Small, but powerful and attractive: ¹⁹F in biomolecular NMR Angela M. Gronenborn Department of Structural Biology, School of Medicine, and Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15260

Running title: The power of Fluorine NMR

*To whom correspondence should be addressed: Angela M. Gronenborn, Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 1051, 3501 Fifth Avenue, Pittsburgh, PA 15260; E-mail: amg100@pitt.edu Telephone: (412) 648-9959; FAX: (412) 648-9008

Keywords: fluorine, NMR, drug discovery,

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for probing structure, dynamics, folding and interactions at atomic resolution. While naturally occurring magnetically active isotopes, such as ¹H, ¹³C, ¹⁵N, are most commonly used in biomolecular NMR, with ¹⁵N and ¹³C isotopic labeling routinely employed at the present time, ¹⁹F is a very attractive and sensitive alternative nucleus, which offers rich information on biomolecules in solution and in the solid state. This Persective summarizes the unique benefits of solution and solid state ¹⁹F NMR spectroscopy for the study of biological systems. Particular focus is on the most recent studies and on future unique and important potential applications of fluorine NMR methodology.

Introduction

Understanding living systems builds on the enumeration of molecular structures and characterization of their dynamic interplay, as well as the inherent overall architecture and temporal rearrangements within the object under investigation. The complexity of biology poses particular challenges for methods designed to interrogate such systems, particularly with respect to sensitivity, specificity, information content, as well as spatial and time resolution. A given methodological tool may be suitable to investigate some entities and answer a particular question but may not be useful for others. Highly sensitive methods, such as single-molecule fluorescence spectroscopy (Moerner and Fromm, 2003), permit the investigation of very small amounts or low concentration samples but provide only a single observable for the entire object that may contain thousands of atoms.

Atomic-detail structures of biological macromolecules are most commonly determined *in vitro* by employing a divide-and-conquer strategy. This approach has been highly successful over the last 50+ years, with X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo electron microscopy (cryoEM) having resulted in ~159,503 ~13,466 and ~8,510 structures, respectively, available from the PDB as of Sept. 5, 2021 (rcsb.org (Berman et al., 2000)). Each of these methods targets distinct properties of the molecules: electrons diffract X-rays, and the diffraction patterns can be transformed into atomic positions; nuclear spins give rise to the resonance frequencies in NMR, and magnetization transfers between spins can be converted into interatomic distances and angles; and, in cryoEM, elastically scattered electrons allow reconstruction of the object/molecular entity that is under investigation. As such, these complementary techniques have found their unique spaces in which they can provide indispensable information for guiding drug design, evaluating evolutionary relationships, inferring functional properties or guiding synthetic biology approaches. Indeed, integrated

structural biology has been embraced by most practitioners as the optimal way to go forward(Gronenborn, 2019; van den Bedem and Fraser, 2015; Ward et al., 2013).

Commonly used isotopes in NMR

For biomolecular NMR applications, a prerequisite for any study is that the molecule, such as a protein, nucleic acid, lipid, carbohydrate, or complexes thereof, contains suitable 'NMR active' isotopes. At present, the most common and relevant isotopes are ¹H, ¹³C, ¹⁵N and ³¹P, and uniform or site-specific labelling with ¹³C and ¹⁵N is generally carried out. Unlike these isotopes, which are exploited in all modern 3- and 4-D heteronuclear NMR techniques, fluorine or, specifically, the 100%-abundant magnetically active ¹⁹F isotope, has been less common as an NMR probe, despite its unique attractiveness and early recognition of its potential (Gerig, 1994; Luck and Falke, 1991; Sykes and Hull, 1978). The high gyromagnetic ratio endows ¹⁹F with excellent sensitivity (83% of ¹H, Table 1) and because the shielding of the ¹⁹F nucleus is dominated by a large paramagnetic term, ¹⁹F NMR parameters, such as chemical shifts and scalar coupling constants, are exquisitely responsive to local conformational and electronic environments. This is vividly obvious by simply inspecting the ¹⁹F spectra of fluorinated Trp, either for the isolated amino acid or when incorporated into a protein (Figure 1). Unfortunately, there is still no general theoretical basis for predicting fluorine chemical shifts in proteins, as well as the effects of fluorination on protein structure. Fluorine exerts complex electronic effects, such as hyperconjugation, however to what extent this is influenced by the local environments and vice-versa is unclear. In order to make progress towards a more thorough understanding, we need to populate a database of fluorinated protein structures alongside the experimentally measured ¹⁹F chemical shifts, interfaced with theory-based computational efforts.

Properties of Fluorine

Fluorine is a very small atom, the lightest member of the halogens, and the most reactive chemical element because of its extreme ability to attract electrons. Its toxic properties and difficulty in handling contributed to the slow progress in fluorine chemistry up to the 1920s. At the present time, fluorine incorporation into chemical moieties has been widely applied, and specific uses of fluorinated molecules have been discussed by many research groups in the last 20 years (Bégué and Bonnet-Delpon, 2007; Bohm et al., 2004; Gillis et al., 2015; Hagmann, 2008; Meanwell et al., 2014; Muller et al., 2007; Purser et al., 2008; Shah and Westwell, 2007; Wang et al., 2014; Yamazaki et al., 2009). Fluorine chemistry has gained a particularly large

footprint in medicinal chemistry and drug discovery (Clayden, 2019; Richardson, 2016). Fluorine is frequently substituted for hydrogen or oxygen atoms since the van der Waals radius of the ¹⁹F atom (1.47 Å) lies between that of a hydrogen (1.2 Å) and oxygen (1.52 Å) Table 1, and the bond length of C–F (1.41 Å) is similar to C–O (1.43 Å) and somewhat larger than to C–H (1.09 Å). Generally, C–F, C–OH and C–OMe are considered bioisosteric, and strategic substitution of F atoms for hydrogens, hydroxyl groups, or carbonyl oxygens is generally considered weakly perturbing, albeit this needs careful assessment for each individual substitution. For proteins, a recent report describes a careful evaluation of the effects of different levels and types of fluorination in the *Bacillus subtilis* cold shock protein (*Bs*CspB) (Welte et al., 2020).

Another unique and important consideration for biological applications is the essentially complete absence of fluorine in biology. Yet, because it can be incorporated synthetically or biosynthetically into most classes of biologically important molecules, such as lipids (Gagnon et al., 2018), carbohydrates (Linclau et al., 2020; Matei et al., 2013; Tsuchiya, 1990), proteins (Sharaf and Gronenborn, 2015) and nucleic acids (Chu and Horowitz, 1989; Morihiro et al., 2017), fluorine atoms can function as unique and easily identifiable NMR beacons in large and complex biological systems. In addition, fluorinated molecules can be investigated in any routinely used buffer system or environment without suffering from interference by background signals from natural abundance molecules.

¹⁹F-modified proteins

Methods to prepare ¹⁹F-modified proteins fall into three main categories: (i) post-translational covalent attachment of ¹⁹F-containing moieties to the protein (Klein-Seetharaman et al., 1999), (ii) biosynthetic amino acid type-specific incorporation of ¹⁹F-containing amino acids (Campos-Olivas et al., 2002; Crowley et al., 2012; Frieden et al., 2004; Sykes and Hull, 1978) and (iii) site-specific incorporation of ¹⁹F-modified amino acids using recombinantly expressed orthogonal amber tRNA/tRNA synthetase pairs (Cellitti et al., 2008; Noren et al., 1989; Peeler and Mehl, 2012; Sharaf et al., 2016) (Figure 2).

Most covalent modifications introduce ¹⁹F atoms into a protein of interest by conjugating a ¹⁹F-containing moiety to a reactive side chain such as cysteine or lysine. The -SH groups on solvent accessible cysteines have been used predominately, and most often 3-bromo-1,1,1-trifluoroacetone (BTFA) or fluorinated phenylacetamide such as 2-bromo-N-(4-(trifluoromethyl) phenyl)acetamide (BTFMA) or N-(4-bromo-3-(trifluoromethyl) phenyl)acetamide (3-BTFMA) are

employed in proteins in which any other endogenous cysteines have been replaced by alanines (Edwards et al., 2018; Luchette et al., 2002; Manglik et al., 2015). Lysine side chains can be labeled with n-trifluoroacetylcaproxyloxy succinimide ester (TFCS), a common crosslinker, provided the reaction is carried out below pH 7.5 (Edwards et al., 2018) or may be conjugated to fluorinated indoles and indole-derivatives under mild, nondenaturing reaction conditions (Larda et al., 2015). In addition, enzymatic labeling of the glutamine γ-carboxamide with ¹⁹F-2.2.2-trifluoroethylamine hydrochloride (TFEA-HCI) transglutaminases is possible, although, so far, this methodology has only been applied to a few systems (Gimenez et al., 2017; Hattori et al., 2017). Residue-specific ¹⁹F labeling is achieved by expression of the protein in defined growth media, supplemented with the ¹⁹F-modified amino acid or a suitable precursor, relying on the endogenous aminoacyl-tRNA synthetases to charge their cognate tRNAs with ¹⁹F-modified amino acids. In this approach, all residues of that type will be substituted by the ¹⁹F-modified amino acid. Unfortunately, this approach does not work for all types of fluorinated amino acids. The efficiency of amino acid-type ¹⁹F labeling sometimes can be enhanced using tailored auxotrophic strains. If, however, the fluorinated amino acid is toxic to the cell, specifically evolved orthogonal amber tRNA/tRNA synthetase pairs are needed for labeling. In general, each protein and each substitution with a particular fluorinated amino acid requires careful and systematic testing, and the degree of labeling has to be quantitatively assessed by mass spectrometry: in essence every protein and every type of labeling requires extensive optimization to yield >90% fluorine labeling (Robertson et al., 2020).

At present, there exists a substantial body of literature, documenting the use and power of ¹⁹F NMR to gain insight into protein and peptide structure, protein-ligand interactions, protein unfolding, protein aggregation, and protein dynamics. Several reviews have covered the field over the last decades (Danielson and Falke, 1996; Gerig, 1994; Kitevski-LeBlanc and Prosser, 2012; Marsh and Suzuki, 2014). Therefore, here I will focus on the most recent studies and provide an outlook of where I believe fluorine NMR methodology can contribute in unique ways in the future.

Binding and Interactions

¹⁹F NMR has been used widely for ligand screening of protein target binding. In such studies, the fluorine tag can be placed on either of the two partners or both. Dalvit and Vulpetti have exploited ¹⁹F NMR for dynamic ligand-based and fragment-based screening in drug discovery as well as for functional assessment of enzymatic activities and have reviewed these

approaches in detail (Dalvit et al., 2020; Dalvit and Vulpetti, 2019). Such ligand screening approaches are expected to be adopted widely in the pharmaceutical industry and will permit fast and efficient analysis of potential drug candidates. Examples of this type are studies on non-nucleoside inhibitor binding to HIV-1 reverse transcriptase that revealed a highly plastic apo enzyme which rigidified upon inhibitor binding (Sharaf et al., 2016; Sharaf et al., 2017). In this context, ¹⁹F lineshape analysis in one-dimensional experiments permits simultaneous determination of thermodynamic equilibrium binding constants (K_d) as well as association (k_{on}) and dissociation (k_{off}) rates (Stadmiller et al., 2020).

NMR studies on membrane proteins, in particular GPCRs, have exploited ¹⁹F-labels to investigate conformational changes upon agonist/antagonist binding in this important class of receptors, with the goal to correlate specific receptor conformations to the pharmacological outcome of ligand binding. Indeed, studies of this kind possess an appealing potential for drug screening and drug discovery (see recent reviews by Wang and others (Picard and Prosser, 2021; Wang et al., 2021b)). In most cases, ¹⁹F labels are conjugated to naturally present cysteines near the cytoplastic face of the receptor (Frei et al., 2020) or on strategically introduced Cys residues at positions sensitive to signal transduction. Using ¹⁹F NMR, it has been possible to identify inactive intermediates and partial- or full-agonist-driven activated states for the adenosine A2A receptor (Huang et al., 2021; Wang et al., 2021a). Such studies inform about immensely important physiological processes, and, given that large numbers of drugs are being designed for pharmacological interventions in GPCR-mediated signaling, fluorine NMR in this context has enormous potential.

The observation of different functional states of biomacromolecules, as well their characterization, is possible by fluorine NMR. For example, transitions between a number of structured active states of the enzyme fluoroacetate dehalogenase throughout the catalytic cycle were carefully assessed by the Prosser group (Di Pietrantonio et al., 2019), a very active, creative and productive group contributing to the ¹⁹F NMR field.

As a tool for overall structural characterization of proteins or protein complexes, ¹⁹F NMR paramagnetic relaxation enhancement experiments (PREs) can be used to extract quantitative distance information for selectively ¹⁹F-labelled, paramagnetically tagged proteins. This was demonstrated as a proof-of-concept by my group (Matei and Gronenborn, 2016), and Konrat and co-workers used this methodology to follow the conformational transition of Myc from a

disordered state to the ordered Myc-Max heterodimer state (Somlyay et al., 2020). The Boudker group has also used ¹⁹F PREs to monitor domain movement in a glutamate transporter homolog (Huang et al., 2020).

In an interesting application, the ¹⁹F-¹³C TROSY effect for specifically labeled aromatic ring systems was exploited since considerable narrower resonances are observed for ¹³C nuclei bound to fluorine in comparison to those attached to ¹H. Remarkably sharp lines were obtained for a 3F-C₁₃ tyrosine-labeled single-ring of the 20S proteasome core particle, a 180-kDa large system, as well as 5-fluorouracil-substituted DNA (Boeszoermenyi et al., 2019). Unfortunately, a tool set of aromatic amino acids tailored to this application is not readily available, but hopefully the unique aspects of ¹⁹F-¹³C TROSY for studying proteins and nucleic acids in complex environments will inspire their further development.

Protein Folding

In the protein folding field, ^{19}F NMR has been relevant for 30 years (Bann et al., 2002; Ropson and Frieden, 1992). A recent study from the Frieden group investigated the conformational equilibrium in ligand-free thrombin, revealing a plastic protein ensemble with ligands binding to the dynamic open form of the enzyme by conformational selection (Ruben et al., 2020). Using real-time ^{19}F NMR on trifluoro-Met35 labeled $A\beta_{1-40}$, multiple oligomeric species were detected in the initial phase of fiber formation (Suzuki et al., 2013). Likewise, the multistep urea dissociation–unfolding–aggregation equilibrium of the amyloidogenic protein transthyretin has been followed by real-time ^{19}F -NMR. In this study, 6F-Trp-labeled transthyretin was shown to aggregate more rapidly than 5F-Trp- or non-labelled transthyretin, and 5F-Trp-labelled transthyretin was kinetically more stable than the 6F-Trp labelled protein (Sun et al., 2017).

With ever more studies targeting intrinsically disordered (ID) and low complexity regions in proteins, ^{19}F NMR is gaining increasing momentum for investigating such flexible and highly dynamic systems. Early on, the fibrillization of α -synuclein (Syn) was monitored by ^{19}F NMR (Li et al., 2009) as well as its disorder-order transition from aqueous solution to a partial helical conformation in membrane-like environments (Wang et al., 2010). More recently, using a S118C-BTFA fluorinated modified version of the structurally disordered transactivation domain of the estrogen receptor, a metastable long-range contact between residues 33 and 118 was observed in the disordered protein, providing an intriguing structural explanation for linking the oncogenic Ser118 phosphorylation to coactivator binding inhibition (Peng et al., 2019).

Dynamics Studies

In principle, quantitative estimates about molecular motions can be obtained from NMR relaxation parameters. While the interpretation of amide NH relaxation rates has been highly successful for characterizing protein motions (Ishima and Torchia, 2000; Kay, 1998; Mittermaier and Kay, 2006; Salmon and Blackledge, 2015), the use of ¹⁹F relaxation rates to assess protein dynamics is fraught with difficulties. As a result, only a handful of ¹⁹F-relaxation studies to probe dynamics in biomolecules in solution has been reported in the past 20 years (Hoang and Prosser, 2014; Luck et al., 1996; Peng, 2001; Shi et al., 2011). Recently, we investigated 4F-, 5F-, 6F-, 7F-L-Trp, both, as the free amino acids and when incorporated into the human cyclophilin A protein. Distinct longitudinal and transverse relaxation rates were observed for fluorine atoms at different positions in the indole ring. Comparing experimentally measured and calculated relaxation rates suggests that ¹⁹F relaxation for each position in Trp is mainly determined by the ¹⁹F CSA and ¹⁹F-¹H dipolar interactions within the indole ring and only moderately affected by protein motions (Lu et al., 2019a).

Solid State MAS NMR Studies

Exploiting the fluorine nucleus in solid-state NMR has a long history (Griffin et al., 1972). For large biomolecular systems, MAS NMR has distinct advantages over solution methods since it is not limited by the size of the object under study. Therefore, large and complex macromolecular assemblies can be successfully investigated. Furthermore, distance and orientation information can be extracted from dipolar couplings and CSA tensors. Early on, the interaction of fluorine labeled short peptides with membranes was studied, and this work took advantage of the ease with which fluorinated building blocks can be incorporated into chemically synthesized peptides using solid state automated syntheses (Ulrich, 2005). A recent review on this subject is available (Grage et al., 2020). MAS NMR protein studies that have taken advantage of the ¹⁹F nucleus include the elucidation of the cholesterol-binding site on the influenza M2 protein in phospholipid bilayers employing a fluorinated cholesterol molecule (Elkins et al., 2017) and inter-fluorine distance measurements in large tubular assemblies of the HIV-1 capsid protein (Wang et al., 2018). Importantly, MAS frequencies of 40-60 kHz were sufficient to obtain adequately narrow lines, obviating the need for decoupling. Furthermore, ¹⁹F DNP-enhanced MAS NMR spectroscopy holds very exciting potential for biomolecular applications: significant signal enhancements were observed in ¹⁹F DNP spectra at MAS frequencies of 20-25 kHz, and these allowed acquisition of ¹⁹F-based DNP HETCOR spectra, which are impossible under conventional experimental conditions (Lu et al., 2019b). I am,

therefore, confident that MAS fluorine bioNMR will have far-reaching applications for a wide range of large biological systems.

Novel applications

Reversible clustering

An interesting application of fluorine NMR concerns reversible cluster formation in concentrated mixtures of proteins or nucleic acids, such as that governing the mechanism of liquid–liquid phase separation (LLPS). Such systems can be investigated by dark-state exchange saturation transfer (DEST) experiments. ¹⁹F DEST was employed to quantify individual types of protein clusters in highly concentrated mixtures of two differently fluorinated antibodies and revealed that these monoclonal antibodies are involved in separate homogeneous self-associated clusters (Edwards et al., 2019). Although no current reports have emerged that employ ¹⁹F NMR to study LLPS of proteins and nucleic acids, it is clearly a very powerful methodology to interrogate this phenomenon. Proteins that can undergo LLPS often contain low-complexity disordered regions and remain dynamic in solution, thereby positioning NMR spectroscopy as a uniquely suited technique for characterization. Fluorine NMR is certainly anticipated to have a large role to play in this arena.

In cell NMR

Most NMR approaches for investigating structure, dynamics and interactions of biomolecules use a divide-and-conquer approach in which the influences of complex biological environments are ignored. This shortcoming spurred the development and rise of in-cell NMR spectroscopy (Freedberg and Selenko, 2014; Li et al., 2017; Luchinat and Banci, 2017; Siegal and Selenko, 2019) aimed at interrogating the behavior of biomolecules under physiological *in vivo* conditions. Using traditional bioNMR methods, in-cell experiments are challenging in multiple ways. A major difficulty arises from the large number of H, C, and N atoms found in cellular components, macromolecules and small metabolites alike. As a result, identifying signals from a molecule of choice among the vast number of background signals from the environment is very complex. Furthermore, the low natural abundance of ¹³C and ¹⁵N isotopes necessitates extensive isotopic labeling for in-depth characterization, and, for large systems or molecules that interact with sizable cellular partners, the short coherence lifetime makes scalar-based magnetization transfers that are exploited in multidimensional NMR spectra problematic or impossible. Therefore, ¹⁹F NMR seemed to be a logical choice for in-cell use. Initially used for the small protein GB1 and its variants in *E.coli* cells (Ye et al., 2013; Ye et al., 2019), it recently has been

used in *X. laevis* oocytes to evaluate the monomer-dimer equilibrium of the A34F GB1 dimer (Speer et al., 2021). The dynamics of post-translational modification, in particular phosphorylation and dephosphorylation of α -synuclein, was also studied in *X. laevis* oocytes (Selenko et al., 2008), as well as in neuronal SK-N-SH cells (Zheng et al., 2019). The authors showed that α -Syn is more stable in SK-N-SH cells than in oocytes and that S129 phosphorylation accelerates protein degradation. Using a particular variant, Y125E/Y133E α -synuclein, in which dephosphorylation is slowed down, dephosphorylation and degradation of asynuclein in real-time could be followed in living cells by fluorine NMR (Zheng et al., 2019). Likewise, real-time monitoring of endogenous thiols in mammalian HeLa cells has been possible, using a tailored fluorinated small molecule reagent, 2,3,5,6-tetrafluroro-4-(phenylsulfonyl)pyridine and derivatives thereof (Chai et al., 2020). For illustration purposes, spectra of 3-F-Tyr labeled α -synuclein in cell lysate and mammalian cells recorded in my laboratory are provided in Figure 3.

An ingenious method for site-specifically labeling endogenous proteins with fluorine, termed ligand-directed tosyl (LDT) chemistry, was developed by the Hamachi group. It entails high-affinity binding of a ligand to a target protein and driving the labeling reaction of a nearby amino acid with a reactive group through the proximity effect. The main advantage of this approach is that labeling can be accomplished near an active site of an enzyme without compromising protein function. They showed that it was possible to label carbonic anhydrase with a bis(trifluoromethyl)benzene derivative in red blood cells and that the fluorinated carbonic anhydrase in the cell can act as a biosensor for detecting ligand binding to carbonic anhydrase in cellulo, using the ¹⁹F NMR signal as a readout (Tsukiji et al., 2009). Interestingly, the exchange rate for the carbonic anhydrase inhibitor benzenesulfonamide in red blood cells was 1.6-fold faster than *in vitro*, suggesting that ligand release is enhanced in the cellular environment (Takaoka et al., 2013).

My own laboratory has recently used fluorine NMR in mammalian cells to provide proof of principle that ¹⁹F chemical shifts are sensitive to quinary interactions in the cell and that ¹⁹F-PREs can be measured and used to assess protein conformations in a native environment (data not shown).

At present, most in-cell fluorine NMR investigates the behavior of proteins and only very few studies are addressing nucleic acids. Only one group has reported ¹⁹F NMR studies on nucleic acids in a cellular environment. Specifically, using phosphoramidite chemistry, a 3,5-

bis(trifluoromethyl)benzene moiety was attached to the 5' terminus of an RNA oligonucleotide and ¹⁹F-labeled telomeric RNA G-quadruplexes were prepared using this RNA. Injecting these quadruplexes into *Xenopus laevis* oocytes permitted their investigation by ¹⁹F NMR. The authors provide compelling evidence that in oocytes, telomeric RNA G-quadruplexes preferentially adopt a stacked higher order structure composed of two G-quadruplex subunits, rather than a single-unit species (Bao et al., 2017). In contrast, in HeLa cells, hybrid-1, hybrid-2 and two-tetrad antiparallel G-quadruplex structures were observed (Bao et al., 2019). The group has also investigated formation of telomeric DNA-RNA hybrid G-quadruplexes (Bao and Xu, 2020).

Outlook

Currently, there remains a disconnect between *in vitro* and *in vivo* studies by NMR. It will become more and more important to provide and compare quantitative information on the systems under investigation, both in isolation and in the complex environment of a cell. NMR, both solution and MAS solid state NMR, can help to connect atomic-level observations of isolated and in-cell molecules. Taking a multi-method integrated approach will allow the field to develop an increasingly multi-perspectival and more accurate view of the molecules when they perform their function. It is intriguing that some tags that are used for cellular fluorescence microscopy contain fluorine atoms, and it will be instructive to connect the findings from imaging approaches to answers obtained by fluorine NMR. Many questions remain open: Are there any differences in structure or dynamics depending on the environment? Are these functionally important? What confers specificity to components within distinct complex mixtures or cellular locations? How does assembly and disassembly occur and what are the spatial and temporal boundary conditions? Perhaps the unique properties of fluorine, both with respect to its unusual chemical nature and attractive NMR behavior, will help answer some of these inquires.

Acknowledgements

I thank Teresa Brosenitsch for critical reading of the manuscript and help with Figure 1, Manman Lu and Wenkai Zhu for preparing Figures 2, TOC and 3 respectively, and all the members of my laboratory for embracing/tolerating my move into fluorine in-cell NMR. Special thanks go to Philipp Selenko who hosted me in Berlin when I wanted to learn about in-cell NMR and who made my stay there extremely enjoyable. Last, but not least, the solid-state MAS fluorine work arose via a fun and productive collaboration with Tatyana Polenova (University of

Delaware). All fluorine NMR work in my laboratory was supported by the National Science Foundation (NSF Grant CHE-1708773 and more recently NSF Grant MCB-BSF-2116534) and the National Institutes of Health (NIH Grant P50Al150481, Technology Development Project 2).

Notes

The author declares no competing financial interest.

Table 1. Properties of biologically important NMR nuclei

Nuclei	Natural	Spin (I)	Gyromagnetic ratio, γ	Sensitivity (%	Van der Waals
	abundance (%)		(rad sec ⁻¹ x gauss ⁻¹)	versus ¹ H)	radius (Å)
¹ H	99.98	1/2	26,753	100	1.2
² H	0.016	1	4,106	0.965	1.1999
¹³ C	1.108	1/2	6,728	1.59	1.7
¹⁵ N	0.37	1/2	-2,712	0.104	1.55
¹⁷ O	0.037	5/2	-3,628	0.00111	1.52
¹⁹ F	100	1/2	25,179	83.3	1.47
³¹ P	100	1/2	10,841	6.63	1.8

Figure Captions

Figure 1. Superposition of 1D ¹⁹F spectra of 4F-Trp (gray), 5F- (magenta), 6F-Trp (green) and 7F-Trp (blue), and 4F-, 5F-, 6F-, and 7F-Trp121 labeled CypA. Chemical shift differences between the free amino acid and the amino acid when incorporated into the CypA protein are indicated by the dashed arrows. Also depicted are the chemical structure of the Trp amino acid with numbering in the indole ring (top) and a ribbon representation of the CypA structure with an expansion of the active site (right), illustrating the superposition of the differently fluorinated

Trp121 side chains. The color coding of the fluorine positions in the structures is identical to that in the spectra.

Figure 2. The three major methods to prepare ¹⁹F-modified proteins. (Left) covalent conjugation of ¹⁹F-containing moieties to the protein. (Middle) Biosynthetic amino acid type-specific incorporation of ¹⁹F-modified amino acids. (Right) Site-specific incorporation of ¹⁹F-modified amino acids using recombinantly expressed orthogonal amber tRNA/tRNA synthetase pairs.

Figure 3. Superposition of 1D ¹⁹F spectra of 3F-Tyr labeled α -synuclein in buffer (black dotted line), in cell extract (grey line) and in A2780 cells (black line). Assignments are indicated by residue name and number. A schematic ribbon representation of a single α -synuclein chain with the four Tyr residues shown in stick representation is depicted above the spectra.

References

- Bann, J.G., Pinkner, J., Hultgren, S.J., and Frieden, C. (2002). Real-time and equilibrium (19)F-NMR studies reveal the role of domain-domain interactions in the folding of the chaperone PapD. Proc Natl Acad Sci U S A 99, 709-714.
- Bao, H.L., Ishizuka, T., Sakamoto, T., Fujimoto, K., Uechi, T., Kenmochi, N., and Xu, Y. (2017). Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res *45*, 5501-5511.
- Bao, H.L., Liu, H.S., and Xu, Y. (2019). Hybrid-type and two-tetrad antiparallel telomere DNA G-quadruplex structures in living human cells. Nucleic Acids Res *47*, 4940-4947.
- Bao, H.L., and Xu, Y. (2020). Telomeric DNA-RNA-hybrid G-quadruplex exists in environmental conditions of HeLa cells. Chem Commun (Camb) *56*, 6547-6550.
- Bégué, J.-P., and Bonnet-Delpon, D. (2007). Bioorganic and Medicinal Chemistry of Fluorine (Hoboken, NJ: Wiley).
- Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Res 28, 235-242.
- Boeszoermenyi, A., Chhabra, S., Dubey, A., Radeva, D.L., Burdzhiev, N.T., Chanev, C.D., Petrov, O.I., Gelev, V.M., Zhang, M., Anklin, C., et al. (2019). Aromatic (19)F-(13)C TROSY: a background-free approach to probe biomolecular structure, function, and dynamics. Nat Methods 16, 333-340.
- Bohm, H.J., Banner, D., Bendels, S., Kansy, M., Kuhn, B., Muller, K., Obst-Sander, U., and Stahl, M. (2004). Fluorine in medicinal chemistry. Chembiochem *5*, 637-643.
- Campos-Olivas, R., Aziz, R., Helms, G.L., Evans, J.N., and Gronenborn, A.M. (2002). Placement of 19F into the center of GB1: effects on structure and stability. FEBS Lett *517*, 55-60.
- Cellitti, S.E., Jones, D.H., Lagpacan, L., Hao, X., Zhang, Q., Hu, H., Brittain, S.M., Brinker, A., Caldwell, J., Bursulaya, B., *et al.* (2008). In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. J Am Chem Soc *130*, 9268-9281.
- Chai, Z., Wu, Q., Cheng, K., Liu, X., Jiang, L., Liu, M., and Li, C. (2020). Simultaneous detection of small molecule thiols with a simple (19)F NMR platform. Chem Sci 12, 1095-1100.
- Chu, W.C., and Horowitz, J. (1989). 19F NMR of 5-fluorouracil-substituted transfer RNA transcribed in vitro: resonance assignment of fluorouracil-guanine base pairs. Nucleic Acids Res *17*, 7241-7252.
- Clayden, J. (2019). Fluorinated compounds present opportunities for drug discovery. Nature 573, 37-38.
- Crowley, P.B., Kyne, C., and Monteith, W.B. (2012). Simple and inexpensive incorporation of 19F-tryptophan for protein NMR spectroscopy. Chem Commun (Camb) 48, 10681-10683.
- Dalvit, C., Veronesi, M., and Vulpetti, A. (2020). Fluorine NMR functional screening: from purified enzymes to human intact living cells. J Biomol NMR *74*, 613-631.
- Dalvit, C., and Vulpetti, A. (2019). Ligand-Based Fluorine NMR Screening: Principles and Applications in Drug Discovery Projects. J Med Chem *62*, 2218-2244.
- Danielson, M.A., and Falke, J.J. (1996). Use of 19F NMR to Probe Protein Structure and Conformational Changes. Annual Review of Biophysics and Biomolecular Structure *25*, 163-195.
- Di Pietrantonio, C., Pandey, A., Gould, J., Hasabnis, A., and Prosser, R.S. (2019). Understanding Protein Function Through an Ensemble Description: Characterization of Functional States by (19)F NMR. Methods Enzymol *615*, 103-130.
- Edwards, J.M., Bramham, J.E., Podmore, A., Bishop, S.M., van der Walle, C.F., and Golovanov, A.P. (2019). (19)F Dark-State Exchange Saturation Transfer NMR Reveals Reversible

- Formation of Protein-Specific Large Clusters in High-Concentration Protein Mixtures. Anal Chem *91*, 4702-4708.
- Edwards, J.M., Derrick, J.P., van der Walle, C.F., and Golovanov, A.P. (2018). (19)F NMR as a Tool for Monitoring Individual Differentially Labeled Proteins in Complex Mixtures. Mol Pharm *15*, 2785-2796.
- Elkins, M.R., Williams, J.K., Gelenter, M.D., Dai, P., Kwon, B., Sergeyev, I.V., Pentelute, B.L., and Hong, M. (2017). Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Proc Natl Acad Sci U S A *114*, 12946-12951.
- Freedberg, D.I., and Selenko, P. (2014). Live cell NMR. Annu Rev Biophys 43, 171-192.
- Frei, J.N., Broadhurst, R.W., Bostock, M.J., Solt, A., Jones, A.J.Y., Gabriel, F., Tandale, A., Shrestha, B., and Nietlispach, D. (2020). Conformational plasticity of ligand-bound and ternary GPCR complexes studied by (19)F NMR of the beta1-adrenergic receptor. Nat Commun *11*, 669.
- Frieden, C., Hoeltzli, S.D., and Bann, J.G. (2004). The preparation of 19F-labeled proteins for NMR studies. Methods Enzymol *380*, 400-415.
- Gagnon, M.C., Auger, M., and Paquin, J.F. (2018). Progress in the synthesis of fluorinated phosphatidylcholines for biological applications. Org Biomol Chem *16*, 4925-4941.
- Gerig, J.T. (1994). Fluorine NMR of proteins. Progress in Nuclear Magnetic Resonance Spectroscopy *26*, 293-370.
- Gillis, E.P., Eastman, K.J., Hill, M.D., Donnelly, D.J., and Meanwell, N.A. (2015). Applications of Fluorine in Medicinal Chemistry. J Med Chem *58*, 8315-8359.
- Gimenez, D., Mooney, C.A., Dose, A., Sandford, G., Coxon, C.R., and Cobb, S.L. (2017). The application of perfluoroheteroaromatic reagents in the preparation of modified peptide systems. Org Biomol Chem *15*, 4086-4095.
- Grage, S.L., Afonin, S., and Ulrich, A.S. (2020). 19F NMR of biomembranes. 2053-2563, 6-1 to 6-43.
- Griffin, R.G., Jr., J.D.E., Mehring, M., Bullitt, J.G., and Waugh, J.S. (1972). Single Crystal Study of the 19F Shielding Tensors of a Trifluoromethyl Group. The Journal of Chemical Physics 57, 2147-2155.
- Gronenborn, A.M. (2019). Integrated multidisciplinarity in the natural sciences. J Biol Chem *294*, 18162-18167.
- Hagmann, W.K. (2008). The many roles for fluorine in medicinal chemistry. J Med Chem *51*, 4359-4369.
- Hattori, Y., Heidenreich, D., Ono, Y., Sugiki, T., Yokoyama, K.I., Suzuki, E.I., Fujiwara, T., and Kojima, C. (2017). Protein (19)F-labeling using transglutaminase for the NMR study of intermolecular interactions. J Biomol NMR *68*, 271-279.
- Hoang, J., and Prosser, R.S. (2014). Conformational selection and functional dynamics of calmodulin: a (19)F nuclear magnetic resonance study. Biochemistry *53*, 5727-5736.
- Huang, S.K., Pandey, A., Tran, D.P., Villanueva, N.L., Kitao, A., Sunahara, R.K., Sljoka, A., and Prosser, R.S. (2021). Delineating the conformational landscape of the adenosine A2A receptor during G protein coupling. Cell *184*, 1884-1894 e1814.
- Huang, Y., Wang, X., Lv, G., Razavi, A.M., Huysmans, G.H.M., Weinstein, H., Bracken, C., Eliezer, D., and Boudker, O. (2020). Use of paramagnetic (19)F NMR to monitor domain movement in a glutamate transporter homolog. Nat Chem Biol *16*, 1006-1012.
- Ishima, R., and Torchia, D.A. (2000). Protein dynamics from NMR. Nat Struct Biol *7*, 740-743. Kay, L.E. (1998). Protein dynamics from NMR. Nat Struct Biol *5 Suppl*, 513-517.
- Kitevski-LeBlanc, J.L., and Prosser, R.S. (2012). Current applications of 19F NMR to studies of protein structure and dynamics. Prog Nucl Magn Reson Spectrosc 62, 1-33.
- Klein-Seetharaman, J., Getmanova, E.V., Loewen, M.C., Reeves, P.J., and Khorana, H.G. (1999). NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR. Proc Natl Acad Sci U S A *96*, 13744-13749.

- Larda, S.T., Pichugin, D., and Prosser, R.S. (2015). Site-Specific Labeling of Protein Lysine Residues and N-Terminal Amino Groups with Indoles and Indole-Derivatives. Bioconjugate chemistry 26, 2376-2383.
- Li, C., Lutz, E.A., Slade, K.M., Ruf, R.A., Wang, G.F., and Pielak, G.J. (2009). 19F NMR studies of alpha-synuclein conformation and fibrillation. Biochemistry *48*, 8578-8584.
- Li, C., Zhao, J., Cheng, K., Ge, Y., Wu, Q., Ye, Y., Xu, G., Zhang, Z., Zheng, W., Zhang, X., *et al.* (2017). Magnetic Resonance Spectroscopy as a Tool for Assessing Macromolecular Structure and Function in Living Cells. Annu Rev Anal Chem (Palo Alto Calif) *10*, 157-182.
- Linclau, B., Arda, A., Reichardt, N.C., Sollogoub, M., Unione, L., Vincent, S.P., and Jimenez-Barbero, J. (2020). Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem Soc Rev *49*, 3863-3888.
- Lu, M., Ishima, R., Polenova, T., and Gronenborn, A.M. (2019a). (19)F NMR relaxation studies of fluorosubstituted tryptophans. J Biomol NMR 73, 401-409.
- Lu, M., Wang, M., Sergeyev, I.V., Quinn, C.M., Struppe, J., Rosay, M., Maas, W., Gronenborn, A.M., and Polenova, T. (2019b). (19)F dynamic nuclear polarization at fast magic angle spinning for NMR of HIV-1 capsid protein assemblies. J Am Chem Soc *141*, 5681-5691.
- Luchette, P.A., Prosser, R.S., and Sanders, C.R. (2002). Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and (19)F NMR spectroscopy. J Am Chem Soc *124*, 1778-1781.
- Luchinat, E., and Banci, L. (2017). In-cell NMR: a topical review. IUCrJ 4, 108-118.
- Luck, L.A., and Falke, J.J. (1991). 19F NMR studies of the D-galactose chemosensory receptor. 1. Sugar binding yields a global structural change. Biochemistry *30*, 4248-4256.
- Luck, L.A., Vance, J.E., O'Connell, T.M., and London, R.E. (1996). 19F NMR relaxation studies on 5-fluorotryptophan- and tetradeutero-5-fluorotryptophan-labeled E. coli glucose/galactose receptor. J Biomol NMR *7*, 261-272.
- Manglik, A., Kim, T.H., Masureel, M., Altenbach, C., Yang, Z., Hilger, D., Lerch, M.T., Kobilka, T.S., Thian, F.S., Hubbell, W.L., *et al.* (2015). Structural Insights into the Dynamic Process of beta2-Adrenergic Receptor Signaling. Cell *161*, 1101-1111.
- Marsh, E.N., and Suzuki, Y. (2014). Using (19)F NMR to probe biological interactions of proteins and peptides. ACS Chem Biol 9, 1242-1250.
- Matei, E., Andre, S., Glinschert, A., Infantino, A.S., Oscarson, S., Gabius, H.J., and Gronenborn, A.M. (2013). Fluorinated carbohydrates as lectin ligands: dissecting glycan-cyanovirin interactions by using 19F NMR spectroscopy. Chemistry *19*, 5364-5374.
- Matei, E., and Gronenborn, A.M. (2016). (19)F Paramagnetic Relaxation Enhancement: A Valuable Tool for Distance Measurements in Proteins. Angewandte Chemie *55*, 150-154.
- Meanwell, N.A., Eastman, K.J., and Gillis, E.P. (2014). Tactical Applications of Fluorine in Drug Design and Development. In Fluorine in Heterocyclic Chemistry Volume 1: 5-Membered Heterocycles and Macrocycles, V. Nenajdenko, ed. (Cham: Springer International Publishing), pp. 1-54.
- Mittermaier, A., and Kay, L.E. (2006). New tools provide new insights in NMR studies of protein dynamics. Science *312*, 224-228.
- Moerner, W.E., and Fromm, D.P. (2003). Methods of single-molecule fluorescence spectroscopy and microscopy. Review of Scientific Instruments *74*, 3597-3619.
- Morihiro, K., Kasahara, Y., and Obika, S. (2017). Biological applications of xeno nucleic acids. Mol Biosyst *13*, 235-245.
- Muller, K., Faeh, C., and Diederich, F. (2007). Fluorine in pharmaceuticals: looking beyond intuition. Science *317*, 1881-1886.
- Noren, C.J., Anthony-Cahill, S.J., Griffith, M.C., and Schultz, P.G. (1989). A general method for site-specific incorporation of unnatural amino acids into proteins. Science *244*, 182-188.
- Peeler, J.C., and Mehl, R.A. (2012). Site-specific incorporation of unnatural amino acids as probes for protein conformational changes. Methods Mol Biol *794*, 125-134.

- Peng, J.W. (2001). Cross-correlated (19)F relaxation measurements for the study of fluorinated ligand-receptor interactions. J Magn Reson *153*, 32-47.
- Peng, Y., Cao, S., Kiselar, J., Xiao, X., Du, Z., Hsieh, A., Ko, S., Chen, Y., Agrawal, P., Zheng, W., et al. (2019). A Metastable Contact and Structural Disorder in the Estrogen Receptor Transactivation Domain. Structure 27, 229-240 e224.
- Picard, L.P., and Prosser, R.S. (2021). Advances in the study of GPCRs by (19)F NMR. Curr Opin Struct Biol *69*, 169-176.
- Purser, S., Moore, P.R., Swallow, S., and Gouverneur, V. (2008). Fluorine in medicinal chemistry. Chem Soc Rev 37, 320-330.
- Richardson, P. (2016). Fluorination methods for drug discovery and development. Expert Opin Drug Discov 11, 983-999.
- Robertson, I.M., Klein, B.A., and Sykes, B.D. (2020). Optimizing fluorine labelling for (19)F solid-state NMR in oriented biological systems. J Biomol NMR *74*, 1-7.
- Ropson, I.J., and Frieden, C. (1992). Dynamic NMR spectral analysis and protein folding: identification of a highly populated folding intermediate of rat intestinal fatty acid-binding protein by 19F NMR. Proc Natl Acad Sci U S A 89, 7222-7226.
- Ruben, E.A., Gandhi, P.S., Chen, Z., Koester, S.K., DeKoster, G.T., Frieden, C., and Di Cera, E. (2020). (19)F NMR reveals the conformational properties of free thrombin and its zymogen precursor prethrombin-2. J Biol Chem *295*, 8227-8235.
- Salmon, L., and Blackledge, M. (2015). Investigating protein conformational energy landscapes and atomic resolution dynamics from NMR dipolar couplings: a review. Rep Prog Phys 78, 126601.
- Selenko, P., Frueh, D.P., Elsaesser, S.J., Haas, W., Gygi, S.P., and Wagner, G. (2008). In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat Struct Mol Biol *15*, 321-329.
- Shah, P., and Westwell, A.D. (2007). The role of fluorine in medicinal chemistry. J Enzyme Inhib Med Chem 22, 527-540.
- Sharaf, N.G., and Gronenborn, A.M. (2015). Chapter Four 19F-Modified Proteins and 19F-Containing Ligands as Tools in Solution NMR Studies of Protein Interactions. In Methods in Enzymology, Z. Kelman, ed. (Academic Press), pp. 67-95.
- Sharaf, N.G., Ishima, R., and Gronenborn, A.M. (2016). Conformational Plasticity of the NNRTI-Binding Pocket in HIV-1 Reverse Transcriptase: A Fluorine Nuclear Magnetic Resonance Study. Biochemistry *55*, 3864-3873.
- Sharaf, N.G., Xi, Z., Ishima, R., and Gronenborn, A.M. (2017). The HIV-1 p66 homodimeric RT exhibits different conformations in the binding-competent and -incompetent NNRTI site. Proteins *85*, 2191-2197.
- Shi, P., Wang, H., Xi, Z., Shi, C., Xiong, Y., and Tian, C. (2011). Site-specific (1)(9)F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid. Protein Sci 20, 224-228.
- Siegal, G., and Selenko, P. (2019). Cells, drugs and NMR. J Magn Reson 306, 202-212.
- Somlyay, M., Ledolter, K., Kitzler, M., Sandford, G., Cobb, S.L., and Konrat, R. (2020). (19) F NMR Spectroscopy Tagging and Paramagnetic Relaxation Enhancement-Based Conformation Analysis of Intrinsically Disordered Protein Complexes. Chembiochem *21*, 696-701.
- Speer, S.L., Zheng, W., Jiang, X., Chu, I.T., Guseman, A.J., Liu, M., Pielak, G.J., and Li, C. (2021). The intracellular environment affects protein-protein interactions. Proc Natl Acad Sci U S A *118*.
- Stadmiller, S.S., Aguilar, J.S., Waudby, C.A., and Pielak, G.J. (2020). Rapid Quantification of Protein-Ligand Binding via (19)F NMR Lineshape Analysis. Biophys J *118*, 2537-2548.

- Sun, X., Dyson, H.J., and Wright, P.E. (2017). Fluorotryptophan Incorporation Modulates the Structure and Stability of Transthyretin in a Site-Specific Manner. Biochemistry *56*, 5570-5581.
- Suzuki, Y., Brender, J.R., Soper, M.T., Krishnamoorthy, J., Zhou, Y., Ruotolo, B.T., Kotov, N.A., Ramamoorthy, A., and Marsh, E.N. (2013). Resolution of oligomeric species during the aggregation of Abeta1-40 using (19)F NMR. Biochemistry *52*, 1903-1912.
- Sykes, B.D., and Hull, W.E. (1978). Fluorine nuclear magnetic resonance studies of proteins. Methods Enzymol *49*, 270-295.
- Takaoka, Y., Kioi, Y., Morito, A., Otani, J., Arita, K., Ashihara, E., Ariyoshi, M., Tochio, H., Shirakawa, M., and Hamachi, I. (2013). Quantitative comparison of protein dynamics in live cells and in vitro by in-cell (19)F-NMR. Chem Commun (Camb) 49, 2801-2803.
- Tsuchiya, T. (1990). Chemistry and developments of fluorinated carbohydrates. Adv Carbohydr Chem Biochem 48, 91-277.
- Tsukiji, S., Miyagawa, M., Takaoka, Y., Tamura, T., and Hamachi, I. (2009). Ligand-directed tosyl chemistry for protein labeling in vivo. Nat Chem Biol *5*, 341-343.
- Ulrich, A. (2005). Solid state 19F-NMR methods for studying biomembranes. Progress in Nuclear Magnetic Resonance Spectroscopy *46*, 1-21.
- van den Bedem, H., and Fraser, J.S. (2015). Integrative, dynamic structural biology at atomic resolution—it's about time. Nature Methods *12*, 307-318.
- Wang, G.F., Li, C., and Pielak, G.J. (2010). 19F NMR studies of alpha-synuclein-membrane interactions. Protein Sci 19, 1686-1691.
- Wang, H., Hu, W., Liu, D., and Wuthrich, K. (2021a). Design and preparation of the class B G protein-coupled receptors GLP-1R and GCGR for (19) F-NMR studies in solution. FEBS J 288, 4053-4063.
- Wang, J., Sanchez-Rosello, M., Acena, J.L., del Pozo, C., Sorochinsky, A.E., Fustero, S., Soloshonok, V.A., and Liu, H. (2014). Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem Rev *114*, 2432-2506.
- Wang, M., Lu, M., Fritz, M.P., Quinn, C.M., Byeon, I.L., Byeon, C.H., Struppe, J., Maas, W., Gronenborn, A.M., and Polenova, T. (2018). Fast magic-angle spinning (19) F NMR spectroscopy of HIV-1 capsid protein assemblies. Angew Chem Int Ed Engl *57*, 16375-16379.
- Wang, X., McFarland, A., Madsen, J.J., Aalo, E., and Ye, L. (2021b). The Potential of (19)F NMR Application in GPCR Biased Drug Discovery. Trends Pharmacol Sci *42*, 19-30.
- Ward, A.B., Sali, A., and Wilson, I.A. (2013). Integrative structural biology. Science 339, 913-915.
- Welte, H., Zhou, T., Mihajlenko, X., Mayans, O., and Kovermann, M. (2020). What does fluorine do to a protein? Thermodynamic, and highly-resolved structural insights into fluorine-labelled variants of the cold shock protein. Sci Rep *10*, 2640.
- Yamazaki, T., Taguchi, T., and Ojima, I. (2009). Unique Properties of Fluorine and their Relevance to Medicinal Chemistry and Chemical Biology. In Fluorine in Medicinal Chemistry and Chemical Biology, pp. 1-46.
- Ye, Y., Liu, X., Zhang, Z., Wu, Q., Jiang, B., Jiang, L., Zhang, X., Liu, M., Pielak, G.J., and Li, C. (2013). (19) F NMR spectroscopy as a probe of cytoplasmic viscosity and weak protein interactions in living cells. Chemistry *19*, 12705-12710.
- Ye, Y., Wu, Q., Zheng, W., Jiang, B., Pielak, G.J., Liu, M., and Li, C. (2019). Positively Charged Tags Impede Protein Mobility in Cells as Quantified by (19)F NMR. J Phys Chem B *123*, 4527-4533.
- Zheng, W., Zhang, Z., Ye, Y., Wu, Q., Liu, M., and Li, C. (2019). Phosphorylation dependent alpha-synuclein degradation monitored by in-cell NMR. Chem Commun (Camb) *55*, 11215-11218.