimulation amplitude, frequency, duration, and tem-

poral pattern on electrical and calcium signals in glia.

Opportunities for glial engineering
technologies and glial modulation
Current limitations of glial engineering tools presented

here have been widely discussed elsewhere [37]. In

particular, these tools can be limited by poor spatial or

temporal resolution as well as selectivity for subcellular

structures or cellular subtypes. For example, DREADDs

are activated through systemic administration of a specific

drug that takes minutes to take effect and can last for

hours [37,79]. Additionally, there is functional diversity

within glial cells with phenotypes that have overlapping

genetic profiles [37,38]. Thus, broad modulation of glial

subtypes serving different functions is likely to add

complex influence over neural network activity [10��].
Moreover, electrical stimulation is well-understood to be

non-specific, influencing many cells within the region of

activation making it difficult to disentangle contributions

to the therapeutic benefits of neuromodulation. However,

these limitations present great opportunities for
www.sciencedirect.com
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engineers and technologists. Some of these limitations

could be addressed with recent advancements in materi-

als and genetic tools [10��,92��]. For example, Maiolo et al.
discuss how smaller glial engineering technologies could

help target recording or stimulation of localized structures

while reducing the inflammatory reactivity of cells

through improved biocompatibility [10��].

While emerging glial technologies have provided deeper

insight into the role of glia-neuron communication, many

unanswered questions remain. These unanswered ques-

tions present an expansive research frontier ripe for

scientists and engineering researchers to explore mecha-

nisms for modulating glial activity and regulating glial-

neural interactions. Because of the fact that glial cells are

important mediators of neuronal network activity and

have large variability in different brain regions disorders

[15,100–103,104��], it is important to identify how dis-

ruptions in circuit-specific glial function influence neuro-

nal network communication and contribute to neurologi-

cal dysfunctions. For example, there is remarkable

diversity within astrocyte RNA expression across brain

areas, and conditional deletion of a single transcriptional

factor can impair hippocampal plasticity as well as learn-

ing and memory [30��,104��]. Glial engineering tools that

identify and target specialized glial functions across dif-

ferent circuits would begin to close the frontier of pathol-

ogies of neurological disorders and potentially aid the

development of novel therapeutic paradigms and next-

generation glial technologies. In other words, discoveries

at the forefront of glial modulation of network excitation

and inhibition will generate new opportunities not only

for scientists to explore glial functions but also for engi-

neers to develop advanced tools to more preciously con-

trol glial function in brain circuits.

In turn, on the translational side, basic science discoveries

made by invasive gliomodulation technologies will pro-

vide the scientific foundations for the development of

non-invasive or minimally invasive therapeutic treat-

ment. For example, Iaccarino et al. initially utilized opto-

genetics to understand microglia-neuron interactions

[105]. Based on their discoveries, they applied a non-

invasive 40 Hz visual stimulation paradigm to rebalance

network excitation/inhibition, reduce inflammatory acti-

vation of microglia and restore fast-spiking inhibitory

neuron activity [105]. Thus, investigating glia interactions

with neuronal network excitation/inhibition has begun to

provide considerable insight necessary to engineer novel

glial intervention strategies to address neurological dis-

orders and brain injuries.

Conclusion
Despite herculean efforts by neuroscientists and neural

engineers to fully understand the brain and the neural

basis of cognition, inexplicable and sometimes seemingly

contradictory results continue to generate more
www.sciencedirect.com 
questions. There is mounting evidence that glial physi-

ology modulates excitatory and inhibitory neuronal activ-

ity challenging the neuron-centric view of animal behav-

ior and hinting that these are at least several of the missing

keys for opening an unexplored avenue for modulating

neural network function. Exploring this frontier at the

intersection of neurons, glia, and technologies will require

an enormous collaboration of a tremendous number of

pioneering scientists and engineers from vast multidisci-

plinary backgrounds. Emerging gliomodulation technol-

ogies such as optogenetics, DREADDS, and electrical

stimulation and recording technologies, such as geneti-

cally encoded fluorescent indicators, viral vectors, and in
vivo multiphoton microscopy, graphene-glial interfaces

allow for revolutionary access to research on the complex-

ity and depth of glia-neuron interactions and engineering

of the next-generation glial technologies and therapies.

Taken together, these technologies present an opportu-

nity to uncover foundational basic science discoveries

related to glial modulation of neural activity and to

innovate novel investigative tools and therapeutic tech-

nologies for treating neurological diseases and cognitive

dysfunctions.
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