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Abstract: Available data on insulating, semiconducting, and metallic solids verify our new model 
that incorporates steady-state heat flow into a macroscopic, thermodynamic description of solids, 
with  agreement  being  best  for  isotropic  examples.  Our  model  is  based  on:  (1)  mass  and  energy 
conservation; (2) Fourier’s law; (3) Stefan–Boltzmann’s law; and (4) rigidity, which is a large, yet 
heretofore neglected, energy reservoir with no counterpart in gases. To account for rigidity while 
neglecting dissipation, we consider the ideal, limiting case of a perfectly frictionless elastic solid 
(PFES) which does not generate heat from stress. Its equation-of-state is independent of the ener-
getics, as in the historic model. We show that pressure-volume work (P 𝜕V) in a PFES arises from 
internal interatomic forces, which are linked to Young’s modulus (Ξ) and a constant (n) accounting 
for  cation  coordination.  Steady-state  conditions  are  adiabatic  since  heat  content  (Q)  is  constant. 
Because average temperature is also constant and the thermal gradient is fixed in space, conditions 
are simultaneously isothermal: Under these dual restrictions, thermal transport properties do not 
enter into our analysis. We find that adiabatic and isothermal bulk moduli (B) are equal. Moreover, 
Q/V depends on temperature only. Distinguishing deformation from volume changes elucidates 
how solids thermally expand. These findings lead to simple descriptions of the two specific heats in 
solids: 𝜕ln(cP)/𝜕P = −1/B; cP = nΞ times thermal expansivity divided by density; c P = cVnΞ/B. Impli-
cations of our validated formulae are briefly covered. 

Keywords:  steady state; heat; flux; perfectly frictionless elastic solids; Young’s modulus; energy 
reservoirs; interatomic forces; heat capacity; bulk modulus; thermal expansivity 
 

1. Introduction 
Classical  thermodynamics  is  an  important  tool  in  the  physical  sciences  and  engi-

neering.  Nevertheless,  the  equations  and  postulates  developed  in  the  1800s  should  be 
called “thermostatics”, since time-dependent behavior is not part of this historic model 
[1]. Yet, dynamic, evolutionary behavior is ubiquitous. The flow of heat and its radiation 
from  the  system  of  interest  are  integral  components  of  real  processes.  Idealizations 
needed to avoid addressing dynamic behavior in thermostatics are connected with re-
strictive  approximations.  A  key  example  is  the  concept  of  reversibility,  which  is  still 
currently debated [2]. Perceived reversibility rests on restoring changes in a system at the 
expense of altering the surroundings, which are neglected in such assessments, e.g., [3]. 

The macroscopic theory of “thermostatics” predates a rudimentary understanding 
of atomic structure and acceptance of light and heat as being the same phenomenon [4]. 
These  omissions  are  understandable  as  they  pertain  mainly  to  microscopic  behavior. 
Stefan’s  observation  of  heat  flux  linking  to  temperature  and  Fourier’s  theory  of  heat 
transfer, both from the 1800s, were not considered. The last omission was a significant 
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error  [5]  because  Fourier’s  depiction  of  heat,  a  key  entity  in  thermostatics,  is  likewise 
macroscopic. Key aspects of both laws and their relevance to thermostatics are as follows: 

First, Fourier assumed that as heat flows through a sample, some heat is stored in 
mass  elements  along  its  path,  while  another  fraction  moves  from  element  to  element 
during flow. Regarding the latter fraction, Fourier defined the key, dynamic quantity of 
flux (ℑ, heat per area per time) and related it to the temperature (T) gradient: 

, or in one dimension:Tκ ℑ =  − ∇  
ˆ( , ) ( , )

T T
T P L T P

L L
κ κ

∂ ∂ ℑ = − = −
∂ ∂  

(1) 

where κ is thermal conductivity, P is pressure, and volume, V, goes as L 3 in an isotropic 
medium. The unit vector denotes the specific direction of heat flow. Because any matrix 
representation can be diagonalized, the one-dimensional Cartesian form on the 
right-hand side (RHS) embodies the physics of heat transport. 

Equation (1) states that net heat flows down the thermal gradient, which is equiva-
lent  to  rudimentary  articulations  of  the  2nd  law  (e.g.,  [6]).  For  gas,  a  thermal  gradient 
stratifies  density,  generating  unopposed  buoyancy  forces  that  cause  convection.  Yet, 
Equation (1) shows that under time-independent circumstances, the thermal gradient in 
solids is a vector quantity that is completely established by the transport property κ and 
experimental (boundary) conditions. The rigidity of solids permits heat to flow from the 
hot to the cold end without the net momentum transport that is inherent to gases. 

Second, flux is universally tied to temperature via Stefan–Boltzmann’s law, thereby 
linking a dynamic entity to a key variable which is presumed to be static in the classical 
model. Stefan showed experimentally circa 1872 that radiated flux from all frequencies of 
light from a graphite-coated metal filament per area per time is: 

4 ,SBTσ ℑ =  (2) 

where the Stefan–Boltzmann constant, σ SB = 5.670 × 10−8 Wm−2K−4 describes a blackbody 
(see Section 2.1). Temperature is thus defined by heat loss to the surroundings. In classi-
cal thermostatics, T is related to heat content Q, but not in a simple way, e.g., [6]. 

Third, time (t) is an explicit variable in Fourier’s second equation, which is obtained 
by taking a spatial derivative of Equation (1) and conserving energy. In 3-dimensions: 

( ) ,P

T
c T

t
ρ κ•

∂ = ∇ ∇
∂

 (3) 

where  ρ  is  density  and  cP  is  specific  heat  (on  a  per  mass  basis).  Thermal  conductivity 
governs the thermal evolution of a system, embodying how much heat is flowing and 
how fast. When changes in T are small, Equation (3) simplifies to: 

2
2

2
, or in one-dimension:  

T T T
D T D

t t L

∂ ∂ ∂= ∇ =
∂ ∂ ∂

. (4) 

Thermal diffusivity (D) is also a dynamic property, describing the rate at which T 
evolves, independent of the amount of heat that is flowing. By definition: 

.Pc C
D
κ

ρ= =  (5) 

The static properties of the middle term can be individually measured. Their product C, 
called storativity, describes heat capacity on a per volume basis. Its importance in Equa-
tion (3) stems from diffusion depending on length-scale [3,7]. 

Last, heat transfer under pressure involves the P dependence of specific heat. The 
classical equation:   
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2 ,  historicalPc
TV

P T
α

α
∂ ∂ = − + 
∂ ∂ 

 (6) 

depends on thermal expansivity, α ≡ V −1𝜕V/𝜕T. This historical identity thus portrays the 
response  of  a  static  property  to  compression  (P  on  the  left-hand  side,  LHS)  as  arising 
from changes caused by heating (T and α on the RHS). Yet, diverse observations show 
that solids respond to heating and to compression in different ways, as embodied in the 
quasi-harmonic  model  of  solids  [8].  In  particular,  examining  accurate  experimental 
measurements  of  the  P  dependence  of  κ  for  20  different  solids  that  also  had  accurate 
material  properties  suggests  that 𝜕(lncP)/𝜕P  depends  simply  on  the  inverse  of  the  iso-
thermal bulk modulus, BT = −V(𝜕V/𝜕P)−1 [7]. 

1.1. Different Behaviors of Solids and Gases May Affect Thermostatic Equations 
Gas behavior is of long-standing importance to basic physics. Because solids behave 

much differently than gases (Figure 1), the same equations need not apply to these two 
distinct states of matter. 

Constructs for heat storage in gas and solids must each account for differences in the 
types of energy stored, plus restrictions on converting energy between the different res-
ervoirs. Crucially, for solids, heat transfer is independent of mass diffusion, as shown by 
Hofmeister and Criss [9]. Heat may be stored in the cyclical and microscopically localized 
vibrations of interatomic bonds in solids, but its transport across the solid does not in-
volve  net  displacement  of  the  atoms  or  deformation  of  their  structural  arrangement. 
Moreover, the vibrations cannot be the main energy reservoir of the solid because these 
constitute perturbations of the atoms from their static positions. Geometrical constraints 
limit  average  displacements  to  circa  interatomic  distances.  These  behaviors  stem  from 
solid matter’s strength and hallmark characteristic of rigidity (Figure 1). Solids deforming 
under shear stress greatly contrasts with behavior of gases, which flow under any stress 
and in which heat moves with the translations of its molecules. Thus, energy in a solid is 
essentially  potential  (stored)  energy,  whereas  much  of  the  energy  in  a  gas  is  kinetic 
(translational) energy. For monatomic gas, all energy is translational. 
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Figure 1. Summary and comparison of the characteristics of solids and gases most relevant to heat 
and its flow. The shear modulus, G, describes a special type of stored energy in solids, which is part 
of the elastic energy, the main reservoir. Atoms are shown as balls, with dotted arrows indicating 
direction of long-distance motions. Sine waves without arrowheads indicate local, back-and-forth, 
microscopic motions. 

1.2. Purpose and Limitations of the Paper 
The  present  paper  derives  new  relationships  among  thermostatic  variables  and 

properties for solids by considering steady-state heat transfer, which involves variations 
of T with position, but not with time. Isotropic solids are the focus for simplicity, availa-
bility  of  data,  and  because  these  embody  the  physical  principles.  Perfectly  frictionless 
elastic solids (PFES) which do not generate heat as a function of time during changes are 
consistent with diverse equation-of-state (EOS) formulations. These formulations do not 
specify  the  energy  difference  between  different  states,  so  they  effectively  neglect  how 
work and/or heat change V, P, and/or T. Mass, charge, and energy are conserved in our 
analysis. 

Our model is macroscopic. Macroscopic approaches can provide a simple descrip-
tion of things that can be measured or sensed, and require no special assumptions con-
cerning the nature of matter, yet yield straightforward, testable predictions that can dis-
close  theoretical  connections  between  measurable  quantities  [10].  Validation  is  a  key 
component of any such endeavor. In this report, validation is mostly limited to isotropic 
solids for simplicity and to focus on physical principles. 

Modeling  transport  properties,  which  describe  time-dependent  interactions  and 
moreover  depend  on  the  length-scale  [3,7],  is  beyond  the  scope  of  the  present  paper. 
Static physical properties (e.g., specific heat, storativity, thermal expansivity) are inves-
tigated here. Bulk moduli are part of classical theory, but shear moduli (G) are not. We 
focus on the heretofore neglected elastic moduli because these are essential to describe 
the forces inside a solid and therefore its energetics. 

1.3. Organization of the Paper and Key Results 
Section  2.1  discusses  the  crucial  connection  of  broadband  thermal  emissions  with 

temperature. Section 2.2 specifies why steady-state conduction in solids constrains both 
adiabatic and  isothermal responses.  Section  2.3  covers  the  equation-of-state for  an iso-
tropic PFES and explains why describing work requires an additional property, namely 
Young’s modulus. Section 2.4 uses elastic properties of isotropic solids to derive formulae 
for the P and T dependencies of heat capacity and heat storage. Section 3 evaluates our 
formulae and historic formulae against experimental results, focusing on ambient condi-
tions due to accuracy and availability of data. For the reader’s convenience, Table 1 lists 
new,  useful  formulae  for  solids  and  the  sections  where  these  were  derived  and  con-
firmed. Section 4 summarizes key findings and discusses implications of our results for 
basic and applied sciences. Section 5 concludes. 

Table 1. Physical properties of perfectly frictionless elastic solids under steady-state heat flow. 

New Formula Theory Experimental Confirmation 

BT = B from elasticity measurements Sections 2.3.2 and 2.3.6 
Section 3.1   

(ambient and elevated T) 

1 1 1P

TP TT

c V

c P B V P

∂ ∂
− ≡

∂ ∂
  Section 2.4.2 

Section 3.2   

(ambient T) 

1
Young's modulusPc

α

ρ
∝  Section 2.4.6 

Section 3.3   

(ambient and elevated T) 

2. Theoretical Description of Solids Conducting Heat in Steady State 
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2.1. Link of Temperature to Heat Flux 
Temperature is a macroscopic property arising from the thermal energy of an object, 

which differs from, but is related to, its heat content (Q). The direct link between T and 
heat flux (2), historically established for solids, pertains to this complicated relationship. 

In detail, total flux includes all emitted light, and is obtained by integrating the in-
tensity (I) over frequency (ν): 

0
( ) =4 ( , ) ,T I T dπ ν ν

∞

ℑ   (7) 

where ℑ is measured over a spherical surface enclosing the emitting object. 
Difficulties in measuring absolute intensity are well-known (e.g., Figure 2). Hence, 

idealized behavior of a perfectly absorbing blackbody (BB) has been the theoretical focus. 
Planck’s function for this unachievable idealization (for ν in Hertz) is: 

( )
3

2

2 1
( , ) = ,

exp 1
BB

B

h
I T

c h
k T

ν
ν

ν −

 
(8) 

where h = Planck’s constant, c = lightspeed, and kB is Boltzmann’s constant. 
Because all hot matter emits thermal radiation, Equation (7) omits the subscript BB. 

The  simplest  scenario  approximating  reality  is  that  of  a  greybody  where  I  = ξIBB  and 
emissivity (ξ) is independent of both ν and T. Metals and graphite were used in classic 
experiments  (Figure  2)  because  these  strongly  absorb  and  have  optical  functions  that 
vary slowly with ν and T. Transparent material (e.g., silicate glasses) also have emissions, 
but these are related to IBB in a complicated manner that depends on the size of the object, 
absorption characteristics, surface reflections, and thermal gradients [11]. Gases are ex-
tremely transparent and were historically considered not to emit. 

 
Figure 2. Emission curves of cavity radiation at 1370 K from Coblentz [12] compared to a near-IR 
absorption spectrum of natural fluorite (green curve, with an arbitrary y-scale). Dashed line = raw 
data, labeled “prismatic”. Solid curve with small dots = corrected data. Solid line with circles = the 
ideal Planck curve. Arrows indicate points Coblentz [12] used to fit the blackbody curve and de-
termine  the  maximum.  He  omitted  regions  connected  with  atmospheric  absorptions,  in  which 
features are partly due to use of natural fluorite as a prism, and in which material contains impurity 
bands. 

2.1.1. Wien’s Law 
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Wien’s historical experiments showed that the peak wavelength (λ) for a greybody 
is inversely proportional to T: 

3    or      where   B
peak peak peak

peak

b w k c
T

T h
λ ν λ

ν
= = ≠

 
(9) 

where  b  =  2897.8  μm  K−1  was  experimentally  determined.  The  irrational  number  w3 
(~2.821439)  on  the  RHS  was  derived  from  IBB  (Equation  (8))  by  numerically  solving  a 
transcendental  equation  [13,14].  Thus,  ascertaining  T  from  Equation  (9)  implicitly  as-
sumes a broad and skewed spectrum of a greybody (Figure 2), whereby ν max differs from 
c/λmax. 

Thermal emission spectra are unlike spectra of discrete transitions, which have ν peak 
=  c/λpeak  with  an  intensity  that  is  symmetric,  or  nearly  so,  about  the  characteristic  fre-
quency. Energy with a certain narrow frequency range is used to stimulate specific pro-
cesses, e.g., laser light causes electronic transitions whereas sound waves cause 
low-frequency motions. However, heating a material requires redistributing the energy 
that  is  applied  in  some  specified  frequency  range,  which  may  be  quite  narrow,  to  the 
wide range of frequencies that comprise the thermal emissions of the material (Figure 2). 

2.1.2. Repercussions of Temperature Depending on Emitted Flux and Spectral Properties 
Three facts derived from experiment and theory point to classical thermostatics in-

completely describing solids: 
1. The hallmark of a hot dense body is that it emits heat over a wide spectral range 

(Figure 2). This unavoidable loss signifies that its state is dynamic, not static. 
2. Temperature governs the total flux emitted, with the following caveat: 
3. Because thermal emissions depend on the spectral properties of the material, Q may 

also depend on characteristics beyond the static physical properties considered in 
the historical model. 

2.2. Connection of Steady-State Behavior with Coincident Adiabatic and Isothermal Conditions 
Spherical geometries are conducive to examining total heat flux (Section 2.2.1). In 

contrast, Cartesian geometries are amenable for monitoring heat transfer across a solid 
(Section 2.2.2). 

2.2.1. Spherical Coordinates 
Stefan–Boltzmann’s law, Equation (2), specifies a unique temperature for an object. 

Constant flux is implied: if the heat lost from a spherical object exceeds the energy input, 
the body cools, and conversely, if losses are retarded (e.g., via an insulating wrap), the 
body warms. In Stefan’s experiments, and in lightbulbs, electrical energy supplied at the 
center (Figure 3a) maintains surface output. For stars, interior nuclear fusion maintains a 
nearly constant outward flux. In these examples, flux from the much colder surroundings 
to the object can be neglected. 
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Figure 3. Schematics of conditions: (a) Spherical symmetry, which also applies to radial flow in a 
very long cylinder. Matter (grey circle) emits heat in accord with its temperature (orange squiggle 
arrow), but emissions are actually sampled from a surface boundary layer (stippled green shell). 
Constant flux is maintained either by a source (star) and/or externally (blue arrow); (b) Longitu-
dinal flow in Cartesian (or cylindrical) symmetry. At steady state, flux along the special direction is 
a constant that is independent of position, so the axial thermal gradient is independent of time, and 
perpendicular slices are isothermal. 

When rates of heat input at the center and output at the surface are the same, over 
any given time interval the amount of heat delivered and released is also identical: thus, 
conditions are adiabatic. 

Isothermal conditions are commonly depicted as constant T over some significant 
expanse of space. However, because heat flow is ever-present per Equation (2) and dif-
ferent materials conduct heat at different rates, thermal gradients are unavoidable in a 
medium with finite size medium, per Equation (1). Boundary layers exist below spherical 
surfaces, since the object has both T and thermal conductivity that differ from those of the 
surroundings. For example, light from the sun originates in the photosphere (~600 km 
thick), which constitutes a boundary layer, being miniscule compared to the solar radius. 
Nearly  grey  emissions  in  the  cavity  experiments  of  Wein  and  Coblentz  arise  from  the 
graphite coating, because their glass substrates have peaks in the infrared region, but are 
transparent at higher frequencies; see Figure 2. 

In the laboratory, an apparatus (hot surroundings) provides finite flux into the ma-
terial (ℑsurroundings = ℑin: Figure 3a). Steady state requires: 

ℑin = ℑout = constant (10) 

At any moment, heat in = heat out, and so conditions are adiabatic. However, conditions 
are  also  isothermal  because  the  temperature  profile  remains  static  in  time  and  space. 
Specifically,  at  any  given  point  (center,  surface,  or  in  between),  some  constant  T  is 
measured. Hence, thin spherical shells inside the body are isothermal. Likewise, the av-
erage T of the body is constant under steady state. Furthermore, its thermal gradient can 
be very small if ℑin and κ are low, thus approaching large regions of constant T. 

Radial heat flow in a cylinder behaves like the sphere. The key difference is that the 
source would be a line, not a point. 

2.2.2. Longitudinal Flow in Cylindrical Geometry and in Cartesian Systems 
To  investigate  behavior  inside  a  solid,  heat  transfer  experiments  use  geometries 

where both input and output are measured or controlled. Longitudinal flow (Figure 3b) 
is commonly used as this is one-dimensional and is described by Cartesian coordinates, 
even  if  the  object  is  cylindrical.  Boundary  conditions  exist:  this  paper  follows  Fourier, 
who treated these as distinct from conditions inside the material. 

During steady-state conditions, the source and sinks of heat at the ends balance, so 
Equation (10) applies, and conditions are adiabatic. Furthermore, the heat flux is constant 
through any slice perpendicular to the thermal gradient, and the latter does not change 
with time, so the temperature in each perpendicular slice is likewise constant. However, 
because the source is at one end, and the loss is at the other, a thermal gradient exists 
from Tsource at x = 0 to Tsink at x = L. It is immaterial whether the flux is radiatively applied 
(as in laser-flash analysis, LFA ) used to measure D) or is supplied by electrical heating, 
or  by  contact  with  a  hot  plate.  This  equivalence  has  been  amply  demonstrated  by 
benchmarking  LFA  against  conventional  heat  transport  measurements  of  metals,  e.g., 
[15]. 

High κ and small ℑ produce shallow gradients, and so the limiting case of the whole 
body being a single temperature is approachable. However, because heat is emitted at 
any finite temperature, Equation (2), the gradient is never identically zero everywhere. 
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2.3. Equations of State, Elastic Behavior, and Work 
The  EOS  is  encapsulated  as  f(V,P,T)  =  0,  where  f  is  some  function.  Behavior  of  V 

along each of the P and T axes provide important constraints. For simplicity, equations 
for isotropic solids are presented here. Importantly, f maps out the equilibrium behavior 
of a material, but contains no information on the processes of expansion or contraction. 

2.3.1. Classical Definitions and Their Link to Mathematical Constraints 
One key physical parameter in the EOS is thermal expansivity: 

1
 P

P

V

V T
α

∂
≡

∂
. (11) 

The T dependence of α is specific to any given material. For an isotropic substance, linear 
expansivity is 1/3rd of the volumetric expansivity, defined in Equation (11).   

Another key parameter is compressibility: 

1 1 1
=  = , T

T T T

V

V P P B
ρ

β
ρ

∂ ∂ ≡ −
∂ ∂

 (12) 

where BT is the bulk modulus. Its P dependence is likewise specific to the material of in-
terest. Their second-order cross-derivatives are interdependent: 

2

1
 = .T

T P T P

B

P T B T
α β∂ ∂ ∂

− =
∂ ∂ ∂

 (13) 

A  convenient  dimensionless  parameter,  known  as  the  2nd  Grüneisen  parameter, 
stems from Equation (13): 

1
 .T T

T
TP P T P

B B

P B T
α

δ
α α

∂ ∂ ≡ − = −
∂ ∂

 (14) 

The final important EOS relationship is obtained by setting dV = 0 in the mathemat-
ical identity: 

d d d ,  
T P

V V
V P T

P T

∂ ∂= +
∂ ∂

 (15) 

which gives the so-called thermal pressure: 

.P
P T

P TV T

P V V
B

T PT
α

α
β

∂ ∂ ∂= − = =
∂ ∂∂

 (16) 

Actually, Equation (16) describes an isochore. Similarly, setting dP = 0 in Equation (15) 
makes αP the relevant parameter, whereas setting dT = 0 in Equation (15) makes B T the 
defining property. Thus, Equations (11) and (12) describe behavior along an isobar and 
isotherm, respectively. The above equations constitute the EOS of a material. 

Importantly, Equation (16) is identical to: 

1.
T P V

P V T

V T P

   ∂ ∂ ∂ = −   
∂ ∂ ∂   

 (17) 

Any set of three variables can be manipulated in this manner, which stems from formulae 
analogous to Equation (15). Sets of four variables cannot be constrained solely through 
this approach: additional considerations are required. Those relevant to solids are cov-
ered next and in Section 2.4 on heat. 
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2.3.2. Rigidity and Its Relationship to EOS Formulations for Solids 
The  special  energy  reservoir  of  solids,  rigidity,  provides  their  shape  and  strength 

(Figure  1).  Rigidity  permits  a  solid  to remain  motionless,  except for  the  small,  cyclical 
excursions of its vibrating atoms, while sustaining temperatures up to melting. In con-
trast, fluids flow under any stress, whereas some minimum stress (the elastic limit) must 
be exceeded for a solid to permanently deform below its melting temperature, e.g., [9]. 

Equations (11) to (17), currently considered to constitute the EOS, are valid for not 
only  solids,  but  also  liquids  and  gases.  Completely  describing  a  solid  further  requires 
establishing the dependence of G on P and T.   

Shear  and  bulk  moduli  determined  from  elasticity  studies,  which  commonly  use 
acoustic (subscript aco) methods and ultrasonic pulses [16], are defined as: 

  
;   

  aco

shear stress volumetric stress
G B

stear strain volumetric strain
= =

 
(18) 

Rigidity and shear waves are only present in solids whereby shear deformation does not 
change volume. Hence, G, unlike B T or B aco, is not tied to heat. For this reason, the shear 
velocities are unrelated to the thermal Grüneisen parameter [17] which connects B T with 
Baco in the historical model (Section 2.3.6). 

Elasticity is also represented by Poisson’s ratio (μ) and Young’s modulus (Ξ), where 
we do not use the conventional symbol E because it represents internal energy in classical 
thermodynamics. This pair is defined as: 

 ( ) 
;   .

  

longitudinal stress lateral transverse strain

longitudinal strain longitudinal strain
μ =Ξ =  (19) 

The directional dependence of Equation (19) is obvious, and underlies our focus on iso-
tropic solids. Note that B, G, and Ξ all have units of pressure, whereas μ is dimensionless. 

The elasticity matrix, a 2 nd order tensor [18] (p. 96), simplifies to three elements for 
isotropic solids: c 11, c44, and the off-diagonal element c 12. Because only three parameters 
are needed for isotropic solids, the elastic moduli are related: 

( ) ( )9 3 2
2 1 3 1 2  where .

3 6 2

BG B G
G B

B G B G
μ μ μ

− =Ξ = + = − =
+ +

 (20) 

Although  bulk  properties  can  be  represented  by  Equation  (20),  microscopic  behavior 
being directional in anisotropic solids requires some approximations to provide B and G 
from measurements of such grainy material. 

2.3.3. Irrelevance of Friction to a Static Model and Implications for Work-Heat Relations 
A  plastically  deforming  solid  evolves  non-negligible  frictional  heat  at  some  rate 

which then leaves the material at another rate. Inelastic processes depend on time: during 
such dissipative behavior, the material changes irreversibly, and restoration is impossible 
without additional energy. Detailed time-dependent models specific to the given situa-
tion are needed. Elastic materials evolve small amounts of heat [19], which constitutes a 
perturbation. It is not possible for such materials to indefinitely propagate compression 
waves as these will slowly be turned to heat. Similarly, compression and expansion are 
not truly reversible. As such, elastic materials, as defined by the material science and en-
gineering  communities,  actually  experience  small  amounts  of  inelasticity,  and  will  re-
quire  additional  energy  to  offset  losses  to  heat.  The  proportion  requires  assumptions 
beyond our static model, so it is not discussed further. Here, our use of “inelastic” and 
“elastic” differs subtly from materials science; in materials science, elastic materials are 
defined as ones which return to their original shape after deformation; instead, we use 
the original definition from physics whereby “elastic” indicates that all energy is recov-
ered. 
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Two hundred years ago, Count Rumford’s cannon-boring experiments showed that 
work produces heat. His dissipative experiments involved time and friction. Mass was 
lost as well. As time is involved in Rumford’s experiment, changes in the cannon and the 
bore cannot be directly evaluated without rate laws. 

Thus, the equivalence of work and heat explored historically is not assumed in our 
steady-state model of solids. Rather, elastic energy pertains to work (Section 2.3.7). 

2.3.4. Connection of the EOS with Perfectly Frictionless Elastic Behavior 
An EOS describes the relationship between P, V, and T of a specified mass of a sub-

stance. A unique amount of heat energy and internal elastic energy is associated with any 
particular set of P,V,T coordinates, i.e., with any particular state. Nevertheless, the EOS 
does not by itself define what the latter quantities are: to determine those, knowledge of 
material properties is required. For a solid, a key component of the necessary information 
is the rigidity, yet rigidity is immaterial for gas. 

Containment of the mass in some V for a given phase at any P or T is completely 
described  by  a  reference  state  (V0  or  ρ 0),  plus  knowledge  of  α(T),  B(P),  and  either 
cross-derivative (Section 2.3.1). Features of perfectly frictionless elastic solids (PFES) are 
summarized as follows: 
1. The  perfectly  frictionless  elastic  approximation  is  static:  time  is  not  involved  and 

systems are fully restorable. That is, the ideal system is reversible (Figure 4b), alt-
hough in a real system changes are made via manipulating and changing the sur-
roundings. 

2. Because reversibility of the system and an instantaneous response to changing con-
ditions are central to the PFES approximation, adding heat to the system has no ef-
fect other than raising temperature, after which P and/or V respond, in accord with 
imposed experimental constraints and the EOS. The time-dependent nature of heat 
uptake (Section 2.3.5) explains why this is the driver of change. 

3. Independence of mass and heat (Figure 4) and conservative behavior require sepa-
rate treatment of variables related to mass occupying space (i.e., the EOS and shear 
modulus, G, which governs shape) and to heat occupying space (i.e., the heat con-
tent Q, storativity C, or a specific heat). Yet, the latter three parameters may depend 
on the size of the box (V), and thus on P (or T) conditions, as well as on B (or α) 
which describe volumetric changes. 

 
 
 
 
             
 
 
 
 
 

Figure 4. Schematics of an ideal, perfectly elastic solid: (a) any given volume can contain a quantity 
of mass, and can independently contain some quantity of heat-energy; this independence underlies 
our model;. (b) Essence of elastic behavior. Squeezing (increasing pressure) changes V, and thus 
does P-V work, but does not generate heat so T is unchanged. Upon release of pressure, a perfectly 
elastic  frictionless  solid  returns  to  its  initial  volume.  See  text  for  discussion  of  shear  and  shape 
changes; (c) Receipt of small amounts of heat by a PFES. Within a short, but finite, distance, the 
pulse encounters vibrating ions. When energy of the applied light matches some transition energy, 
the affected vibrations become excited, attaining a higher energy state (e.g., an overtone). Subse-
quent  interchanges  give  an  overall  higher  vibrational  energy  of  the  collection,  which  imparts  a 
higher temperature. Both steps take time. 
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2.3.5. Uptake of Heat during Frictionless Elastic Behavior 
Matter  can  be  energized  in  various  ways.  We  discuss  application  of  a  light  pulse 

because light is pure energy, plus many types of experiments use light pulses. 
Solids contain vibrating atoms. Their collisions must be nearly elastic to avoid large 

losses of heat. Ideal, harmonic oscillations meet this criterion, and are consistent with the 
PFES idealization. 

These motions store energy in the solid over temperatures commonly accessed in 
laboratories, as described by the famous models of Debye and Einstein. Irradiating the 
material stimulates transitions among optical modes, where the dipole moment of a vi-
brating  pair  of  ions  changes  (Figure  4c),  discussed  further  in  Section  4.  Moreover,  the 
pulse must penetrate the material. This distance is known as the skin depth, and can be 
inferred from  optical  properties:  Wooten  [20]  provides a general discussion;  Criss and 
Hofmeister [21] cover femtosecond spectroscopyof metals. 

Since light propagates at a certain speed, uptake takes some finite time. Reaching 
equilibrium after the perturbation takes additional time, as the energy needs to be dis-
tributed among various vibrational modes that are connected with a higher temperature 
(Section 2.1). Thus, elevating T precedes adjustment of V or P to the new state.   

From the above, addition of heat involves three processes:   

 extQ TΔ ⎯⎯→Δ
  and/or 

         

P VΔ Δ

Δℑ
 (21)

The present section concerns containment of mass (the heavy arrow), whereas Section 2.1 
covers emissions (the dashed arrow). Section 2.4 focusses on heat (the LHS). 

2.3.6. Why Rigid Solids under Steady State Have One Bulk Modulus 
Steady-state  heat  transport  across  a  rigid  solid  is  both  adiabatic  and  isothermal 

(Section 2.2.2), a condition not addressed by classical theory. For an elastic solid in steady 
state, each incremental slice along the thermal gradient must have both constant Q and 
constant T. Therefore: 

Q T

V V

P P

∂ ∂=
∂ ∂

. (22) 

Hence, the isothermal bulk modulus (Equation (12)) of an elastic solid equals its adiabatic 
bulk modulus, denoted B S in the historic model, where S is entropy. This equality is not 
true for gases, due to their lack of rigidity combined with heat being carried by the mol-
ecules during their translational motions. 

Elasticity  experiments  perturb  a  solid,  which  responds  by  propagating  these  per-
turbations internally as the form of waves. The response of the solid is then measured. 
Elastic waves have a well-defined frequency, whereas heat has a wide range of frequen-
cies (Section 2.1). For a wave or pulse to heat a solid, the energy in the acoustic modes 
must  be  redistributed  over  a  very  wide  frequency  range,  i.e.,  among  the  optic  modes, 
overtones,  combinations,  and  the  continuum  (Figure  4c).  The  process  of  redistribution 
and warming requires some finite time, and is not part of the measured, initial response 
of the solid, nor with the EOS. Moreover, not all exchanges are allowed. The special two 
shear (transverse) waves and one compression (longitudinal) wave are equivalent to the 
three  acoustic  modes  of  a  crystalline  solid.  Acoustic  modes  are  purely  translational, 
where the atoms move in the same direction, whereas optical modes involve atoms in 
opposing  directions  [22].  For  a  vibrational  mode  of  a  crystal  to  directly  absorb  light, 
which includes heat applied to the solid, its dipole moment must change during the vi-
bration [23]. This behavior is connected with symmetry and finite frequencies of optical 
modes at the Brillouin zone center, where acoustic modes have no energy: see [22] or [24] 
for examples and further discussion of the fundamental differences between acoustic and 
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optical modes of crystal lattices. Regarding heat conduction inside the solid, data on the 
temperature and length-scale dependence of thermal diffusivity show that the process is 
largely diffusion of infrared light [3,7,25]. 

Because  acoustic  waves  are  not  heat,  elasticity  experiments  are  nearly  isothermal 
and  also  approximately  adiabatic.  Ultrasonic  pulse  methods  [16]  are  popular,  which 
supply  less  energy  than  a  continuous  wave.  The  key  requirement  is  lack  of  frictional 
heating,  which  is  reasonably accurate for  stiff  material.  Classically,  results  of elasticity 
studies are denoted as B S. Since S is defined as Q/T in reversible experiments, Bs is re-
ferred to as the adiabatic bulk modulus. Because heat is irrelevant to elasticity experi-
ments,  we  instead  use  the  notation  Baco,  for  acoustic  bulk  modulus,  when  referring  to 
such data in Section 3. 

Our model indicates Baco = BT, contrary to much literature, which posits that: 

Baco = BT(1 + αγthT), historic. (23) 

where the thermal Grüneisen parameter is historically defined as: 

P T P aco
th

V P

B V B V

c c
α α

γ = = , historic. (24) 

The historic difference in Equation (23) thus strongly depends on α. Like historic Equa-
tion (6), responses to Pare cast in terms of responses to T, which is questionable. 

2.3.7. Young’s Modulus and Work in a PFES 
How V responds to changes in T or P is described by thermal expansivity or the bulk 

modulus  (Section  2.3.1).  These  physical  properties  are  independent  of  path  and  of  the 
process bringing about the change. Compressing a solid by external application of pres-
sure,  ideally  hydrostatic,  yields  V(P)  and  the  bulk  modulus.  In  this  case,  work  is  per-
formed by an apparatus, and heating is avoided to the fullest extent possible, so: 

0dQ dT= = ; to ascertain V as a function of P alone. (25) 

Conversely, determining V(T) and thermal expansivity requires changing T, while 
holding  P  constant.  However,  unlike  P,  which  can  be  directly  altered  or  controlled, 
changing T requires an intermediary step, i.e., applying heat and waiting for it to diffuse. 
Figure 4c illustrates the microscopic process of converting heat input to temperature. To 
expand the solid requires work. In the PFES idealization, an incremental addition of heat 
goes entirely into work: 

dQ dW PdV= = ; to ascertain V as a function of T alone. (26) 

If the addition is truly incremental, conditions remain approximately in steady state. 
The  work  performed  expands  the  interatomic  bonds. Resistance  to  this  change  is  only 
partially  governed  by  the  bulk  modulus,  since  solids  also  possess  shear  strength:  see 
Meyers  and  Chawla  ([18]  Section  4.2)  for  discussion  of  Frenkel’s  theory  for  shear 
strength. We use Young’s modulus (Section 2.3.2) to describe the resistance of the solid to 
incremental expansion as this is a measure of both B and G, and was used by Orowan to 
represent tensile strength ([18] Section 7.2). Section 2.4 explores the effect of the elastic 
energy reservoir of solids on their heat uptake. 

2.4. Behavior of Heat in Perfectly Frictionless Elastic Solids during Steady-State Conduction 
Density (ρ = M/V) describes how many atoms and molecules fill any given space. 

Analogously, heat density ( ε  = Q/V) describes how much heat occupies the same space 
(Figure  4a).  Based  on  Stefan–Boltzmann’s  law,  which  shows  that  the  emissions  (heat 
departing) from a volume V only depend on T, we deduce that for a PFES: 
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( ), ( ) ( , )Q T P T V T Pε= . (27) 

The function ε concerns only heat-energy since T is related to thermal emissions. Because 
light cannot compress, heat cannot compress. 

2.4.1. Specific Heat Definitions 
Experiments do not measure Q directly, but rather record the response of matter to 

incremental energy augmentation. Measurements of heat capacity consist of perturbing 
steady state. Conserving mass makes specific heat germane, which is defined in terms of 
the heat externally supplied in order to raise a unit mass of some material by one degree: 

1 1ext ext
P

P P

Q Q
c

M T V Tρ

Δ ∂
≡ =

Δ ∂
. (28) 

Constant P is used in laboratory studies of solids. Heat capacity is similar to the above 
but is computed on a per mole basis. Multiplying Equation (28) by ρ gives storativity. 

If volume is held constant: 

1 1ext ext
V

V V

Q Q
c

M T V Tρ

Δ ∂
≡ =

Δ ∂
. (29) 

Because cV data for solids are lacking, we focus on cP. 

2.4.2. Incremental Responses for a PFES 
Equation (28) implicitly assumes that all applied heat goes into raising the temper-

ature infinitesimally. Otherwise, the problem is insoluble. Moreover, this assumption is 
compatible with EOS formations and perfect elasticity (negligible dissipation). Hence: 

ext int elasticQ Q Q QΔ = Δ = Δ = Δ   or  extQ Q∂ = ∂ . (30) 

The subscript ext on Q is hereafter discarded. 

2.4.3. Pressure Derivatives of Specific Heat during Steady State 
For a reference point, the effect of compression on mass is null from mass conserva-

tion: 

( )1 1 1 1 1
0

T T TT TT

VM V

M P P P V P P B

ρ ρ ρ

ρ ρ

∂∂ ∂ ∂ ∂= = + = − =
∂ ∂ ∂ ∂ ∂

. (31) 

As discussed above, ε does not depend on P. Hence: 

( )1 1 1 1 1 1
, for ( )

T T T T TT T

VQ V
P

Q P P P V P P B B

ε ε ε
ε ε

ε ε

∂∂ ∂ ∂ ∂= = + = − = − ≠
∂ ∂ ∂ ∂ ∂

. (32) 

Taking the P derivative of Equation (28) gives: 

1 1 1 1P

P TP P P P TT T P P

c Q Q Q

c P Mc P T Mc T P Mc T B

    ∂ ∂ ∂ ∂ ∂ ∂= = =−     
∂ ∂ ∂ ∂ ∂ ∂     

. (33) 

Using Equation (32) leads to: 

1 1 1 1 1
1P T

P T P T T P TT

c Q B Q

c P B Mc B T B Mc P B
α ∂ − ∂ ∂= − =− + ≈− 

∂ ∂ ∂ 
. (34) 
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The  far  RHS  utilizes  dB/dT  ~0.001BT  and  the  high  T  case  where  cP  is  nearly  constant, 
which reduces Equation (28) to: 

Pc MT Q≈  (35) 

The term with Q in Equation (34) is small from ~250 to ~1000 K, which covers experi-
mental conditions commonly explored. 

2.4.4. Pressure Derivatives of Storativity during Steady State 
Heat transfer experiments explore changes in storativity upon compression: 

( ) 2 2

2
, ,

1 1 1 1 1P T

T P T T P TT

cC V B

C P c P B B Mc P T P B T C P T P P

ρ ε ε ε ε ε α
α α ε

ρℑ ℑ

∂    ∂ ∂ ∂ ∂ ∂ ∂ ∂= = − + + + = + +   
∂ ∂ ∂  ∂ ∂ ∂ ∂  ∂ ∂ ∂  

. (36) 

Because C already accounts for the box size, (lnC)/𝜕P depends primarily on heat density. 
However, since heat density does not depend on P, then: 

( )
, ,

1 1
0, for ( )P

T P T

cC Q
P

C P c P C P CV P

ρ ε α α
ε ε

ρℑ ℑ

∂∂ ∂ ∂= = = ≤ ≠
∂ ∂ ∂ ∂

. (37) 

The resulting negative sign for storativity requires that heat be shed during compression. 
From Equations (34) and (35), the magnitude is small. 

The historic Equation (6) for cP leads to a strong dependence of C on BT: 

( )
2

,

1 1 1 1 1 1 1
 = 1

1
P th

T T P T P T T

C c TV T

C P B c P B c T B T T B
α γ α

α α
αγ αℑ

 ∂ ∂ ∂ ∂   = + = − + − +    
∂ ∂ ∂ − ∂    

 , historic model. (38) 

2.4.5. Temperature Derivative of Specific Heat during Steady State from Stefan’s Law 
Taking the temperature derivative of Equation (28) and following steps similar to 

the above yields: 
2

2

1 P

PP

c

T T T Tc T
α ε ε ε

α ε α αε
 ∂ ∂ ∂ ∂ ∂ = + + + +   ∂ ∂ ∂ ∂∂   

. (39) 

Importantly, greybodies are described by a unique temperature which is simply propor-
tional to a characteristic frequency (Section 2.1). From Equation (9), the energy associated 
with the thermal emissions (light departing) from a solid is: 

3    heat energypeak B Bh w k T k Tν =  ∝ . (40) 

Peak values, averages, and total energy involve different constants, but are all propor-
tional to Boltzmann’s constant times T [26]. Because emission measurements providing 
Equation (40) were made at temperatures similar to the highest T reached in calorimetric 
and volumetric studies, neglecting the second T derivative of ε in Equation (39) is rea-
sonable. 

The denominator in Equation (39) can be recast as: 

1 1 1V

T V T T
ε ε

ε α η
ε ε

∂ ∂ ∂   + = +   ∂ ∂ ∂   
. (41) 

As discussed earlier, adding heat makes the solid warmer and expands the solid. Expan-
sion and increased temperature have opposite effects on ε. In lieu of complexities, such as 
bond bending in certain materials, V will not experience antagonistic effects. Thus, vol-
umetric changes dominate the denominator, and the series expansion of Equation (39) 
becomes: 
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1 1 1 1 1P

PP

c

c T T T T T
α ε α ε

α α
α ε α ε

∂ ∂ ∂ ∂ ∂
≅ + + = + +

∂ ∂ ∂ ∂ ∂
, (42) 

where the far RHS lists the terms in order of size. Since α is about 0.01 times its loga-
rithmic  derivative  at  moderate  to  high  T,  whereas  at  low  T  the  logarithmic  derivative 
blows up, the α term in Equation (42) can be neglected. From the above, the heat density 
term is inconsequential at laboratory temperatures commonly used to measure c P and V. 
Hence, to a high degree of accuracy, the solution to Equation (42) and thus to Equation 
(39) provides a new equation: 

( )1( ) ( ) pT c T c Tα ≅ . (43) 

Previous  work  compared  averaged  experimental  values  of  α  and  cP  and  found 
equality at low T but a linear dependence at high T [27–30]. Bodryakov and colleagues 
[27–30] explained the discontinuous behavior on the basis of vibrations being the main 
energy reservoir in a solid, and did not consider elastic energy. Our derivation of Equa-
tion (43) suggests continuous behavior, but we have not yet incorporated the rigidity of 
solids. 

2.4.6. Heat Uptake Provides Non-Dissipative Work 
Equation (43) is written to emphasize that the volume of a solid changes in response 

to  heat  uptake  (Figure  4c).  Thus,  the  parameter  c1(T)  describes  the  process  of  thermal 
expansion.  When  T  is  low,  the  solid  is  stiff  because  the  bond  lengths  are  small  and 
bonding is strong. As T rises, the bonds lengthen and weaken. At high T, with weaker 
bonding,  the same increment  of  Q added  as  at low T  should  cause  greater  expansion. 
Clearly, the structure of the solid should affect the function c 1. 

Basically, the applied heat does work. Using Equation (28) gives: 

 Pc M T Q work PdV F L =  =Δ Δ = = Δ , (44) 

where  F  is  the  force  needed  to  expand  the  bond  with  length  L.  Young’s  modulus  (Ξ) 
represents the strength of the solid. The bulk modulus is not appropriate because it rep-
resents the change in V (or L) due to hydrostatic compression, thereby neglecting that 
solids may shear. 

We begin with F = Ξ ×  area, and consider a spherical volume about an atom: 

2 34 4 ;     P
P

L L
c M L L V

T L T c
α ρ

π π α
Δ Δ

≈Ξ =Ξ =Ξ ≈
Δ Δ Ξ

. (45) 

However, Equation (45) does not account for solids having a variety of structures with 
different bonding arrangements. 

The properties α, c P, and ρ describe the bulk solid, so the structure is immaterial to 
these measurable quantities. The desired quantity, F, is related to Ξ, the number of atoms, 
and the number of bonds around each atom (i.e., atomic coordination of the structure). 
For example, diatomics have 2 atoms which share 1 bond, so F is proportional to Ξ/2. The 
same holds for the monatomic diamond structure, for which each atom is bonded to 4 
others, mutually. Monatomics with the bcc structure have 2 atoms in the unit cell, which 
are bonded to 8 others, which double counts the bonds: thus F is proportional to 2Ξ/4. 
The 4 metal atoms in an fcc unit cell have 12 nearest neighbors, again double counting, so 
F is proportional to 4Ξ/6. Corundum has Al cations which are 6-coordinated, so Ξ/3 de-
scribes the force per cation. For the polyatomics with multiple sites, and given the above 
assumption of spherical atoms, F is estimated as being proportional to Ξ times the num-
ber of cations (N) divided by the number of atoms in the formula unit (Z): 
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P
Nc

Z

α ρ=
Ξ

, for polyatomics. (46) 

From the examples listed above, Equation (46) also describes diatomic and mona-
tomic solids. However, for monatomics, N is the number of cations in the unit cell, and Z 
is half the number of nearest neighbors in that unit cell. 

2.4.7. Ratio of Specific Heats 
When volume is constant, heating the solid changes P in the interior: 

 VQ c M T work VdP =Δ  =Δ = . (47) 

Manipulating Equation (47) and using the definition of an isochore gives: 

 Vc M V Bα= . (48) 

The ratio is thus: 

P

V

c N

c B Z

Ξ= . (49) 

Structure pertains to the ratio because the interior forces composing Ξ differ from exte-
rior application of pressure. This result cannot be tested as cV is not measured for solids. 

3. Evaluation of New and Old Formulations via Comparison with Experimental Data 
We  evaluate whether  available data support  our  model  (Table  1)  or  the  historical 

equations. We utilize compilations of data to decipher random errors. Studies of many 
materials by a single research group are another focus to reduce the effects of systematic 
uncertainties in comparisons. 

3.1. Comparison of Bulk Moduli from Acoustic and Volumetric Studies 
3.1.1. Techniques 

We use “volumetric” to include several experimental approaches that are conven-
tionally considered to provide isothermal bulk moduli. X-ray diffractometry (XRD, ) and 
related techniques measure spacing of atomic planes, yielding unit cell volumes, whereas 
length-change  measurements  (e.g.,  [31])  measure  macroscopic  sample  dimensions.  Ex-
periments are conducted at set points, presuming attainment of quasi-equilibrium at each 
step.  The  apparatus  must  supply  a  constant  heat  input  to  maintain  constant  T,  while 
avoiding generation of extra heat from friction between moving parts. 

Compression data are mostly collected at ambient temperature (NTP) rather than at 
0 °C (STP). Ascertaining the effect of P on hard solids such as oxides is challenging be-
cause very high pressure is needed to induce substantial changes in V. Use of simple fits 
to describe V(P) data has become uncommon, perhaps because of erroneous statements 
that polynomial fits set 𝜕BT/𝜕P to 0 at P = 0 [32]. Rather, values for instantaneous deriva-
tives depend on the accuracy with which V and P are measured, the spacing in P between 
data acquisition points, and the absence of deformation. 

Commonly, volumetric data are fit to an assumed EOS. Popular forms assume that 
two constant values, namely the initial (B T,0) and 1st order derivative (B′ = 𝜕BT/𝜕P), suffice 
to delineate V(P). Large ranges in pressure are needed to establish the latter parameter, 
because it is the 2 nd order pressure derivative of V. Additionally, uncertainties increase 
with P. Hence, B′ = 4 is commonly assumed. Although applying a certain form for the 
EOS is useful for comparisons, this approach introduces uncertainties by restricting pa-
rameter space. Convolution of B T,0 with B′ in EOS fits is a mathematical consequence of 
using only these two coefficients. 
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A  different  class  of  experiments  determines  elastic  constants  by  recording  the 
short-term response of materials to propagating waves or pulses [33]. The basis is equa-
tions relating stress to strain. Bulk and shear moduli are then calculated in accord with 
the symmetry of the structure and whether longitudinal or transverse waves are applied. 
Uncertainties  stem  from  losses  due  to  imperfect  bonding  of  sample  to  transducer,  im-
perfect orientation of single crystals, and use of approximate formulae for polycrystals. 
Spectroscopic methods e.g., Brillouin scattering are also well-established [34], but have 
similar limitations. However, since B is determined directly at ambient conditions, there 
is no need to assume an EOS. The term “acoustic” is used below to cover elasticity stud-
ies. 

3.1.2. Bulk Moduli for Solids at NTP 
Compiled data on metals (Figure 5a) should be accurate because metals are fairly 

compressible  and  duplicate  measurements  exist.  For  example,  Ledbetter  [35]  summa-
rized measurements of zinc elastic constants presented in 11 studies, demonstrated con-
sistency, and provided a tightly constrained average for zinc’s bulk modulus. Individual 
studies were sought when a metal was only present in either the elasticity database of 
Guinan and Steinberg [36] or in the XRDdatabase [32], but not in both. We omitted any 
shockwave and XRD results that were included in the elasticity compilation. 

Figure  5a  shows  that  historical  Equation  (23)  predicts  that  bulk  moduli  obtained 
from volumetric studies should be 1.6% lower, on average, than B aco. The calculated dif-
ference depends strongly on α-values near NTP, which are well-constrained for metals 
[37] and fairly large. Although the historical correction term of 1.6% is close to the ex-
perimental uncertainty in bulk moduli for individual metals, it is larger than the uncer-
tainty of 0.5% of the fit for these 36 metals (see insets in Figure 5a). On average, the his-
torical correction is unnecessary. 

Bulk moduli values for electrical insulators and semiconducting Si scatter about the 
fit (Figure 5b). Within experimental uncertainty, Baco = BT. Applying historic Equation (23) 
to Baco predicts that bulk moduli should be only 0.6% lower than the trend in the data: this 
correction term is small because silicates and oxides have low α. Incompressible diamond 
(elemental C) and stishovite (SiO 2 with the rutile structure) greatly influence the fit. Be-
cause α is low for insulators, little difference exists between data and the historic predic-
tion, Equation (23). 

 
Figure 5. Comparison of data on bulk modulus from compilations of data from different experi-
mental techniques. The x-axes depict XRD results from [32]: (a) metallic elements. Elasticity data 
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(color  points  and  line)  mostly  from  [36];  supplemented  by  data  on  Pb  and  In  [38]  and  Zn  [35]. 
Calculations use γ th from [36]; recommended values of α from [37]; and c P from [39]; (b) electrical 
insulators and the non-metallic elements Si and C. Elasticity data on Si from [40]: otherwise from 
[41]. Additional XRD data, e.g., on BaF2, from [42–44]. Calculations use γth and α from [45]. 

Statistical analysis provides further insights. Figure 6 shows histograms of the data 
in Figure 5. Many insulators have B aco < BT from volumetric studies (Figure 6a), which is 
the opposite of the historic predictions, Equation (23). For metals, B aco tends to be slightly 
larger,  whereas  combining  all  data  from  Figure  5  provides  an  average  difference  very 
close to zero. Symmetry of the profile about a negligible difference (Figure 6a) points to a 
statistical origin for differences in bulk moduli measured on the same material with dif-
ferent techniques. 

The  historic  predicted  difference  in  bulk  moduli,  Equation  (23),  for  metals  is  ~2× 
larger than that of insulators (Figure 6b), suggesting that acoustic and volumetric deter-
minations should differ more for metals than for insulators. In contrast, Figures 5 and 6a 
show that the differences between measured values of B T and Baco at NTP are smaller for 
metals than for insulators. These findings underscore that differences in bulk moduli at 
NTP for the ~100 samples in the compilations, many of which were measured multiple 
times, are caused by experimental uncertainties. Figures 5 and 6 support our model. 

 
Figure 6. Statistical presentation of the data from compilations. See Figure 5 for literature sources. 
Light grey = metals; dark grey = insulators and Si. Arrows point to various mean values: (a) histo-
gram of the difference between elasticity and volumetric measurements of bulk moduli, in percent; 
(b) histogram of the product αγT at 298 K. Expansivity data were found for 39 of the insulators that 
had both types of bulk moduli measurements. 

3.1.3. Uncertainty in Bulk Moduli Arising from Fitting Volume vs. Pressure 
Bulk moduli are extracted by fitting V(P) to various polynomials or EOS formulae. 

To investigate the effects of fitting choices and measurement intervals (spacing of data 
points with P) we explore: (1) results for the metal Pb, which has pure samples due to its 
low  melting  point,  and  has  been  studied  multiple  times  by  many  researchers;  and  (2) 
length-change  measurements  on  many  elements  made  using  the  same  apparatus  with 
similar procedures. 

Figure 7 shows all metals and semi-metals for which both length-change and acous-
tic  data  exist.  Vaidya et  al.  [46]  made multiple  runs  of  many samples.  Their tabulated 
volumes, which may have been smoothed, were fit by us to 2 nd order polynomials. Our 
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results are similar to the polynomial fits of [31]. EOS parameters were averaged if multi-
ple values were reported. 

Results from both polynomial and EOS fits linearly correlate with Baco with a slope of 
unity (Figure 7a). Substantial differences exist in 𝜕B/𝜕P for the two types of fits [31] (their 
Table 5). As shown below for lead, a 3 rd order polynomial is needed, but P = 4.5 GPa is 
insufficient to constrain curvature for most metals. This is underscored by measurements 
of tungsten [47] for which V depends linearly on P. Thus, using an EOS for W is an in-
accurate representation. Discrepancies in Figure 7a for B > 130 GPa are attributed to both 
curvature in V(P) being too small for accurate fitting at high B, and also the trend of being 
highly influenced by uncertain B of incompressible W. 

 
Figure 7. Comparison of different measures of metal bulk moduli. Length-change measurements 
from [31,46,47] were fit to EOS by the authors and to 2 nd order polynomials here. Most acoustic 
determinations are from compilations listed in Figure 5. Vaidya and Kennedy [47] provide addi-
tional acoustic data: (a) direct comparison. Both linear and polynomial fits are fit for tungsten, be-
cause curvature in V(P) was not resolved. Gold was not measured, but the other noble metals have 
relatively large BT; (b) inverse comparison. The four softest metals were excluded because these not 
only needed 1–3 more terms for accurate fitting, but more importantly, the sigmoidal dependence 
of their V on P indicated deformation. We did not fit the initial slope because the lowest P data may 
be affected by slight deformation. 

Figure  7b  compares  compressibilities,  where  the  fitting  is  influenced  most  by  the 
softest  samples,  rather  than  by  the  hardest.  A  1:1  correlation  exists,  if  the  four  softest 
samples are omitted. Fitting V(P) for Rb and K (not shown) required 5 th order polynomi-
als  to  account  for  inflection  points,  a  behavior  that  is  inconsistent  with  available  EOS 
formulae. Apparently, Rb and K deformed in the tests. Accurate fits to Na and Se vol-
umes required 3rd order polynomials. However, volumes for hard metals measured up to 
4.5 GPa lack sufficient curvature to constrain a 3 rd order polynomial fit. Thus, the four 
softest metals cannot be compared to the others in a consistent manner. 

Thus, bulk moduli obtained from volumetric measurements equal the acoustic de-
terminations,  if  V  is  measured  and  analyzed  consistently.  Notably,  acoustic  measure-
ments also have experimental uncertainties and most metals studied are polycrystalline, 
for which elasticity formula (i.e., the Voigt–Ruess–Hill formulation) is approximate (Sec-
tion 3.1). Such effects cause the scatter in Figure 7. 

Volumetric data on Pb from four studies are fit with a 3 rd order polynomial (Figure 
8a), providing B T,0 = 45.5 ± 0.5 GPa. Results from Schulte and Holzapfel [48] are not in-
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cluded because a table of volumes was not presented and resolution of the points on their 
figures was insufficient for accurate digitization. They applied a two-parameter EOS to 
their own and previous data, yielding B = 42 ± 5 GPa with individual studies ranging 
from 39 to 51 GPa. All fits cluster about 40 to 42 GPa. Figure 8b omits this average be-
cause shockwave data were included by [48]. We excluded fits to both fcc and bcc phases. 

Various approaches to fitting volumes obtained at 298 K give a wide range of values 
for BT,0. A key factor is the maximum pressure obtained. When the full stability field for 
lead is used, EOS fits with two parameters, give lower values for B0 than fits to a 3rd order 
polynomial, which uses three parameters. The constraint of V/V0 = 1 is not included in the 
free-parameter count, as this is fixed in all approaches. 

 

 
Figure 8. Lead volumes and bulk moduli, mostly from DAC studies: (a) polynomial fit combines 
results from [31,49–51]. Double arrows denote pressure ranges. XRD experiments probed the whole 
stability field (to 16 GPa) but with few data points. Dotted curve = the 2rd order fit to V, where + = 
the corresponding B(P). Inset lists the 3rd order fit to V vs. P (solid curve), with filled squares for the 
resulting B(P), which is fit to the listed 3rd order polynomial. This fit gives slightly higher initial B 
than calculation; (b) temperature dependence of bulk moduli. Diamonds = Baco (grey from [52]; 
black from [53]). Square in circle = result from panel a. Open squares and various triangles = several 
fits to neutron diffraction data [51], as labelled. Other open symbols = reported EOS values of 
[31,49–51]. 

Compressing Pb to 8.6 GPa is not sufficient to accurately establish curvature (Figure 
8a). The very high P studies have widely spaced points, which limit the accuracy of fit-
ting.  Regarding  two-parameter  polynomial  fits,  these  can  give  higher  or  lower  B  than 
either the 3rd order polynomial or the EOS, depending on several factors. From the fitting 
in  Figure 8a, the  comparison  in  Figure 8b,  and  considering  variations  among  the  data 
sets, we infer that accurately determining B T,0 requires meeting several conditions: dense 
spacing of points, volumetric data over a wide range of pressures, accurate (or at least 
consistent) determination of pressures, and using a fit with three parameters or more (in 
addition to V0). 

Notably, use of a 3 rd  order  polynomial is  consistent with  anharmonic  oscillations. 
Further exploration of polynomial fitting to extensive data sets is needed, but is beyond 
the scope of the present report. 

Bulk moduli at NTP obtained from volumetric data even for Pb, which is a fairly soft 
metal,  include  substantial  uncertainties.  For  hard  substances,  uncertainties  are  larger, 
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which explains differences in scatter in Figure 5a,b. Figures 5–8 indicate that elasticity 
measurements record isothermal bulk moduli. 

3.1.4. Comparison of Acoustic to XRD Determinations of 𝜕B/𝜕T for Solids 
Comparison  of  elasticity  and  XRD  data  on  bulk  modulus  at  high  temperature  is 

limited  because  few  substances  have  been  measured  at  high  T  with  both  approaches. 
Challenges arise from large thermal gradients in the material and/or apparatus. We focus 
on accurate measurements of soft solids, as these have large α which permits definitive 
evaluation.  Alkali  halides,  alkali  metals,  and  lead  data  meet  these  criteria.  Due  to  ex-
perimental uncertainties, B aco does not always exactly equal B T at NTP (Sections 3.1.1 to 
3.1.3). Therefore, we compare values of 𝜕B/𝜕T, which has a negative sign. 

Our model (Section 2.3) requires that values of 𝜕B/𝜕T are the same for acoustic and 
volumetric determinations. In contrast, the historic Equation (23) leads to: 

( ) ( )2

1
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T T
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γ α
αγ α
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Below ~2000 K, the derivatives on the RHS are smaller than the product αγ, as shown in 
the tables in Anderson and Isaak [54], which include hard oxides and soft alkali halides. 
The two derivative terms furthest to the right are similar in magnitude but opposite in 
sign. For T accessed in experiments, Equation (50) is reasonably represented by: 
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, historical. (51) 

The terms on the RHS are similar in magnitude [54]. Since 𝜕BT/𝜕T is negative, volumetric 
measurements should give a stronger response to T than elasticity measurements. 

Yagi [55] determined volumes of four alkali halides to 9 GPa and 1073 K in a pis-
ton-cylinder apparatus using XRD. NaCl was included with each sample to provide an 
internal pressure scale, where Decker’s [56] calibration was used. Bulk moduli (Figure 9) 
were extracted using the Murnaghan two-parameter EOS, and were found to agree with 
those  from  length-change  measurements  [57].  Mismatch  occurs  with  acoustic  determi-
nations at any given T, but B vs. T curves from volumetric and acoustic studies are par-
allel.  The  only  exceptions  (Figure  9)  are  from  studies  that  disagree  with  subsequent 
measurements. In addition, acoustic determinations by various authors on each sample 
differ by varying amounts at 298 K. Within experimental uncertainty, equivalence of the 
derivatives from acoustic and volumetric techniques is confirmed. 

Historic Equation (51) gives 8.3%K −1 for CsCl which is larger than, but similar to, 
𝜕Baco/𝜕T  =  5%K−1  (Figure  9).  For  LiF  and  NaF,  Equation  (51)  gives  4.8  and  4.2%K−1,  re-
spectively, which are smaller than 𝜕Baco/𝜕T = −10.6 and −6.9%K−1, respectively (Figure 9). 
Yagi’s [55] measurements of volumes provided similar 𝜕BT/𝜕T, rather than values about 
half the size of 𝜕Baco/𝜕T. The historic model is not supported. 
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Figure 9. Bulk modulus of alkali halide as a function of temperature. Blue curves = EOS fits of Yagi 
[55] to his XRD data on LiF, NaF, the low-P B1 phase of KF, and CsCl with the B2 structure. Num-
bers in parentheses denote previous work cited by [55]. Red squares and “VK” = length change 
data [57], where too few data collections were made on KF to provide a reliable BT. Broken curves = 
acoustic data compiled by Yagi [55], where his references 19 and 20 are incompatible with other 
studies. For example, Hart [58] confirmed B aco(T) from curve 22 for NaCl, i.e., the work of Jones 
[59]. Modified after Yagi [55] (his Figure 8) with permission. 

Regarding  lead  (Figure  8b),  volumetric  data  of  Strässle  et  al.  [51],  analyzed  using 
Skelton et al.’s. [60] adaptation of Decker’s [56] scale, gave B(T) parallel to the trend of the 
cryogenic acoustic data. This finding is irrespective of using an EOS or a polynomial fit to 
V(P). Strässle et al. [51] were puzzled by their EOS determination for BT at 298 K, with the 
EOS  being  as  predicted  by  historic  Equation  (23),  but  not  their  80  K  value,  and  so 
reevaluated their data with an untested cryogenic calibration, attributed to in a personal 
communication,  which  yielded  the  desired  historic  result.  As  shown  in  Figure  8a,  the 
EOS analysis of lead volumes at low P underestimates the bulk modulus, so their fitting 
approach  only  appears  to  agree  with  this  historic  adjustment.  Rather,  fitting  lead  vol-
umes over the stability range of its bcc phase to a high-order polynomial agreement with 
Baco, and do not require amending via Equation (23). As demonstrated for the alkali hal-
ides,  bulk  moduli  trends  with  T  for  lead  from  volumetric  and  acoustic  techniques  are 
parallel, and so the historic correction is refuted. 

Soft  alkali  metals  have  also  been  studied  by  both  XRD  and  acoustic  techniques 
(Figure 10). The trends are nearly parallel. At 298 K, length-change measurements better 
agree  with  Baco  than  with  the  cryogenic volumetric  studies,  except  for Na.  The historic 
correction at 298 K exceeds or matches the difference between the various measurements, 
and thus agreement of absolute values involves random experimental uncertainties as is 
evident from compiled data (Figures 5–7). 
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Figure 10. Temperature dependence of bulk moduli for alkali metals. Filled symbols = acoustic data 
of [61–63]; grey represents previous work cited therein. Open symbols = volumetric (XRD) studies 
analyzed  using  simple  forms  for  the  EOS [64].  Open  cross  =  length-change  data  [46], which  are 
closer to acoustic results than to B from XRD. Otherwise, squares show various data on Na; circles 
for K; and diamonds for Rb. Arrow at 298 K shows the historic Equation (23) applied to XRD data. 

3.2. Response of Heat Capacity at NTP to Compression 
Compressing a solid affects specific heat and storativity in different ways, permit-

ting two independent evaluations using Equations (34) and (37). The historic Equations 
(6) and (38) differ considerably from our model, providing two additional tests. 

Two types of measurements exist for specific heat of solids as a function of pressure 
near ambient temperature. Calorimetric measurements have been performed on 3 metals 
(Section 3.2.1), whereas transport measurements involve 20 insulators, plus 3 metals by 
difference (Section 3.2.2). Only for Cu and MgO do multiple cP(P) measurements exist. 

3.2.1. Static Compression Techniques 
Metal  wires  were  studied  at  pressure  using  electrical  heating,  where  a  correction 

term was applied to account for thermal losses. This term involves resistivity of the wire 
and is larger (for Cu) or similar (Ni, Al) in magnitude to uncorrected 𝜕ln(cP)/𝜕P [65] (their 
Figure 7) and [66] (their Figure 3). Uncertainty for the reported value is substantial and 
cannot be less than ~10% uncertainty for the change in resistivity with P, e.g., [67]. 

3.2.2. Dynamic Compression Techniques 
Measurements of transport properties as a function of pressure provide 𝜕ln(cP)/𝜕P in 

two different ways. First, from Equation (5): 

( ) ( ) ( ) ( ) ( ) ( )ln ln ln ln ln ln1P P

T

c D c D

P P P P B P P

κ ρ∂ ∂ ∂ ∂ ∂ ∂
= + + = + +

∂ ∂ ∂ ∂ ∂ ∂
, (52) 

Different  methods  yield  κ  or  D,  and  occasionally  both  properties.  Combining  results 
yields 𝜕ln(cP)/𝜕P by difference whereby uncertainties of the terms sum. 

Only  experiments  on  large  (~  mm  thickness)  samples  are  considered,  to  permit 
comparison of the results, since transport properties linearly depend on length-scale at 
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small L [7]. Dynamic measurements provide D and κ vs. P for three metals, MgO, and 
olivine  (Figure  11).  Uncertainties  are  roughly  ±10%  for  each  transport  measurement, 
which  makes 𝜕ln(cP)/𝜕P  obtained  by  difference  uncertain  by  ±20%.  Figure  11  omits 
measurements of three samples: Gd melts very close to NTP; Zn has a hexagonal struc-
ture and the orientations differed in the D and κ experiments; whereas results on garnet 
gave positive 𝜕ln(cP)/𝜕P, which is unexpected, and is probably due to large uncertainties 
in small derivatives for this hard insulator. 

Second, certain dynamic experiments on insulators simultaneously provide κ and C 
as a function of P (e.g., [68,69]). Alkali halides, Si, and MgO were explored (as detailed in 
Figure  11).  If  a  graph  for  C  was  presented,  we  used  the  slope  and  B T  to  calculate 
𝜕ln(cP)/𝜕P from the LHS of Equation (36) instead of the EOS approach as used by authors. 

Most  studies  note  high  uncertainties.  Nominal  uncertainties  at  NTP  of  5%  for 
transport measurements are gauged by metal standards. Insulators have larger, system-
atic errors from contact loss and radiative transfer. However, their effect is reduced by 
comparing logarithmic derivatives. 

 
Figure 11. Graphs showing the response of storativity and c P to pressure: (a) dependence on the 
inverse of B; (b) Direct dependence on B. Grey diamonds and grey dashed line = directly deter-
mined storativity: sources = [70–73] where the error bar is from Gerlich and Andersson [70]. Black 
squares and solid line = specific heat from C, where circles = data where C did not discernably de-
pend  on  pressure.  Open  cross  and  red  dotted  line  =  metal  cP  directly  measured  by  calorimetry 
[65,66].  Aqua  triangles  =  heat  capacity  obtained  by  difference  (sources:  [69,74–78]).  Green  short 
dashed line = ideal correspondence. 

3.2.3. Relationship of the Pressure Response of Specific Heat and Storativity to Bulk 
Moduli 

Available  data  show  that  measured  values  of 𝜕ln(C)/𝜕P  for  insulators  weakly  de-
pend on compressibility or the bulk modulus, as predicted by Equations (36) and (37). 
The results are scattered (Figure 11), rather than inversely depending on B, which disa-
grees  with  the  historic  Equation  (38).  Considering  the  large  experimental  uncertainty, 
storativity is independent of pressure. This explanation is supported by soft solids, which 
are prone to deformation, having C dependent on P, whereas the hard solids show little 
change. It is also consistent with the seemingly random variation in the sign of 𝜕C/𝜕P. 

In contrast, 𝜕ln(cP)/𝜕P decreases roughly linearly with B −1 (Figure 11). Values for the 
slope vary with the technique (calorimetric or dynamic). The slope is uncertain, due to 10 
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to 20% uncertainties for the various approaches and the fact that an EOS is used to pro-
cess storativity, which adds uncertainty—basically, this is also a difference approach. All 
data from all approaches combined (not shown) give a slope of about −1 or −100%. This 
slope is consistent with Equation (34), which shows that compression of the lattice con-
trols the response. Within experimental uncertainty, the energy density is independent of 
pressure. 

3.2.4. Evaluation of the Historic Relationship of the Pressure Response of Specific Heat to 
Thermal Expansivity 

Figure 12 evaluates historic Equation (6) using sources listed in [79] and Figures 5 
and 11. The temperature derivative of α is uncertain, and contributes to scatter. Measured 
𝜕ln(cP)/𝜕P, on average, responds strongly to compression whereas the correlation with 
historic Equation (6) is poor. The existence of a rough link is attributable to compressible 
solids that also have large α; see, e.g., Anderson and Isaak [54]. 

 
Figure 12. Comparison of the measured P response of specific heat to the thermostatic formula (6), 
which is peculiarly based on thermal expansivity describing compression. The difference method 
(blue triangles) provides a cluster of points, and so was not fit. Red = direct calorimetry measure-
ments. Green dashed line = 1:1 correspondence, for reference. Circles = materials for which stora-
tivity was not discernably affected by compression. Open cross = metals, by calorimetry. Black line 
= fit to the scattered dynamic measurements. Data sources listed in Figure 11. 

3.3. Connection of Thermal Expansion to Heat Uptake and Internal Strength 
Uncertainties in the properties considered here increase with T. Uncertainty in den-

sity is negligible, compared to that of the others, which generally increases in the order cP 
< Ξ < α. Because thermal expansion is small and measured as a response to T, values are 
impacted by the measurement range and fitting procedures, parallel to the limitations in 
determining BT (Section 3.1.1). 

3.3.1. Ambient Temperature 
Figure  13  compares  the  ratio  α/cP  to  the  ratio  ρ/Ξ  without  considering  effects  of 

structure after Equation (45). Agreement is reasonable for the monatomic elements, but 
with considerable scatter. This could be due to ~25 elements having N/Z = 1, but being 
anisotropic, as discussed below. The correlation for insulators is linear, with a slope dif-
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fering from unity predicted by Equation (45). Its value of nearly ½ is as expected from our 
structural analysis of the interatomic forces (Section 2.4.6). 

Figure 14 evaluates the effect of structure on interatomic forces Equation (46). Sem-
iconducting Si and Ge are omitted because these have negative thermal expansivity at 
low temperature (see Appendix A). Diamond is included with the insulators because its 
structure differs from the remaining solid elements, which are metals plus the semimetal 
Te. Figure 14 analyses the three different structures that describe most metallic elements. 
Data  on  the  insulators  and  face-centered  cubic  (fcc)  metals  confirm  Equation  (46), 
whereas data on the body-centered cubic (bcc) and hexagonal close packed (hcp) metals 
require an additional factor. Discrepancies for the non-cubic solids, i.e., olivines, among 
the insulators and hcp metals point to anisotropy, which affects measurements of both α 
and Ξ, but was not accounted for in our analysis (Section 2.4.6). Corundum is hexagonal, 
but its physical properties such as thermal conductivity are nearly isotropic and so this 
behaves like the cubic insulators. For the remaining non-cubic structures, additional in-
formation is needed to describe their forces, so we do not pursue details of their behavior 
below. 

 
Figure 13. Evaluation of Equation (43). Data on α, ρ, and c P from [37,39,80,81]. Young’s modulus 
data from [41,82]. The five insulators are examined below: see Section 3.3.2 for details and sources. 

Divergence  of  anisotropic  samples  from  Equation  (46)  in  Figure  14  suggests  that 
shear (deformation) underlies mismatch since both affect the amount of longitudinal vs. 
lateral strain. DeJong et al. [83] modelled failure modes of four bcc metals. Their catego-
rizations of ductile (shear) vs. brittle (tension) failure agree with available experimental 
data. Equation (46) overpredicts α/cP for ductile Nb and Ta but agrees with α/cP for brittle 
Mo  and  W.  Shear  being  important  means  that  some  of  the  heat  energy  goes  into  de-
forming rather than solely expanding the lattice: consequently, α/cP is overestimated. 
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Figure 14. Dependence of α/cP on ρ/(ΞN/Z). Literature sources of data on elements are in Figure 13. 
For the insulators, tables of [54] were used, where Co2SiO4 was omitted because α was estimated. 
Fits are least squares and are labeled with the number of solids in each category: (a) insulators and 
cubic fcc metals. Lead strongly influences the slope due to its softness, as shown by the two fits. 
Iridium has little influence as it is near a cluster of points. Orthorhombic Fe2SiO4 has a shearing 
transition whereas α for orthorhombic Mn2SiO4 is unconfirmed; (b) cubic bcc and hexagonal hcp 
metals. Outliers Li and Be have very small cations and few valance electrons. 

To quantify the effect of ductile behavior, the data in Figure 14 are recast as a dif-
ference and a ratio in Figure 15a,b, where each is compared to Poisson’s ratio (Section 
2.2.3). The rigid insulators agree well with (46), excluding the orthorhombic olivines. The 
scatter is otherwise attributed to experimental uncertainty, mostly in α, due to its small 
size (discussed further below). 

 
Figure 15. Measures of discrepancy of the data from (46) as a function of Poisson’s ratio. Data on μ 
from [41,82]; see Figure 14. Fine line = ideal match. Dotted line and circles = bcc. Thick line and 
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squares = fcc. Diamonds = hcp: (a) difference = {ρ/(ΞN/Z)-α/cP}/(α/cP) in percent; (b) ratio of α/c P 
divided by ρ/(ΞN/Z). 

As deformation becomes an increasingly important component of elasticity in each 
of the fcc and bcc metals, α/c P is increasingly overestimated by Equation (46). Positive 
discrepancies (overestimation of the energy supplied towards expansion) are associated 
with  transverse  strain  being  large  compared  to  longitudinal  strain.  Thus,  deformation 
accounts for departures of individual metals from the trends established for each of the 
fcc and bcc structures, but it does not account for their different trends. 

One explanation of the different trends is that our use of structure to link interatomic 
forces to Young’s modulus is an oversimplification. Ionic-covalent bonds for the insula-
tors  are  strong  and  electrons  are  localized,  so  assuming  that  forces  are  controlled  by 
nearest-neighbor  couplings  is  strongly  supported.  Bonding  in  metals  involves  delocal-
ized electrons, so 2 nd nearest neighbors participate somewhat in the force field around a 
cation. The fcc cations have 12 nearest neighbors at 0.707 L and six 2 nd nearest neighbors 
at  L.  Because  2nd  nearest  neighbors  are  few  and  are  at  1.4×  longer  distances,  using  12 
bonds is reasonable but low. Increasing bond number to 13.8 would provide a slope of 
unity in Figure 14a. If a bond count of 13.8 has been used in Figure 15, this would place 
most  metals  within  uncertainty  of  exact  agreement  with  Equation  (46).  These  samples 
have typical μ = 0.2 to 0.33, which overlaps with the range of the insulators. For another 
estimate,  an  extended  unit  cell  with  5  atoms  would  have  18  bonds  (double  counted), 
giving Z/N = 1.8 instead of 1.5. Agreement with Equation (46) for all fcc metals occurs 
midway between these estimates. 

The bcc structure has eight nearest neighbors at 0.866 L and six 2nd nearest neighbors 
at  L.  Secondary  bonding  is  more  substantial  than  a  perturbation.  Considering  an  ex-
tended unit cell suggests Z/N = 7/3 = 2.33 instead of 2 for the primary bonds. This modi-
fied value does not explain the overall underestimation of expansion at ambient T caused 
by heat uptake by bcc metals. Further evaluation would require a close look at the orig-
inal sources of data, particularly α. Experimental uncertainties may be a problem for the 
highly reactive alkali metals. This potential limitation is supported by the well-studied, 
non-reactive bcc metals (Fe, Mo, W) lying on the 1:1 line of Figure 14b, whereas Ta is 
slightly off, due to its high ductility, discussed above. 

3.3.2. Temperature from a Few Kelvins to Nearly Melting 
Previous comparisons of α(T) to c P(T) averaged many data sets [27–30], which re-

moves random errors. Because systematic errors also exist, we compare individual data 
sets in Figure 16a which should accurately represent each of α(T) and c P(T). Evaluating 
the temperature dependence of Equations (43), (45), or (46) further requires accurate data 
on  Ξ(T).  Fortunately,  comparing  rather  few  samples  suffices  because  specific  heat  de-
pends  similarly  on  T  for  diverse  materials,  both  simple  (e.g.,  [24])  and  complex  [84]. 
Likewise,  solids  expand  similarly  as  temperature  climbs:  for  details,  see  Appendix  A. 
Similar behavior of Ξ with T for different substances has also been observed (Figure 16b), 
leading to common use of the formula: 

( )0( ) expT
bT aT T=Ξ = Ξ − − , (53) 

where Ξ at the limit of 0 K as well as constants a and b are fitting parameters [85–91]. 
We  focus  on  diverse  cubic  substances  with  multiple  and  accurate  measurements 

over wide T-ranges. Pure substances, where disordering of cations among sites is negli-
gible, are considered. Appendix A provides graphs comparing α to c P as a function of T 
for Al, Fe, Mo, Ta, Au, diamond, Si, MgO, Al2O3, Y2Al3O12, NaCl, and KCl. 

The  five  metals  examined  in  detail  have  a  sufficient  range  of  densities,  Young’s 
modulus, and structures to permit the evaluation of our new equations. Rows 3 to 6 and 
columns VB, VIB, VIII, IB, and IIIA of the periodic table are represented. Figure 16 shows 
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the ratio α/cP above 200 K, where data on Ξ exist. As T further increases, α increases more 
strongly with T than does cP, such that the proportionality factor c1 in Equation (43) grows 
non-linearly with T at very high T. 

 
Figure 16. Evaluation of Equations (43) and (46) at high T for well-studied solids: (a) dependence of 
α/cP on temperature. See Appendix A and Figures 13 and 14 for data sources. Jumps in Ta curve 
result from data-combining studies. The graph begins at 200 K as cryogenic data were previously 
shown to closely correspond [27–30]; (b) dependence of ρ/Ξ with the structural factor on T. Con-
stant ambient ρ was used due to uncertainties in Young’s modulus. Measured data on Ξ from [85–
91]. For Au, Fe, MgO, NaCl, and KCl, we used T derivatives near and above 298 K for B and G from 
[41] to compute dΞ/dT. 

Semiconducting Si  has  negative  α at low  T,  but  behaves  similarly  to  isostructural 
diamond at high T (Appendix A). Because α(T) being disconnected from c P(T) was also 
observed over the Curie point of Fe (Appendix A), we propose that heat energy goes into 
expanding the lattice when no other process exists that can uptakes the increment ap-
plied.  In  Fe,  the  additional  process  is  electromagnetic.  Section  3.3.1  argued  that  defor-
mation likewise diverted heat-energy from thermal expansion. From both observations, 
we suggest that the process in Si involves electronic state changes. This hypothesis could 
be tested against impurity content for Si and Ge. 

Figure 16a shows that the ratio α/c P depends on T. Its derivative with T (the slope) 
depends on Ξ near 298 K, in accord with Equation (45). Trends are flat and similar for 
materials  with  very  high  Ξ.  The  slope  steepens  as  Ξ  decreases.  Density  and  Young’s 
modulus together affect the low T intercept of α/cP. The behavior exhibited in Figure 16a 
supports the findings of Section 3.3.1. 

The  slopes  of  α/cP correlate  reasonable  well  with 𝜕Ξ/𝜕T  for  diverse  materials  (cf. 
Figure 16a,b). Insulators include extremely tough diamond, three incompressible oxides 
with varying structural complexities, and two soft alkali halides. Bonding ranges from 
ionic to covalent. Bass’s [41] summary table shows that the T derivatives of elastic prop-
erties  vary  considerably  among  studies  of  the  same  material.  Non-linearity  of  the  re-
sponse contributes. Hence, uncertainties in 𝜕Ξ/𝜕T are substantial. On this basis of large 
experimental uncertainties, and because density changes with T are even smaller, ambi-
ent ρ was considered in Figures 16b and 17. 

Figure  17  shows  that  thermal  expansion  of  solids  is  more  easily  accomplished  at 
high  T  because  the  solid  gradually  weakens  with  T.  Shear  is  a  substantial  competing 
mechanism for Au and Ta, causing our model to overestimate expansion at room tem-
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perature  (Figure  15)  and  above  (Figure  17).  Within  experimental  uncertainties,  data  at 
elevated temperature support our model for the response of strong solids to heat. 

 
Figure 17. Comparison of the temperature dependence of the RHS and LHS of Equation (43). The 
effect of structure is not included. Data for these solids are described in Figure 16 and Appendix A. 

4. Discussion and Implications 
We  present  a  new  model  for  static  physical  properties  of  solids  for  the  case  of 

steady-state heat flow. The classical “thermodynamic” model does not account for ubiq-
uitous heat flow or for the dissimilar physical behaviors of gas and solids, encapsulated 
in Figure 1. In particular, the fact that heat-energy and mass move independently in a 
solid, unlike gas, and the quantitative description of heat flow by Fourier are neglected in 
classical theory. An equally significant omission was neglecting the constant emission of 
heat from a solid, as experimentally established by Stefan, and theoretically supported by 
Boltzmann’s derivation of the T4 dependence of flux. 

Independent  behavior  of  heat  and  mass  in  solids  stems  from  their  rigidity  and 
strength: hence, elasticity is the dominant energy reservoir of solids (Table 2). Moreover, 
coherent transverse motions that embody two of the three acoustic modes in solids have 
no counterpart in gas. As elasticity is connected with interatomic forces within a solid, 
this reservoir involves potential energy (P.E.) and is distinct from heat storage, which is 
known to be kinetic energy (K.E.) from study of gases. The nature of heat storage is cov-
ered in Section 4.1. 

Table 2. Dependence of energy reservoirs on the state of matter and the complexity of its atomic 
constituents. 

Type Motion                       _            Solids   Gases 
Manifestation Energy Storage Manifestation Storage 

monatomic Displacements 
parallel to path 

Longitudinal acoustic 
mode Longitudinal stress/strain 1 Translational K.E. Heat 

 Displacements 
perpendicular to 

Transverse acoustic 
modes Transverse stress/strain 1 n/a n/a 
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path 

 Electron-cation 
dipoles Optical continuum Heat Collisions n/a 3 

polyatomic Longitudinal Longitudinal acoustic 
mode Longitudinal stress/strain 1 Translational KE Heat 

 Transverse Transverse acoustic 
modes Transverse stress/strain 1 n/a n/a 

 Electron-cation 
dipoles Optical continuum Heat Collisions n/a 3 

 Cyclical, tiny 2 Optical modes Additional heat Internal modes Heat 
1 For solids, these together compose elastic storage of energy in tension-compression and shear, 
respectively. 2 These internal motions and energies are in addition to those described for mona-
tomics above, but are also found in certain monatomic structures such as Raman modes (diamond 
and hcp metals). Although Raman modes do not directly absorb light, their overtone/combinations 
do. 3 Presumed to be brief and conservative in the historical model. 

Addressing  these  omissions  led  to  relationships among  the  physical  properties  of 
solids that differ from the historical formulae. Table 1 lists key new formulae which we 
have evaluated with available data. Some additional results cannot be verified because 
no data exist for solids, for example, on c V. Testing many different solids required use of 
compilations, which introduced uncertainties. Nonetheless, available data show that for 
solids:   
1. Only one bulk modulus exists, so the historically alleged difference between acous-

tic and volumetric moduli is unsupported. Likewise, the isothermal and adiabatic 
values for the 2nd Grüneisen parameter (Equation (14)) must be identical. 

2. Changes in heat content with pressure are controlled by the compressibility, which 
dominates changes in specific heat at moderate laboratory temperatures. 

3. Changes in heat content with temperature are described by specific heat by defini-
tion. Specific heat and thermal expansivity are linked, as the process of increasing V 
involves overcoming the elastic, tensile forces within the solid. Deformation solely 
occurs as shape changes arising from shear stresses uptake energy without expan-
sion, confirmed by comparison of results from (46) to Poisson’s ratio for cubic solids. 
If heat stimulates other processes, expansion is reduced as in Fe, or even reversed, as 
in Si. 

4.1. Heat Storage Reservoirs and Permissible Exchanges of Energy 
All  solids  store  heat.  Those  with  multiple  types  of  atoms  have  short-range  vibra-

tional motions that interact directly with light, as occurs in polyatomic gases. Applied 
light-energy is absorbed by these cyclical, small-scale motions, then communicated dur-
ing equilibration (Figure 4c), and stored as heat. 

For gases, the molecular vibration reservoir is in addition to that of the longer scale, 
translational motions, as is well-known. At equilibrium, these different energy reservoirs 
must have the same temperature. Partial temperatures do not exist. Yet, the heat-energy 
content associated with each reservoir need not be the same, and in fact is not. One ex-
ample is diatomic gas, for which the translational K.E. reservoir is larger than the vibra-
tional reservoir. Equal temperatures of reservoirs are in accord with the zeroth law and 
with Stefan’s observations: at equilibrium their heat losses (fluxes) must match. 

Solids  must  behave  similarly.  Thus,  monatomic  solids  which  lack  optical  modes 
(e.g., bcc and fcc structures) must have some heat storage reservoir. These metals emit 
approximately as blackbodies and consequently absorb light at all frequencies. This op-
tical  continuum  is  thus  the  manifestation  of  the  main  heat  storage  reservoir  in  metals 
(Table 2). Continuous absorption is consistent with the wide range of distances, and thus 
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dipole  moments,  between  the  moving,  loosely  bound  electrons  and  the  approximated 
stationary cations. 

Energy cannot be freely exchanged among all reservoirs. Rules exist for energy ex-
change  and  in  many  cases  prohibit  it.  Rules  are  evident  from  experiments.  Acoustic 
modes in solids are not stimulated by light, even when its frequency matches that at the 
zone edge, because the dipole moment does not change during these coordinated mo-
tions of the cations [23]. Thus, neither the sole longitudinal acoustic mode nor the two 
transverse  acoustic  modes  participate  in  emitting  light.  Without  a  flux,  the  acoustic 
modes have no temperature and so the elastic reservoir not being in equilibrium with the 
heat reservoir does not violate the zeroth law. Our discussion is in accord with the nearly 
free electron model [24]. Heat transfer is a disequilibrium phenomenon that is not rele-
vant to the equilibrium state: for measurements and theoretical assessment of electronic 
and vibrational transport in metals, see Criss and Hofmeister [21]. 

From another perspective, the elastic reservoir maintains and even increases its en-
ergy as the 0 K limit is approached (Figures 8–10). The acoustic modes have more energy 
as  T  decreases  because  the  bonds  become  shorter.  Solids  become  more  rigid  with  de-
creasing T.  Even  polyatomic  alkali  halides  behave in  this  way  (Figure 9).  If  the  elastic 
reservoir exchanged energy with the heat reservoir achieving low temperatures might be 
impossible. Moreover, acoustic waves propagate extremely long distances, for example, 
1000s of km inside the Earth. Weak attenuation, unlike that during heat transfer which 
attenuates  over  ~  mm  lengths,  is  only  possible  with  negligible  energy  exchange.  Ex-
change of energy between reservoirs is observed to occur only when the length scales 
associated with different energy inventories are similar. This restriction is a consequence 
of  the  Virial  theorem  of  Clausius  [92].  The  entire  solid  sample  responds  elastically  to 
stress, whereas the interactions of solids with heat and light are microscopic. 

4.2. Key Variables 
The  essential  thermodynamic  variables  that  govern  solids  under  steady  state  are 

mass, volume, temperature, and stress. Although mass is held constant in our model, M 
remains  important  because  atomic  constituents  dictate  structure  and  bonding,  and 
therefore affect the interactions of the particular solid with stress and with applied heat. 
Because heat is never stationary, the supply of flux is crucial, but is assumed to equal the 
flow out, so the total energy content is independent of time in our model. That is, the 
constraints  of  steady-state  dictate  the  relevant  variables  and  how  measurements  are 
made. In more detail: 

Heat storage and the solid’s response to applied heat are probed by perturbing the 
system, i.e., by monitoring the response of the solid to incremental heat additions (puls-
es) and recording this as a heat capacity. Temperature is actually a consequence of an in-
flux of heat energy to the solid, which is maintained externally. 

Stress has direction and can be separated into an isotropic component (hydrostatic 
pressure, P) which alters volume but not shape, and a deviatoric component, which alters 
shape  but  not  volume.  Elastic  properties  describe  the  changes  (strain)  in  response  to 
stress. For solids, bulk modulus (inverse of compressibility) has been the focus as this is 
the response to hydrostatic compression, and also occurs in gas. For a solid, its response 
to  shear  stress  is  equally  important,  but  gases  offer  no  resistance  to  shear.  Moreover, 
steady state involves a direction of heat flow, and thus Young’s modulus and Poisson’s 
ratio  better  represent  mechanistic  responses  during  steady  state.  Because  the  elasticity 
reservoir is independent of the heat reservoir, thermal expansion is related to heat uptake 
through the rigidity of the solid and its directionality, including in anisotropic solids. 

4.3. Reservoirs vs. Historic State Functions 
The neglect of the huge reservoir of elastic energy in solids in the historical model 

requires revision of essential variables (Section 4.2) as well as of the associated energies, 
historically  referred  to  as  state  functions.  For  solids,  elastic  energy  replaces  the  state 
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function denoted internal energy. Unlike internal energy, elastic energy is independent of 
temperature, flux, and heat. 

From the definition of specific heat (Equation (28)), integration provides Q, the heat 
content. A constant of integration is unnecessary because at the limit of T = 0, flux also 
approaches the null limit. Otherwise, a substance could cool below absolute zero. The 
absence of flux at 0 K means that no heat is stored at this limit. Otherwise, a small amount 
would be emitted. Heat content replaces the historic enthalpy function for solids. 

Entropy  for  a  solid  is  related  to  its  configurational  disorder.  Defining  entropy  in 
terms of Q and T is problematic because heat flow is ubiquitous. In the historic approach, 
S is a variable, yet enthalpy, i.e., Q, is a state function. Our model lacks this inconsistency. 

The classically defined free energies of Gibbs and Helmholtz are not needed to de-
scribe solids. Rather, our analysis shows that only two very different types of energy exist 
in our ideal, time-independent solid. One reservoir consists of storage of elastic energy of 
the solid, which is potential energy since motions do not exist until the system is per-
turbed, i.e., activated by adding heat. The second type is heat content, which is kinetic 
energy,  since  atomic  motions  are  always  present  at  finite  T,  while  taking  on  different 
forms (Table 2). 

5. Conclusions 
We  constructed  a  new  thermodynamic  theory  for  the  perfectly  elastic  frictionless 

solid  that  accounts  for  the  vastly  different  physical  character  of  solids  and  gas,  while 
addressing the ubiquitous flow of heat. Our model shares two inherent limitations with 
the historic model, as it is also macroscopic and independent of time. Our model differs 
by: (1) considering steady-state conditions for heat flow, which are common and 
achievable; and (2) accounting for the rigidity of solids. The latter shows that the energy 
associated with their elasticity, which was ignored in classical models, is large and in-
dependent  of  their  heat  reservoir.  Our  focus  on  perfectly  frictionless  elastic  solid  is 
analogous to the classical model of the ideal gas: in both theories, exploring the limiting 
case of elastic, conservative behavior sets the stage for more complex, realistic behavior. 

Our new equations, which differ substantially from historic ones, were confirmed 
using available data on isotropic solids. Although validation is limited to simple struc-
tures, all bonding types (metallic, covalent, and ionic) are represented and agree with our 
model, supporting its generality. We also demonstrated that counterpart equations in the 
historic model, which are based on behavior of gases and neglect rigidity, are not sup-
ported by the same data. 

Incorporating elasticity into a thermostatic model reveals the mechanism for thermal 
expansion:  namely,  the  added  heat  performs  incremental  work,  which  is  required  to 
transition between equilibrium states, but is opposed by the interatomic bonds that de-
fine the structure and rigidity of the solid. This link explains why the temperature de-
pendence of α is complex. Other key equations (Table 1) provide simple relationships for 
the pressure responses of specific heat and heat content. The relationship between the 
two specific heats is simple: when cast as BcP = ΞcV, it is apparent that their difference lies 
in whether pressure is externally controlled, or whether the resistance to heating is in-
ternal  to  the  solid.  Furthermore,  we  show  that  isothermal  and  isentropic  (adiabatic) 
compressibilities  are  identical,  which  is  consistent  with  thermal  expansivity  taking  on 
one value (isobaric) and isentropic conditions not being germane. 

Many  different  disciplines  apply  various  historic  thermostatic  relations  to  solids. 
Materials science and engineering fields should find our interrelationships among ther-
mal expansivity, specific heat, and Young’s modulus useful in designing materials, be-
cause both strength and thermal response are germane to many applications. Geophysi-
cal  research  would  greatly  benefit  from  our  new  theory  because  the  slowly  varying, 
high-pressure and high-temperature conditions in Earth’s deep interior cannot be 
reached in the laboratory, and so the historical equations have been relied on. Substantial 
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revisions are expected for the thermal structure of planetary interiors, since these bodies 
are very compressed and thus very strong solids. 
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Appendix A 
Accuracy in thermal expansivity is particularly low at high T, where mostly diffrac-

tion techniques are used. Errors of 20 to 30% are common, e.g., [93]. Specific heat from 
direct scanning calorimetry is uncertain by 1 to 3%. Drop calorimetry measurements vary 
in accuracy, depending on the fitting procedure. Adiabatic and pulse-heating techniques 
are the most reliable: consistency in c P data exists at cryogenic temperatures. At high T, 
various studies report ~1–2% accuracy, yet comparisons of data sets (e.g., [27–30]) show a 
wider spread of 5%. 

Fits rather than the actual c P(T) data are commonly reported. Either a Debye model 
or one of various multiple term expressions is used. Many studies fit thermal expansivity 
to  a  formulation  after  Grüneisen,  which  also  uses  the  Debye  temperature.  We  sought 
studies with tabulated data. 

Similar behavior for α and cP with T is clear from Figure A1: both equal 0 in the limit 
of 0 K, thereafter increasing as ~T 3, the increase of which then weakens with T, resulting 
in  a  “knee” at  modest  temperature  and  a ~linear increase  at  high T,  which  commonly 
steepens at very high T. Accuracy is required to resolve the gradual change in slope at 
very high T. In many substances, a “sway” exists due to the steepening at high T. The 
“knee” is always prominent, but when many data sets are shown together, the sway can 
be obscured. Plots of α above 298 K for 17 different metals [94,95], which were considered 
Touloukian et al.’s. [37] and Gray’s [96] preferred values, show the sway, usually in both 
representations. Nb and Os do not show a sway, whereas for 7 additional metals, either 
the sway was obscured by a phase transition or temperatures accessed were too low for 
its detection. To fit α, Zhang et al. [95] used two Debye temperatures. The fits are rea-
sonable, but do not match both the knee and the sway. 

Regarding cP, much data are collected near ambient T, so the knee is 
well-established. Very high T data are less commonly explored. Yet, the sway is observed 
in many studies. 
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Figure A1. Comparison of properties describing the response of solids to heat additions. Left axis: 
black  curves  and  points  =  volumetric  thermal  expansivity.  Right  axis:  grey  curves  and  points  = 
specific heat. Scales were chosen to best match α and c P at cryogenic T. Properties are at ambient 
conditions,  taken  from  various  compilations.  (a)  Aluminum.  Squares  =  α  [97].  Diamonds  =  rec-
ommended α [37]. Grey solid curve = cP compiled and evaluated by Desai [98]. Dashed = laser-flash 
calorimetry  [99].  (b)  Iron.  Thick  vertical  bars  mark  structural  phase  transitions.  X  =  capacitance 
measurements  of  α  [100].  Squares  =  dilatometry  [101].  Diamonds  =  recommended  cP  [39].  Grey 
curve = cP compiled and evaluated by [102]. (c) Molybdenum. + = recommended fit to α [37]. Circles 
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= XRD results compiled and evaluated by Wang and Reeber [103]. Squares = transient interferom-
etry [104]. Diamond = dilatometry data [105]. Grey curve = c P compiled and evaluated [106]. (d) 
Tantalum. Diamonds = capacitance measurements of α [107]. + = fit to recommended values [37,96] 
by [94]. Squares = transient interferometry [108]. Light grey line = cryogenic calorimetry data [109]. 
Grey long dashes = laser flash calorimetry [110]. Grey short dashes = pulse calorimetry [111]. Dark 
grey line = pulse calorimetry [112]. (e) Gold. Black dots = tabulated α [113]. Triangles, α obtained by 
differentiating tabulated volumes of Pamato et al. [114]. Thin line = α from 2nd order polynomial fit 
to V [114]. Open diamonds = recommended fit to α [94]. Squares = dilatometry and XRD data from 
Suh et al. [105]. Thick grey line = raw cP data [115]. Dotted line = mid-range of adiabatic calorimetry 
data [116]. Grey squares = pulse calorimetry [117]. (f) Diamond. Black diamonds = α from Slack and 
Bartram [117], who combined 10 XRD studies of large natural crystals. Thin curve = recommended 
α [37]. Solid grey curve = cP [118]. X = DSC [119]. Dots = drop calorimetry of Victor [120], who stated 
air  leakage  occurred  for  the  highest  T  points.  Square  with  cross  =  Weber  [121],  who  heated  his 
samples in air. Dashed line = modulated DSC data [122], which are not absolute. (g) Si. Black curve 
= recommended α [123]. Squares = single-crystal α [124]. Grey curve = c P compiled and evaluated 
[102]. (h) Alkali halides. Solid lines = NaCl data: black = α [80]; grey = c P [81]. Dashed lines = com-
piled KCl data [54]. (i) MgO. Solid curve, α as tabulated in [125] which has an inflection point (ar-
row) at 1000K instead of a sway. The kink may be exaggerated, due to low and high T segments 
probing crystals and ceramics, respectively. Open squares = cryogenic data [126,127]. Short dashes 
= 2nd order polynomial fit to tabulated XRD data [93], acquired using an Ir wire heater. Grey dots = 
cP from [128]; triangles from [129], obtained by differentiating heat content; solid = Chase’s [130] 
review, where the high T trend is an extrapolation. (j) Al2O3. Circle = α from powder XRD compiled 
and evaluated [131]. + = α compiled and evaluated [132]. Thin line = linear description of high T 
powder XRD [93]. Squares = single-crystal interferometry and twin telemicroscope measurements 
[133]. Grey curve = cP compiled and evaluated by [134]. (k) Yttrium aluminum garnet. Diamonds = 
interferometry of a single-crystal [135]; squares = transparent polycrystal [136]. Black curve = from 
XRD [137]. Grey curves = DSC data: solid = [138]; dashed = [139]. 

References 
1. Nordstrom, D.K.; Munoz, J.L. Geochemical Thermodynamics; Blackwell Scientific: Palo Alto, CA, USA, 1986. 
2. Norton, J.D. The impossible process: Thermodynamic reversibility. Stud. Hist. Philos. Mod. Phys. 2016, 55, 43–61. 
3. Hofmeister,  A.M.  Measurements,  Mechanisms,  and  Models  of  Heat  Transport;  Elsevier:  Amsterdam,  The  Netherlands,  2019; 

Chapters 1 and 7. 
4. Purrington, R.D. Physics in the Nineteenth Century; Rutgers University Press: New Brunswick, NJ, USA, 1997. 
5. Truesdell, C. The Tragicomical History of Thermodynamics; Springer: New York, NY, USA, 1980. 
6. Pippard, A.B. The Elements of Classical Thermodynamics; Cambridge University Press: London, UK, 1974. 
7. Hofmeister,  A.M.  Dependence  of  Heat  Transport  in  Solids  on  Length-scale,  Pressure,  and  Temperature:  Implications  for 

Mechanisms and Thermodynamics. Materials 2021, 14, 449. 
8. Wallace, D.C. Thermodynamics of Crystals; John-Wiley and Sons Inc.: New York, NY, USA, 1972. 
9. Hofmeister, A.M.; Criss, E.M. How properties that distinguish solids from fluids and constraints of spherical geometry sup-

press lower mantle convection. J. Earth Sci. 2018, 29, 1–20. 
10. Zemansky, M.W.; Dittman, R.H. Heat and Thermodynamics, 6th ed.; McGraw-Hill: New York, NY, USA, 1981. 
11. Bates, J.B. Infrared emission spectroscopy. Fourier Transform IR Spect. 1978, 1, 99–142. 
12. Coblentz, W.W. Constants of spectral radiation of a uniformly heated enclosure or so-called blackbody. II. Bull. Bur. Stand. 

1916, 13, 459–477. 
13. Williams, B.W. A specific mathematical form for Wien’s displacement law as νmax/T = constant. J. Chem. Educ. 2014, 91, 623–623. 
14. Valluri, S.R.; Corless, R.M.; Jeffrey, D.J. Some applications of the Lambert W function to physics. Can. J. Phys. 2000, 78, 823–831. 
15. Henderson, J.B.; Giblin, F.; Blumm, J.; Hagemann, L. SRM 1460 series as a thermal diffusivity standard for laser flash instru-

ments. Int. J. Thermophys. 1998, 19, 1647–1656. 
16. Hearmon, R.F.S. The elastic constants of anisotropic materials. Revs. Modern Phys. 1946, 18, 409–440. 
17. Hofmeister, A.M.; Mao, H.K.    Redefinition of the mode Gruneisen parameter for polyatomic substances and thermodynamic 

implications. Proc. Natl. Acad. Sci. USA 2002, 99, 559–564. 
18. Meyers,  M.A.;  Chawla,  K.K.  Mechanical  Behavior  of  Materials,  2nd  ed.;  Cambridge  University  Press:  Cambridge,  UK,  2009; 

ISBN-13 978-0-521-86675-0. 
19. Zener, C. Internal friction in solids II. General theory of thermoelastic internal friction. Phys. Rev. 1938, 53, 90–99. 
20. Wooten, F. Optical Properties of Solids; Academic Press, Inc.: San Diego, CA, USA, 1972. 
21. Criss, E.M.; Hofmeister, A.M. Isolating lattice from electronic contributions in thermal transport measurements of metals and 

alloys and a new model. Int. J. Mod. Phys. B 2017, 31, 1750205. 



Materials 2022, 15, 2638 37 of 40 
 

 

22. Mitra, S.S. Infrared and Raman Spectra due to lattice vibrations. In Optical Properties of Solids; Nudelman, S., Mitra, S.S., Eds; 
Plenum Press: New York, NY, USA, 1969; pp. 333–451. 

23. Harris, D.C.; Bertolucci, M.D. Symmetry and Spectroscopy; Oxford University Press: New York, NY, USA, 1978. 
24. Burns, G. Solid State Physics; Academic Press: San Diego, CA, USA, 1990. 
25. Hofmeister,  A.M.;  Dong,  J.J.;  Branlund,  J.M.  Thermal  diffusivity  of  electrical  insulators  at  high  temperatures:  Evidence  for 

diffusion of phonon-polaritons at infrared frequencies augmenting phonon heat conduction. J. Appl. Phys. 2014, 115, 163517. 
26. Marr, J.M.; Wilkin, F.P. A better presentation of Planck’s radiation law. Am. J. Phys. 2012, 80, 339–405. 
27. Bodryakov, V.Y. Correlation of Temperature Dependences of Thermal Expansion and Heat Capacity of Refractory Metal up to 

the Melting Point: Tungsten. High Temp. 2015, 53, 643–648. 
28. Bodryakov, V.Y.; Bykov, A.A. Correlation characteristics of the volumetric thermal expansion coefficient and specific heat of 

corundum. Glass Ceram. 2015, 72, 67–70. 
29. Bodryakov, V.Y. Correlation of temperature dependencies of thermal expansion and heat capacity of refractory metal up to the 

melting point: Molybdenum. High Temp. 2014, 52, 840–845. 
30. Bodryakov, V.Y. Correlation between temperature dependences of thermal expansivity and heat capacity up to the melting 

point of tantalum. High Temp. 2016, 54, 316–321. 
31. Vaidya, S.N.; Kennedy, G.C. Compressibility of 18 metals to 45 kbar. J. Phys. Chem. Solids 1970, 31, 2329–2345. 
32. Knittle, E. Static compression measurements of equations of state. In Mineral Physics and Crystallography. A Handbook of Physical 

Constants; Ahrens, T.J., Ed.; American Geophysical Union: Washington, DC, USA, 1995; Volume 2, pp. 98–142. 
33. Beyer, R.T.; Letcher, S.V. Physical Ultrasonics; Academic Press: London, UK, 1969; Chapter 8. 
34. Vacher, R.; Boyer, L. Brillouin scattering: A tool for the measurement of elastic and photoelastic constants. Phys. Rev. B 1972, 6, 

639–673. 
35. Ledbetter, H.M. Elastic properties of zinc: A compilation and a review. J. Phys. Chem. Ref. Data 1997, 6, 1181–1203. 
36. Guinan, M.W.; Steinberg, D.J. Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 ele-

ments. J. Phys. Chem. Solids 1974, 35, 1501–1512. 
37. Touloukian, Y.S.; Kirby, R.K.; Taylor, R.E.; Desai, P.D. Thermal Expansion: Metallic Elements and Alloys; IFI/Plenum: New York, 

NY, USA, 1975. 
38. Vold, C.L.; Glicksman, M.E.; Kammer, E.W.; Cardinal, L.C. The elastic constants for single-crystal lead and indium from room 

temperature to the melting point. Phys. Chem. Solids 1977, 38, 157–170. 
39. Touloukian, Y.S.; Buyco, E.H. Specific Heat: Metallic Elements and Alloys; IFI/Plenum: New York, NY, USA, 1970. 
40. McSkimin, H.J. Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and ger-

manium single crystals, and for fused silica. J. Appl. Phys. 1953, 24, 988–997. 
41. Bass,  J.D.  Elasticity  of  minerals,  glasses,  and  melts.  In  Mineral Physics and Crystallography. A Handbook of Physical Constants; 

Ahrens, T.J., Ed.; American Geophysical Union: Washington, DC, USA, 1995; Volume 2, pp. 29–44. 
42. Leger, J.M.; Haines, J.; Atouf, A.; Schulte, O. High-pressure x-ray- and neutron-diffraction studies of BaF2: An example of a 

coordination number of 11 in AX2 compounds. Phys. Rev. B 1995, 52, 13247–13256. 
43. Fiquet,  G.;  Guyot,  F.; Itie,  J.-P. High-pressure  X-ray  diffraction study  of carbonates:  MgCO3,  CaMg(CO3)2,  and  CaCO3.  Am. 

Mineral. 1994, 79, 15–23. 
44. Zhang, L. Single crystal hydrostatic compression of (Mg,Mn,Fe,Co)2SiO4 olivines. Phys Chem. Miner. 1998, 25, 308–312. 
45. Sumino, Y.; Anderson, O.L. Elastic constants of minerals. In CRC Handbook of Physical Properties of Rocks; Carmichael, R.S., Ed.; 

CRC Press, Inc.: Boca Raton, FL, USA, 1984; Volume 3, pp. 39–139. 
46. Vaidya, S.N.; Getting, I.C.; Kennedy, G.C. The compression of the alkali metals to 45 kbar. J. Phys. Chem. Solids 1971, 32, 2545–2556. 
47. Vaidya, S.N.; Kennedy, G.C. Compressibility of 22 elemental solids to 45 kbar. J. Phys. Chem. Solids 1972, 33, 1377–1389. 
48. Schulte, O.; Holzapfel, W. Equation-of-state behavior for different phases of lead under strong compression. Phys. Rev. B 1995, 

53, 12636–12639. 
49. Mao, H.K.; Bell, P.M. Study of lead at high pressure: Compressibility and fixed-point transition between the FCC and HCP 

po1ymorphs under various degrees of non-hydrostatic stress. Year Book 1978, 77, 842–848. 
50. Vohra, Y.K.; Ruoff, A.L. Static compression of metals Mo, Pb, and Pt to 272 GPa: Comparison with shock data. Phys. Rev. B 

1990, 42, 8651–8654. 
51. Strässle, T.; Klotz, S.; Kunc, K.; Pomjakushin, V.; White, J.S. Equation of state of lead from high-pressure neutron diffraction up 

to 8.9 GPa and its implication for the NaCl pressure scale. Phys. Rev. B 2014, 90, 014101. 
https://doi.org/10.1103/PhysRevB.90.014101. 

52. Waldorf, D.L.; Alers, G.A. Low-Temperature Elastic Moduli of Lead. J. Appl. Phys. 1962, 33, 3266–3269. 
53. Muller, R.A.; Schuele, D.E. The pressure derivatives of the elastic constants of lead. J. Phys. Chem. Solids 1969, 30, 589–600. 
54. Anderson, O.L.; Isaak, D. Elastic constants of mantle minerals at high temperatures. In Mineral Physics and Crystallography. A Handbook 

of Physical Constants; Ahrens, T.J., Ed.; American Geophysical Union; Washington, DC, USA, 1995; Volume 2, pp. 64–97. 
55. Yagi, T. Experimental determination of thermal expansivity of several alkali halides at high pressures. J. Phys. Chem. Solids 

1978, 39, 563–571. 
56. Decker, D.L. High pressure equation of state for NaCl, KCl, and CsCl. J. Appl. Phys. 1971, 42, 3239–3234. 
57. Vaidya, S.N.; Kennedy, G.C. Compressibility of 27 halides to 45 kbar. J. Phys. Chem. Solids 1971, 32, 951–964. 
58. Hart, S. The high-temperature elastic moduli of alkali halides. J. Phys. D Appl. Phys. 1977, 10, L261–L263. 



Materials 2022, 15, 2638 38 of 40 
 

 

59. Jones, L.E. A High-temperature behaviour of the elastic moduli of LiF and NaF: Comparison with MgO and CaO. Phys. Earth 
Planet. Int. 1976, 13, 105–118. 

60. Skelton, E.F.; Webb, A.W.; Qadri, S.B.; Wolf, S.A.; Lacoe, R.C.; Feldman, J.L.; Elam, W.T.; Elam, E.R.; Carpenter, E.R., Jr.; Huang, C.Y. 
Energy-dispersive x-ray diffraction with synchrotron radiation at cryogenic temperatures. Rev. Sci. Instrum. 1984, 55, 849–855. 

61. Martinson, R.H. Variation of the elastic constants of sodium with temperature and pressure. Phys. Rev. 1969, 178, 902–913. 
62. Marquardt, H.K.; Trivisonno, J. Low temperature elastic constants of potassium. J. Phys. Chem. Solids 1965, 26, 273–278. 
63. Gutman, E.J.; Trivisonno, J. Temperature dependence of the elastic constants of rubidium. J. Phys. Chem. Solids 1967, 28, 805–809. 
64. Anderson, M.S.; Swenson, C.A. Experimental compressions for sodium, potassium, and rubidium metals to 20 kbar from 4.2 to 

300 K. Phys. Rev. B 1983, 28, 5395–5418. 
65. Loriers-Suisse, C.; Bastide, J.-P.; Bäckström, G. Specific heat measured at high pressures by a pulse method. Rev. Sci. Instrum. 

1973, 44, 1344–1349. 
66. Bastide, J.-P.; Loriers-Suisse, C. Specific heats of copper, nickel and aluminum to 100 Kbar at 293 K. High Temp.-High Temp. 

1975, 7, 153–163. 
67. Bridgmann, P.W. The effect of pressure on the thermal conductivity of metals. Proc. Am. Acad. Art. Sci. 1922, 57, 77–127. 
68. Andersson, P. Thermal conductivity under pressure and through phase transitions in solid alkali halides. I. Experimental re-

sults for KCl, KBr, KI, RbCl, RbBr and RbI. J. Phys. C Solid State Phys. 1985, 18, 3943–3955. 
69. Andersson, S.; Bäckström, G. Techniques for determining thermal conductivity and heat capacity under hydrostatic pressure. 

Rev. Sci. Instrum. 1986, 57, 1633–1639. 
70. Gerlich, D.; Andersson, P. Temperature and pressure effects on the thermal conductivity and heat capacity of CsCl, CsBr and 

CsI. J. Phys. C Solid State Phys. 1982, 15, 5211–5222. 
71. Andersson, S.; Bäckström, G. Thermal conductivity and heat capacity of single-crystal LiF and CaF 2 under hydrostatic pres-

sure. J. Phys. C Solid State Phys. 1987, 20, 5951–5962. 
72. Håkansson, B.; Andersson, P. Thermal conductivity and heat capacity of solid NaCl and NaI under pressure. J. Phys. Chem. 

Solids 1986, 47, 355–362. 
73. Håkansson,  B.;  Ross,  R.G.  Thermal  conductivity  and  heat  capacity  of  solid  LiBr  and  RbF  under  pressure.  J. Phys. Condens. 

Matter 1989, 1, 3977–3985. 
74. Osako,  M.;  Ito,  E.;  Yoneda, A.  Simultaneous  measurements  of thermal  conductivity  and  thermal  diffusivity  for  garnet  and 

olivine under high pressure. Phys. Earth Planet. Inter. 2004, 143–144, 311–320. 
75. Katsura, T. Thermal diffusivity of periclase at high temperatures and pressures. Phys. Earth Planet. Inter. 1997, 101, 73–77. 
76. Starr, C. The pressure coefficient of thermal conductivity of metals. Phys. Rev. 1938, 54, 210–216. 
77. Sundqvist, B.; Bäckström, G. Pressure dependence of the thermal conductivity of aluminum. Solid State Commun. 1977, 23, 773–775. 
78. Sundqvist, B.; Bäckström, G. Thermal conductivity of gold and silver at high pressures. J. Phys. Chem. Solids 1978, 39, 1133–1137. 
79. Rapp, J.E.; Merchant, H.D. Thermal expansion of alkali halides from 70 to 570 K. J. Appl. Phys. 1956, 44, 3919–3923. 
80. Touloukian, Y.S.; Kirky, R.K.; Taylor, R.E.; Lee, T.Y.R. Thermal Expansion of Non-Metallic Solids; Plenum Press: New York, NY, 

USA, 1977. 
81. Touloukian, Y.S.; Buyco, E.H. Specific Heat of Non-Metallic Solids; Plenum Press: New York, NY, USA, 1970. 
82. Elastic Properties of the Elements (Data Page). Available online: 

https://en.wikipedia.org/wiki/Elastic_properties_of_the_elements_(data_page) (accessed on 26 December 2021). 
83. De Jong, M.; Chen, W.; Angsten, T.; Jain, A.; Notestine, R.; Gamst, A.; Sluiter, M.; Ande, C.K.; van der Zwaag, S.; Plata, J.J.; et al. 

Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2015, 2, 150009. 
https://doi.org/10.1038/sdata.2015.9. 

84. Kieffer, S.W. Thermodynamics and lattice vibrations of minerals: 3. Lattice dynamics and an approximation for minerals with 
application to simple substances and framework silicates. Rev. Geophys. Space Phys. 1979, 17, 20–34. 

85. Ferrarro, R.J.; McLellan, R.B. High temperature elastic properties of polycrystalline niobium, tantalum, and vanadium. Metal. 
Trans. A 1979, 10A, 1699–1702. 

86. McLellan, R.B.; Ishikawa, T. The elastic properties of aluminum at high temperatures. J. Phys. Chem. Solids 1987, 48, 603–606. 
87. Ferrarro, R.J.; McLellan, R.B. Temperature dependence of the Young’s modulus and shear modulus of pure nickel, platinum, 

and molybdenum. Metal. Trans. A 1977, 10A, 1563–1565. 
88. Ono, N.; Kitamura, K.; Nakajima, K.; Shimanuki, Y. Measurement of Young’s modulus of silicon single crystal at high tem-

perature and its dependency on boron concentration using the flexural vibration method. Jpn. J. Appl. Phys. 2000, 39, 368–371. 
89. Yagi, H.;  Yanagitani,  T.;  Numazawa,  T.;  Ueda,  K.  The  physical  properties  of  transparent  Y3Al5O12:  Elastic  modulus at  high 

temperature and thermal conductivity at low temperature. Ceram. Intl. 2007, 33, 711–714. 
90. Wachtman, J.B., Jr.; Tempt, W.E.; Lam, D.G., Jr.; Apstkin, C.S. Exponential temperature dependence of Young’s modulus for 

several oxides. Phys. Rev. B 1961, 122, 1754–1759. 
91. Shen, X.; Wu, K.; Sun, H.; Sang, L.; Huang, Z.; Imura, M.; Koide, Y.; Koizumi, S.; Liao, M. Temperature dependence of Young’s 

modulus of single-crystal diamond determined by dynamic resonance. Diam. Relat. Mater. 2021, 116, S108403. 
92. Hofmeister, A.M.; Criss, R.E. Spatial and symmetry constraints as the basis of the virial theorem and astrophysical implica-

tions. Can. J. Phys. 2016, 94, 380–388. 
93. Fiquet, G.; Richet, P.; Montagnac, G. High-temperature thermal expansion of lime, periclase, corundum and spinel. Phys. Chem. 

Miner. 1999, 27, 103–111. 



Materials 2022, 15, 2638 39 of 40 
 

 

94. Lu, X.-G.; Selleby, M.; Sundman, B. Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic 
elements. Comp. Coupling Phase Diag. Thermochem. 2005, 29, 68–89. 

95. Zhang, B.; Li, X.; Li, D. Assessment of thermal expansion coefficient for pure metals. Calphad 2013, 43, 7–17. 
96. Gray, D.E. American Institute of Physics Handbook, 3rd ed.; McGraw-Hill: New York, NY, USA, 1972. 
97. Kroeger, F.R.; Swenson, C.A. Absolute linear thermal-expansion measurements on copper and aluminum from 5 to 320 K. J. 

Appl. Phys. 1977, 48, 853–864. 
98. Desai, P.D. Thermodynamic properties of aluminum. Int. J. Thermophys. 1987, 8, 621–638. 
99. Takahashi, Y.; Azumi, T.; Sekine, Y. Heat capacity of aluminum from 80 to 880 K. Thermochim. Acta 1989, 139, 133–137. 
100. White, G.K. Thermal expansion of magnetic metals at low temperatures. Proc. Phys. Soc. 1965, 86, 159–169. 
101. Kozlovskii Yu. M.; Stankus, S.V. The linear thermal expansion coefficient of iron in the temperature range of 130–1180 K. J. 

Phys. Conf. Ser. 2019, 1382, S012181. 
102. Desai, P.D. Thermodynamic properties of iron and silicon. J. Phys. Chem. Ref. Data 1986, 15, 967–983. 
103. Wang, K.; Reeber, R.R. The role of defects on thermophysical properties: Thermal expansion of V, Nb, Ta, Mo and W. Mater. 

Sci. Eng. 1998, R23, 101–137. 
104. Miiller, A.P.; Cezairliyan, A. Thermal expansion of molybdenum in the range 1500–2800 K by a transient interferometric tech-

nique. Inter. J. Thermophys. 1985, 6, 695–704. 
105. Suh, I.-K.; Ohta, H.; Waseda, Y. High-temperature thermal expansion of six metallic elements measured by dilatation method 

and X-ray diffraction. J. Mater. Sci. 1988, 23, 757–760. 
106. Desai, P.D. Thermodynamic properties of manganese and molybdenum. J. Phys. Chem. Ref. Data 1987, 16, 91–108. 
107. White, G.K. Thermal expansion at low temperatures—V. Dilute alloys of manganese in copper. J. Phys. Chem. Solids 1962, 23, 

169–171. 
108. Miiller,  A.P.;  Cezairliyan,  A.  Transient  interferometric  technique  for  measuring  thermal  expansion  at  high  temperatures: 

Thermal expansion of tantalum in the range 1500–3200 K. Inter. J. Thermophys. 1982, 3, 259–288. 
109. Sterrett, K.F.; Wallace, W.E. Heat capacities, entropies and enthalpies of tantalum between 12 and 550 °K. J. Amer. Chem. Soc. 

1958, 80, 3176–3177. 
110. Takahashi, Y.; Nakamura, J. The heat capacity of tantalum from 80 to 1000 K. Thermochim. Acta 1996, 282–283, 317–322. 
111. Milosevic, N.D.; Vukovic, G.S.; Pavicic, D.Z.; Maglic, K.D. Thermal properties of tantalum between 300 and 2300 K. Inter. J. 

Thermophys. 1999, 20, 1129–1136. 
112. Cezairliyan, A.; McClure, J.L.; Beckett, C.W. Beckett, 1971 High-speed (subsecond) measurement of heat capacity, electrical 

resistivity, and thermal radiation properties of tantalum in the range 1900 to 3200 K. J. Res. Natl. Bur. Stand. 1971, 75A, 41–54. 
113. White, G.K.; Collins, J.G. Thermal expansion of copper, silver, and gold at low temperatures. J. Low Temp. Phys. 1972, 7, 43–75. 
114. Pamato, M.G.; Wood, I.G.; Dobson, D.P.; Hunt, S.A.; Vočadlo, L. The thermal expansion of gold: Point defect concentrations 

and pre-melting in an fcc metal. J. Appl. Cryst. 2018, 51, 470–480. 
115. Geballe, T.H.; Giauque, W.F. The heat capacity and entropy of gold from 15 to 300 °K. J. Amer. Chem. Soc. 1952, 74, 2368–2369. 
116. Cordoba, G.; Brooks, C.R. Heat capacity of gold from 300 to 1000 °K: Experimental data and analysis of contributions. Phys. 

Stat. Solid. A 1972, 6, 581–595. 
117. Slack, G.A.; Bartram, S.F. Thermal expansion of some diamond like crystals. J. Appl. Phys. 1975, 46, 89–98. 
118. Desnoyehs, J.E.; Morrison, J.A. The heat capacity of diamond between 12 and 277 °K. Phil. Mag. 1958, 3, 43–48. 
119. O’Neill, M.J. Measurement of specific heat functions by differential scanning calorimetry. Anal. Chem. 1966, 38, 1331–1336. 
120. Victor, A.C. Heat capacity of diamond at high temperatures J. Chem. Phys. 1962, 36, 1903–1911. 
121. Weber, H.F. XXI. The specific heat of the elements carbon, boron, and silicon.—Part I. The relation between the specific heat of 

these elements in the free state and the temperature. Phil. Mag. 1875, 49, 161–183. 
122. Manikandan, G.; Murugan, G.; Raghukanda, K. Effect of grain size upon the thermal behavior of copper and diamond pow-

ders using differential scanning calorimetry (DSC). Indian J. Sci. Tech. 2016, 9. paper 48. 
123. Swenson, C.A. Recommended values for the thermal expansivity of silicon from 0 to 1000 K J. Phys. Chem. Ref. Data 1983, 12, 

179–182. 
124. Okada, Y.; Tokumura, Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 

and 1500 K. J. Appl. Phys. 1984, 56, 314–320. 
125. Reeber, R.R.; Goessel, K.; Wang, K. Thermal expansion and molar volume of MgO, periclase, from 5 to 2900 K. Eur. J. Mineral. 

1995, 7, 1039–1047. 
126. White, G.K.; Anderson, O.L. Gruneisen parameter of magnesium oxide. J. Appl. Phys. 1991, 37, 430–432. 
127. Ganesan, S. Temperature variation of the Grüneisen parameter in magnesium oxide. Phil. Mag. 1962, 7, 197–205. 
128. Barron, T.H.K.; Berg, W.T.; Morrison, J.A. On the heat capacity of crystalline magnesium oxide. Proc. Roy. Soc. A 1959, 250, 70–83. 
129. Richet, P.; Fiquet, G. High temperature heat capacity and premelting of minerals in the system MgO-CaO-Al 2O3-SiO2. J. Ge-

ophys. Res. 1991, 96, 445–456. 
130. Chase, M.W., Jr. NIST-JANAF Thermochemical Tables, Fourth Edition. J. Phys. Chem. Ref. Data 1998, 25, 551–603. 
131. Reeber, R.R.; Wang, K. Lattice parameters and thermal expansion of important semiconductors and their substrates. MRS Proc. 

2000, 622, 1–6. 
132. White, G.K.; Roberts, R.B. Thermal expansion of reference materials: Tungsten and α-Al 2O3. High Temp.-High Press. 1983, 15, 

321–328. 



Materials 2022, 15, 2638 40 of 40 
 

 

133. Hahn, T.A. Thermal expansion of single crystal sapphire from 293 to 2000 K Standard reference material 732. In Thermal Ex-
pansion 6; Springer: Boston, MA, USA, 1978; p. 191. 

134. Ditmars,  D.A.;  Ishihara,  S.;  Chang,  S.S.;  Bernstein,  G.;  West,  E.D.  Enthalpy  and  heat  capacity  standard  reference  material: 
Synthetic sapphire (α-Al2O3) from 10 to 2250 K. J. Res. Natl. Bur. Stand. 1982, 87, 159–163. 

135. Aggarwal, R.L.; Ripin, D.J.; Ochoa, J.R.; Fan, T.Y. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, 
LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range. J. Appl. Phys. 2005, 98, 103514. 

136. Furuse, H.; Yasuhara, R.; Hiraga, K. Thermo-optic properties of ceramic YAG at high temperatures. Opt. Mater. Express 2014, 4, 
1794–1799. 

137. Geller, S.; Espinosa, G.P.; Crandall, P.B. Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets. J. 
Appl. Cryst. 1969, 2, 86–88. 

138. Sato, Y.; Taira, T. Study on the specific heat of Y3Al5O12 between 129 K and 573 K. Optical Mater. 2021, 11, 551–558. 
139. Sagi, S.; Hayun, S. High-temperature heat capacity of SPS-processed Y3Al5O12 (YAG) and Nd:YAG. J. Chem. Thermodyn. 2016, 

93, 123–126. 
 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40

