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Abstract: Available data on insulating, semiconducting, and metallic solids verify our new model
that incorporates steady-state heat flow into a macroscopic, thermodynamic description of solids,
with agreement being best for isotropic examples. Our model is based on: (1) mass and energy
conservation; (2) Fourier’s law; (3) Stefan-Boltzmann’s law; and (4) rigidity, which is a large, yet
heretofore neglected, energy reservoir with no counterpart in gases. To account for rigidity while
neglecting dissipation, we consider the ideal, limiting case of a perfectly frictionless elastic solid
(PFES) which does not generate heat from stress. Its equation-of-state is independent of the ener-
getics, as in the historic model. We show that pressure-volume work (P 9V) in a PFES arises from
internal interatomic forces, which are linked to Young’s modulus (Z) and a constant (1) accounting
for cation coordination. Steady-state conditions are adiabatic since heat content (Q) is constant.
Because average temperature is also constant and the thermal gradient is fixed in space, conditions
are simultaneously isothermal: Under these dual restrictions, thermal transport properties do not
enter into our analysis. We find that adiabatic and isothermal bulk moduli (B) are equal. Moreover,
Q/V depends on temperature only. Distinguishing deformation from volume changes elucidates
how solids thermally expand. These findings lead to simple descriptions of the two specific heats in
solids: dln(cr) OP = -1/B; e = nE times thermal expansivity divided by density; ¢ » = cvnZ/B. Impli-
cations of our validated formulae are briefly covered.

Keywords: steady state; heat; flux; perfectly frictionless elastic solids; Young’s modulus; energy
reservoirs; interatomic forces; heat capacity; bulk modulus; thermal expansivity

1. Introduction

Classical thermodynamics is an important tool in the physical sciences and engi-
neering. Nevertheless, the equations and postulates developed in the 1800s should be
called “thermostatics”, since time-dependent behavior is not part of this historic model
[1]. Yet, dynamic, evolutionary behavior is ubiquitous. The flow of heat and its radiation
from the system of interest are integral components of real processes. Idealizations
needed to avoid addressing dynamic behavior in thermostatics are connected with re-
strictive approximations. A key example is the concept of reversibility, which is still
currently debated [2]. Perceived reversibility rests on restoring changes in a system at the
expense of altering the surroundings, which are neglected in such assessments, e.g., [3].

The macroscopic theory of “thermostatics” predates a rudimentary understanding
of atomic structure and acceptance of light and heat as being the same phenomenon [4].
These omissions are understandable as they pertain mainly to microscopic behavior.
Stefan’s observation of heat flux linking to temperature and Fourier’s theory of heat
transfer, both from the 1800s, were not considered. The last omission was a significant
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error [5] because Fourier’s depiction of heat, a key entity in thermostatics, is likewise
macroscopic. Key aspects of both laws and their relevance to thermostatics are as follows:

First, Fourier assumed that as heat flows through a sample, some heat is stored in
mass elements along its path, while another fraction moves from element to element
during flow. Regarding the latter fraction, Fourier defined the key, dynamic quantity of
flux (3, heat per area per time) and related it to the temperature (T) gradient:

N oT  ~oT
, _  3=«TP)—=-_L—«T,P) (1)
3 = «V, or in one dimension: oL oL

where « is thermal conductivity, P is pressure, and volume, V, goes as L 3 in an isotropic
medium. The unit vector denotes the specific direction of heat flow. Because any matrix
representation can be diagonalized, the one-dimensional Cartesian form on the
right-hand side (RHS) embodies the physics of heat transport.

Equation (1) states that net heat flows down the thermal gradient, which is equiva-
lent to rudimentary articulations of the ™ law (e.g., [6]). For gas, a thermal gradient
stratifies density, generating unopposed buoyancy forces that cause convection. Yet,
Equation (1) shows that under time-independent circumstances, the thermal gradient in
solids is a vector quantity that is completely established by the transport property x and
experimental (boundary) conditions. The rigidity of solids permits heat to flow from the
hot to the cold end without the net momentum transport that is inherent to gases.

Second, flux is universally tied to temperature via Stefan-Boltzmann’s law, thereby
linking a dynamic entity to a key variable which is presumed to be static in the classical
model. Stefan showed experimentally circa 1872 that radiated flux from all frequencies of
light from a graphite-coated metal filament per area per time is:

3= q,T" )

where the Stefan—-Boltzmann constant, o sz = 5.670 x 10-8 Wm-2K-* describes a blackbody
(see Section 2.1). Temperature is thus defined by heat loss to the surroundings. In classi-
cal thermostatics, T is related to heat content Q, but not in a simple way, e.g., [6].

Third, time (f) is an explicit variable in Fourier’s second equation, which is obtained
by taking a spatial derivative of Equation (1) and conserving energy. In 3-dimensions:

prp%T=V-(NT), 3)

where p is density and e is specific heat (on a per mass basis). Thermal conductivity
governs the thermal evolution of a system, embodying how much heat is flowing and
how fast. When changes in T are small, Equation (3) simplifies to:
2
o _ DV’T, or in one-dimension: oa_ D 6—1; . 4)
ot ot oL
Thermal diffusivity (D) is also a dynamic property, describing the rate at which T
evolves, independent of the amount of heat that is flowing. By definition:

== e, =C. (5)
The static properties of the middle term can be individually measured. Their product C,
called storativity, describes heat capacity on a per volume basis. Its importance in Equa-
tion (3) stems from diffusion depending on length-scale [3,7].

Last, heat transfer under pressure involves the P dependence of specific heat. The
classical equation:
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oc,
oP

=-TV oc2+@ , historical (6)
oT

depends on thermal expansivity, « = V=10V AT. This historical identity thus portrays the
response of a static property to compression (P on the left-hand side, LHS) as arising
from changes caused by heating (T and a on the RHS). Yet, diverse observations show

that solids respond to heating and to compression in different ways, as embodied in the
quasi-harmonic model of solids [8]. In particular, examining accurate experimental
measurements of the P dependence of x for 20 different solids that also had accurate
material properties suggests thatd(lncr) P depends simply on the inverse of the iso-
thermal bulk modulus, Br = -V@V 8P)-1[7].

1.1. Different Behaviors of Solids and Gases May Affect Thermostatic Equations

Gas behavior is of long-standing importance to basic physics. Because solids behave
much differently than gases (Figure 1), the same equations need not apply to these two
distinct states of matter.

Constructs for heat storage in gas and solids must each account for differences in the
types of energy stored, plus restrictions on converting energy between the different res-
ervoirs. Crucially, for solids, heat transfer is independent of mass diffusion, as shown by
Hofmeister and Criss [9]. Heat may be stored in the cyclical and microscopically localized
vibrations of interatomic bonds in solids, but its transport across the solid does not in-
volve net displacement of the atoms or deformation of their structural arrangement.
Moreover, the vibrations cannot be the main energy reservoir of the solid because these
constitute perturbations of the atoms from their static positions. Geometrical constraints
limit average displacements to circa interatomic distances. These behaviors stem from
solid matter’s strength and hallmark characteristic of rigidity (Figure 1). Solids deforming
under shear stress greatly contrasts with behavior of gases, which flow under any stress
and in which heat moves with the translations of its molecules. Thus, energy in a solid is
essentially potential (stored) energy, whereas much of the energy in a gas is kinetic
(translational) energy. For monatomic gas, all energy is translational.

SOLID GAS
Heat movesthrough o o o) o-—--» Heat moves with
a stationary mass vy =AY moving molecules
Rigid »> I

.- Freely moving parts —>

Supports shear waves, : !

upp - wav G P Translational kinetic energy
part of elastic energy * = main heat energy
= main energy storage

Localized vibrations 5 \/\/\)% . {g If polyatomic —
~ Local vibrations + rotations

= thermal perturbation
of elastic storage WV%WV‘ = secondary heat energy

Viscosity >> s Thermal diffusivity =
Thermal diffusivity >> rarified Mass diffusivity 2
Mass diffusivity Viscosity

Viscosity = — B  viscostty -
Resistance to shear stress _ :> Diffusion of momentum
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Figure 1. Summary and comparison of the characteristics of solids and gases most relevant to heat
and its flow. The shear modulus, G, describes a special type of stored energy in solids, which is part
of the elastic energy, the main reservoir. Atoms are shown as balls, with dotted arrows indicating
direction of long-distance motions. Sine waves without arrowheads indicate local, back-and-forth,
microscopic motions.

1.2. Purpose and Limitations of the Paper

The present paper derives new relationships among thermostatic variables and
properties for solids by considering steady-state heat transfer, which involves variations
of T with position, but not with time. Isotropic solids are the focus for simplicity, availa-
bility of data, and because these embody the physical principles. Perfectly frictionless
elastic solids (PFES) which do not generate heat as a function of time during changes are
consistent with diverse equation-of-state (EOS) formulations. These formulations do not
specify the energy difference between different states, so they effectively neglect how
work and/or heat change V, P, and/or T. Mass, charge, and energy are conserved in our
analysis.

Our model is macroscopic. Macroscopic approaches can provide a simple descrip-
tion of things that can be measured or sensed, and require no special assumptions con-
cerning the nature of matter, yet yield straightforward, testable predictions that can dis-
close theoretical connections between measurable quantities [10]. Validation is a key
component of any such endeavor. In this report, validation is mostly limited to isotropic
solids for simplicity and to focus on physical principles.

Modeling transport properties, which describe time-dependent interactions and
moreover depend on the length-scale [3,7], is beyond the scope of the present paper.
Static physical properties (e.g., specific heat, storativity, thermal expansivity) are inves-
tigated here. Bulk moduli are part of classical theory, but shear moduli (G) are not. We
focus on the heretofore neglected elastic moduli because these are essential to describe
the forces inside a solid and therefore its energetics.

1.3. Organization of the Paper and Key Results

Section 2.1 discusses the crucial connection of broadband thermal emissions with
temperature. Section 2.2 specifies why steady-state conduction in solids constrains both
adiabatic and isothermal responses. Section 2.3 covers the equation-of-state for an iso-
tropic PFES and explains why describing work requires an additional property, namely
Young’s modulus. Section 2.4 uses elastic properties of isotropic solids to derive formulae
for the P and T dependencies of heat capacity and heat storage. Section 3 evaluates our
formulae and historic formulae against experimental results, focusing on ambient condi-
tions due to accuracy and availability of data. For the reader’s convenience, Table 1 lists
new, useful formulae for solids and the sections where these were derived and con-
firmed. Section 4 summarizes key findings and discusses implications of our results for
basic and applied sciences. Section 5 concludes.

Table 1. Physical properties of perfectly frictionless elastic solids under steady-state heat flow.

New Formula Theory Experimental Confirmation

Section 3.1

Br = B from elasticity measurements Sections 2.3.2 and 2.3.6
(ambient and elevated T)

lag| o 1 _10V| Section 3.2
—| T =oa Section 2.4.2
G Pl B VB (ambient T)
o 1 Section 3.3
—xT Section 2.4.6
@ Young’s modulus (ambient and elevated T)

2. Theoretical Description of Solids Conducting Heat in Steady State
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2.1. Link of Temperature to Heat Flux
Temperature is a macroscopic property arising from the thermal energy of an object,
which differs from, but is related to, its heat content (Q). The direct link between T and
heat flux (2), historically established for solids, pertains to this complicated relationship.
In detail, total flux includes all emitted light, and is obtained by integrating the in-

tensity (I) over frequency (v):
I(T)=4 0°°1( wTY v, )

where 3 is measured over a spherical surface enclosing the emitting object.

Difficulties in measuring absolute intensity are well-known (e.g., Figure 2). Hence,
idealized behavior of a perfectly absorbing blackbody (BB) has been the theoretical focus.
Planck’s function for this unachievable idealization (for v in Hertz) is:

2th 1

where h = Planck’s constant, ¢ = lightspeed, and ks is Boltzmann’s constant.

Because all hot matter emits thermal radiation, Equation (7) omits the subscript BB.
The simplest scenario approximating reality is that of a greybody where I &lss and
emissivity (&) is independent of both v and T. Metals and graphite were used in classic
experiments (Figure 2) because these strongly absorb and have optical functions that
vary slowly with v and T. Transparent material (e.g., silicate glasses) also have emissions,
but these are related to Iss in a complicated manner that depends on the size of the object,
absorption characteristics, surface reflections, and thermal gradients [11]. Gases are ex-
tremely transparent and were historically considered not to emit.

Ly (wT)=

o
3
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o ¥ \
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Figure 2. Emission curves of cavity radiation at 1370 K from Coblentz [12] compared to a near-IR
absorption spectrum of natural fluorite (green curve, with an arbitrary y-scale). Dashed line = raw
data, labeled “prismatic”. Solid curve with small dots = corrected data. Solid line with circles = the
ideal Planck curve. Arrows indicate points Coblentz [12] used to fit the blackbody curve and de-
termine the maximum. He omitted regions connected with atmospheric absorptions, in which
features are partly due to use of natural fluorite as a prism, and in which material contains impurity

bands.

2.1.1. Wien’s Law
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Wien’s historical experiments showed that the peak wavelength (1) for a greybody
is inversely proportional to T:
b w;k c
Ppear = T OF  Voeak = =T where cak 7 )
peak

where b = 2897.8 pm K'! was experimentally determined. The irrational number ws
(~2.821439) on the RHS was derived fromsé (Equation (8)) by numerically solving a
transcendental equation [13,14]. Thus, ascertaining T from Equation (9) implicitly as-
sumes a broad and skewed spectrum of a greybody (Figure 2), whereby v max differs from
€/ Jmax.

Thermal emission spectra are unlike spectra of discrete transitions, which have v peak
= c/deak with an intensity that is symmetric, or nearly so, about the characteristic fre-
quency. Energy with a certain narrow frequency range is used to stimulate specific pro-
cesses, e.g., laser light causes electronic transitions whereas sound waves cause
low-frequency motions. However, heating a material requires redistributing the energy
that is applied in some specified frequency range, which may be quite narrow, to the
wide range of frequencies that comprise the thermal emissions of the material (Figure 2).

2.1.2. Repercussions of Temperature Depending on Emitted Flux and Spectral Properties

Three facts derived from experiment and theory point to classical thermostatics in-
completely describing solids:

1.  The hallmark of a hot dense body is that it emits heat over a wide spectral range
(Figure 2). This unavoidable loss signifies that its state is dynamic, not static.

2. Temperature governs the total flux emitted, with the following caveat:

3. Because thermal emissions depend on the spectral properties of the material, Q may
also depend on characteristics beyond the static physical properties considered in
the historical model.

2.2. Connection of Steady-State Behavior with Coincident Adiabatic and Isothermal Conditions

Spherical geometries are conducive to examining total heat flux (Section 2.2.1). In
contrast, Cartesian geometries are amenable for monitoring heat transfer across a solid
(Section 2.2.2).

2.2.1. Spherical Coordinates

Stefan—Boltzmann’s law, Equation (2), specifies a unique temperature for an object.
Constant flux is implied: if the heat lost from a spherical object exceeds the energy input,
the body cools, and conversely, if losses are retarded (e.g., via an insulating wrap), the
body warms. In Stefan’s experiments, and in lightbulbs, electrical energy supplied at the
center (Figure 3a) maintains surface output. For stars, interior nuclear fusion maintains a
nearly constant outward flux. In these examples, flux from the much colder surroundings
to the object can be neglected.

surface surroundings

boundary fo v
layer >
Tcenter”

5
=)
source:

surroundings

source sink
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Figure 3. Schematics of conditions: (a) Spherical symmetry, which also applies to radial flow in a
very long cylinder. Matter (grey circle) emits heat in accord with its temperature (orange squiggle
arrow), but emissions are actually sampled from a surface boundary layer (stippled green shell).
Constant flux is maintained either by a source (star) and/or externally (blue arrow); (b) Longitu-
dinal flow in Cartesian (or cylindrical) symmetry. At steady state, flux along the special direction is
a constant that is independent of position, so the axial thermal gradient is independent of time, and
perpendicular slices are isothermal.

When rates of heat input at the center and output at the surface are the same, over
any given time interval the amount of heat delivered and released is also identical: thus,
conditions are adiabatic.

Isothermal conditions are commonly depicted as constant T over some significant
expanse of space. However, because heat flow is ever-present per Equation (2) and dif-
ferent materials conduct heat at different rates, thermal gradients are unavoidable in a
medium with finite size medium, per Equation (1). Boundary layers exist below spherical
surfaces, since the object has both T and thermal conductivity that differ from those of the
surroundings. For example, light from the sun originates in the photosphere (~600 km
thick), which constitutes a boundary layer, being miniscule compared to the solar radius.
Nearly grey emissions in the cavity experiments of Wein and Coblentz arise from the
graphite coating, because their glass substrates have peaks in the infrared region, but are
transparent at higher frequencies; see Figure 2.

In the laboratory, an apparatus (hot surroundings) provides finite flux into the ma-
terial (Jsurroundings = Jin: Figure 3a). Steady state requires:

Jin = Jout = constant (10)

At any moment, heat in = heat out, and so conditions are adiabatic. However, conditions
are also isothermal because the temperature profile remains static in time and space.
Specifically, at any given point (center, surface, or in between), some constant T is
measured. Hence, thin spherical shells inside the body are isothermal. Likewise, the av-
erage T of the body is constant under steady state. Furthermore, its thermal gradient can
be very small if Jin and « are low, thus approaching large regions of constant T.

Radjial heat flow in a cylinder behaves like the sphere. The key difference is that the
source would be a line, not a point.

2.2.2. Longitudinal Flow in Cylindrical Geometry and in Cartesian Systems

To investigate behavior inside a solid, heat transfer experiments use geometries
where both input and output are measured or controlled. Longitudinal flow (Figure 3b)
is commonly used as this is one-dimensional and is described by Cartesian coordinates,
even if the object is cylindrical. Boundary conditions exist: this paper follows Fourier,
who treated these as distinct from conditions inside the material.

During steady-state conditions, the source and sinks of heat at the ends balance, so
Equation (10) applies, and conditions are adiabatic. Furthermore, the heat flux is constant
through any slice perpendicular to the thermal gradient, and the latter does not change
with time, so the temperature in each perpendicular slice is likewise constant. However,
because the source is at one end, and the loss is at the other, a thermal gradient exists
from Tsource at x = 0 to Tsink at x = L. It is immaterial whether the flux is radiatively applied
(as in laser-flash analysis, LFA ) used to measure D) or is supplied by electrical heating,
or by contact with a hot plate. This equivalence has been amply demonstrated by
benchmarking LFA against conventional heat transport measurements of metals, e.g.,
[15].

High x and small 3 produce shallow gradients, and so the limiting case of the whole
body being a single temperature is approachable. However, because heat is emitted at
any finite temperature, Equation (2), the gradient is never identically zero everywhere.
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2.3. Equations of State, Elastic Behavior, and Work

The EOS is encapsulated as f(V,P,T) = 0, where f is some function. Behavior of V
along each of the P and T axes provide important constraints. For simplicity, equations
for isotropic solids are presented here. Importantly, f maps out the equilibrium behavior
of a material, but contains no information on the processes of expansion or contraction.

2.3.1. Classical Definitions and Their Link to Mathematical Constraints

One key physical parameter in the EOS is thermal expansivity:

1oV
G =

VT (11)

P
The T dependence of « is specific to any given material. For an isotropic substance, linear

expansivity is 1/34 of the volumetric expansivity, defined in Equation (11).
Another key parameter is compressibility:

B 181 1
=—_1 =—, (12)

where Bris the bulk modulus. Its P dependence is likewise specific to the material of in-
terest. Their second-order cross-derivatives are interdependent:

4442
opl, or, BT

A convenient dimensionless parameter, known as the 2" Griineisen parameter,
stems from Equation (13):

(13)

P

s= 22y - L5 )

G P, qB, dr

The final important EOS relationship is obtained by setting dV = 0 in the mathemat-

P

ical identity:
dV=6—v dP+a—V dr (15)
oP|, ar|,
which gives the so-called thermal pressure:
oP ov| [oV
o e a9
\4 P T [:}

Actually, Equation (16) describes an isochore. Similarly, setting dP = 0 in Equation (15)

makes ar the relevant parameter, whereas setting dT = 0 in Equation (15) makes B r the

defining property. Thus, Equations (11) and (12) describe behavior along an isobar and

isotherm, respectively. The above equations constitute the EOS of a material.
Importantly, Equation (16) is identical to:

P
ov

or

o
. P

o 17)

v
Any set of three variables can be manipulated in this manner, which stems from formulae
analogous to Equation (15). Sets of four variables cannot be constrained solely through

this approach: additional considerations are required. Those relevant to solids are cov-
ered next and in Section 2.4 on heat.
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2.3.2. Rigidity and Its Relationship to EOS Formulations for Solids

The special energy reservoir of solids, rigidity, provides their shape and strength
(Figure 1). Rigidity permits a solid to remain motionless, except for the small, cyclical
excursions of its vibrating atoms, while sustaining temperatures up to melting. In con-
trast, fluids flow under any stress, whereas some minimum stress (the elastic limit) must
be exceeded for a solid to permanently deform below its melting temperature, e.g., [9].

Equations (11) to (17), currently considered to constitute the EOS, are valid for not
only solids, but also liquids and gases. Completely describing a solid further requires
establishing the dependence of Gon P and T.

Shear and bulk moduli determined from elasticity studies, which commonly use
acoustic (subscript aco) methods and ultrasonic pulses [16], are defined as:

G- shear stress _ volumetric stress

(18)

aco

. . .
Stear strain volumetric strain

Rigidity and shear waves are only present in solids whereby shear deformation does not
change volume. Hence, G, unlike B r or B, is not tied to heat. For this reason, the shear
velocities are unrelated to the thermal Griineisen parameter [17] which connects B r with
Buco in the historical model (Section 2.3.6).

Elasticity is also represented by Poisson’s ratio (¢) and Young’s modulus (Z), where
we do not use the conventional symbol E because it represents internal energy in classical
thermodynamics. This pair is defined as:

_ longitudinal stress _lateral(transverse) strain

—
(™)

== > W - :
longitudinal strain longitudinal strain

(19)

The directional dependence of Equation (19) is obvious, and underlies our focus on iso-
tropic solids. Note that B, G, and E all have units of pressure, whereas p is dimensionless.

The elasticity matrix, a 2 nd order tensor [18] (p. 96), simplifies to three elements for
isotropic solids: ¢ 11, c, and the off-diagonal element ¢ 12. Because only three parameters
are needed for isotropic solids, the elastic moduli are related:

- _ 9BG 3B —2G
" 3B+G 6B+2G’
Although bulk properties can be represented by Equation (20), microscopic behavior

being directional in anisotropic solids requires some approximations to provide B and G
from measurements of such grainy material.

=2G(1+ w=3B(1-2 ) where u= (20)

2.3.3. Irrelevance of Friction to a Static Model and Implications for Work-Heat Relations

A plastically deforming solid evolves non-negligible frictional heat at some rate
which then leaves the material at another rate. Inelastic processes depend on time: during
such dissipative behavior, the material changes irreversibly, and restoration is impossible
without additional energy. Detailed time-dependent models specific to the given situa-
tion are needed. Elastic materials evolve small amounts of heat [19], which constitutes a
perturbation. It is not possible for such materials to indefinitely propagate compression
waves as these will slowly be turned to heat. Similarly, compression and expansion are
not truly reversible. As such, elastic materials, as defined by the material science and en-
gineering communities, actually experience small amounts of inelasticity, and will re-
quire additional energy to offset losses to heat. The proportion requires assumptions
beyond our static model, so it is not discussed further. Here, our use of “inelastic” and
“elastic” differs subtly from materials science; in materials science, elastic materials are
defined as ones which return to their original shape after deformation; instead, we use
the original definition from physics whereby “elastic” indicates that all energy is recov-
ered.
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mass

Two hundred years ago, Count Rumford’s cannon-boring experiments showed that
work produces heat. His dissipative experiments involved time and friction. Mass was
lost as well. As time is involved in Rumford’s experiment, changes in the cannon and the
bore cannot be directly evaluated without rate laws.

Thus, the equivalence of work and heat explored historically is not assumed in our
steady-state model of solids. Rather, elastic energy pertains to work (Section 2.3.7).

2.3.4. Connection of the EOS with Perfectly Frictionless Elastic Behavior

An EOS describes the relationship between P, V, and T of a specified mass of a sub-
stance. A unique amount of heat energy and internal elastic energy is associated with any
particular set of P,V,T coordinates, i.e., with any particular state. Nevertheless, the EOS
does not by itself define what the latter quantities are: to determine those, knowledge of
material properties is required. For a solid, a key component of the necessary information
is the rigidity, yet rigidity is immaterial for gas.

Containment of the mass in some V for a given phase at any P or T is completely
described by a reference state (Vo or po), plus knowledge of a(T), B(P), and either
cross-derivative (Section 2.3.1). Features of perfectly frictionless elastic solids (PFES) are
summarized as follows:

1. The perfectly frictionless elastic approximation is static: time is not involved and
systems are fully restorable. That is, the ideal system is reversible (Figure 4b), alt-
hough in a real system changes are made via manipulating and changing the sur-
roundings.

2. Because reversibility of the system and an instantaneous response to changing con-
ditions are central to the PFES approximation, adding heat to the system has no ef-
fect other than raising temperature, after which P and/or V respond, in accord with
imposed experimental constraints and the EOS. The time-dependent nature of heat
uptake (Section 2.3.5) explains why this is the driver of change.

3. Independence of mass and heat (Figure 4) and conservative behavior require sepa-
rate treatment of variables related to mass occupying space (i.e., the EOS and shear
modulus, G, which governs shape) and to heat occupying space (i.e., the heat con-
tent Q, storativity C, or a specific heat). Yet, the latter three parameters may depend
on the size of the box (V), and thus on P (or T) conditions, as well as on B (or «)
which describe volumetric changes.

Lo heat
¢ Y
igris elastic T3 1
solid
_______________ > heat vibrating ions
| _ time . pulses

a C

Figure 4. Schematics :an contain a quantity
of mass, and can ind ; lependence underlies
our model;. (b) Essence of elasti ing pressure) changes V, and thus

does P-V work, but does not ge: ; Upon release of pressure, a perfectly

elastic frictionless solid returns to its initial volume. See text for discussion of shear and shape
changes; (c) Receipt of small amounts of heat by a PFES. Within a short, but finite, distance, the

pulse encounters vibrating ions. When energy of the applied light matches some transition energy,
the affected vibrations become excited, attaining a higher energy state (e.g., an overtone). Subse-
quent interchanges give an overall higher vibrational energy of the collection, which imparts a
higher temperature. Both steps take time.
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2.3.5. Uptake of Heat during Frictionless Elastic Behavior

Matter can be energized in various ways. We discuss application of a light pulse
because light is pure energy, plus many types of experiments use light pulses.

Solids contain vibrating atoms. Their collisions must be nearly elastic to avoid large
losses of heat. Ideal, harmonic oscillations meet this criterion, and are consistent with the
PFES idealization.

These motions store energy in the solid over temperatures commonly accessed in
laboratories, as described by the famous models of Debye and Einstein. Irradiating the
material stimulates transitions among optical modes, where the dipole moment of a vi-
brating pair of ions changes (Figure 4c), discussed further in Section 4. Moreover, the
pulse must penetrate the material. This distance is known as the skin depth, and can be
inferred from optical properties: Wooten [20] provides a general discussion; Criss and
Hofmeister [21] cover femtosecond spectroscopyof metals.

Since light propagates at a certain speed, uptake takes some finite time. Reaching
equilibrium after the perturbation takes additional time, as the energy needs to be dis-
tributed among various vibrational modes that are connected with a higher temperature
(Section 2.1). Thus, elevating T precedes adjustment of V or P to the new state.

From the above, addition of heat involves three processes:

AP and/orAV
AQ, __ ~AT /i arlA,:r 1)

The present section concerns containment of mass (the heavy arrow), whereas Section 2.1
covers emissions (the dashed arrow). Section 2.4 focusses on heat (the LHS).

2.3.6. Why Rigid Solids under Steady State Have One Bulk Modulus

Steady-state heat transport across a rigid solid is both adiabatic and isothermal
(Section 2.2.2), a condition not addressed by classical theory. For an elastic solid in steady
state, each incremental slice along the thermal gradient must have both constant Q and
constant T. Therefore:

L4
oP

oV

= (22)
o 0P

T
Hence, the isothermal bulk modulus (Equation (12)) of an elastic solid equals its adiabatic
bulk modulus, denoted Bs in the historic model, where S is entropy. This equality is not
true for gases, due to their lack of rigidity combined with heat being carried by the mol-
ecules during their translational motions.

Elasticity experiments perturb a solid, which responds by propagating these per-
turbations internally as the form of waves. The response of the solid is then measured.
Elastic waves have a well-defined frequency, whereas heat has a wide range of frequen-
cies (Section 2.1). For a wave or pulse to heat a solid, the energy in the acoustic modes
must be redistributed over a very wide frequency range, i.e.,, among the optic modes,
overtones, combinations, and the continuum (Figure 4c). The process of redistribution
and warming requires some finite time, and is not part of the measured, initial response
of the solid, nor with the EOS. Moreover, not all exchanges are allowed. The special two
shear (transverse) waves and one compression (longitudinal) wave are equivalent to the
three acoustic modes of a crystalline solid. Acoustic modes are purely translational,
where the atoms move in the same direction, whereas optical modes involve atoms in
opposing directions [22]. For a vibrational mode of a crystal to directly absorb light,
which includes heat applied to the solid, its dipole moment must change during the vi-
bration [23]. This behavior is connected with symmetry and finite frequencies of optical
modes at the Brillouin zone center, where acoustic modes have no energy: see [22] or [24]
for examples and further discussion of the fundamental differences between acoustic and
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optical modes of crystal lattices. Regarding heat conduction inside the solid, data on the
temperature and length-scale dependence of thermal diffusivity show that the process is
largely diffusion of infrared light [3,7,25].

Because acoustic waves are not heat, elasticity experiments are nearly isothermal
and also approximately adiabatic. Ultrasonic pulse methods [16] are popular, which
supply less energy than a continuous wave. The key requirement is lack of frictional
heating, which is reasonably accurate for stiff material. Classically, results of elasticity
studies are denoted as B s. Since S is defined as Q/T in reversible experiments, Bs is re-
ferred to as the adiabatic bulk modulus. Because heat is irrelevant to elasticity experi-
ments, we instead use the notation Bo, for acoustic bulk modulus, when referring to
such data in Section 3.

Our model indicates Buo = Br, contrary to much literature, which posits that:

Baco = Br(1 + aymT), historic. (23)
where the thermal Griineisen parameter is historically defined as:

:—qBrvz—qBay , historic.
6 G

The historic difference in Equation (23) thus strongly depends on a. Like historic Equa-
tion (6), responses to Pare cast in terms of responses to T, which is questionable.

¥ (24)

2.3.7. Young’s Modulus and Work in a PFES

How V responds to changes in T or P is described by thermal expansivity or the bulk
modulus (Section 2.3.1). These physical properties are independent of path and of the
process bringing about the change. Compressing a solid by external application of pres-
sure, ideally hydrostatic, yields V(P) and the bulk modulus. In this case, work is per-
formed by an apparatus, and heating is avoided to the fullest extent possible, so:

dQ =dT =0; to ascertain V as a function of P alone. (25)

Conversely, determining V(T) and thermal expansivity requires changing T, while
holding P constant. However, unlike P, which can be directly altered or controlled,
changing T requires an intermediary step, i.e., applying heat and waiting for it to diffuse.
Figure 4c illustrates the microscopic process of converting heat input to temperature. To
expand the solid requires work. In the PFES idealization, an incremental addition of heat
goes entirely into work:

dQ =dW = PdV ; to ascertain V as a function of T alone. (26)

If the addition is truly incremental, conditions remain approximately in steady state.
The work performed expands the interatomic bonds. Resistance to this change is only
partially governed by the bulk modulus, since solids also possess shear strength: see
Meyers and Chawla ([18] Section 4.2) for discussion of Frenkel’s theory for shear
strength. We use Young’s modulus (Section 2.3.2) to describe the resistance of the solid to
incremental expansion as this is a measure of both B and G, and was used by Orowan to
represent tensile strength ([18] Section 7.2). Section 2.4 explores the effect of the elastic
energy reservoir of solids on their heat uptake.

2.4. Behavior of Heat in Perfectly Frictionless Elastic Solids during Steady-State Conduction

Density (p = M/V) describes how many atoms and molecules fill any given space.
Analogously, heat density ( ¢ = Q/V) describes how much heat occupies the same space
(Figure 4a). Based on Stefan-Boltzmann’s law, which shows that the emissions (heat
departing) from a volume V only depend on T, we deduce that for a PFES:
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QCP )=«TVTR ). 27)

The function ¢ concerns only heat-energy since T is related to thermal emissions. Because
light cannot compress, heat cannot compress.

2.4.1. Specific Heat Definitions

Experiments do not measure Q directly, but rather record the response of matter to
incremental energy augmentation. Measurements of heat capacity consist of perturbing
steady state. Conserving mass makes specific heat germane, which is defined in terms of
the heat externally supplied in order to raise a unit mass of some material by one degree:

— 1 AQ.’Xf 1 mext
= = : 28
Moarl,” woar, )

P

Constant P is used in laboratory studies of solids. Heat capacity is similar to the above
but is computed on a per mole basis. Multiplying Equation (28) by p gives storativity.
If volume is held constant:

— 1 AQX[ — 1 alX[
= = : 29
“Tum |,y )

Because cv data for solids are lacking, we focus on cr.

2.4.2. Incremental Responses for a PFES

Equation (28) implicitly assumes that all applied heat goes into raising the temper-
ature infinitesimally. Otherwise, the problem is insoluble. Moreover, this assumption is
compatible with EOS formations and perfect elasticity (negligible dissipation). Hence:

AQext = mint = melastiv:z MQ or m: aQext' (30)
The subscript ext on Q is hereafter discarded.

2.4.3. Pressure Derivatives of Specific Heat during Steady State

For a reference point, the effect of compression on mass is null from mass conserva-
tion:

1
MP

_aA¥)
. P

_ pop|, VB

1% 10V]

:la_ _i:() 31
r PP, B e

As discussed above, € does not depend on P. Hence:

109 _a(¥)| _104 JLov) 104 1
Q| | P, VB| &P, B

1
—, for e {P). 30
B (32)

T

Taking the P derivative of Equation (28) gives:

1@ 1o | _1oa|_ 120 .
G P MgaP oIy | Mgdl Pl |, Mgdl'B; | (33)
Using Equation (32) leads to:
Cp aPT B, MgB, or B. Mg P B
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The far RHS utilizes dB/dT ~0.001Band the high T case where cis nearly constant,
which reduces Equation (28) to:

MT ~Q (35)

The term with Q in Equation (34) is small from ~250 to ~1000 K, which covers experi-
mental conditions commonly explored.

2.4.4. Pressure Derivatives of Storativity during Steady State
Heat transfer experiments explore changes in storativity upon compression:

160 _10(@w) _1 1,V 09e Pe, edB _1 d¢e P&, da

Cel, @ oP B B Mg “ awp Bar C e awp a0

-

Because C already accounts for the box size, (InC) /0P depends primarily on heat density.
However, since heat density does not depend on P, then:

1ad _ 1) _ 800 Q00 4y s {P). (37)
Cc® |T,3 @ P ce cve

|T,3

The resulting negative sign for storativity requires that heat be shed during compression.
From Equations (34) and (35), the magnitude is small.
The historic Equation (6) for cr leads to a strong dependence of C on Br:

lé_C‘ =i+l%—i v O?H@ _1 1& %l@ °3°i,historic model. (38)
®l; B ¢ B a B

C P B ¢ 1-0y) ol B

2.4.5. Temperature Derivative of Specific Heat during Steady State from Stefan’s Law

Taking the temperature derivative of Equation (28) and following steps similar to

the above yields:
1 Oc, 8 o, Og 0c¢ O¢
——| =0t e to +t_ oet— - (39)
¢, OT |p ('3T 6T or oT

Importantly, greybodies are described by a unique temperature which is simply propor-
tional to a characteristic frequency (Section 2.1). From Equation (9), the energy associated
with the thermal emissions (light departing) from a solid is:

h, . = Wikl heat energy oc kI . (40)

Peak values, averages, and total energy involve different constants, but are all propor-
tional to Boltzmann’s constant times T [26]. Because emission measurements providing
Equation (40) were made at temperatures similar to the highest T reached in calorimetric
and volumetric studies, neglecting the second T derivative of € in Equation (39) is rea-
sonable.

The denominator in Equation (39) can be recast as:

8a+1ag_ 16V+168 41)
edT VT ol
As discussed earlier, adding heat makes the solid warmer and expands the solid. Expan-
sion and increased temperature have opposite effects on €. In lieu of complexities, such as
bond bending in certain materials, V will not experience antagonistic effects. Thus, vol-
umetric changes dominate the denominator, and the series expansion of Equation (39)
becomes:
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1 oc, 10a, 10e _10a 10e
——2 =2=gt——F——=——+ at+t——, (42)
cp, OT |, adT edT odT edT
where the far RHS lists the terms in order of size. Since o is about 0.01 times its loga-
rithmic derivative at moderate to high T, whereas at low T the logarithmic derivative
blows up, the a term in Equation (42) can be neglected. From the above, the heat density
term is inconsequential at laboratory temperatures commonly used to measure c rand V.
Hence, to a high degree of accuracy, the solution to Equation (42) and thus to Equation
(39) provides a new equation:

oT) =c(Ty ,(T). (43)

Previous work compared averaged experimental values of o and ¢ and found
equality at low T but a linear dependence at high T [27-30]. Bodryakov and colleagues
[27-30] explained the discontinuous behavior on the basis of vibrations being the main
energy reservoir in a solid, and did not consider elastic energy. Our derivation of Equa-
tion (43) suggests continuous behavior, but we have not yet incorporated the rigidity of
solids.

2.4.6. Heat Uptake Provides Non-Dissipative Work

Equation (43) is written to emphasize that the volume of a solid changes in response
to heat uptake (Figure 4c). Thus, the parameteri(T) describes the process of thermal
expansion. When T is low, the solid is stiff because the bond lengths are small and
bonding is strong. As T rises, the bonds lengthen and weaken. At high T, with weaker
bonding, the same increment of Q added as atlow T should cause greater expansion.
Clearly, the structure of the solid should affect the function c1.

Basically, the applied heat does work. Using Equation (28) gives:

cMA=AQ work =PdV=FA , (44)

where F is the force needed to expand the bond with length L. Young’s modulus (E)
represents the strength of the solid. The bulk modulus is not appropriate because it rep-
resents the change in V (or L) due to hydrostatic compression, thereby neglecting that
solids may shear.

We begin with F = = area, and consider a spherical volume about an atom:

AL AL a_p
M ~BA —=F4—=EVqg —~-
oM AT LAT ¢ ¢ = 45

However, Equation (45) does not account for solids having a variety of structures with
different bonding arrangements.

The properties o, cr, and p describe the bulk solid, so the structure is immaterial to
these measurable quantities. The desired quantity, F, is related to E, the number of atoms,
and the number of bonds around each atom (i.e., atomic coordination of the structure).
For example, diatomics have 2 atoms which share 1 bond, so F is proportional to = /2. The
same holds for the monatomic diamond structure, for which each atom is bonded to 4
others, mutually. Monatomics with the bec structure have 2 atoms in the unit cell, which
are bonded to 8 others, which double counts the bonds: thus F is proportional to 22 /4.
The 4 metal atoms in an fcc unit cell have 12 nearest neighbors, again double counting, so
F is proportional to 45 /6. Corundum has Al cations which are 6-coordinated, so Z/3 de-
scribes the force per cation. For the polyatomics with multiple sites, and given the above
assumption of spherical atoms, F is estimated as being proportional to = times the num-
ber of cations (N) divided by the number of atoms in the formula unit (Z):
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O9__ P for polyatomics.
o = (46)

From the examples listed above, Equation (46) also describes diatomic and mona-
tomic solids. However, for monatomics, N is the number of cations in the unit cell, and Z
is half the number of nearest neighbors in that unit cell.

2.4.7. Ratio of Specific Heats

When volume is constant, heating the solid changes P in the interior:

AGc M A = work=VdP. (47)
Manipulating Equation (47) and using the definition of an isochore gives:
¢, M ¥ Ba. . (48)
The ratio is thus:
¢ EN
—=——. 49
Y (49)

Structure pertains to the ratio because the interior forces composing = differ from exte-
rior application of pressure. This result cannot be tested as cv is not measured for solids.

3. Evaluation of New and Old Formulations via Comparison with Experimental Data

We evaluate whether available data support our model (Table 1) or the historical
equations. We utilize compilations of data to decipher random errors. Studies of many
materials by a single research group are another focus to reduce the effects of systematic
uncertainties in comparisons.

3.1. Comparison of Bulk Moduli from Acoustic and Volumetric Studies
3.1.1. Techniques

We use “volumetric” to include several experimental approaches that are conven-
tionally considered to provide isothermal bulk moduli. X-ray diffractometry (XRD, ) and
related techniques measure spacing of atomic planes, yielding unit cell volumes, whereas
length-change measurements (e.g., [31]) measure macroscopic sample dimensions. Ex-
periments are conducted at set points, presuming attainment of quasi-equilibrium at each
step. The apparatus must supply a constant heat input to maintain constant T, while
avoiding generation of extra heat from friction between moving parts.

Compression data are mostly collected at ambient temperature (NTP) rather than at
0 °C (STP). Ascertaining the effect of P on hard solids such as oxides is challenging be-
cause very high pressure is needed to induce substantial changes in V. Use of simple fits
to describe V(P) data has become uncommon, perhaps because of erroneous statements
that polynomial fits set dBr/OP to 0 at P = 0 [32]. Rather, values for instantaneous deriva-
tives depend on the accuracy with which V and P are measured, the spacing in P between
data acquisition points, and the absence of deformation.

Commonly, volumetric data are fit to an assumed EOS. Popular forms assume that
two constant values, namely the initial (Bro) and 1st order derivative (B’ = dBr@P), suffice
to delineate V(P). Large ranges in pressure are needed to establish the latter parameter,
because it is the 2 nd order pressure derivative of V. Additionally, uncertainties increase
with P. Hence, B’ = 4 is commonly assumed. Although applying a certain form for the
EQOS is useful for comparisons, this approach introduces uncertainties by restricting pa-
rameter space. Convolution of B ro with B”in EOS fits is a mathematical consequence of
using only these two coefficients.
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Modulus from elasticity data or calculation, GPa

250

A different class of experiments determines elastic constants by recording the
short-term response of materials to propagating waves or pulses [33]. The basis is equa-
tions relating stress to strain. Bulk and shear moduli are then calculated in accord with
the symmetry of the structure and whether longitudinal or transverse waves are applied.

Uncertainties stem from losses due to imperfect bonding of sample to transducer, im-

perfect orientation of single crystals, and use of approximate formulae for polycrystals.
Spectroscopic methods e.g., Brillouin scattering are also well-established [34], but have
similar limitations. However, since B is determined directly at ambient conditions, there
is no need to assume an EOS. The term “acoustic” is used below to cover elasticity stud-
ies.

3.1.2. Bulk Moduli for Solids at NTP

Compiled data on metals (Figure 5a) should be accurate because metals are fairly
compressible and duplicate measurements exist. For example, Ledbetter [35] summa-
rized measurements of zinc elastic constants presented in 11 studies, demonstrated con-
sistency, and provided a tightly constrained average for zinc’s bulk modulus. Individual
studies were sought when a metal was only present in either the elasticity database of
Guinan and Steinberg [36] or in the XRDdatabase [32], but not in both. We omitted any
shockwave and XRD results that were included in the elasticity compilation.

Figure 5a shows that historical Equation (23) predicts that bulk moduli obtained
from volumetric studies should be 1.6% lower, on average, than B ac. The calculated dif-
ference depends strongly on a-values near NTP, which are well-constrained for metals
[37] and fairly large. Although the historical correction term of 1.6% is close to the ex-
perimental uncertainty in bulk moduli for individual metals, it is larger than the uncer-
tainty of 0.5% of the fit for these 36 metals (see insets in Figure 5a). On average, the his-
torical correction is unnecessary.

Bulk moduli values for electrical insulators and semiconducting Si scatter about the
fit (Figure 5b). Within experimental uncertainty, Bao = Br. Applying historic Equation (23)
to Buwo predicts that bulk moduli should be only 0.6% lower than the trend in the data: this
correction term is small because silicates and oxides have low a. Incompressible diamond
(elemental C) and stishovite (SiO 2 with the rutile structure) greatly influence the fit. Be-
cause « is low for insulators, little difference exists between data and the historic predic-
tion, Equation (23).
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Figure 5. Comparison of data on bulk modulus from compilations of data from different experi-
mental techniques. The x-axes depict XRD results from [32]: (a) metallic elements. Elasticity data
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Count

(color points and line) mostly from [36]; supplemented by data on Pb and In [38] and Zn [35].
Calculations use y t from [36]; recommended values of « from [37]; and ¢ r from [39]; (b) electrical
insulators and the non-metallic elements Si and C. Elasticity data on Si from [40]: otherwise from

[41]. Additional XRD data, e.g., on BaF, from [42—44]. Calculations use yu and o from [45].

Statistical analysis provides further insights. Figure 6 shows histograms of the data
in Figure 5. Many insulators have B aco < Br from volumetric studies (Figure 6a), which is
the opposite of the historic predictions, Equation (23). For metals, Baw tends to be slightly
larger, whereas combining all data from Figure 5 provides an average difference very
close to zero. Symmetry of the profile about a negligible difference (Figure 6a) points to a
statistical origin for differences in bulk moduli measured on the same material with dif-
ferent techniques.

The historic predicted difference in bulk moduli, Equation (23), for metals is ~2x
larger than that of insulators (Figure 6b), suggesting that acoustic and volumetric deter-
minations should differ more for metals than for insulators. In contrast, Figures 5 and 6a
show that the differences between measured values of B r and Baw at NTP are smaller for
metals than for insulators. These findings underscore that differences in bulk moduli at
NTP for the ~100 samples in the compilations, many of which were measured multiple
times, are caused by experimental uncertainties. Figures 5 and 6 support our model.

[T T T T T T T T T T T T T T o T T e T T T T T T T T T, b B e o e e o e e L L e L e e e o L
mean of all materlals a 1
- - ] I mean of insulators
- . 15— .
mean of 59 insulators | | mean of 36 metals |
(larger B-values) l‘ (smaller B-values)
1 4 Ll
a 1€ i
] 3 mean of all materials
= 1l O L \L
- — 5F mean of metals &
[ insulators + Si [ ‘ ) 4
l_h H [ ‘ W metals
a‘l:m-l-l.l:l.l-l.m:ﬂ:m:l ||||||| aledololy 0. ...l...m.l. M NPT NN
-24 -21 -18 15 12 9 -6 -3 0 0 001002003004005006007008009 0.1 0.11 0.12
(B, B./B. Historic correction term at 298 K

Figure 6. Statistical presentation of the data from compilations. See Figure 5 for literature sources.
Light grey = metals; dark grey = insulators and Si. Arrows point to various mean values: (a) histo-
gram of the difference between elasticity and volumetric measurements of bulk moduli, in percent;
(b) histogram of the product ayT at 298 K. Expansivity data were found for 39 of the insulators that
had both types of bulk moduli measurements.

3.1.3. Uncertainty in Bulk Moduli Arising from Fitting Volume vs. Pressure

Bulk moduli are extracted by fitting V(P) to various polynomials or EOS formulae.
To investigate the effects of fitting choices and measurement intervals (spacing of data
points with P) we explore: (1) results for the metal Pb, which has pure samples due to its
low melting point, and has been studied multiple times by many researchers; and (2)
length-change measurements on many elements made using the same apparatus with
similar procedures.

Figure 7 shows all metals and semi-metals for which both length-change and acous-
tic data exist. Vaidya et al. [46] made multiple runs of many samples. Their tabulated
volumes, which may have been smoothed, were fit by us to 2 d order polynomials. Our
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, GPa
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results are similar to the polynomial fits of [31]. EOS parameters were averaged if multi-
ple values were reported.

Results from both polynomial and EOS fits linearly correlate with Ba with a slope of
unity (Figure 7a). Substantial differences exist in 0B 0P for the two types of fits [31] (their
Table 5). As shown below for lead, a 3 * order polynomial is needed, but P = 4.5 GPa is
insufficient to constrain curvature for most metals. This is underscored by measurements
of tungsten [47] for which V depends linearly on P. Thus, using an EOS for W is an in-
accurate representation. Discrepancies in Figure 7a for B > 130 GPa are attributed to both
curvature in V(P) being too small for accurate fitting at high B, and also the trend of being
highly influenced by uncertain B of incompressible W.
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Figure 7. Comparison of different measures of metal bulk moduli. Length-change measurements
from [31,46,47] were fit to EOS by the authors and to2 ¢ order polynomials here. Most acoustic
determinations are from compilations listed in Figure 5. Vaidya and Kennedy [47] provide addi-
tional acoustic data: (a) direct comparison. Both linear and polynomial fits are fit for tungsten, be-
cause curvature in V(P) was not resolved. Gold was not measured, but the other noble metals have
relatively large Br; (b) inverse comparison. The four softest metals were excluded because these not
only needed 1-3 more terms for accurate fitting, but more importantly, the sigmoidal dependence
of their V on P indicated deformation. We did not fit the initial slope because the lowest P data may
be affected by slight deformation.

Figure 7b compares compressibilities, where the fitting is influenced most by the
softest samples, rather than by the hardest. A 1:1 correlation exists, if the four softest
samples are omitted. Fitting V(P) for Rb and K (not shown) required 5 % order polynomi-
als to account for inflection points, a behavior that is inconsistent with available EOS
formulae. Apparently, Rb and K deformed in the tests. Accurate fits to Na and Se vol-
umes required 3¢ order polynomials. However, volumes for hard metals measured up to
4.5 GPa lack sufficient curvature to constraina 3 @ order polynomial fit. Thus, the four
softest metals cannot be compared to the others in a consistent manner.

Thus, bulk moduli obtained from volumetric measurements equal the acoustic de-
terminations, if V is measured and analyzed consistently. Notably, acoustic measure-
ments also have experimental uncertainties and most metals studied are polycrystalline,
for which elasticity formula (i.e., the Voigt—Ruess-Hill formulation) is approximate (Sec-
tion 3.1). Such effects cause the scatter in Figure 7.

Volumetric data on Pb from four studies are fit with a 3 ™ order polynomial (Figure
8a), providing Bro=45.5 + 0.5 GPa. Results from Schulte and Holzapfel [48] are not in-
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cluded because a table of volumes was not presented and resolution of the points on their
figures was insufficient for accurate digitization. They applied a two-parameter EOS to
their own and previous data, yielding B = 42 + 5 GPa with individual studies ranging
from 39 to 51 GPa. All fits cluster about 40 to 42 GPa. Figure 8b omits this average be-
cause shockwave data were included by [48]. We excluded fits to both fcc and bcc phases.

Various approaches to fitting volumes obtained at 298 K give a wide range of values
for Bro. A key factor is the maximum pressure obtained. When the full stability field for
lead is used, EOS fits with two parameters, give lower values for Bo than fits to a 3« order
polynomial, which uses three parameters. The constraint of V /W= 1 is not included in the
free-parameter count, as this is fixed in all approaches.
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Figure 8. Lead volumes and bulk moduli, mostly from DAC studies: (a) polynomial fit combines
results from [31,49-51]. Double arrows denote pressure ranges. XRD experiments probed the whole
stability field (to 16 GPa) but with few data points. Dotted curve = the 2rd order fit to V, where + =
the corresponding B(P). Inset lists the 3¢ order fit to V vs. P (solid curve), with filled squares for the
resulting B(P), which is fit to the listed 3 order polynomial. This fit gives slightly higher initial B
than calculation; (b) temperature dependence of bulk moduli. Diamonds = B (grey from [52];

black from [53]). Square in circle = result from panel a. Open squares and various triangles = several
fits to neutron diffraction data [51], as labelled. Other open symbols = reported EOS values of
[31,49-51].

Compressing Pb to 8.6 GPa is not sufficient to accurately establish curvature (Figure
8a). The very high P studies have widely spaced points, which limit the accuracy of fit-
ting. Regarding two-parameter polynomial fits, these can give higher or lower B than
either the 3 order polynomial or the EOS, depending on several factors. From the fitting
in Figure 8a, the comparison in Figure 8b, and considering variations among the data
sets, we infer that accurately determining B r,0 requires meeting several conditions: dense
spacing of points, volumetric data over a wide range of pressures, accurate (or at least
consistent) determination of pressures, and using a fit with three parameters or more (in
addition to Vo).

Notably, use of a3 @ order polynomial is consistent with anharmonic oscillations.
Further exploration of polynomial fitting to extensive data sets is needed, but is beyond
the scope of the present report.

Bulk moduli at NTP obtained from volumetric data even for Pb, which is a fairly soft
metal, include substantial uncertainties. For hard substances, uncertainties are larger,



Materials 2022, 15, 2638

21 of 40

which explains differences in scatter in Figure 5a,b. Figures 5-8 indicate that elasticity
measurements record isothermal bulk moduli.

3.1.4. Comparison of Acoustic to XRD Determinations of 0BT for Solids

Comparison of elasticity and XRD data on bulk modulus at high temperature is
limited because few substances have been measured at high T with both approaches.
Challenges arise from large thermal gradients in the material and/or apparatus. We focus
on accurate measurements of soft solids, as these have large o which permits definitive
evaluation. Alkali halides, alkali metals, and lead data meet these criteria. Due to ex-
perimental uncertainties, B «o does not always exactly equal B rat NTP (Sections 3.1.1 to
3.1.3). Therefore, we compare values of 0B 0T, which has a negative sign.

Our model (Section 2.3) requires that values of 0BT are the same for acoustic and
volumetric determinations. In contrast, the historic Equation (23) leads to:

aﬁ _ 1 aBm:o+ _Buco > O(y_ a(’in.Fa_aI‘ , historical. (50)
orly (1+a) o (1+ of) oa a

Below ~2000 K, the derivatives on the RHS are smaller than the product ay, as shown in
the tables in Anderson and Isaak [54], which include hard oxides and soft alkali halides.
The two derivative terms furthest to the right are similar in magnitude but opposite in
sign. For T accessed in experiments, Equation (50) is reasonably represented by:

B,| 0B L
— ~—2—qgf , historical.
or, or acd (o1)

The terms on the RHS are similar in magnitude [54]. Since dBr/0T is negative, volumetric
measurements should give a stronger response to T than elasticity measurements.

Yagi [55] determined volumes of four alkali halides to 9 GPa and 1073 K in a pis-
ton-cylinder apparatus using XRD. NaCl was included with each sample to provide an
internal pressure scale, where Decker’s [56] calibration was used. Bulk moduli (Figure 9)
were extracted using the Murnaghan two-parameter EOS, and were found to agree with
those from length-change measurements [57]. Mismatch occurs with acoustic determi-
nations at any given T, but B vs. T curves from volumetric and acoustic studies are par-
allel. The only exceptions (Figure 9) are from studies that disagree with subsequent
measurements. In addition, acoustic determinations by various authors on each sample
differ by varying amounts at 298 K. Within experimental uncertainty, equivalence of the
derivatives from acoustic and volumetric techniques is confirmed.

Historic Equation (51) gives 8.3%K -!for CsCl which is larger than, but similar to,
0Bao T = 5%K! (Figure 9). For LiF and NaF, Equation (51) gives 4.8 and 4.2%Kre-
spectively, which are smaller than 0Buo®T = —10.6 and —6.9%K", respectively (Figure 9).
Yagi’s [55] measurements of volumes provided similar 0Br/#T, rather than values about
half the size of 0B /0 T. The historic model is not supported.
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Figure 9. Bulk modulus of alkali halide as a function of temperature. Blue curves = EOS fits of Yagi
[55] to his XRD data on LiF, NaF, the low-P Bl phase of KF, and CsCl with the B2 structure. Num-
bers in parentheses denote previous work cited by [55]. Red squares and “VK” = length change
data [57], where too few data collections were made on KF to provide a reliable B. Broken curves =
acoustic data compiled by Yagi [55], where his references 19 and 20 are incompatible with other
studies. For example, Hart [58] confirmed B aco(T) from curve 22 for NaCl, i.e., the work of Jones
[59]. Modified after Yagi [55] (his Figure 8) with permission.

Regarding lead (Figure 8b), volumetric data of Strassle et al. [51], analyzed using
Skelton et al.’s. [60] adaptation of Decker’s [56] scale, gave B(T) parallel to the trend of the
cryogenic acoustic data. This finding is irrespective of using an EOS or a polynomial fit to
V(P). Stréssle et al. [51] were puzzled by their EOS determination for Br at 298 K, with the
EOS being as predicted by historic Equation (23), but not their 80 K value, and so
reevaluated their data with an untested cryogenic calibration, attributed to in a personal
communication, which yielded the desired historic result. As shown in Figure 8a, the
EOS analysis of lead volumes at low P underestimates the bulk modulus, so their fitting
approach only appears to agree with this historic adjustment. Rather, fitting lead vol-
umes over the stability range of its bcc phase to a high-order polynomial agreement with
Bueo, and do not require amending via Equation (23). As demonstrated for the alkali hal-
ides, bulk moduli trends with T for lead from volumetric and acoustic techniques are
parallel, and so the historic correction is refuted.

Soft alkali metals have also been studied by both XRD and acoustic techniques
(Figure 10). The trends are nearly parallel. At 298 K, length-change measurements better
agree with B than with the cryogenic volumetric studies, except for Na. The historic
correction at 298 K exceeds or matches the difference between the various measurements,
and thus agreement of absolute values involves random experimental uncertainties as is
evident from compiled data (Figures 5-7).
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Figure 10. Temperature dependence of bulk moduli for alkali metals. Filled symbols = acoustic data
of [61-63]; grey represents previous work cited therein. Open symbols = volumetric (XRD) studies
analyzed using simple forms for the EOS [64]. Open cross = length-change data [46], which are
closer to acoustic results than to B from XRD. Otherwise, squares show various data on Na; circles

for K; and diamonds for Rb. Arrow at 298 K shows the historic Equation (23) applied to XRD data.

3.2. Response of Heat Capacity at NTP to Compression

Compressing a solid affects specific heat and storativity in different ways, permit-
ting two independent evaluations using Equations (34) and (37). The historic Equations
(6) and (38) differ considerably from our model, providing two additional tests.

Two types of measurements exist for specific heat of solids as a function of pressure
near ambient temperature. Calorimetric measurements have been performed on 3 metals
(Section 3.2.1), whereas transport measurements involve 20 insulators, plus 3 metals by
difference (Section 3.2.2). Only for Cu and MgO do multiple c»(P) measurements exist.

3.2.1. Static Compression Techniques

Metal wires were studied at pressure using electrical heating, where a correction
term was applied to account for thermal losses. This term involves resistivity of the wire
and is larger (for Cu) or similar (Ni, Al) in magnitude to uncorrected dIn(cr) 0P [65] (their
Figure 7) and [66] (their Figure 3). Uncertainty for the reported value is substantial and
cannot be less than ~10% uncertainty for the change in resistivity with P, e.g., [67].

3.2.2. Dynamic Compression Techniques
Measurements of transport properties as a function of pressure provide dln(cr) AP in
two different ways. First, from Equation (5):
oln(k) oln( p) N dln(c,) N oln(D) 1 N dln(c,) N oln(D)
P oP oP op B, 0P oP

’ (52)

Different methods yield x or D, and occasionally both properties. Combining results
yields dIn(cr) OP by difference whereby uncertainties of the terms sum.

Only experiments on large (~ mm thickness) samples are considered, to permit
comparison of the results, since transport properties linearly depend on length-scale at
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small L [7]. Dynamic measurements provide D and « vs. P for three metals, MgO, and
olivine (Figure 11). Uncertainties are roughly +10% for each transport measurement,
which makes dIn(cr) 0P obtained by difference uncertain by +20%. Figure 11 omits
measurements of three samples: Gd melts very close to NTP; Zn has a hexagonal struc-
ture and the orientations differed in the D and k experiments; whereas results on garnet
gave positive dln(cr) P, which is unexpected, and is probably due to large uncertainties
in small derivatives for this hard insulator.

Second, certain dynamic experiments on insulators simultaneously provide x and C
as a function of P (e.g., [68,69]). Alkali halides, Si, and MgO were explored (as detailed in
Figure 11). If a graph for C was presented, we used the slope and Br to calculate
dln(cr) OP from the LHS of Equation (36) instead of the EOS approach as used by authors.

Most studies note high uncertainties. Nominal uncertainties at NTP of 5% for
transport measurements are gauged by metal standards. Insulators have larger, system-
atic errors from contact loss and radiative transfer. However, their effect is reduced by
comparing logarithmic derivatives.
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Figure 11. Graphs showing the response of storativity and ¢ r to pressure: (a) dependence on the
inverse of B; (b) Direct dependence on B. Grey diamonds and grey dashed line = directly deter-
mined storativity: sources = [70-73] where the error bar is from Gerlich and Andersson [70]. Black
squares and solid line = specific heat from C, where circles = data where C did not discernably de-
pend on pressure. Open cross and red dotted line = metat directly measured by calorimetry
[65,66]. Aqua triangles = heat capacity obtained by difference (sources: [69,74-78]). Green short
dashed line = ideal correspondence.

3.2.3. Relationship of the Pressure Response of Specific Heat and Storativity to Bulk
Moduli

Available data show that measured values odIn(C)/0P for insulators weakly de-
pend on compressibility or the bulk modulus, as predicted by Equations (36) and (37).
The results are scattered (Figure 11), rather than inversely depending on B, which disa-
grees with the historic Equation (38). Considering the large experimental uncertainty,
storativity is independent of pressure. This explanation is supported by soft solids, which
are prone to deformation, having C dependent on P, whereas the hard solids show little
change. It is also consistent with the seemingly random variation in the sign of dC0P.

In contrast, dIn(cr) OP decreases roughly linearly with B-! (Figure 11). Values for the
slope vary with the technique (calorimetric or dynamic). The slope is uncertain, due to 10
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to 20% uncertainties for the various approaches and the fact that an EOS is used to pro-
cess storativity, which adds uncertainty—basically, this is also a difference approach. All
data from all approaches combined (not shown) give a slope of about —1 or —100%. This
slope is consistent with Equation (34), which shows that compression of the lattice con-

trols the response. Within experimental uncertainty, the energy density is independent of
pressure.

3.2.4. Evaluation of the Historic Relationship of the Pressure Response of Specific Heat to
Thermal Expansivity

Figure 12 evaluates historic Equation (6) using sources listed in [79] and Figures 5
and 11. The temperature derivative of a is uncertain, and contributes to scatter. Measured
dln(cr) OP, on average, responds strongly to compression whereas the correlation with
historic Equation (6) is poor. The existence of a rough link is attributable to compressible
solids that also have large a; see, e.g., Anderson and Isaak [54].
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Figure 12. Comparison of the measured P response of specific heat to the thermostatic formula (6),
which is peculiarly based on thermal expansivity describing compression. The difference method
(blue triangles) provides a cluster of points, and so was not fit. Red = direct calorimetry measure-
ments. Green dashed line = 1:1 correspondence, for reference. Circles = materials for which stora-
tivity was not discernably affected by compression. Open cross = metals, by calorimetry. Black line
= fit to the scattered dynamic measurements. Data sources listed in Figure 11.

3.3. Connection of Thermal Expansion to Heat Uptake and Internal Strength

Uncertainties in the properties considered here increase with T. Uncertainty in den-
sity is negligible, compared to that of the others, which generally increases in the order cr
< B < a. Because thermal expansion is small and measured as a response to T, values are

impacted by the measurement range and fitting procedures, parallel to the limitations in
determining Br (Section 3.1.1).

3.3.1. Ambient Temperature

Figure 13 compares the ratio a/cto the ratio p/E without considering effects of
structure after Equation (45). Agreement is reasonable for the monatomic elements, but
with considerable scatter. This could be due to ~25 elements having N/Z =1, but being
anisotropic, as discussed below. The correlation for insulators is linear, with a slope dif-



Materials 2022, 15, 2638

26 of 40

fering from unity predicted by Equation (45). Its value of nearly Y% is as expected from our
structural analysis of the interatomic forces (Section 2.4.6).

Figure 14 evaluates the effect of structure on interatomic forces Equation (46). Sem-
iconducting Si and Ge are omitted because these have negative thermal expansivity at
low temperature (see Appendix A). Diamond is included with the insulators because its
structure differs from the remaining solid elements, which are metals plus the semimetal
Te. Figure 14 analyses the three different structures that describe most metallic elements.
Data on the insulators and face-centered cubic (fcc) metals confirm Equation (46),
whereas data on the body-centered cubic (bcc) and hexagonal close packed (hcp) metals
require an additional factor. Discrepancies for the non-cubic solids, i.e., olivines, among
the insulators and hcp metals point to anisotropy, which affects measurements of both
and E, but was not accounted for in our analysis (Section 2.4.6). Corundum is hexagonal,
but its physical properties such as thermal conductivity are nearly isotropic and so this
behaves like the cubic insulators. For the remaining non-cubic structures, additional in-
formation is needed to describe their forces, so we do not pursue details of their behavior
below.
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Figure 13. Evaluation of Equation (43). Data on «, p, and ¢ r from [37,39,80,81]. Young’s modulus
data from [41,82]. The five insulators are examined below: see Section 3.3.2 for details and sources.

Divergence of anisotropic samples from Equation (46) in Figure 14 suggests that
shear (deformation) underlies mismatch since both affect the amount of longitudinal vs.
lateral strain. DeJong et al. [83] modelled failure modes of four bcc metals. Their catego-
rizations of ductile (shear) vs. brittle (tension) failure agree with available experimental
data. Equation (46) overpredicts o/ e for ductile Nb and Ta but agrees with a/e for brittle
Mo and W. Shear being important means that some of the heat energy goes into de-
forming rather than solely expanding the lattice: consequently, o/ @ is overestimated.
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Figure 14. Dependence of a/e on p/(EN/Z). Literature sources of data on elements are in Figure 13.
For the insulators, tables of [54] were used, where CaSiOs was omitted because o was estimated.
Fits are least squares and are labeled with the number of solids in each category: (a) insulators and
cubic fcc metals. Lead strongly influences the slope due to its softness, as shown by the two fits.
Iridium has little influence as it is near a cluster of points. Orthorhombic FeSiOs has a shearing
transition whereas a for orthorhombic MneSiOs is unconfirmed; (b) cubic bec and hexagonal hep
metals. Outliers Li and Be have very small cations and few valance electrons.

To quantify the effect of ductile behavior, the data in Figure 14 are recast as a dif-
ference and a ratio in Figure 15a,b, where each is compared to Poisson’s ratio (Section
2.2.3). The rigid insulators agree well with (46), excluding the orthorhombic olivines. The
scatter is otherwise attributed to experimental uncertainty, mostly in a, due to its small
size (discussed further below).

lithium (omitted) 0.55, 464% A

120....,....,....,,...,.TI....,.‘._l.. e B e e s o
[ a . ] A b y=22162-3.0718x R=0.55
I © ] [ e y=1.3435-1.9634x R=0.72 ]
R o . 3 ;
= : ]
(&) — §
3 N i
Z Z [ - - ]
— m [ | ® shear increasingly ]
ot 3 d important ]
3 = r 1
e =~ 2r 7
> & f ]
i1 S [ ]
= noL i
n o k ]
g [ ]
3 e [ 4
S 1
£ [
(=) [
--------- y=-51.058 +307.96x R=055 | F
L ———y=-87.737+236.9x R=0.62 | r
I ] - | P T ST S T SN TN S TN [N SN SN TN TN SN SN ST SN S [T SO S 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0
Poisson's ratio Poisson's ratio

Figure 15. Measures of discrepancy of the data from (46) as a function of Poisson’s ratio. Data on p
from [41,82]; see Figure 14. Fine line = ideal match. Dotted line and circles = bcc. Thick line and
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squares = fcc. Diamonds = hep: (a) difference = {p/(EN/Z)-a/@}/(a/r) in percent; (b) ratio of oc/c r
divided by p/(EN/Z).

As deformation becomes an increasingly important component of elasticity in each
of the fcc and bec metals, o/ c ris increasingly overestimated by Equation (46). Positive
discrepancies (overestimation of the energy supplied towards expansion) are associated
with transverse strain being large compared to longitudinal strain. Thus, deformation
accounts for departures of individual metals from the trends established for each of the
fce and bec structures, but it does not account for their different trends.

One explanation of the different trends is that our use of structure to link interatomic
forces to Young’s modulus is an oversimplification. lonic-covalent bonds for the insula-
tors are strong and electrons are localized, so assuming that forces are controlled by
nearest-neighbor couplings is strongly supported. Bonding in metals involves delocal-
ized electrons, so 2 nearest neighbors participate somewhat in the force field around a
cation. The fcc cations have 12 nearest neighbors at 0.707 L and six 2 " nearest neighbors
at L. Because 29 nearest neighbors are few and are at 1.4x longer distances, using 12
bonds is reasonable but low. Increasing bond number to 13.8 would provide a slope of
unity in Figure 14a. If a bond count of 13.8 has been used in Figure 15, this would place
most metals within uncertainty of exact agreement with Equation (46). These samples
have typical p = 0.2 to 0.33, which overlaps with the range of the insulators. For another
estimate, an extended unit cell with 5 atoms would have 18 bonds (double counted),
giving Z/N = 1.8 instead of 1.5. Agreement with Equation (46) for all fcc metals occurs
midway between these estimates.

The bcc structure has eight nearest neighbors at 0.866 L and six 2"d nearest neighbors
at L. Secondary bonding is more substantial than a perturbation. Considering an ex-
tended unit cell suggests Z/N =7/3 = 2.33 instead of 2 for the primary bonds. This modi-
fied value does not explain the overall underestimation of expansion at ambient T caused
by heat uptake by bcc metals. Further evaluation would require a close look at the orig-
inal sources of data, particularly . Experimental uncertainties may be a problem for the
highly reactive alkali metals. This potential limitation is supported by the well-studied,
non-reactive bec metals (Fe, Mo, W) lying on the 1:1 line of Figure 14b, whereas Ta is
slightly off, due to its high ductility, discussed above.

3.3.2. Temperature from a Few Kelvins to Nearly Melting

Previous comparisons of a(T) to ¢ »(T) averaged many data sets [27-30], which re-
moves random errors. Because systematic errors also exist, we compare individual data
sets in Figure 16a which should accurately represent each of «(T) and ¢  »(T). Evaluating
the temperature dependence of Equations (43), (45), or (46) further requires accurate data
on E(T). Fortunately, comparing rather few samples suffices because specific heat de-
pends similarly on T for diverse materials, both simple (e.g., [24]) and complex [84].
Likewise, solids expand similarly as temperature climbs: for details, see Appendix A.
Similar behavior of Z with T for different substances has also been observed (Figure 16b),
leading to common use of the formula:

=(T)=g,_, —aT exp(—%), (53)

where E at the limit of 0 K as well as constants a and b are fitting parameters [85-91].

We focus on diverse cubic substances with multiple and accurate measurements
over wide T-ranges. Pure substances, where disordering of cations among sites is negli-
gible, are considered. Appendix A provides graphs comparing o to ¢ r as a function of T
for Al, Fe, Mo, Ta, Au, diamond, Si, MgO, AL:Os, Y2A13012, NaCl, and KCL

The five metals examined in detail have a sufficient range of densities, Young's
modulus, and structures to permit the evaluation of our new equations. Rows 3 to 6 and
columns VB, VIB, VIII, IB, and IIIA of the periodic table are represented. Figure 16 shows
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the ratio a/e above 200 K, where data on E exist. As T further increases, a increases more
strongly with T than does cr, such that the proportionality factor a in Equation (43) grows
non-linearly with T at very high T.
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Figure 16. Evaluation of Equations (43) and (46) at high T for well-studied solids: (a) dependence of
o/e on temperature. See Appendix A and Figures 13 and 14 for data sources. Jumps in Ta curve
result from data-combining studies. The graph begins at 200 K as cryogenic data were previously
shown to closely correspond [27-30]; (b) dependence of p/Z with the structural factor on T. Con-
stant ambient p was used due to uncertainties in Young’s modulus. Measured data on = from [85-
91]. For Au, Fe, MgO, NaCl, and KCl, we used T derivatives near and above 298 K for B and G from
[41] to compute d=/dT.

Semiconducting Si has negative aatlow T, but behaves similarly to isostructural
diamond at high T (Appendix A). Because &(T) being disconnected from ¢ r(T) was also
observed over the Curie point of Fe (Appendix A), we propose that heat energy goes into
expanding the lattice when no other process exists that can uptakes the increment ap-
plied. In Fe, the additional process is electromagnetic. Section 3.3.1 argued that defor-
mation likewise diverted heat-energy from thermal expansion. From both observations,
we suggest that the process in Si involves electronic state changes. This hypothesis could
be tested against impurity content for Si and Ge.

Figure 16a shows that the ratio a/cr depends on T. Its derivative with T (the slope)
depends on = near 298 K, in accord with Equation (45). Trends are flat and similar for
materials with very high Z. The slope steepens as Z decreases. Density and Young's
modulus together affect the low T intercept of a/cr. The behavior exhibited in Figure 16a
supports the findings of Section 3.3.1.

The slopes of a/ecorrelate reasonable well withdZAT for diverse materials (cf.
Figure 16a,b). Insulators include extremely tough diamond, three incompressible oxides
with varying structural complexities, and two soft alkali halides. Bonding ranges from
ionic to covalent. Bass’s [41] summary table shows that the T derivatives of elastic prop-
erties vary considerably among studies of the same material. Non-linearity of the re-
sponse contributes. Hence, uncertainties in dZ AT are substantial. On this basis of large
experimental uncertainties, and because density changes with T are even smaller, ambi-
ent p was considered in Figures 16b and 17.

Figure 17 shows that thermal expansion of solids is more easily accomplished at
high T because the solid gradually weakens with T. Shear is a substantial competing
mechanism for Au and Ta, causing our model to overestimate expansion at room tem-
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perature (Figure 15) and above (Figure 17). Within experimental uncertainties, data at
elevated temperature support our model for the response of strong solids to heat.
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Figure 17. Comparison of the temperature dependence of the RHS and LHS of Equation (43). The
effect of structure is not included. Data for these solids are described in Figure 16 and Appendix A.

4. Discussion and Implications

We present a new model for static physical properties of solids for the case of
steady-state heat flow. The classical “thermodynamic” model does not account for ubig-
uitous heat flow or for the dissimilar physical behaviors of gas and solids, encapsulated
in Figure 1. In particular, the fact that heat-energy and mass move independently in a
solid, unlike gas, and the quantitative description of heat flow by Fourier are neglected in
classical theory. An equally significant omission was neglecting the constant emission of
heat from a solid, as experimentally established by Stefan, and theoretically supported by
Boltzmann'’s derivation of the T* dependence of flux.

Independent behavior of heat and mass in solids stems from their rigidity and
strength: hence, elasticity is the dominant energy reservoir of solids (Table 2). Moreover,
coherent transverse motions that embody two of the three acoustic modes in solids have
no counterpart in gas. As elasticity is connected with interatomic forces within a solid,
this reservoir involves potential energy (P.E.) and is distinct from heat storage, which is
known to be kinetic energy (K.E.) from study of gases. The nature of heat storage is cov-
ered in Section 4.1.

Table 2. Dependence of energy reservoirs on the state of matter and the complexity of its atomic

constituents.
Solids Gases
Type Motion
P Manifestation Energy Storage Manifestation Storage
. Displacements Longitudinal acoustic o . .
monatomic P & Longitudinal stress/strain! =~ Translational K.E. Heat
parallel to path ~ mode
Displacements Transverse acoustic

. Transverse stress/strain! n/a n/a
perpendicular to modes
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path
Electron-cation _ . .
Optical continuum Heat Collisions n/ad

dipoles

polyatomic

Longitudinal

Transverse

Electron-cation
dipoles
Cyclical, tiny 2

Longitudinal acoustic
mode
Transverse acoustic

Longitudinal stress/strain’ Translational KE  Heat

Transverse stress/strain! n/a n/a
modes
Optical continuum Heat Collisions n/ad
Optical modes Additional heat Internal modes Heat

! For solids, these together compose elastic storage of energy in tension-compression and shear,
respectively. 2 These internal motions and energies are in addition to those described for mona-
tomics above, but are also found in certain monatomic structures such as Raman modes (diamond
and hcp metals). Although Raman modes do not directly absorb light, their overtone/combinations
do. ? Presumed to be brief and conservative in the historical model.

Addressing these omissions led to relationships among the physical properties of
solids that differ from the historical formulae. Table 1 lists key new formulae which we
have evaluated with available data. Some additional results cannot be verified because
no data exist for solids, for example, on ¢ v. Testing many different solids required use of
compilations, which introduced uncertainties. Nonetheless, available data show that for
solids:

1. Only one bulk modulus exists, so the historically alleged difference between acous-
tic and volumetric moduli is unsupported. Likewise, the isothermal and adiabatic
values for the 2nd Griineisen parameter (Equation (14)) must be identical.

2. Changes in heat content with pressure are controlled by the compressibility, which
dominates changes in specific heat at moderate laboratory temperatures.

3. Changes in heat content with temperature are described by specific heat by defini-
tion. Specific heat and thermal expansivity are linked, as the process of increasing V
involves overcoming the elastic, tensile forces within the solid. Deformation solely
occurs as shape changes arising from shear stresses uptake energy without expan-
sion, confirmed by comparison of results from (46) to Poisson’s ratio for cubic solids.
If heat stimulates other processes, expansion is reduced as in Fe, or even reversed, as
in Si.

4.1. Heat Storage Reservoirs and Permissible Exchanges of Energy

All solids store heat. Those with multiple types of atoms have short-range vibra-
tional motions that interact directly with light, as occurs in polyatomic gases. Applied
light-energy is absorbed by these cyclical, small-scale motions, then communicated dur-
ing equilibration (Figure 4c), and stored as heat.

For gases, the molecular vibration reservoir is in addition to that of the longer scale,
translational motions, as is well-known. At equilibrium, these different energy reservoirs
must have the same temperature. Partial temperatures do not exist. Yet, the heat-energy
content associated with each reservoir need not be the same, and in fact is not. One ex-
ample is diatomic gas, for which the translational K.E. reservoir is larger than the vibra-
tional reservoir. Equal temperatures of reservoirs are in accord with the zeroth law and
with Stefan’s observations: at equilibrium their heat losses (fluxes) must match.

Solids must behave similarly. Thus, monatomic solids which lack optical modes
(e.g., bcc and fcc structures) must have some heat storage reservoir. These metals emit
approximately as blackbodies and consequently absorb light at all frequencies. This op-
tical continuum is thus the manifestation of the main heat storage reservoir in metals
(Table 2). Continuous absorption is consistent with the wide range of distances, and thus
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dipole moments, between the moving, loosely bound electrons and the approximated
stationary cations.

Energy cannot be freely exchanged among all reservoirs. Rules exist for energy ex-
change and in many cases prohibit it. Rules are evident from experiments. Acoustic
modes in solids are not stimulated by light, even when its frequency matches that at the
zone edge, because the dipole moment does not change during these coordinated mo-
tions of the cations [23]. Thus, neither the sole longitudinal acoustic mode nor the two
transverse acoustic modes participate in emitting light. Without a flux, the acoustic
modes have no temperature and so the elastic reservoir not being in equilibrium with the
heat reservoir does not violate the zeroth law. Our discussion is in accord with the nearly
free electron model [24]. Heat transfer is a disequilibrium phenomenon that is not rele-
vant to the equilibrium state: for measurements and theoretical assessment of electronic
and vibrational transport in metals, see Criss and Hofmeister [21].

From another perspective, the elastic reservoir maintains and even increases its en-
ergy as the 0 K limit is approached (Figures 8-10). The acoustic modes have more energy
as T decreases because the bonds become shorter. Solids become more rigid with de-
creasing T. Even polyatomic alkali halides behave in this way (Figure9). If the elastic
reservoir exchanged energy with the heat reservoir achieving low temperatures might be
impossible. Moreover, acoustic waves propagate extremely long distances, for example,
1000s of km inside the Earth. Weak attenuation, unlike that during heat transfer which
attenuates over ~ mm lengths, is only possible with negligible energy exchange. Ex-
change of energy between reservoirs is observed to occur only when the length scales
associated with different energy inventories are similar. This restriction is a consequence
of the Virial theorem of Clausius [92]. The entire solid sample responds elastically to
stress, whereas the interactions of solids with heat and light are microscopic.

4.2. Key Variables

The essential thermodynamic variables that govern solids under steady state are
mass, volume, temperature, and stress. Although mass is held constant in our model, M
remains important because atomic constituents dictate structure and bonding, and
therefore affect the interactions of the particular solid with stress and with applied heat.
Because heat is never stationary, the supply of flux is crucial, but is assumed to equal the
flow out, so the total energy content is independent of time in our model. That is, the
constraints of steady-state dictate the relevant variables and how measurements are
made. In more detail:

Heat storage and the solid’s response to applied heat are probed by perturbing the
system, i.e., by monitoring the response of the solid to incremental heat additions (puls-
es) and recording this as a heat capacity. Temperature is actually a consequence of an in-
flux of heat energy to the solid, which is maintained externally.

Stress has direction and can be separated into an isotropic component (hydrostatic
pressure, P) which alters volume but not shape, and a deviatoric component, which alters
shape but not volume. Elastic properties describe the changes (strain) in response to
stress. For solids, bulk modulus (inverse of compressibility) has been the focus as this is
the response to hydrostatic compression, and also occurs in gas. For a solid, its response
to shear stress is equally important, but gases offer no resistance to shear. Moreover,
steady state involves a direction of heat flow, and thus Young’s modulus and Poisson’s
ratio better represent mechanistic responses during steady state. Because the elasticity
reservoir is independent of the heat reservoir, thermal expansion is related to heat uptake
through the rigidity of the solid and its directionality, including in anisotropic solids.

4.3. Reservoirs vs. Historic State Functions

The neglect of the huge reservoir of elastic energy in solids in the historical model
requires revision of essential variables (Section 4.2) as well as of the associated energies,
historically referred to as state functions. For solids, elastic energy replaces the state
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function denoted internal energy. Unlike internal energy, elastic energy is independent of
temperature, flux, and heat.

From the definition of specific heat (Equation (28)), integration provides Q, the heat
content. A constant of integration is unnecessary because at the limit of T = 0, flux also
approaches the null limit. Otherwise, a substance could cool below absolute zero. The
absence of flux at 0 K means that no heat is stored at this limit. Otherwise, a small amount
would be emitted. Heat content replaces the historic enthalpy function for solids.

Entropy for a solid is related to its configurational disorder. Defining entropy in
terms of Q and T is problematic because heat flow is ubiquitous. In the historic approach,

S is a variable, yet enthalpy, i.e., Q, is a state function. Our model lacks this inconsistency.

The classically defined free energies of Gibbs and Helmholtz are not needed to de-
scribe solids. Rather, our analysis shows that only two very different types of energy exist
in our ideal, time-independent solid. One reservoir consists of storage of elastic energy of
the solid, which is potential energy since motions do not exist until the system is per-
turbed, i.e., activated by adding heat. The second type is heat content, which is kinetic
energy, since atomic motions are always present at finite T, while taking on different
forms (Table 2).

5. Conclusions

We constructed a new thermodynamic theory for the perfectly elastic frictionless
solid that accounts for the vastly different physical character of solids and gas, while
addressing the ubiquitous flow of heat. Our model shares two inherent limitations with
the historic model, as it is also macroscopic and independent of time. Our model differs
by: (1) considering steady-state conditions for heat flow, which are common and
achievable; and (2) accounting for the rigidity of solids. The latter shows that the energy
associated with their elasticity, which was ignored in classical models, is large and in-
dependent of their heat reservoir. Our focus on perfectly frictionless elastic solid is
analogous to the classical model of the ideal gas: in both theories, exploring the limiting
case of elastic, conservative behavior sets the stage for more complex, realistic behavior.

Our new equations, which differ substantially from historic ones, were confirmed
using available data on isotropic solids. Although validation is limited to simple struc-
tures, all bonding types (metallic, covalent, and ionic) are represented and agree with our
model, supporting its generality. We also demonstrated that counterpart equations in the
historic model, which are based on behavior of gases and neglect rigidity, are not sup-
ported by the same data.

Incorporating elasticity into a thermostatic model reveals the mechanism for thermal
expansion: namely, the added heat performs incremental work, which is required to
transition between equilibrium states, but is opposed by the interatomic bonds that de-
fine the structure and rigidity of the solid. This link explains why the temperature de-
pendence of a is complex. Other key equations (Table 1) provide simple relationships for
the pressure responses of specific heat and heat content. The relationship between the
two specific heats is simple: when cast as Bcr = Eo, it is apparent that their difference lies
in whether pressure is externally controlled, or whether the resistance to heating is in-
ternal to the solid. Furthermore, we show that isothermal and isentropic (adiabatic)
compressibilities are identical, which is consistent with thermal expansivity taking on
one value (isobaric) and isentropic conditions not being germane.

Many different disciplines apply various historic thermostatic relations to solids.
Materials science and engineering fields should find our interrelationships among ther-
mal expansivity, specific heat, and Young’s modulus useful in designing materials, be-
cause both strength and thermal response are germane to many applications. Geophysi-
cal research would greatly benefit from our new theory because the slowly varying,
high-pressure and high-temperature conditions in Earth’s deep interior cannot be
reached in the laboratory, and so the historical equations have been relied on. Substantial
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revisions are expected for the thermal structure of planetary interiors, since these bodies
are very compressed and thus very strong solids.
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Appendix A

Accuracy in thermal expansivity is particularly low at high T, where mostly diffrac-
tion techniques are used. Errors of 20 to 30% are common, e.g., [93]. Specific heat from
direct scanning calorimetry is uncertain by 1 to 3%. Drop calorimetry measurements vary
in accuracy, depending on the fitting procedure. Adiabatic and pulse-heating techniques
are the most reliable: consistency in ¢ r data exists at cryogenic temperatures. At high T,
various studies report ~1-2% accuracy, yet comparisons of data sets (e.g., [27-30]) show a
wider spread of 5%.

Fits rather than the actual ¢ r(T) data are commonly reported. Either a Debye model
or one of various multiple term expressions is used. Many studies fit thermal expansivity
to a formulation after Griineisen, which also uses the Debye temperature. We sought
studies with tabulated data.

Similar behavior for o and cr with T is clear from Figure Al: both equal 0 in the limit
of 0 K, thereafter increasing as ~T?, the increase of which then weakens with T, resulting
in a “knee” at modest temperature and a ~linear increase at high T, which commonly
steepens at very high T. Accuracy is required to resolve the gradual change in slope at
very high T. In many substances, a “sway” exists due to the steepening at high T. The
“knee” is always prominent, but when many data sets are shown together, the sway can
be obscured. Plots of a above 298 K for 17 different metals [94,95], which were considered
Touloukian et al.’s. [37] and Gray’s [96] preferred values, show the sway, usually in both
representations. Nb and Os do not show a sway, whereas for 7 additional metals, either
the sway was obscured by a phase transition or temperatures accessed were too low for
its detection. To fit o, Zhang et al. [95] used two Debye temperatures. The fits are rea-
sonable, but do not match both the knee and the sway.

Regarding cr, much data are collected near ambient T, so the knee is
well-established. Very high T data are less commonly explored. Yet, the sway is observed
in many studies.
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Figure Al. Comparison of properties describing the response of solids to heat additions. Left axis:
black curves and points = volumetric thermal expansivity. Right axis: grey curves and points =
specific heat. Scales were chosen to best match a and ¢ r at cryogenic T. Properties are at ambient
conditions, taken from various compilations. (a) Aluminum. Squares = « [97]. Diamonds = rec-
ommended a [37]. Grey solid curve = @ compiled and evaluated by Desai [98]. Dashed = laser-flash
calorimetry [99]. (b) Iron. Thick vertical bars mark structural phase transitions. X = capacitance
measurements of o [100]. Squares = dilatometry [101]. Diamonds = recommended [39]. Grey
curve = @ compiled and evaluated by [102]. (c) Molybdenum. + = recommended fit to o [37]. Circles
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= XRD results compiled and evaluated by Wang and Reeber [103]. Squares = transient interferom-
etry [104]. Diamond = dilatometry data [105]. Grey curve = ¢ p compiled and evaluated [106]. (d)
Tantalum. Diamonds = capacitance measurements of  [107]. + = fit to recommended values [37,96]
by [94]. Squares = transient interferometry [108]. Light grey line = cryogenic calorimetry data [109].
Grey long dashes = laser flash calorimetry [110]. Grey short dashes = pulse calorimetry [111]. Dark
grey line = pulse calorimetry [112]. (e) Gold. Black dots = tabulated o [113]. Triangles,  obtained by
differentiating tabulated volumes of Pamato et al. [114]. Thin line = o from 2¢ order polynomial fit
to V [114]. Open diamonds = recommended fit to o [94]. Squares = dilatometry and XRD data from
Suh et al. [105]. Thick grey line = raw ¢ data [115]. Dotted line = mid-range of adiabatic calorimetry
data [116]. Grey squares = pulse calorimetry [117]. (f) Diamond. Black diamonds = o from Slack and
Bartram [117], who combined 10 XRD studies of large natural crystals. Thin curve = recommended
« [37]. Solid grey curve = @ [118]. X = DSC [119]. Dots = drop calorimetry of Victor [120], who stated

air leakage occurred for the highest T points. Square with cross = Weber [121], who heated his

samples in air. Dashed line = modulated DSC data [122], which are not absolute. (g) Si. Black curve
= recommended o [123]. Squares = single-crystal « [124]. Grey curve = c r compiled and evaluated
[102]. (h) Alkali halides. Solid lines = NaCl data: black = o [80]; grey = cr [81]. Dashed lines = com-
piled KCl data [54]. (i) MgO. Solid curve, « as tabulated in [125] which has an inflection point (ar-
row) at 1000K instead of a sway. The kink may be exaggerated, due to low and high T segments
probing crystals and ceramics, respectively. Open squares = cryogenic data [126,127]. Short dashes
= 2nd order polynomial fit to tabulated XRD data [93], acquired using an Ir wire heater. Grey dots =
cr from [128]; triangles from [129], obtained by differentiating heat content; solid = Chase’s [130]
review, where the high T trend is an extrapolation. (j) A1Os. Circle = o from powder XRD compiled
and evaluated [131]. + = a compiled and evaluated [132]. Thin line = linear description of high T
powder XRD [93]. Squares = single-crystal interferometry and twin telemicroscope measurements
[133]. Grey curve = c» compiled and evaluated by [134]. (k) Yttrium aluminum garnet. Diamonds =
interferometry of a single-crystal [135]; squares = transparent polycrystal [136]. Black curve = from
XRD [137]. Grey curves = DSC data: solid = [138]; dashed = [139].
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