
Reservoir: Named Data for Pervasive Computation
Reuse at the Network Edge

Md Washik Al Azad
University of Nebraska at Omaha

malazad@unomaha.edu

Spyridon Mastorakis
University of Nebraska at Omaha

smastorakis@unomaha.edu

Abstract—In edge computing use cases (e.g., smart cities),
where several users and devices may be in close proximity to each
other, computational tasks with similar input data for the same
services (e.g., image or video annotation) may be offloaded to the
edge. The execution of such tasks often yields the same results
(output) and thus duplicate (redundant) computation. Based on
this observation, prior work has advocated for “computation
reuse”, a paradigm where the results of previously executed tasks
are stored at the edge and are reused to satisfy incoming tasks
with similar input data, instead of executing these incoming tasks
from scratch. However, realizing computation reuse in practical
edge computing deployments, where services may be offered by
multiple (distributed) edge nodes (servers) for scalability and
fault tolerance, is still largely unexplored. To tackle this challenge,
in this paper, we present Reservoir, a framework to enable
pervasive computation reuse at the edge, while imposing marginal
overheads on user devices and the operation of the edge network
infrastructure. Reservoir takes advantage of Locality Sensitive
Hashing (LSH) and runs on top of Named-Data Networking
(NDN), extending the NDN architecture for the realization of
the computation reuse semantics in the network. Our evaluation
demonstrated that Reservoir can reuse computation with up to
an almost perfect accuracy, achieving 4.25-21.34× lower task
completion times compared to cases without computation reuse.

Index Terms—Edge Computing, Computation Reuse, Locality
Sensitive Hashing, Named-Data Networking

I. INTRODUCTION

Edge computing has emerged as a paradigm that offers
low-latency access to computing resources for computation-
intensive, latency-sensitive applications (e.g., Augmented Re-
ality) [1]. Edge computing use cases (e.g., smart cities) may in-
volve several users and devices in close proximity that offload
tasks with similar input data for the same services (e.g., image
or video annotation) to computing resources at the network
edge [2]. The execution of tasks for the same service(s) and
with similar input data often yields the same results (output),
thus resulting in duplicate (redundant) computation [2]–[4].
This observation enables the reuse of computation, so that the
results of executed tasks are stored by edge nodes (servers) in
order to be reused and satisfy “similar” incoming tasks (i.e.,
tasks for the same service(s) with similar input data) in the
future, instead of executing these incoming tasks from scratch.

Prior work has explored computation reuse, showing that it
can substantially reduce the execution of duplicate computa-
tion and speed up the execution of tasks at the edge [2], [3],
[5]. The vast majority of prior work has assumed that similar
tasks will be offloaded to the same Edge Node (EN), so that
the results of previously executed similar tasks can be reused.
However, the networking mechanisms to enable computation
reuse in practical edge computing deployments, where each

service may be offered by multiple ENs in a distributed manner
for fault tolerance, scalability, and load-balancing purposes,
are still largely unexplored. To offer computation reuse in
such deployments, the edge network infrastructure needs to be
aware of the computation reuse semantics in order to identify
similar tasks and forward them to the same EN(s). At the
same time, given the potential resource-constrained nature of
user devices as well as the strict low-latency requirements and
potentially critical nature of applications, the realization of
computation reuse must: (i) offer high confidence about the
accuracy of the reused results (i.e., the reused results must
be the same as the results of the execution of an incoming
task from scratch); and (ii) impose marginal overheads on user
devices and the operation of the edge network infrastructure.

To tackle these challenges, in this paper, we present Reser-
voir1, a framework that aims to achieve pervasive computation
reuse at the network edge. Reservoir runs on top of Named-
Data Networking (NDN) [6], capitalizing on the data-centric
nature and semantically meaningful naming of the NDN com-
munication model. At the same time, Reservoir extends the
NDN architecture and takes advantage of Locality Sensitive
Hashing (LSH) mechanisms [7], [8] for the realization of
the computation reuse semantics directly in the edge network
infrastructure. The contributions of our work are the following:
• We present the Reservoir design, which features unified
mechanisms for task naming, the light-weight identification of
similar tasks in the network, and the forwarding of such tasks
towards the same ENs, so that applications can capitalize on
the benefits of computation reuse.
• We implement a Reservoir prototype, which we evaluate
through a study that involves the assessment of its components
in isolation, real-world experiments of the Reservoir design
as a whole, and a network simulation study of the Reservoir
prototype. Our evaluation results demonstrate that Reservoir
incurs marginal performance overheads per offloaded task on
user devices (less than 1.7ms) and the network forwarding
operation (less than 5µs). Reservoir also reuses computation
with an almost perfect accuracy (up to 100% in certain cases),
achieving 4.25-21.34× lower task completion times compared
to cases where computation reuse is not applied.

The rest of our paper is organized as follows: in Section II,
we give a brief background on NDN and LSH, and present
prior related work. In Section III, we highlight application use

1In the same manner as a natural or artificial lake that stores water for
future supply, ENs in Reservoir store the execution results of tasks in order
to reuse them and satisfy incoming tasks with similar input data for the same
service(s) in the future without executing these incoming tasks from scratch.



cases that can benefit from computation reuse and we motivate
the Reservoir framework. In Section IV, we present the design
of Reservoir, and, in Section V, we present the evaluation of
Reservoir. Finally, in Section VI, we conclude our paper.

II. BACKGROUND AND PRIOR RELATED WORK

Named-Data Networking: Named-Data Networking
(NDN) [6] features a receiver-driven, name-based
communication model. In NDN, data consumer applications
send requests for data, called Interest packets (or Interests
for short). Interests based on their names are forwarded by
the NDN network towards data producer applications, which
respond with Data packets. Each Data packet contains the
requested data and is cryptograhically signed by its producer,
while it also carries the producer’s signature at rest and in
transit across the network.

The NDN network consists of NDN forwarders [9], which
forward Interest packets based on their names from consumers
towards producers. To achieve that, each NDN forwarder is
equipped with three main data structures: (i) a Forwarding
Information Based (FIB), which contains entries of name
prefixes along with one or more outgoing interfaces, and it is
used for Interest forwarding purposes; (ii) a Pending Interest
Table (PIT), which contains Interests that have been recently
forwarded, but have yet to retrieve the corresponding Data
packets; and (iii) a Content Store (CS), which caches retrieved
Data packets to satisfy future Interests for data with the same
name. Each device (e.g., server, mobile phone) running a
consumer or a producer application may also run an NDN
forwarder instance locally, which enables communication over
NDN. The NDN network is stateful: each Interest leaves
state in the PIT of NDN forwarders, while a Data packet
satisfies the state left by the corresponding Interest, following
the reverse network path of the corresponding Interest back
to the requesting consumer(s). If an Interest I1 is received
by an NDN forwarder while an Interest I2 with the same
name currently exists in the forwarder’s PIT (pending Interest),
I1 will be aggregated with the existing PIT entry and will
not be forwarded towards the producer. Once the requested
Data packet is received by the forwarder, this Data packet
will satisfy both I1 and I2. Finally, this Data packet will be
forwarded back to all requesting consumers.
Locality Sensitive Hashing: Locality Sensitive Hashing
(LSH) is an algorithmic technique, where similar data items
are hashed with high probability in the same bucket(s) of a
hash table [10]. LSH is used as a mechanism to search for
the k-nearest neighbors of an incoming item i by applying
a hash function h to i and using the resulting hash h(i) as
the index of the bucket(s) of a hash table to be searched
for the nearest neighbors of i. To improve the accuracy of
the search process, given the high-dimensionality of certain
item types (e.g., images, videos), a family of hash functions
h1, h2, ..., hn may be applied to incoming items, where the
resulting hash of each function is used as the index of a
different hash table [10]–[12]. However, such approaches may
require the maintenance of a large number of hash tables (up
to more than a hundred hash tables) [13]. To avoid the need
for maintaining large numbers of hash tables and make the
use of LSH practical, multi-probe LSH approaches have been

proposed [7], [8]. In multi-probe LSH, a small number of
hash tables needs to be maintained, while multiple buckets of
each table are “probed” (searched), which are likely to contain
similar items.

Computation reuse in edge computing research: The con-
cept of computation reuse has been recently explored to speed
up the execution of tasks at the edge. Lee et al. performed
an empirical evaluation of applying computation reuse in the
context of different edge computing applications, such as face
recognition and matrix multiplication [3]. Guo et al. proposed
Potluck to reuse the results of tasks with similar inputs across
different applications running on the same device [5], while
they also proposed FoggyCache to achieve the reuse of compu-
tational task results across different devices [2]. In addition,
Drolia et al. proposed Cachier, a system that uses edge as
a specialized cache for recognition applications and applies
optimization techniques to minimize task execution times,
such as leveraging the spatiotemporal locality of tasks, offline
analysis of edge services/applications, and online estimates
of network conditions [14]. Recently, Meng et al. designed
Coterie to take advantage of the similarity among background
environment frames in multi-player Virtual Reality and pro-
posed a technique to increase the similarity among these
frames [15]. In NDN, Mastorakis et al. proposed ICedge, an
edge computing framework for the adaptive offloading and
forwarding of tasks towards edge computing resources [16]. In
addition, ICedge proposed a preliminary design to facilitate the
reuse of computation through NDN naming and forwarding.

How does Reservoir differ from prior work? As we sum-
marize in Table I, the vast majority of prior work: (i) achieves
reuse only at user devices or ENs; and (ii) assumes that each
service will be offered by a single EN or that similar tasks will
be offloaded to the same EN(s), so that the results of previously
executed tasks can be reused. However, in practical edge
computing deployments, a service may be offered by multiple
ENs in a distributed fashion for scalability, fault tolerance,
and load balancing purposes. Systems, such as Potluck and
Cachier, have primarily focused on cache optimization mech-
anisms, while systems such as Coterie are application-specific.
ICedge offers the means for the adaptive forwarding of tasks
towards multiple ENs, so that computation reuse is facilitated.
However, in ICedge, NDN forwarders need to process tasks
offloaded by each application in a different way, which needs
to be determined by application developers. This makes task
forwarding complicated, incurring task processing/forwarding
delays. At the same time, ICedge does not utilize inherent
features of the NDN architecture, such as in-network caching,
so that similar tasks can reuse results that may be cached in the
edge network, without the need to be forwarded at all to ENs.
To this end, Reservoir proposes a universal design that can be
used by all applications at the network edge, exploiting inher-
ent features of the NDN architecture and extending the NDN
architectural design. Reservoir includes unified mechanisms
for task naming, the light-weight identification of similar tasks
in the network, and the forwarding of such tasks towards the
same ENs, so that applications can capitalize on the benefits
of computation reuse, while incurring marginal overheads on
user devices and the network performance.



TABLE I: Design properties of Reservoir in comparison to prior related work (Y: Yes, N: No, L: Limited).

Cachier Potluck FoggyCache Coterie ICedge Reservoir
Reuse at

user devices N Y N Y L Y

Reuse in
edge network N N N N L Y

Reuse at ENs L N Y N Y Y
Supports practical
edge computing

deployments
N N N N L Y

III. USE CASES AND MOTIVATION

A. Computation Reuse Use Cases

To highlight the need for computation reuse, we present
three use cases below.
Traffic monitoring in a smart city: Let us consider a video
surveillance use case (Figure 1), where cameras capture traffic
snapshots in a smart city for traffic management purposes.
Such cameras may have snapshot (frame) capture rates rang-
ing from a snapshot every couple of seconds up to several
snapshots per second, while they may also rotate to capture
snapshots across their full capture width. For example, a
camera in Figure 1 may rotate to estimate the traffic volume for
all the lanes travelling in the same direction of an intersection,
Consecutive camera snapshots, which may be considerably
similar, are offloaded to an EN, so that the number of cars
is detected and the traffic volume is estimated. As a result,
executing a car detection service on consecutive snapshots
(e.g., snapshots n − 1 and n) may yield the same execution
results. To this end, there is no need to execute the service
from scratch for snapshot n, but we can rather reuse the results
of service execution for snapshot n − 1 (i.e., the previous
snapshot). Even if the camera is stable (does not rotate), with
capture rates up to several snapshots per second, it is likely
that consecutive snapshots will still be considerably similar.
In addition to having an EN reusing the execution results of
previously offloaded snapshots, the camera itself can cache
the results of previous snapshots (if its resources allow), so
that they are reused locally for consecutive (similar) snapshots,
without the need to offload these snapshots at the edge.
Cognitive assistance application: Let us consider a cognitive
assistance application, which enables visual search by identi-
fying objects in scenes captured by Augmented Reality (AR)
headsets or pictures taken by mobile phones. For example,
users exploring a city may capture scenes of famous sights
with their AR headsets or take pictures of sights with their mo-
bile phones to acquire more information/content about these
sights, such as podcasts, videos, and the sights’ history. In this
context, users exploring New York may capture scenes or take
pictures of the Statue of Liberty (e.g., from different angles
or distances) and offload these scenes/pictures as the inputs of
tasks for a service at the edge, which identifies the sight and
returns information/content about it. These scenes/pictures are
similar, thus yielding the same execution results.
Smart homes equipped with Internet of Things (IoT):
Let us consider a virtual assistant application in smart homes
equipped with IoT devices. Such an application may require
speech identification, so that residents can control the IoT
devices through voice commands. Residents of the same or
nearby smart homes may invoke semantically similar com-

mands that result in the same action (e.g., turning on the
lights in a room). The processing output among semantically
similar commands can be reused/shared without the need to
repeatedly run a speech identification service at the edge for
all the semantically similar commands that residents invoke.

In all previous use cases, a massive number of devices may
offload large numbers of similar tasks at the edge. For exam-
ple, certain cities in China are estimated to have up to 2.5M
CCTV cameras each [17], while major cities in Europe and the
US are also estimated to have several tens or even hundreds of
thousands of CCTV cameras [17], [18]. Popular sights around
the world attract several millions of visitors annually and up to
tens of thousands of visitors daily. For example, the Statue of
Liberty attracts about 4.5M visitors annually and about 10K
visitors daily [19], while the Louvre museum attracts 10M
visitors annually and about 15K visitors per day, containing
more than 380K objects and displaying 35K works of art [20].
At the same time, the number of IoT devices is expected to
reach 75 billions by 2025 [21]. Such use cases may result
in the execution of massive amounts of duplicate (redundant)
computation, since offloaded tasks may include similar inputs.
To this end, computation reuse can result in: (i) eliminating the
execution of duplicate computation; (ii) reducing the execution
times of tasks; and (iii) reducing the usage of computing
resources at the edge and ensuring their effective utilization.

We acknowledge that computation reuse may have security
and privacy implications, which deserve further investigation.
However, in this paper, we do not focus on such implications,
but we rather take a first step to investigate whether computa-
tion reuse as a concept can be achieved in practical edge com-
puting deployments. We further acknowledge that computation
reuse may be effective in use cases, where temporal, spatial, or
semantic correlation exists between the input data of offloaded
tasks. However, not all use cases/applications exhibit the same
degrees of correlation between the input data of their offloaded
tasks (or they might exhibit minor correlations overall). There
can also be use cases/applications, where minor differences
in the input data may yield different execution results (e.g.,
cryptographic operations). Reservoir can accommodate task
input data with different degrees of correlation (as we present
in Section V), while it can also accommodate (as we discuss in
Section IV): (i) use cases with negligible correlation between
task input data; and (ii) use cases, where minor differences in
the input data may yield different execution results.

B. Reservoir Motivation

Let us consider the use cases we described above in the
context of a practical edge computing deployment, where
services may be offered by multiple available ENs. In the
traffic monitoring use case, the execution results for similar



Edge Computing Node

s(n)

Snapshot 1

Snapshot 2

Snapshot n
...

  

Snapshot n 

Reuse s(n-1) 

s(): Car
Detection
Service

Execute s(n)
from scratch

Fig. 1: A video surveillance use case, where traffic snapshots
are captured in a smart city for traffic management purposes.

snapshots may be cached and reused directly by a CCTV
camera. However, this may not be possible, since CCTV
cameras have limited cache/storage resources, thus being able
to store up to a certain number of tasks. In this case, unless
similar snapshots are forwarded by the edge network towards
the same EN, the reuse of computation may not be possible.
For example, in the scenario of Figure 1, if snapshot n − 1
is forwarded to EN1, while snapshot n is forwarded to EN2

(EN1 and EN2 both offer the car detection service), reuse
will not be possible. The same applies to the example of the
cognitive assistance application, where pictures depicting the
same sight taken by different visitors need to be forwarded
towards the same EN for computation reuse to be possible,
and the virtual assistant application, where contextually similar
voice commands invoked by residents of neighboring smart
homes need to be forwarded towards the same EN. To this
end, a framework like Reservoir is needed to achieve pervasive
computation reuse on behalf of applications in such practical
edge computing deployments.
Why do we realize Reservoir over NDN: NDN offers a com-
munication model that makes the network directly aware of
the communication context, since packets carry semantically
meaningful names. Reservoir builds on top of and extends
NDN naming and forwarding combined with LSH to: (i)
make the network aware of the computation reuse semantics;
(ii) enable the identification of similar tasks in the network
in a light-weight manner; and (iii) enable the forwarding of
tasks in a “computation reuse aware” fashion with nominal
performance overhead, so that similar tasks are forwarded
towards the same ENs, facilitating the reuse of computation.

IV. Reservoir DESIGN

A. Design Assumptions, Overview, and Goals

We assume the existence of edge networks
(“cloudlets”) [22], which consist of ENs and NDN forwarders.
The ENs are server-class nodes with computing and storage
resources, and offer a set of services (e.g., object recognition,
face detection) to users. ENs may either be a single hop
(e.g., directly attached to LTE/5G base stations) or a few
hops away from users (e.g., at the edge of the core network).
Users offload tasks, which are forwarded by NDN forwarders
towards the ENs of an edge network. Each task invokes one
of the offered services, while it may also carry input data to

1. Users apply locality 
sensitive hash functions 

to task input data and 
offload tasks

2. Reuse-aware 
forwarding of offloaded 

tasks by the NDN 
network towards ENs

3. ENs search for 
similar previously 

executed tasks and 
reuse execution results

Fig. 2: Workflow of the Reservoir operation.

be passed to the invoked service for its execution (e.g., an
object detection service may expect an image as input data).
Each EN and user device have a name prefix, which is used
for direct communication with this specific EN or device.

The workflow of the Reservoir operation is illustrated in
Figure 2. In Reservoir, a task is represented as a request
(Interest packet) that identifies the service to be invoked in its
name. First, users apply locality sensitive hash functions to the
input data of a task and attach the resulting hash to the name
of the Interest. As a result, tasks that invoke the same service
with similar inputs are likely to have identical names, thus
being able to: (i) reuse results of similar previously executed
tasks that might be cached in the CS of NDN forwarders;
and (ii) get aggregated in the network if a similar task is
currently pending in the PIT of NDN forwarders. Each user
device also runs a local NDN forwarder instance, thus it can
cache the results of previously executed tasks for reuse in
its local CS and aggregate subsequent similar tasks in its
local PIT depending on the availability of its resources. If (i)
and (ii) are not possible, offloaded tasks will be forwarded
towards ENs by NDN forwarders in a “computation-reuse
aware” manner, so that similar tasks are forwarded towards
the same EN to facilitate the reuse of the execution results
among similar tasks. To make NDN forwarders aware of
the semantics of computation reuse, we extend their Interest
forwarding pipeline by introducing a reuse FIB (rFIB) data
structure (Figure 5), which stores reuse-related information
in the network. Finally, once a task tnew is received by
an EN, LSH will enable the EN to effectively search for a
previously executed task tprevious of the same service, so that
the similarity between the input data of tnew and tprevious
exceeds a certain similarity threshold. If such a task tprevious
is found, the EN will reuse the results of tprevious, otherwise,
the EN will execute tnew from scratch.

Overall, the goal of Reservoir is not only to facilitate the
reuse of computation at the network edge, but also to:
• Impose nominal performance overhead on user devices
for receiving the benefits of computation reuse.
• Impose nominal performance overhead on the NDN
network for the identification and forwarding of similar tasks
in a reuse aware manner.
• Enable ENs to find the execution results of previously
executed similar tasks as quickly as possible.

B. Task Namespace Design

As we mentioned in Section IV-A, a task is represented
as an Interest packet. Each task has a name “/<service-
name>/task/<hash-of-input>”. The first name component iden-
tifies the service to be invoked by a task, the second component
is the keyword “task”, while the third component is the
resulting hash after applying a locality sensitive hash function
to the task input data. If a family of such hash functions needs
to be applied to the input data, the resulting hashes will be
concatenated and their concatenation will be attached as the



task’s third name component. For example, a task with a name
“/OpenPose/task/6E810F” invokes the OpenPose service [23]
with 6E810F being the hash of the task’s input data. This
Interest may additionally carry in its “application parameters”
field [24]: (i) a deadline δ indicating the maximum latency that
a task can tolerate until its execution results are returned to
users; (ii) a similarity threshold, which the similarity between
the input data of the incoming task tnew and a previously
executed task tprevious for the same service needs to exceed,
so that the results of tprevious are reused for the execution
of tnew. This threshold can be determined by applications
depending on their requirements (we further discuss that in
Section IV-E); and (iii) the actual task input data to be passed
to the invoked service. For input data of large sizes that cannot
fit into a single Interest packet, we present a more sophisticated
input passing mechanism in Section IV-C.

This namespace enables Reservoir to capitalize on the NDN
architectural features of in-network caching and Interest aggre-
gation, thus limiting the number of tasks that are forwarded
to ENs and the load of ENs. Reservoir is able to: (i) retrieve
execution results for similar tasks that may be cached in the
NDN network or user devices, so that such tasks may not
need to be forwarded to ENs for reuse or execution from
scratch; and (ii) aggregate similar tasks that are simultaneously
offloaded in the NDN network or on user devices, so that a
single task, among all the similar tasks, is forwarded to an
EN, while the execution results are returned to all requesting
users/devices. These features are a consequence of the fact
that applying locality sensitive hash functions to similar data
is likely to result in the same hashes, so that tasks for the same
service and similar input data may have the same names.

C. Task Offloading Mechanisms
We present the design of our task offloading mechanism in

Figure 3 under different scenarios, where a task is forwarded
to an EN (no cached results are found in the network or user
devices). In Figure 3a, a task is offloaded by a user and is
forwarded to an EN by the NDN network. The task is repre-
sented as an Interest following the namespace of Section IV-B.
The EN receives the task and determines whether it has stored
results of previously executed similar tasks that can be reused
(whether the similarity between the input of the incoming task
and the input of previous tasks for the same service exceeds a
certain threshold). The EN is able to find a matching previous
task and returns its results in a Data packet to the user.

In Figure 3b, the EN receives a task from a user and
searches for a previous task to reuse, however, a task to be
reused is not found. In this case, the EN will respond with
a Data packet containing: (i) an estimate of the amount of
time needed for the execution of the task, called Time To
Completion (TTC); and (ii) the name prefix of the EN. To
be able to estimate TTC, ENs maintain statistics about the
execution of the services over time. Based on this Interest-Data
exchange, the user estimates the Round Trip Time (RTT) to the
EN and sends an Interest with a name “/<EN-prefix/<service-
name>/task/<hash-of-input>” to request the task execution
results from the EN after a time interval equal to TCC-RTT.
The first component of this Interest’s name refers to the name
prefix of the EN executing the task (ensuring that the Interest
is forwarded to the right EN), the second one to the invoked

service, the third one to the keyword “task”, and the last one
to the locality sensitive hash of the task input data. Once the
EN receives this Interest and the task execution results become
available, the EN sends the results back to the user.

In Figure 3c, we present the offloading mechanism in cases
of large task input data sizes. In such cases, the EN requests
the input data from the user by sending one or more Interests
(depending on the input data size) to the user, so that the input
data is passed to the EN. To achieve that, the user attaches
to the initial task sent to the EN (e.g., in the “application
parameters” field of this Interest): (i) the estimated size of the
input; and (ii) the name prefix of the user device. Subsequently,
the EN will use (i) to determine the number of Interests to be
sent for the retrieval of the input data and (ii) to communicate
with the user directly. Once the input is passed to the EN, the
task execution will begin and the user will retrieve the results
once they are available in the same manner as in Figure 3b.
Design tradeoffs: The design of the offloading mechanism
involves several tradeoffs. First, this mechanism adopts a pull-
based model for passing the task input data from users to
ENs and for retrieving the task execution results from ENs
in accordance with the underlying pull-based NDN commu-
nication model. This may result in additional delay during
the offloading process. In cases where this delay cannot be
tolerated, the input data can be attached to the “application
parameters” field of Interests and be sent (pushed) from the
user to the EN, while the execution results can be also attached
to the “application parameters” field of an Interest and be sent
from the EN to the user as soon as they become available. This
may also address issues related to the inaccurate estimation of
TTC by ENs, which we further discuss below, relaxing the
need for accurate TTC estimates. Second, ENs estimate TTC
and users send Interests to retrieve the execution results right
when the results become available in order to minimize the
time that pending Interests (state) need to be maintained in
the PIT of NDN forwarders. Alternatively, users could send
an Interest for the execution results once the task execution
begins, which will stay pending in the network until the results
become available. This increases the amount of state that needs
to be maintained by the network, but relaxes the need for
accurate TTC estimates by ENs. Third, in cases that the TTC
estimation is not accurate, users may request the results before
or considerably after they become available. If users request
the results before they are available, ENs can respond with an
updated TTC estimation. If ENs have the results earlier than
the estimated TTC, they can proactively notify users about the
earlier availability of the results. Finally, for tasks with large
data inputs, the data inputs are passed to ENs only if reuse is
not possible. This reduces the burden on the network, since
input data is only transferred to ENs if necessary, however, it
requires an extra RTT for passing the task input data to ENs.

D. Realizing Reuse Awareness in the Network
The edge network needs to be able to identify and forward

similar tasks towards the same EN, so that computation reuse
is facilitated. To this end, NDN forwarders need to be aware
of the semantics of computation reuse. This is achieved by
introducing a reuse FIB (rFIB) data structure (Figure 4) and
by extending the legacy NDN forwarding pipeline of Interests
(Figure 5). rFIB contains entries that consist of: (i) the name



User EN
Task (I)

Results (D)

Reuse 
search. 
Match 
found.

(a) Computation reuse at the EN.

User EN

Reuse 
search. 
Match not 
found.

Request 
Results (I)

Task (I)

TTC-Input Complete (D)

TT
C

 - 
R

TT

Ta
sk

 
ex

ec
ut

io
n

Results (D)

(b) Execution from scratch at the EN.

User EN
Reuse 
search. 
Match not 
found.

Request 
Results (I)

Task (I)

TTC-Input Pending (D)

TT
C

Ta
sk

 
ex

ec
ut

io
n

Results (D)

Request Inputn (I)

Inputn (D)

Input1 (D)...

Request Input1 (I) ...

(c) Execution from scratch at the EN (large
size of task input data).

Fig. 3: Reservoir task offloading mechanism design (I: Interest packet, D: Data packet).

of a service s; (ii) a range of LSH bucket indices that are
handled by each EN that offers s; (iii) the name prefix of the
EN(s) offering s; (iv) the outgoing interface(s) towards each
EN offering s; and (v) the size (in bytes) of the index used by
LSH (hash) tables, so that forwarders can extract the index of
each table from the hash in the third component of the task
name when multiple LSH tables are used for s. Given that
similar data is highly likely to be hashed in adjacent, if not
the same, buckets in multi-probe LSH [7], we aim to have
ranges of consecutive bucket indices assigned to ENs. This
results in rFIB entries that also contain consecutive blocks of
bucket indices, simplifying the overall rFIB lookup process.

Once an Interest is received by an NDN forwarder, after
performing a CS lookup for cached data and inserting the
Interest into PIT, the forwarder checks if this Interest is a task
(whether its second name component is the keyword “task”).
If the Interest is not a task, the forwarder follows the legacy
NDN forwarding pipeline by finding a match in FIB based on
the Interest name and forwarding the Interest. If the Interest
is a task, the forwarder will perform a lookup on rFIB. The
forwarder will find the rFIB entries for the service specified
in the first name component of the task name and select one
of these entries based on the buckets handled by each EN and
the hash in the third component of the task name.

For example, based on the rFIB of Figure 4, a task with a
name “/OpenPose/task/6E810F” indexes the 110th (6E in hex)
bucket of table 1, the 129th (81 in hex) bucket of table 2, and
the 15th (0F in hex) bucket of table 3. The indexed buckets of
tables 1 and 3 are handled by EN1 of the Louvre museum in
Paris, while the indexed bucket of table 2 is handled by EN2
of the Louvre. In such cases, the task will be forwarded to the
EN that handles the majority of the indexed buckets (EN with
name prefix “/Paris/Louvre/EN1” in our example) in order to
maximize the chances of reusing a previously executed task.
Subsequently, the forwarder will attach the name prefix of the
matched EN to the task as the task’s forwarding hint [25]. The
forwarding hint is an additional name identifier that Interests
can carry to indicate “where”, or at which EN in our case
(forwarding hint), to execute “which” task (Interest name). As
a result, the rFIB lookup will happen only once per task
by the first NDN forwarder in the edge network that receives
the task to minimize the overhead on the task forwarding
performance. If a task carries a forwarding hint (i.e., an rFIB

Service Name EN PrefixLSH Buckets

/OpenPose
Table 1: [0, 127]
Table 2: [0, 127]
Table 3: [0, 127]

/Paris/Louvre/EN1

/OpenFace Table 4: [0, 255] /Paris/Louvre/EN3

... ... ...

Outgoing 
Interface(s)

1

1, 2

...

Index Size 
(bytes)

/OpenPose /Paris/Louvre/EN2 2

1

1

1

...

Table 1: [128, 255]
Table 2: [128, 255]
Table 3: [128, 255]

Fig. 4: An example of the rFIB data structure.

Towards
user(s)

Towards
EN(s)

Interest Content
Store 
(CS)

Miss

Hit
Cached Data

Aggregate
Interest

Miss

Hit Forw
ard InterestInterest Forwarding Pipeline

Pending
Interest

Table (PIT)
Forwarding 
Information 
Base (FIB)

reuse FIB 
(rFIB)

Yes

No

Vanilla NDN NDN Extensions for Reuse

Carries 
Forwarding 

Hint?

Represents 
a Task?

No

Yes

Fig. 5: Reservoir Interest forwarding pipeline.

lookup has been previously performed for this task), the task
will be forwarded based on its forwarding hint through a
regular FIB lookup as all other Interests (Figure 5).

E. Computation Reuse in the Edge Network or at the ENs
In Reservoir, reuse of computation can happen either in

the edge network or at the ENs. In the edge network, NDN
forwarders may cache the results of previously executed tasks,
while LSH combined with our task namespace design enables
the reuse (retrieval) of the results of similar tasks cached in
the edge network. If a task is forwarded to an EN, the LSH
algorithm running on the EN will use the hash included in the
task’s name (third name component) to find the bucket(s) of
each hash table that are likely to have stored similar previously
executed tasks. Subsequently, the EN extracts the similarity
threshold attached to the incoming task tnew and returns a
previously executed task tprevious for the same service invoked
by tnew, so that: (i) the input data of tprevious has the highest
similarity among stored previously executed tasks to the input
data of tnew (nearest neighbor of tnew); and (ii) the similarity
between the input data of tnew and tprevious exceeds the
similarity threshold. If a task tprevious that satisfies these



conditions cannot be found, the EN executes tnew from scratch
following the mechanism of Section IV-C. Note that Reservoir
can support the use of various similarity forms and algorithms
(e.g., structural similarity, cosine similarity) [26], [27].
Deciding on the proper similarity threshold value: The
similarity threshold value for each task impacts the extent
that the results of previous tasks can be reused. However,
its selection by applications provides flexibility. The value
of this threshold depends on the nature of each application
and the type/granularity of input data processing that each
application needs. For example, an application that requires the
detection of whether traffic exists in captured snapshots may
find a lower similarity threshold adequate. On the other hand,
an application that requires fine-grained processing of traffic
snapshots (e.g., detection of the exact number of vehicles) may
need higher similarity thresholds to operate properly.
Tasks with minor similarities between input data: Not all
use cases/applications involve tasks with input data, which
exhibits temporal, spatial, or semantic similarity. In Reservoir,
application developers can indicate whether they expect their
applications to involve tasks with similar input data. ENs can
also identify applications that do not offload tasks with similar
data over time. Applications with minor input data similarities
can indicate to the edge network infrastructure that their tasks
should not be treated in the context of computation reuse
(by creating and offloading tasks with a special component
in their names or a dedicated flag in their packet format).
This enables: (i) applications to eliminate the overhead of
generating a locality sensitive hash per task, thus generating
a less expensive hash instead (e.g., CRC32, SHA1), which
will be used in the namespace of Section IV-B; (ii) the edge
network infrastructure to eliminate the overhead of performing
“computation-reuse aware” task forwarding based on the rFIB,
but rather forward tasks based on the FIB directly; and (iii)
ENs to eliminate the overhead of nearest neighbor searches.
This mechanism also applies to applications where tasks with
similar input data may yield substantially different results.

V. EVALUATION

In this section, we present the evaluation of Reservoir in
four phases: (i) we evaluate components of the Reservoir
design in isolation to study their performance and trade-offs;
(ii) we conduct a real-world feasibility study of a Reservoir
prototype; (iii) to scale up our experiments, we perform a
network simulation study of the Reservoir prototype; and
(iv) we compare Reservoir to ICedge [16], which offers a
preliminary design to facilitate the reuse of computation.
Task input datasets and edge services: For our evaluation,
we utilize real-world image datasets, which we describe in
Table II, as task input data. We use the FALCONN library [8]
to realize LSH and perform hashing and similarity searches
over these image datasets. In the rest of this section, we run
each experiment ten times and we report on the average results.
Reservoir prototype implementation: We developed a Reser-
voir prototype2 that includes 1K lines of code (with C++
and Python components) and uses the ndn-cxx library [31],
which offers software abstractions for NDN communication.

2We make our Reservoir implementation code available to the research
community at https://github.com/malazad/Reservoir.

Our prototype consists of mechanisms running on user devices,
the edge network, and ENs. On devices, we implemented task
offloading and LSH mechanisms. Devices select images from
the used datasets as task input data, and utilize the FALCONN
library to generate the images’ locality sensitive hashes. Sub-
sequently, they create tasks and offload them to the edge. In the
edge network, we implemented reuse aware mechanisms for
task forwarding and the extended Interest pipeline (Figure 5)
in the NDN Forwarding Daemon (NFD) [9], the de facto NDN
software forwarder. On ENs, we implemented mechanisms to
execute received tasks, store their execution results, and search
for previously executed similar tasks based on the search
mechanisms of the FALCONN library.

A. Evaluation of Reservoir Design Components
Setup and metrics: First, we study the extended Interest
pipeline implemented in NFD by assessing: (i) the processing
time for NFD to forward a task through rFIB compared to
forwarding an Interest through FIB as we vary the number of
entries and the length of name prefixes per entry for rFIB and
FIB respectively; and (ii) the size of rFIB as we increase the
number of available ENs, services, and LSH tables. Second,
we study the feasibility of using the FALCONN library to
realize LSH in Reservoir by assessing: (i) the time needed to
generate the locality sensitive hash of the task input data; (ii)
the time needed to find a previously executed task for the same
service with input data that has the highest similarity (among
stored previous tasks) to the input data of an incoming task
(nearest neighbor search); and (iii) the accuracy of the search
process (nearest neighbor search) in the sense of finding a
previously executed task for the same service with input data
that matches the input data of an incoming task (e.g., images
of the same object captured from different angles for an object
identification service). We perform our evaluation on a low-
end desktop computer equipped with an Intel Core i5-4250U
CPU@1.30GHz and 8GB of memory to obtain results for the
performance of these components on low-end devices.
Results: In Figure 6, we present the processing time for
tasks and regular Interests. The results demonstrate that the
processing of a task through rFIB incurs minimal additional
time overhead (up to 5µs) compared to the processing of an
Interest through FIB. This overhead is imposed only once per
offloaded task, as we discussed in Section IV-D, since a single
rFIB lookup is needed per task. The rFIB size remains modest
as we increase the number of LSH tables, ENs, rFIB entries,
and available services, as well as the length of name prefixes.
Specifically, the rFIB size does not exceed 54.2MB for up to
10 LSH tables, 100 ENs, 100K rFIB entries, 1K services, 256-
byte name prefixes, and an index of 4 bytes per LSH table (the
maximum size supported by FALCONN).

In Table III, we present the average hashing times through
FALCONN for all datasets. The results show that the hashing
time increases as the number of the used LSH tables increases.
Our results demonstrate that hashing times for images can be
practical for up to 10 LSH tables. However, our results in
Table IVa demonstrate that the accuracy of FALCONN shows
minor improvements as we increase the number of LSH tables
from 5 to 10. Our experiments with images of all datasets
(Tables III, IVa, and IVb) consistently show that 1 to 5 LSH
tables provide the best tradeoff among hashing times, search

https://github.com/malazad/Reservoir


TABLE II: Edge services and real-world datasets used for the evaluation of Reservoir.
Dataset Type of data Dataset

size
Correlation

between data
Performed data

processing (edge services)
Processing
granularity

MNIST [28] Images of handwritten digits 70K Low Digit identification Medium

Pandaset [29] Images captured by autonomous
vehicles in Silicon Valley, California 49K Low

Detection of obstacles
and positions around

vehicles
Fine

Stanford
Mobile AR [30] Images of different objects 1K Moderate Object identification Medium

CCTV1
Snapshots that we extracted from video
streams of CCTV cameras monitoring

traffic at intersections in the US
5K High Detection of vehicle

traffic existence Coarse

CCTV2
Snapshots that we extracted from video
streams of CCTV cameras monitoring

traffic at intersections in the US
5K High Identification of number

of vehicles Fine

TABLE III: Hashing times for
varying numbers of LSH tables.

Number of
LSH Tables

Hashing
Time (ms)

1 LSH Table 0.4
5 LSH Tables 1.7

10 LSH Tables 3.3

times, and accuracy, achieving: (i) satisfactory accuracy with
a single LSH table for the MNIST and Stanford AR datasets
and with 5 LSH tables for the rest of the datasets; and (ii)
hashing times of less than 1.7ms for up to 5 LSH tables.

B. Real-World Experiments with Reservoir
Setup: To evaluate the Reservoir design as a whole, we deploy
our prototype on a small-scale testbed (Figure 7). Our setup
consists of two desktop computers acting as user devices
that offload tasks to ENs, two desktop computers acting as
NDN forwarders, and two servers acting as ENs and running
tensorflow-based machine learning models [32]. We connect
the desktop computers and servers through UDP tunnels and
we run NDN as an overlay on top of UDP/IP. The Round Trip
Time (RTT) from users to ENs ranges between 13-21ms with
an average value of 18ms. We use a 4-byte index per LSH table
and we equally distribute the LSH buckets between the ENs.
We use 1 LSH table for the MNIST and Stanford AR datasets
and 5 LSH tables for all other datasets. We measure: (i) the
completion time of tasks (i.e., the time between offloading
a task and receiving its execution results) when the results
of previous tasks are reused from the CS of forwarders and
the ENs, and when a task is executed from scratch; (ii) the
accuracy of reuse (i.e., whether the execution results of a
reused task and the results of an offloaded task would have
been the same, if the offloaded task had been executed from
scratch); and (iii) the percent of reuse (i.e., the percent of
offloaded tasks that reused the results of previous tasks).
Results: In Figures 8a and 8b, we present the task completion
time when tasks are reused from the CS of NDN forwarders
and ENs respectively in comparison with the time for tasks
to be executed from scratch for varying similarity thresholds.
Our results show that reuse can significantly reduce task com-
pletion times. Reusing tasks cached in the CS of forwarders
results in 12.02-21.34× lower task completion times than
executing tasks from scratch at ENs. Furthermore, the reuse of
previously executed tasks at ENs results in 5.25-6.22× lower
task completion times than executing tasks from scratch.

In Figure 8c, we present the accuracy of reuse for all
datasets and varying similarity thresholds. Depending on the
dataset, our results show that Reservoir can achieve 90-
100% and 96-100% accuracy for reused tasks cached in the
CS of forwarders and stored at the ENs respectively as we
increase the similarity threshold. Our results also indicate
that applications requiring fine-grained processing of offloaded
data (e.g., Pandaset and CCTV2 datasets) may need higher
similarity thresholds to achieve reuse accuracy of at least
90%. On the other hand, applications that require more coarse-
grained processing of offloaded data may be able to achieve
reuse accuracy of at least 90% for lower similarity thresholds.

1 10 100
Number of Entries (x1000)

0
10
20
30
40
50
60
70
80
90

100
110

In
te

re
st

 P
ro

ce
ss

in
g 

Ti
m

e 
(

s)

FIB, 16-Byte Names
rFIB, 16-Byte Names
FIB, 64-Byte Names
rFIB, 64-Byte Names
FIB, 256-Byte Names
rFIB, 256-Byte Names

Fig. 6: Processing time for forwarding a task (through rFIB)
and an Interest (through FIB).

Intel Core i5-9600K 
CPU@3.70GHz and 

64GB of memory

User 1

User 2

Forwarder 1

Forwarder 2

EN1

EN2 

Intel Core i5-4250U 
CPU@1.30GHz and 

8GB of memory

Hardware Specification

Fig. 7: Experimental topology.

In Figure 8d, we present the percent of reuse for all datasets
and varying similarity thresholds. Our results demonstrate that
Reservoir can reduce the number of tasks that are executed
from scratch by an average of 52% across all the datasets
as compared to cases without computation reuse. We further
verified that Reservoir is able to take advantage of virtually all
available reuse opportunities for datasets with different degrees
of correlation and, therefore, applications offloading tasks with
input data that exhibits high, moderate, and low correlation.
Especially in cases, where the majority of the input data of
tasks is similar (e.g., CCTV1 and CCTV2 datasets, which
include consecutive snapshots from video streams of vehicle
traffic), Reservoir can reduce the number of tasks that are
executed from scratch by up to 91%. In such cases, up to 27%
and 64% of the total number of offloaded tasks are satisfied
by reusing the execution results of tasks cached in the CS of
NDN forwarders and stored at the ENs respectively.

Overall, our results signify a trade-off between the percent
and the accuracy of reuse; to achieve higher accuracy (Fig-
ure 8c), applications might need to select higher similarity
thresholds, which in turn may reduce the percent of reuse
(Figure 8d). Ultimately, the extent of this trade-off depends



TABLE IV: LSH nearest neighbor search accuracy (no similarity threshold applied) and search times.

(a) Search accuracy.

LSH Nearest Neighbor Search Accuracy (%)

Dataset 1 LSH
Table

5 LSH
Tables

10 LSH
Tables

MNIST 83.43 84.72 86.27
Pandaset 71.54 84.48 85.21

Stanford AR 97.02 98.98 98.98
CCTV1 82.70 89.20 90.03
CCTV2 90.40 97.55 98.55

(b) Search times.

LSH Nearest Neighbor Search Time (ms)
Number of

Images (x1000)
1 LSH
Table

5 LSH
Tables

10 LSH
Tables

20 0.09 1.08 1.43
40 0.10 1.70 2.21
60 0.11 2.62 3.05
80 0.13 3.25 3.61

100 0.22 3.92 4.40

on the degree of correlation between the input data of tasks
and the type/granularity of the required input data processing.

C. Network Simulations with Reservoir
Setup: To scale up our evaluation, we ported our Reservoir
prototype into ndnSIM [33], the de facto NDN simulator for
ns-3 [34]. ndnSIM features integration with the real-world
NFD codebase to offer high fidelity of simulation results.
We used NetworkX [35] to generate 50 network topologies
that resemble autonomous systems on the Internet [36]. Each
topology consists of 20 to 40 nodes that are interconnected
through links with 5ms of delay each, while 10 of these nodes
are randomly selected to serve as ENs. Users are attached to
topology nodes through links with 2ms of delay and offload
tasks towards the ENs. We run NDN directly on top of the link
layer. Following the setup of our real-world experiments, we
use a 4-byte index per LSH table and we equally distribute
the LSH buckets among ENs. We use 1 LSH table for the
MNIST and Stanford AR datasets and 5 LSH tables for all
other datasets. To make our simulations maximally realistic,
we use the following processing delays (measured during the
experiments of Sections V-A and V-B): (i) delays between
71-101µs and 74-106µs for an NDN forwarder to process and
forward a task through FIB and rFIB respectively; (ii) hashing
times for 1 and 5 LSH tables as reported in Table III; (iii) LSH
search times for 1 and 5 LSH tables as reported in Table IVb;
and (iv) the time for our tensorflow-based machine learning
models to process an image ranging between 70-100ms. In
addition to the metrics we measured in Section V-B, we define
and measure the task forwarding error rate as the percent of
tasks that are forwarded to an EN that does not have a similar
task to reuse, however, such a similar task is stored at another
EN. This can occur when multiple LSH tables are maintained
for a service, since the network forwards tasks towards the EN
that handles the majority of the indexed buckets to maximize
the chances of reuse as described in Section IV-D.
Results: In Figures 9a and 9b, we present the task completion
time when tasks are reused from the CS of NDN forwarders
and ENs respectively in comparison to the time needed
for tasks to be executed from scratch by ENs. Our results
demonstrate the same trend as the experimental results of
Section V-B: Reservoir achieves 6.43-12.28× and 4.25-5.11×
lower task completion times when the results of previously
executed tasks are reused from the CS of forwarders and ENs
respectively in comparison to executing tasks from scratch.
The reduction magnitude of the task completion times due to
reuse is lower in our simulation results than the experimental
results of Section V-B. This is due to having ENs up to 4 hops

away from users, thus the network paths become longer and
the network delay may increase for the completion of tasks.

In Figure 9c, we present results on the accuracy of reuse,
which demonstrate the same trend as the experimental results
of Section V-B. Reservoir can achieve 90-100% and 96-100%
accuracy for reused tasks cached in the CS of forwarders and
stored at the ENs respectively as we increase the similarity
threshold. In Figure 9d, we present results on the percent
of reuse, which demonstrate the same trend as the results
of Section V-B. Reservoir can reduce the number of tasks
executed from scratch by an average of 50% among all datasets
as compared to cases without computation reuse. When the
majority of task input data is similar (CCTV1 and CCTV2
datasets), Reservoir can reduce the number of tasks executed
from scratch by up to 88%. In such cases, up to 25% and 63%
of the total number of tasks reuse the results of tasks cached
in the CS of forwarders and stored at the ENs respectively.

We further conducted experiments for variable cache/storage
sizes at user devices, NDN forwarders (edge network), and
ENs considering a Least Recently Used (LRU) cache replace-
ment policy. Our results indicate that the percent of reuse
increases until we reach cache sizes that can hold all the of-
floaded tasks that need to be executed from scratch. Increasing
the size of caches beyond this point has no impact on the
percent of reuse. Our results also indicate that the impact of
cache sizes on the percent of reuse depends both on the degree
of similarity between task input data and the minimum simi-
larity threshold, however, the degree of similarity (correlation)
between input data has the strongest impact. In terms of reuse
accuracy, as we increase the cache size and until we reach the
point where all tasks that need to be executed from scratch
can fit into caches, the accuracy of reuse decreases. This is
due to reusing a larger volume of computation, thus Reservoir
could select to reuse previous tasks, which would not yield
the same results as the corresponding offloaded tasks.

In Figure 10, we present the task forwarding error rate
results. To obtain these results, we used 5 LSH tables for each
dataset. Our results show that the task forwarding error rates
are lower than 9% for all datasets and similarity thresholds. As
we increase the similarity threshold, the error rates decrease,
since the number of previous tasks with input data similar to
the input data of incoming tasks decreases, thus becoming less
likely that similar tasks may be stored across different ENs.

D. Comparison to ICedge
Setup: We compared the processing time for forwarding a
task through Reservoir and ICedge [16]. We also conducted
network simulations with Reservoir and ICedge based on



60 70 80 90
Similarity Threshold (%)

0
10
20
30
40
50
60
70
80
90

100
110
120
130

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(m

s)

MNIST-CS Reuse
Stanford AR-CS Reuse
CCTV1-CS Reuse
CCTV2-CS Reuse
Pandaset-CS Reuse

MNIST-No Reuse
Stanford AR-No Reuse
CCTV1-No Reuse
CCTV2-No Reuse
Pandaset-No Reuse

(a) Task completion time with
reuse from CS of forwarders and
task execution from scratch.

60 70 80 90
Similarity Threshold (%)

0
10
20
30
40
50
60
70
80
90

100
110
120
130

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(m

s)

MNIST-EN Reuse
Stanford AR-EN Reuse
CCTV1-EN Reuse
CCTV2-EN Reuse
Pandaset-EN Reuse

MNIST-No Reuse
Stanford AR-No Reuse
CCTV1-No Reuse
CCTV2-No Reuse
Pandaset-No Reuse

(b) Task completion time with
reuse from ENs and task execu-
tion from scratch.

60 70 80 90
Similarity Threshold (%)

0
10
20
30
40
50
60
70
80
90

100

Re
us

e 
Ac

cu
ra

cy
 (%

)

MNIST-CS Reuse
Stanford AR-CS Reuse
CCTV1-CS Reuse
CCTV2-CS Reuse
Pandaset-CS Reuse

MNIST-EN Reuse
Stanford AR-EN Reuse
CCTV1-EN Reuse
CCTV2-EN Reuse
Pandaset-EN Reuse

(c) Accuracy of reuse for all
datasets and varying similarity
thresholds.

60 70 80 90
Similarity Threshold (%)

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
t o

f R
eu

se
 (%

)

MNIST
Stanford AR

CCTV1
CCTV2

Pandaset

(d) Percent of reuse for for all
datasets and varying similarity
thresholds.

Fig. 8: Experimental evaluation results of the Reservoir prototype.

60 70 80 90
Similarity Threshold (%)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(m

s)

MNIST-CS Reuse
Stanford AR-CS Reuse
CCTV1-CS Reuse
CCTV2-CS Reuse
Pandaset-CS Reuse

MNIST-No Reuse
Stanford AR-No Reuse
CCTV1-No Reuse
CCTV2-No Reuse
Pandaset-No Reuse

(a) Task completion time with
reuse from CS of forwarders and
task execution from scratch.

60 70 80 90
Similarity Threshold (%)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(m

s)

MNIST-EN Reuse
Stanford AR-EN Reuse
CCTV1-EN Reuse
CCTV2-EN Reuse
Pandaset-EN Reuse

MNIST-No Reuse
Stanford AR-No Reuse
CCTV1-No Reuse
CCTV2-No Reuse
Pandaset-No Reuse

(b) Task completion time with
reuse from ENs and task execu-
tion from scratch.

60 70 80 90
Similarity Threshold (%)

0
10
20
30
40
50
60
70
80
90

100

Re
us

e 
Ac

cu
ra

cy
 (%

)

MNIST-CS Reuse
Stanford AR-CS Reuse
CCTV1-CS Reuse
CCTV2-CS Reuse
Pandaset-CS Reuse

MNIST-EN Reuse
Stanford AR-EN Reuse
CCTV1-EN Reuse
CCTV2-EN Reuse
Pandaset-EN Reuse

(c) Accuracy of reuse for all
datasets and varying similarity
thresholds.

60 70 80 90
Similarity Threshold (%)

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
t o

f R
eu

se
 (%

)

MNIST
Stanford AR

CCTV1
CCTV2

Pandaset

(d) Percent of reuse for all
datasets and varying similarity
thresholds.

Fig. 9: Simulation evaluation results of Reservoir.

60 70 80 90
Similarity Threshold (%)

0
1
2
3
4
5
6
7
8
9

10

Ta
sk

 F
or

wa
rd

in
g 

Er
ro

r R
at

e 
(%

)

MNIST
Stanford AR
CCTV1

CCTV2
Pandaset

Fig. 10: Task forwarding error
rate results.

0

20

40

60

80

100

120

140

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(m

s)

0

20

40

60

80

100
Re

us
e 

Ac
cu

ra
cy

 (%
)

Reservoir
ICedge
No Reuse

Fig. 11: Comparison between
Reservoir and ICedge.

the topology and parameters of Section V-C to quantify and
compare the completion time of tasks and the reuse accuracy.
Results: ICedge requires 77-111µs of processing time to for-
ward a task, since it employs both name-based lookups through
FIB and a specialized forwarding mechanism per application.
This processing time is 6-10µs higher than the processing time
required by Reservoir. In Figure 11, we present the average
task completion time and reuse accuracy among all datasets
for Reservoir and ICedge. Reservoir achieves about 24% lower
task completion times than ICedge, since it takes full advan-
tage of in-network caching to retrieve the results of similar
tasks from the CS of forwarders whenever possible. Reservoir
also achieves 26% higher reuse accuracy than ICedge. ICedge
identifies reuse opportunities through naming semantics. Such
semantics provide limited information about the task input
data (e.g., the location where a picture was taken, the device
that took a picture), without providing any indication of the
similarity among tasks. On the other hand, the combination
of naming with LSH in Reservoir provides a light-weight
mechanism for the accurate identification of similar tasks.

VI. CONCLUSION

In this paper, we presented Reservoir, a framework to enable
pervasive computation reuse in practical edge computing en-
vironments. Reservoir makes the edge network infrastructure
aware of the semantics of computation reuse, thus being able
to identify and forward similar tasks towards the same ENs
in order to minimize the execution of redundant computa-
tion. Our evaluation results demonstrated that Reservoir can

effectively reuse computation at the edge of the network,
while incurring marginal performance overheads, achieving
up to perfect accuracy, and accommodating applications and
computational tasks with different characteristics

ACKNOWLEDGEMENTS

This work is partially supported by the National Science
Foundation through awards CNS-2104700, CNS-2016714, and
CBET-2124918, the National Institutes of Health through
award NIGMS/P20GM109090, the University of Nebraska
Collaboration Initiative, and the Nebraska Tobacco Settlement
Biomedical Research Development Funds.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[2] P. Guo, B. Hu, R. Li, and W. Hu, “Foggycache: Cross-device ap-
proximate computation reuse,” in Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, 2018,
pp. 19–34.

[3] J. Lee, A. Mtibaa, and S. Mastorakis, “A case for compute reuse in future
edge systems: An empirical study,” in 2019 IEEE Globecom Workshops
(GC Wkshps). IEEE, 2019, pp. 1–6.

[4] M. W. A. Azad and S. Mastorakis, “The promise and challenges
of computation deduplication and reuse at the network edge,” arXiv
preprint arXiv:2109.01608, 2021.

[5] P. Guo and W. Hu, “Potluck: Cross-application approximate deduplica-
tion for computation-intensive mobile applications,” in Proceedings of
the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018, pp. 271–284.

[6] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66–73, 2014.

[7] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
probe lsh: efficient indexing for high-dimensional similarity search,” in
Proceedings of the 33rd international conference on Very large data
bases, 2007, pp. 950–961.

[8] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt,
“Practical and optimal lsh for angular distance,” in Advances in neural
information processing systems, 2015, pp. 1225–1233.

[9] A. Afanasyev, J. Shi et al., “NFD developer’s Guide,” NDN, Technical
Report NDN-0021, 2015.



[10] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing, 1998, pp. 604–613.

[11] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in Vldb, vol. 99, no. 6, 1999, pp. 518–529.

[12] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proceedings of the
twentieth annual symposium on Computational geometry, 2004, pp. 253–
262.

[13] P. Haghani, S. Michel, K. Aberer et al., “Lsh at large-distributed knn
search in high dimensions,” in 11th International Workshop on the Web
and Databases, WebDB, no. CONF, 2008.

[14] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in 2017 IEEE 37th interna-
tional conference on distributed computing systems (ICDCS). IEEE,
2017, pp. 276–286.

[15] J. Meng, S. Paul, and Y. C. Hu, “Coterie: Exploiting frame similarity
to enable high-quality multiplayer vr on commodity mobile devices,”
in Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2020, pp. 923–937.

[16] S. Mastorakis, A. Mtibaa, J. Lee, and S. Misra, “Icedge: When edge
computing meets information-centric networking,” IEEE Internet of
Things Journal, vol. 7, no. 5, pp. 4203–4217, 2020.

[17] “Top 10 countries and cities by number of cctv cameras,”
https://aithority.com/news/top-10-countries-and-cities-by-number-of-
cctv-cameras/.

[18] “How many cctv cameras in london?”
https://www.caughtoncamera.net/news/how-many-cctv-cameras-in-
london/.

[19] “Statue of liberty statistics,” https://www.nps.gov/stli/learn/management/
park-statistics.htm.

[20] “The louvre museum wikipedia,” https://en.wikipedia.org/wiki/Louvre.
[21] “Cisco: The future of IoT miniguide: The burgeoning IoT market contin-

ues,” https://www.cisco.com/c/en/us/solutions/internet-of-things/future-
of-iot.html, 2019.

[22] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[23] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose:
realtime multi-person 2d pose estimation using part affinity fields,” arXiv
preprint arXiv:1812.08008, 2018.

[24] “Ndn packet format specification-interest pa-
rameters,” https://named-data.net/doc/NDN-packet-
spec/current/interest.htmlapplicationparameters.

[25] “Ndn packet format specification-interest forward-
ing hint,” https://named-data.net/doc/NDN-packet-
spec/current/interest.htmlforwardinghint.

[26] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[27] A. Singhal et al., “Modern information retrieval: A brief overview,”
IEEE Data Eng. Bull., vol. 24, no. 4, pp. 35–43, 2001.

[28] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[29] “Pandaset by hesai and scale ai,” https://pandaset.org.
[30] M. Makar, S. S. Tsai, V. Chandrasekhar, D. Chen, and B. Girod, “In-

terframe coding of canonical patches for low bit-rate mobile augmented
reality,” International Journal of Semantic Computing, vol. 7, no. 01,
pp. 5–24, 2013.

[31] NDN Team, “ndn-cxx,” http://named-data.net/doc/ndn-cxx.
[32] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265–283.

[33] S. Mastorakis, A. Afanasyev, and L. Zhang, “On the evolution of
ndnsim: An open-source simulator for ndn experimentation,” ACM
SIGCOMM Computer Communication Review, vol. 47, no. 3, pp. 19–33,
2017.

[34] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the ns-3 simulator,” SIGCOMM demonstra-
tion, vol. 14, no. 14, p. 527, 2008.

[35] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[36] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “On the scalability of
bgp: The role of topology growth,” IEEE Journal on Selected Areas in
Communications, vol. 28, no. 8, pp. 1250–1261, 2010.


	Introduction
	Background and Prior Related Work
	Use Cases and Motivation
	Computation Reuse Use Cases
	Reservoir Motivation

	Reservoir Design
	Design Assumptions, Overview, and Goals
	Task Namespace Design
	Task Offloading Mechanisms
	Realizing Reuse Awareness in the Network
	Computation Reuse in the Edge Network or at the ENs

	Evaluation
	Evaluation of Reservoir Design Components
	Real-World Experiments with Reservoir
	Network Simulations with Reservoir
	Comparison to ICedge

	Conclusion
	References

