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Abstract. The Lyα forest provides one of the best means of mapping large-scale structure at

high redshift, including our tightest constraint on the distance-redshift relation before cosmic

noon. We describe how the large-scale correlations in the Lyα forest can be understood as an

expansion in cumulants of the optical depth field, which itself can be related to the density field

by a bias expansion. This provides a direct connection between the observable and the statistics

of the matter fluctuations which can be computed in a systematic manner. We discuss the way

in which complex, small-scale physics enters the predictions, the origin of the much-discussed

velocity bias and the ‘renormalization’ of the large-scale bias coefficients. Our calculations are

within the context of perturbation theory, but we also make contact with earlier work using

the peak-background split. Using the structure of the equations of motion we demonstrate, to

all orders in perturbation theory, that the large-scale flux power spectrum becomes the linear

spectrum times the square of a quadratic in the cosine of the angle to the line of sight. Unlike the

case of galaxies, both the isotropic and anisotropic pieces receive contributions from small-scale

physics.

Keywords: Lyman alpha forest – power spectrum – intergalactic media – baryon acoustic oscil-

lations – cosmological parameters from LSS
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1 Introduction

The Lyα forest refers to the structure imprinted in the spectra of high redshift galaxies and

quasars by absorption of photons by neutral hydrogen along the line of sight [1–3]. Most of the

signal comes from warm gas near mean density that is in photoionization equilibrium with an

almost uniform ultra-violet background and as such probes density fluctuations on scales ranging

from the Jeans scale (O(100 kpc)) to the size of the survey (up to Gpc). It is currently our best

probe of large-scale structure from sub-Mpc to hundreds of Mpc scales at high redshift, where

galaxy redshift surveys are sparse and cover limited area and intensity mapping surveys have yet

to report detections.

There are two regimes in which the Lyα forest provides critical constraints on our cosmological

models. The first is at small scales, where the sensitivity of the forest to sub-Mpc scales allows

constraints on the spectral index, massive neutrinos, warm and fuzzy dark matter and other
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candidates that suppress small-scale power [4–14]. The second, which is the focus of this work,

is on large scales where the Lyα forest can be thought of as a biased tracer of the density

field, much like galaxies or QSOs [15, 16]. On the very largest scales1 it has been argued that

the flux, averaged over a large region, should depend linearly on the matter overdensity and

peculiar velocity gradient. In this limit the flux correlation function, or power spectrum, can

be computed analytically. The question then arises on what scales such an approximation is

valid, how do non-linearities enter, to what extent do the numerous complex physical processes

affecting the intergalactic medium on small scales modify the large-scale behavior and how does

one systematically extend a linear theory calculation?

Traditionally models of the Lyα forest power spectrum addressing the above questions have

involved fits to, or forms inspired by, numerical simulations (see e.g. refs. [26–28] for recent

examples and the reviews cited above for a more complete overview). In large part this is

because the mapping between the underlying density fluctuations and the observed flux is highly

non-linear, mixing small- and large-scale effects, which complicates an analytic or perturbative

treatment (though see refs. [29–35] for some notable analytic treatments). However the 3D power

spectrum of the Lyα forest is observed to be very close to a linearly biased tracer of the linear

power spectrum on large scales [16], which suggests that the mixing of small- and large-scale

physics does not alter the flux power spectrum beyond recognition. In this paper we develop

a systematic means of computing the flux correlation function beyond linear theory. We show

how the effects of this non-linear mapping can be encapsulated into a set of nuisance terms,

and isolate the parts of the Lyα forest power spectrum and correlation function that come from

large scales and are expected to be amenable to analytic or perturbative treatment and those

which depend sensitively on small-scale physics (i.e. “astrophysics”). We discuss how these effects

arise in the 1-loop flux power spectrum and demonstrate the approach to linear theory with a

specific µ dependence on large scales, including the manner in which higher-order effects enter.

We demonstrate how small-scale physics impacts the bias parameters and how redshift-space

distortions induce anisotropy in the clustering. Our approach utilizes the fact that the non-

linear mapping relating density to flux is of a known form (an exponential of a biased tracer of

the density field), and thus should prove to be more general than the particular application we

highlight here.

Earlier work [31, 32] also studied the consequences of dynamical nonlinearities under expo-

nential maps, specifically within the peak-background split. These approaches needed to treat

redshift-space distortions approximately. Our calculations expand upon these by considering a

more general set of nonlinearities within an effective-theory framework, but we make connection

with these previous results where appropriate (especially in the context of real space). We also

discuss the structure of the theory beyond the 1-loop level, and the allowed angular dependence

in the large-scale limit. Recently, refs. [34, 36] proposed a second-order anisotropic bias basis in

the context of Lyα and a third-order one for generic biased tracers with line-of-sight selection

effects. We show how the combination of dynamics and the exponential map generates the terms

in those expansions.

1Throughout we shall neglect large-scale effects arising from general-relativistic corrections [17, 18] or fluctu-

ations in the ultraviolet background field [19–25], focusing instead on dynamical non-linearities and the way in

which small- and large-scale physics couple into the observable flux.
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The outline of the paper is as follows. Section 2 shows how the transmitted flux correlation

function, ξF , is related to cumulants of the optical depth fluctuation, δτ . Since δτ can be modeled

in a manner quite similar to galaxy or quasar density fields in perturbation theory, this establishes

the key connection between our observable and objects which are under good theoretical control.

We validate the connection between ξF and the cumulants in Section 3 using some highly idealized

simulations that illustrate our key points. How the cumulants of δτ behave, how non-linear scales

enter and the impact of redshift-space distortions is the topic of Section 4. In this section we

present several approaches so as to bring out the key physics and make connection with earlier

work. We conclude in Section 5. Details of our calculations and explicit formulae are given in a

series of appendices.

2 Formalism

2.1 Optical depth and density

The relationship between the redshift-space optical depth, τ , and the dark matter density, δ, and

velocity (divergence) θ is set by the physics of the Lyα forest [1–3]. Specifically the low-density

gas is in photoionization equilibrium with an almost uniform ultraviolet background field, and

thus traces a power of the dark matter density field on large scales, where pressure forces are

unimportant. As shown in Fig. 7 of ref. [37], we are interested primarily in gas near the cosmic

mean density. Instead of attempting to model the complex physics determining the optical depth

field, even approximately, we shall take the approach that τ can be expanded as a series in the

(smoothed) density and velocity fields containing all terms allowed by the symmetries [38]. The

coefficients of the terms in such an expansion, the bias coefficients, are to be treated as parameters

of the theory that must be fit to observations or numerical simulations that resolve the small-scale

physics of the forest.

Using an Eulerian biasing prescription, we have

τ(x) = τ0

[
1 + b1δ(x) +

1

2
b2
(
δ2(x)−

〈
δ2
〉)

+ · · ·
]

+ ε(x) (2.1)

in real space. Here ε is the “stochastic” contribution to τ that is uncorrelated with large scales and

has zero mean. Note that in the limit of an isothermal gas where τ ∝ (1+δ)γ with γ = 2 this bias

expansion would be exact, while for γ 6= 2 we have b2 = γ(γ−1) and there would be higher order

terms. The · · · includes terms depending upon the shear field and other invariants that can be

formed at higher order [38]. Throughout this work we will work primarily in terms of fluctuations

in the optical depth, defined as τ = τ0(1 + δτ), where τ0 = 〈τ〉 is the mean optical depth. Since

optical depth is conserved in mapping from real to redshift space, assuming large-scale velocities

are gravitationally dominated and invoking the equivalence principle δτ(s) = b1δ + θ to lowest

order, with θ the velocity divergence. We shall consider how this form is modified by higher-order

corrections when going to flux in the following.

In the above discussion we have implicitly worked within the approximation where baryons

and cold dark matter are treated as a single fluid. In fact, the two species can be subject to both

different small-scale forces due to galactic physics (feedback, outflows, star formation etc.) [39] as

well as subtle differences in their densities and velocities post-recombination. These differences
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enter at linear order and beyond in the statistics of biased tracers [40–42] and can be especially

significant at the high redshifts probed by Lyα measurements [43, 44]. A systematic treatment of

these terms in the context of the Lyα — and similar considerations for the inclusion of massive

neutrinos — is beyond the scope of this work, though we refer readers to ref. [34] who consider

a subset of these operators directly proportional to the baryon-CDM relative velocity.

2.2 Flux correlators and the exponential map

We are interested in correlators of the continuum normalized flux field2, or transmission fraction,

which is defined as the ratio of the observed flux to the continuum flux when there is no intervening

absorption. We write the flux, F , in terms of an optical depth

F (x) = e−τ(x) (2.2)

and introduce fluctuations about the mean in the usual manner

F (x) = F0 (1 + δF (x)) (2.3)

where the fluctuations are defined to have zero mean so that 〈F (x)〉 = F0. The mean flux, F0,

can be related to the cumulants of the τ field evaluated at a single point, specifically

F0 = 〈F (x)〉 =
〈
e−τ(x)

〉
= exp

[ ∞∑
n=1

(−1)n

n!
〈(τ(x))n〉c

]
(2.4)

and of course F0 is independent of the chosen point, x. Note that the relation between F0 and

τ0 depends upon the full PDF of F , and involves non-perturbative physics. It could be measured

directly, predicted from numerical simulations or left as a degree of freedom in the model. If we

write F0 = e−τ0(1 + δF0) then by Jensen’s inequality we have δF0 ≥ 0.

Next let us consider the 2-point function of the flux field, which is given by〈
F (x)F (x′)

〉
= F 2

0

(
1 +

〈
δF (x)δF (x′)

〉)
=
〈
e−τ(x)−τ(x

′)
〉
. (2.5)

Using the previous relation of F0 to the point correlators of τ we can write (see Appendix A)

ln
(

1 +
〈
δFδF ′

〉 )
=

∞∑
n=2

τn0

[
1 + (−1)n

2(n/2)!
ξ(n/2,n/2)(r) + 2

(−1)n

n!

bn−1
2
c∑

m=1

(
n

m

)
ξ(m,n−m)(r)

]
(2.6)

which expresses the flux correlation function in terms of correlators of the optical depth fluctua-

tions, ξ
(ij)
τ (r) = 〈δτ iδτ j〉c. These cumulants encode the manner in which the fluctuations of the

optical depth on large scales (that can be modeled e.g. using conventional perturbation theory)

affect large-scale flux correlations. Note that at a fixed value of F0 the value of τ0 is sensitive

to small-scale physics. As in the bias expansion, one should treat τ0 and F0 as numbers that

cannot be determined from large-scale physics alone – they must be fit from data or simulations

2Throughout we shall neglect observational issues such as continuum fitting, high column density systems, metal

lines, etc. The reader is referred to ref. [16] for a discussion of these issues and references to the observational

literature.
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– but the functional dependence of 〈δFδF ′〉 is not free. The large-scale physics (e.g. the baryon

acoustic peak) resides in the ξ
(ij)
τ . We give some examples of cumulants in the following.

We note that the structure of Eq. (2.6) is dictated by the form of the relationship between F

and τ , rather than the physics of the Lyα forest or cosmological dynamics. We thus expect it to

be of much more general utility than simply modeling the Lyα forest. While it is that modeling

that we investigate further in the rest of the paper, let us end this section by mentioning one

(slight) generalization of the general formalism towards cross-correlation of the Lyα forest with

other biased3 tracers (e.g. quasars or dampled Lyα systems), i.e. 〈(1 + δQ)e−τ 〉 = F0 (1 + ξ×).

By promoting the cumulant expansion in Eq. (2.6) to include two random variables (in this case

δτ and δQ) it is possible to show that

〈
δne−τ

〉
= F0

∑
m

(−1)m

m!
κm,n , F0 = exp

[∑
m

(−1)m

m!
κm,0

]
. (2.7)

where κm,n(r) are joint cumulants of the two relative overdensities (see Appendix A.2). If we use

this formula with the normal bias expansions for δQ and δτ the form of ξ× quickly follows.

3 Numerical experiments

3.1 Simulations

To test the convergence of the moment and cumulant expansions we use a suite of N-body

simulations. A detailed modeling of the Lyα forest would require high-resolution hydrodynamic

simulations, and we are not in a position to run a large volume of such simulations in order to

study the large-scale behavior of the flux correlations. Instead we have chosen a toy model which

has some (though definitely not all) of the properties of the Lyα problem. In particular, our focus

is on the exponential mapping involved in going from δτ to F , and the behavior of the cumulant

expansion. We shall artificially increase the pressure smoothing present in the Lyα forest so that

the moments and correlators of the mock flux field will be well behaved and we can run very

large volumes with low computational cost.

To this end we employ the suite of simulations described in ref. [45] to construct mock optical

depth and flux fields. These are 10 FastPM boxes with sidelength 1.536 h−1 Gpc run with 20483

particles. To produce mock optical depths we take the matter density field at z = 2 smoothed

with a Gaussian of R = 5 or 10h−1Mpc and transformed them via the FGPA approximation

[2, 3]

τ(x) = A [1 + δm(x)]γ , (3.1)

with γ = 1.5 and A chosen such that F0 = 0.7. For these simulations τ0 ≈ 0.37 so that

e−τ0 ' 0.69 and δF0 ' 0.01. Note that our smoothing scale is roughly two orders of magnitude

larger than the actual Jeans scale in the Lyα forest. We want to use such a large smoothing

because the correlators in our expansions become increasingly UV-sensitive and numerically ill-

behaved with increased powers of τ and we wanted to ensure numerical convergence within our

limited computational resources. In addition, these simulations have significantly larger volume

3The auto-correlation of galaxies or QSOs is already routinely modeled with perturbative methods so such

measurements could be naturally included in our formalism.
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(though lower resolution) than typical Lyα simulations so that we can better understand the

large-scale behavior of the Lyα signal and series convergence. While these simulations contain

qualitatively similar nonlinearities and nonlinear maps, it was not our intent that they be faithful

imitations of Lyα physics.

3.2 Results

Figures 1 and 2 compare the moment and cumulant expansions to the direct measurement of the

pseudo-flux correlation function, ξFF . In each case the left hand panel shows the expansion in

moments:

F 2
0 (1 + ξFF ) =

〈
e−τ1−τ2

〉
=
∞∑
n=0

(−1)n

n!
〈(τ1 + τ2)

n〉 (3.2)

truncated at n = 2, 3, 4 and 5. In order to minimize the difference due to the “1” piece on

the left-hand side, we have subtracted off the contributions from the disconnected contributions

summing up to the mean flux squared, i.e.

F 2
0 ξFF =

∞∑
n=0

(−1)n

n!

(
〈(τ1 + τ2)

n〉 −
n∑

m=0

(
n

m

)
〈τm〉

〈
τn−m

〉 )
, (3.3)

where we have used F 2
0 =

∑∞
n=0(−1)n 〈τn〉 /n!.

The right panel shows the same correlators resummed via the cumulant expansion. Specifically,

we have that

1 + ξFF = exp

{ ∞∑
n=0

(−1)n

n!

(
〈(τ1 + τ2)

n〉c − 2 〈τn〉c
)}

(3.4)

where the constant F 2
0 piece are divided out using lnF0 =

∑∞
n=0(−1)n 〈τn〉c /n!. This is equivalent

to Equation 2.6. Note that, comparing to the moment expansion above, there is no explicit

dependence on the mean flux F 2
0 in the cumulant expression.

The low order moments provide quite poor approximations to the measured flux correlations.

By contrast the cumulant expansion, Eq. (3.4), shown in the right hand panel converges very

rapidly, at least for our artificially large smoothing scales. The difference between the two ex-

pansions, even at n = 2, might be somewhat surprising given that the two-point function of the

optical depth 〈δτ1δτ2〉 is much smaller than unity; indeed the difference between the blue curves

in the right and left panels comes mostly from the normalization factors at second order

ξn=2
FF =

τ20
F 2
0

〈δτ1δτ2〉 (moment) and ξn=2
FF ≈ τ20 〈δτ1δτ2〉 (cumulant), (3.5)

where in the second relation we have used |ξ11| � 1. While these two expressions are equal

order-by-order in τ , the convergence of F0 is slow.

At this point it is worth pointing out a particularly interesting feature of the convergence of

the cumulant expansion, most easily seen in the right panel of Figure 2. From long experience

with Taylor series, or intuition built from cosmological perturbation theory for the matter or

galaxy power spectrum, we are used to series converging more or less rapidly as a function of

scale. For example linear perturbation theory suffices to model the matter power spectrum at

very low k, then 1-loop improves this to intermediate k and so on. We see a different pattern
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Figure 1. Series convergence for the flux two-point function in our idealized simulations with R =

10h−1Mpc using the moment (left) and cumulant (right) expansions. The cumulant expansion (Eq. 3.4)

converges much more rapidly than the moment expansion (Eq. 3.3).
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Figure 2. As for Fig. 1 but with R = 5h−1Mpc. The cumulant expansion converges much more rapidly

than the moment expansion, though not as rapidly as for 10h−1Mpc smoothing (Fig. 1). However note

that the nature of the convergence is different than might have been expected, since large scales don’t

converge more quickly than small scales (see text for further discussion).

in Figure 2: the n = 2 expression doesn’t match ξFF even above 150h−1Mpc, including n = 3

improves this across all scales but there is still disagreement at both large and small scales (e.g.

25h−1Mpc and 160h−1Mpc), then n = 4 improves the agreement even further and so on. This

raises an interesting question about why a linear theory form matches Lyα forest data at large

scales, that we will discuss fruther in the next section.

Our numerical experiments validate our cumulant expansion and give some insight into the

behavior of the individual terms. If we were to continue to reduce the pressure smoothing

scale to better approximate our Universe we expect to see the higher cumulants come to play an

increasingly important role (e.g. by generating an order-unity velocity bias effect). To understand

the implications of this for measurements of the flux correlation function we need to understand

the general structure of these cumulants, which we turn to in the next section.
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4 Structure of the theory

Key to understanding the behavior of the flux correlation function is that of the correlators, ξ
(mn)
τ .

In this section we first show that for Gaussian τ the flux correlation function becomes a series

in ξ
(11)
τ . For the more general, and relevant, case where τ is non-Gaussian the behavior is more

complex and more interesting. In particular we find that when either non-linear dynamics or

non-linear bias causes τ to be non-Gaussian — even when the linear δ is Gaussian — the higher

order correlators (ξ
(mn)
τ for m or n greater than 1) can “renormalize” the lowest order correlator

ξ
(11)
τ at large scales. This behavior will be key to understanding the large-scale behavior of the

flux correlation function and power spectrum. We present this calculation first in a toy model,

the peak-background split, and then motivate the behavior with perturbation theory.

4.1 Gaussian limit

Our Eq. (2.6) becomes particularly simple in the limit that δτ is a Gaussian field, since in that

case only ξ
(11)
τ is non-zero. For Gaussian δτ therefore

1 + ξFF = exp
[
τ20 ξ

(11)
τ

]
⇒ ξFF =

∞∑
n=1

τ2n0
n!

(
ξ(11)τ

)n
(4.1)

a result that was previously derived by ref. [46] and can be proved directly using Price’s theorem

[47]. If ξ
(11)
τ drops rapidly at large scales we see that the flux correlation function is simply

proportional to the linear theory correlation function on large scales (see below) while at smaller

scales higher powers of ξ
(11)
τ introduce a scale dependent bias. While this simple example neatly

illustrates how the exponential map (going from τ to F ) generates non-linearity, this model is

not very relevant to the Lyα forest so we turn our attention to more complex cases.

4.2 Peak-background split

Let us consider a simple toy model that illustrates the beyond-Gaussian and non-linear behavior.

We will employ the peak-background split (PBS), first at the level of the density field, δ, and

finally at the level of the optical depth, δτ . To start we will neglect redshift-space distortions,

deferring them until we discuss perturbation theory.

First we approximate the density field as a sum of long- and short-wavelength modes: δ =

δ` + δs + ν2δ`δs with ν2 = 34/21 the angle average of the Eulerian perturbation theory kernel,

F2 [48]. The ν2 term approximates the effects of non-linear mode coupling in this model. We

consider the case where δs is uncorrelated on the separation scale, r, of interest and δ` is a

Gaussian random variable (i.e. a “linear” mode). For an optical depth τ [δ] that is an arbitrary

local function of the nonlinear density we can write to first order in the long-wavelength density

τ [δ] = τ [δs + (1 + ν2δs)δ`] = τ [δs] + τ ′[δs](1 + ν2δs)δ` +O(δ2` ). (4.2)

suggesting that the (unnormalized) linear bias is bτ = 〈τ ′ + ν2δ τ
′〉s where primes stand for

derivatives with respect to the argument and the average is carried out in the absence of long

modes. This recovers the results of ref. [31], and indeed carries over without modification to

the linear flux bias in this limit as well given that it is just given by the composite map F [δ] =
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1 2
x

Figure 3. (Top) Contributions to the nonlinear density in the peak-background split. Solid points indicate

points in configuration space, while the solid and dashed lines refer to long and short modes which are

coupled with strength ν2 in the middle diagram. (Bottom) Diagrams indicating the terms that contribute

to the flux correlation function in the PBS approximation at order n in the optical depth. While the long

modes are Gaussian, the short modes can couple to itself at a point to arbitrary order, though not at

other points. We have omitted a similar diagram proportional to ν22 that has a corresponding short-mode

“bubble” on point on the right.

exp(−τ [δ]). This ease of translation does not carry over to redshift space however, as we will see

below.

Let us now treat the specific case where τ [δ] is given by a bias expansion. This will allow us

to anticipate qualitatively what happens within the full perturbation theory argument. Recalling

the δs are uncorrelated at separation r, the lowest order cumulant in real-space is

ξ(11)τ = 〈δτ1δτ2〉 = b21〈δ`1δ`2〉+
b1b2

2

〈
δ1 δ

2
2

〉
+ · · · (4.3)

where δτj = δτ(rj) and similarly for δ. While the higher order correlators of the purely Gaussian

piece, b1δ`, vanish, the higher order bias and mode coupling terms in the higher cumulants

generate contributions like 〈δ`1δ`2〉. Consider the b1b2 term above. Since δ22 contains 2δs2 ν2δ`2δs2
we have 〈

δ1 δ
2
2

〉
⊃ 2ν2 〈δ`1δs2δ`2δs2〉 = 2ν2

〈
δ2s
〉
ξL (4.4)

with ξL ≡ 〈δ`1δ`2〉 the long-mode density correlation function. This contribution depends upon

small-scale physics through 〈δ2s〉 and “renormalizes” the lowest order expression b21ξL [49]. We

will see a direct analog of this term in the next section. Another such term is

ξ(12)τ =
〈
δτ1 δτ

2
2

〉
⊃ 2b31ν2 〈(δ`1 + δs1) (δ`2 + δs2)δ`2δs2〉 ⊃ 2b31ν2

〈
δ2s
〉
ξL (4.5)

which also depends upon small-scale physics and “renormalizes” the lowest order term. Again,

there will be a direct analog in the next section. In fact there are an infinite number of such

terms that arise in the cumulant expansion.
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We can see the manner in which the higher order terms combine in the two-point function

calculation by simplifying our peak-background split model even further. Let us focus on the case

where the optical depth is some constant multiple of the nonlinear density, i.e. τ = τ0(1 + δ(x)),

with the density expressed via the PBS, as this form illustrates our point quite clearly. In this

limit the correlation function is simply

〈F (x1)F (x2)〉 = e−2τ0
∞∑
n=0

(−τ0)n

n!

( ∑
i=1,2

[
δ` + (1 + ν2δ`)δs

]
(xi)

)n
. (4.6)

Our assumption that the long and short modes are uncorrelated, and that the former is Gaussian,

then leads to three kinds of contributions to the correlation function, shown diagramatically

in Figure 3. First, the long modes can be contracted between the two points in the second

cumulant. Then, the contributions proportional to ν2 can couple either with the pure long-mode

or itself. Finally, the pure short-mode contributions must be contracted at a single point and,

along with the point contractions of the long modes, amount to the normalization, F 2
0 . From

these considerations we can extract terms directly proportional to the linear theory correlation

function in the cumulants at order n:

2n(n− 1)ν2
〈
δn−1s

〉
ξL + n(n− 1)ν22

n−2∑
m=0

〈
δm+1
s

〉 〈
δn−2−m+1
s

〉
ξL

where the combinatorial factors denote the number of possible contractions of long and short

modes. In particular, we will see in the next section that the n = 3 term exactly corresponds to

the UV-sensitive piece in perturbation theory for real space, with ν2 standing in for the matter

density kernel F2 and the bubble with
〈
δ2s
〉

standing in for the large momentum modes in the

integral. Summing up all the contributions and normalizing by the total flux yields

F 2
0 ξFF =

(〈
F ′[δ]

〉
s

+ ν2
〈
δ F ′[δ]

〉
s

)2

ξL +O(δ4` ). (4.7)

This agrees with the field-level derivation in Eq. 4.2, as well as similar results in refs. [27, 31, 32].

Let us close by noting the limitations of the above calculations. Firstly, the averages over

the short modes (e.g.
〈
δ2
〉
s
) depend on small scale physics like the suppression of density power

below the Jeans scale due to gas pressure and additional highly nonlinear astrophysical processes.

Moreover, the PBS calculations above assume that the nonlinearities involved can be modeled

as a single density coupling between long and short modes, given by a coefficient ν2 fixed by

second-order perturbation theory when there is in fact no restriction on higher-order couplings

or those involving velocities, which are themselves subject to different small scale nonlinearities

(e.g. turbulence). Despite these complications, however, the fact that on large scales the theory

prediction boils down to bias coefficients multiplying the linear correlation function is significant,

showing that the small scales can be modeled via a handful of effective-theory parameters even

without a full modelling of small scale astrophysics.

4.3 One-loop perturbation theory

In the previous section we looked at how the cumulants behaved in a simplified model. In this

section we will show that similar behavior occurs at 1-loop order in perturbation theory, where
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the proper inclusion of redshift-space distortions also gives rise to the phenomenon of velocity

bias. In redshift space we assume that the optical depth fluctuation is determined by shifting the

real space fluid element4

1 + δτs(r) =

∫
d3r̃ (1 + δτ(r̃)) δD

(
r− r̃− u‖n̂

)
, (4.8)

where u‖ is the tracer velocity component projected along the line of sight. This is equivalent

to the galaxy overdensity redshift space mapping and we are thus able to use the same Eulerian

perturbative kernels Zn (see e.g. [48]) to describe the perturbative orders of δτs field.

Compared to the standard 2-point function calculation for biased tracers in redshift space,

the Lyα calculation at 1-loop involves only one additional cumulant. This is because at 1-

loop order cumulants with more than three powers of the optical depth δτ vanish since, for

example, the fourth moment 〈δτδτδτδτ〉 ∼ 〈δτδτ〉 〈δτδτ〉 is given at leading order by disconnected

contributions. Starting from the Eq.(2.6) which constitutes the cumulant expansion for the flux

correlators, then, we have

ln
(

1 +
〈
δFδF ′

〉
s

)
= τ20 ξ

(11)
s (s)− τ30 ξ(12)s (s) +O(P 3

L). (4.9)

Exponentiating, expanding and keeping only the one-loop results we obtain the equivalent ex-

pression for the flux power spectrum

PFF (k) = τ20P
(11)
s (k)− τ30P (12)

s (k) +
1

2
τ40

∫
p
P (11)
s (p)P (11)

s (k− p) + · · · , (4.10)

where we have introduced the cumulant spectra

P (11)
s (k) =

∫
d3s ξ(11)s (s)eik·s and P (12)

s (k) =

∫
d3s ξ(12)s (s)eik·s, (4.11)

and the last term is obtained as the Fourier transform of the second term in the expansion of

the first cumulant. In order for this term to be consistently evaluated in one-loop perturbation

theory only linear level (Kaiser) contributions to P
(11)
s are required, besides the appropriate

counterterms that are also discussed in Appendix B.

The (11) cumulant is simply the redshift-space two-point function for biased tracers, which is

well known. Let us focus on the cumulant ξ
(12)
s . There are two contributions to this cumulant at

1-loop: 〈
δτ1δτ

2
2

〉
= 2

〈
δτ

(1)
1 δτ

(1)
2 δτ

(2)
2

〉
+
〈
δτ

(2)
1 δτ

(1)
2 δτ

(1)
2

〉
.

These are

P (12)
s ⊃ 2× 2Z1(k)P (k)

∫
d3p

(2π)3
Z1(p)Z2(k,p)P (p). (4.12)

and

P (12)
s ⊃ 2

∫
d3p

(2π)3
Z2(p, k − p)Z1(−p)Z1(p− k)P (p)P (k − p). (4.13)

4See also ref. [32] for some further discussion on the validity of this mapping for Lyα forests and the effects of

thermal broadening.
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The Zn are the order n perturbation theory kernels in redshift space ([48] and Appendix B) with

Z1(k1) = b1 + fµ21 and

Z2(k1,k2) = b1F2(k1,k2) + fµ2kG2(k1,k2) + · · ·

+
fkµk

2

[
µ1
k1

(b1 + fµ22) +
µ2
k2

(b1 + fµ21)

]
(4.14)

where µk = k̂ · n̂, k = k1 + k2 and F2 and G2 are the standard density and velocity kernels in

Eulerian perturbation theory [48]. (In the definitions above we have omitted the contributions

from higher-order bias such as b2 and bs for the sake of brevity. These do not qualitatively affect

our conclusions and the full calculation with all relevant terms included are detailed in Appendix

B.)

The integral in Equation 4.12 has a form where the linear power spectrum is multiplied by

a scale-dependent term that is sensitive to contributions from small-scale modes p � k. In the

large-scale (k → 0) limit we can write

Z1Z2 ⊃
(
b1 + f(p̂ · n̂)2

) [(5

7
+

2

7
[p̂ · k̂]2

)
b1 +

(
3

7
+

4

7
[p̂ · k̂]2

)
fµ2p +

fµ2p
2

(
b1 + f(k̂ · n̂)2

)]
.

The dependence on the long-wavelength wavevector k̂ can be pulled out of the above integrand

to give (see Appendix B)

P (12)
s (k)→ 2(b1 + fµ2k)(A0 +A2µ

2
k) σ

2PL(k) (4.15)

where σ2 =
∫
p PL(p) is the rms density contrast and A0,2 are functions of the bias parameters

and growth rate given in the Appendix B. The above form strongly suggests a modification to

the Kaiser form of redshift-space distortions[
(b1 + ∆b1) + (f + ∆bµ)µ2k

]2
PL(k) = (b1 + fµ2k)

2PL(k) + 2(b1 + fµ2k)(∆b1 + ∆bµµ
2
k)PL(k) + ...

However, it is important to note that the small-scale contributions ∆b1,µ need to have their UV

sensitivities renormalized by appropriate counterterms, so that their value cannot be determined

by the 1-loop calculation above.

Before moving on to the most general case let us comment briefly on some features of the

above calculation. Most importantly, the inclusion of redshift-space distortions produces a novel

feature, velocity bias, wherein the linear-theory prediction for biased tracers is modified when

applied to the Lyα flux. Previous studies [31, 32] of this effect have largely focused on the effect of

dynamical nonlinearities in the density; indeed, in the absence of RSD (i.e. f = 0) our derivation

recovers the PBS result in Equation 4.7 via the angular average ν2 = 2
〈

5/7 + 2(p̂ · k̂)2/7
〉

. A

new result in this paper is that in redshift space contributions coupling the orientation k̂ of the

long mode and the short modes contribute at equal order owing to both the nonlinear velocity

kernel (G2) and displacements due to the real-to-redshift-space mapping. Finally, a salient feature

of our derivation is that the k̂ dependence of the integrand can be written as∫
dΩp Z1(p)Z2(p,k) → a(0) + a

(2)
ij k̂ik̂j
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Figure 4. Diagramatic structure of nonlinearities contributing linear-theory-like terms. These consist of

pairs of nth order vertices with one long-wavelength leg (k,k′), with the other small-scale modes (p,q)

integrated out at each point, leading to a factorizable structure where nonlinear bubbles dress linear theory

at each point.

where the tensor a(2) is expressible in terms of δij and n̂i due to the axial symmetry of redshift-

space distortions. Thus while the coefficients themselves depend on complicated small-scale

physics the parametric contribution is only quadratic in µ2.

Lastly let us look at the stochastic contributions and Equation 4.13. As we have mentioned, the

structure of the P
(11)
s cumulant is equivalent to the galaxy case, see e.g. ref. [50] for expressions in

the same bias convention including a detailed discussion of stochastic contributions. Equation 4.13

generates the same functional form for stochastic contributions in the second cumulant in the

large-scale limit (Appendix B)

P (12)
s ⊃ “const0” + “const

(0)
2 ”

k2

k2?
+ “const

(2)
2 ”µ2

k2

k2?
+ . . . , (4.16)

which consequently renormalizes the contributions given in P
(11)
s . However, note that the higher

cumulants introduce an explicit dependence on the logarithmic growth rate f to the counterterms

“const0” and “const2”. Importantly, the scale independent, white noise contribution remains

isotropic.

4.4 General structure of the large-scale limit

While we have shown it explicitly for the 1-loop spectrum, the large-scale angular dependence

(the square of a quadratic in µ) holds beyond 1-loop. This can be established by looking at how

the mode-coupling kernels behave in the long-wavelength limit. The contribution going as P (k)

as k → 0 can be isolated by considering diagrams linking one power of the linear field at each

point with all other momenta contracted with themselves to give loops at each of the two vertices

(see Fig. 4). Defining

κ(a)n (k) =

∫
pi

K(a)
n (k, p1, ..., pn−1)

〈
δ0(p1)...δ0(pn−1) (2π)3δD(

∑
pi)
〉
, (4.17)

as the integral over the (n − 1)/2 short-wavelength loops at one vertex that comes from δτa at

nth order in the linear density (the last mode being the δ(k) to be contracted with the other

vertex) we see as k → 0 the diagram in Fig. 4 becomes

∑
a,b

∑
n,m

κ(a)n κ(b)m PL(k) =

(∑
a

∑
n

κ(a)n

)2

PL(k)→ b2(µ)PL(k) (k → 0) (4.18)
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where b(µ) is the large-scale asymptote of the sum of κ
(a)
n ’s which will tend to have non-constant

k dependence outside of that limit. That we can factor these diagrams simply into the square of

an angular-dependent bias factor b(µ) is a result of the independence of the loops on each side of

Fig. 4. This also directly implies that cross correlations with the Lyα forest can be parametrized

in the usual way, i.e.

P g,Lyα
s (k) = (bg1 + fµ2) bLyα(µ)PL(k)

at linear order. This raises the possibility of improving constraints on the growth rate through

“sample variance cancellation” [51] with biased tracers like quasars that obey the Kaiser form

even if Lyα does not5. Even though Lyα does not have a simple dependence on the growth rate,

f(z), as we will now show the functional dependence of b(µ) is itself limited to two free parameters

which can be leveraged in the modeling. Futhermore, we note that at the 1-loop level κ
(a)
n can

also be used to capture all P (13) type contributions by expanding κ
(a)
n ⊃ α0k

2 + α2k
2µ2 + · · ·

beyond zeroth order in the wavevector.

To complete the picture we need to show that b(µ) is at most quadratic in µ. As a first step

we note that, as was the case in the 1-loop case (Eq. 4.12), the nth order kernel contributing to

δτa, K
(a)
n , can be written as a product of redshift-space kernels Zn, only one of which contains

the long mode k. The problem can then be reduced to the angular structure of the redshift-space

kernels alone, which indeed must truncate at k̂ik̂j as we show in Appendix C as a consequence

of the structure of dynamical nonlinearities in structure formation. This implies that b(µ) must

be quadratic in µ to all orders in perturbation theory.

Let us close with some comments on how this argument may be extended to operators beyond

linear bias. As we have shown above, modifications to the Kaiser formula arising from short

modes contracted at a point lead to a factorable but anisotropic bias term. We can extend this

argument to the case of multiple long modes

κ(a)n (k1, ...,km) =

∫
pi

K(a)
n (k1, ...km, p1, ..., pn−m)

〈
δ0(p1)...δ0(pn−m) (2π)3δD(

∑
pi)
〉
. (4.19)

Such contributions will need to be renormalized with their own (anisotropic) counterterms which

will again be limited in their forms by the structure of dynamical nonlinearities in the equations

of motion (i.e. Zn). Recently, refs. [34, 36] proposed a second-order anisotropic bias basis in

the context of Lyα and a third-order one for generic biased tracers with line-of-sight selection

effects. In Appendix C, we briefly sketch the kinds of terms that are generated from the procedure

outlined above, showing that they appear to be well-parametrized by the bases proposed in those

works. We intend to return to a more systematic study of these terms and further constraints on

their forms due to fundamental symmetries [53] in a future work.

5 Conclusions

Modern surveys capable of measuring the spectra of hundreds of thousands or millions of distant

objects with modest signal to noise per Å can tightly constrain the flux decrement power spectrum

5Indeed, soon after this paper was submitted [52] reported promising results on high-redshift growth rate

measurements via Lyα-quasar cross correlations using this technique.
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on cosmological scales [54, 55]. In turn this provides tight constraints on the distance-redshift

relation [16] and provides a new method for measuring the clustering of high redshift objects [56].

The transmitted flux in the Lyα forest probes the underlying density field in a non-linear

manner, but on large scales the flux power spectrum is proportional to that predicted in linear

perturbation theory [16]. In this paper we have investigated how large- and small-scale physics

affect the measured power spectrum by expanding the flux correlation function in cumulants of

the optical depth field (Eq. 2.6). Since the optical depth can be related to the density field by a

bias expansion (Eq. 2.1), this provides a direct connection between the large-scale, cosmological

physics of interest and the measurement. Our formalism gives a systematic means of computing

corrections to the flux power spectrum arising from non-linearities, redshift-space distortions

and scale dependent bias. It provides an easy way to see the emergence of “velocity bias” in

the measured Lyα forest power spectrum in redshift space and the manner in which small-scale

physics (i.e. “astrophysics”) affects the prediction.

We demonstrated in some idealized numerical experiments (§3) that the convergence of the

cumulant expansion does not behave as one might expect from experience with the matter power

spectrum in cosmological perturbation theory. Higher cumulants affect the flux correlation func-

tion at both large and small scales, rather than being confined to increasingly small scales.

To understand the way in which non-linearities, redshift-space distortions and scale dependent

bias affect the flux correlation function, we have presented a perturbative analysis of the flux two-

point function due to nonlinearities in the exponential mapping within the peak-background split

(§4.2), 1-loop perturbation theory (§4.3), and general considerations of the structure of the equa-

tions of motion (§4.4). While the clustering signal for galaxies in redshift space has an “unbiased”

contribution due to cosmic velocities given by the Kaiser form (b1 + fµ2)2PL(k), it is well known

[15, 16, 57, 58] that the Lyα forest breaks this simple form. Within the framework of effective

perturbation theory this is due to the presence of contact terms from higher cumulants which

modify the large-scale limit of the power spectrum away from the Kaiser form but preserves the

“square of a quadratic in µ” behavior. While previous works have shown this within the context

of density nonlinearities and the peak background split, we show using a 1-loop calculation that

nonlinear contributions to the velocity, as well as displacements due to redshift-space distortions,

contribute at equal order. Extending from this example we show that the quadratic-in-µ form

is preserved to all orders in perturbation theory based on the structure of the equations of mo-

tion alone and outline how higher-order bias terms can be similarly generated, making connection

with the anisotropic bases of refs. [34, 36] and commenting on the possibility for cross correlations

and sample variance cancellation. It is worth noting that this analysis of velocity bias should

qualitatively extend to less tractable (non-exponential) maps of redshift-space density fields, as

has been for example observed in the clustering of cosmic voids [59].

Our calculations demonstrate that for Lyα, unlike for galaxies, both the isotropic and anisotropic

contributions to the clustering depend on small-scale astrophysics. In particular, the coefficients

of both the µ0 and µ2 terms in the linear bias receive contributions from small-scale physics

at arbitrary order. While of little direct relevance for measuring distances using baryon acous-

tic oscillations, this fact has immediate implications for extracting physics from the broad-band

shape of the Lyα forest flux power spectrum. If we identify the piece of the spectrum that

can be predicted perturbatively with “cosmological information” and the small-scale physics as
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“astrophysical information” we see that the Lyα forest contains an irreducibly complex mixture

of the two. At the practical level this leads to a larger number of coefficients that need to be

modeled or fit to measurements, which necessarily reduces the amount of information that can

be obtained. However unlike for the case of galaxies, the Lyα forest can be simulated quite well

which may provide a means of using informative priors on the coefficients to improve constraints.

An interesting avenue of further investigation may be to measure these coefficients in simulations

via the recently developed anisotropic separate universe simulation technique [60, 61], as was

already done approximately in [57]. Such methods enable the measurment of responses of e.g.

Lyα clustering to large-scale tidal fields with nontrivial angular dependence such as those consid-

ered in this work (encoded in κ
(a)
n (k) of Eqn. 4.18). The feasibility of accurate hydrodynamical

modeling of the Lyα forest on small scales and the fact that the impact of these physics on the

broadband shape of the correlation function on large scales can be isolated into single coefficients

measurable from such simulations suggests that accurate full-shape analyses of the Lyα forest

are possible even if simulations and perturbation theory are individually restricted to small and

large scales.

Finally, let us briefly comment on the implications of our work for the Lyα forest BAO feature.

It is well known that non-linear evolution causes a broadening of the BAO peak in the correlation

function of galaxies [62–68] and, similar measurements being one of the premier science goals for

the Lyα forest, it is interesting to ask whether the BAO peak in the flux correlation function

is similarly broadened. Our formalism provides a means to answer this question, since we can

treat δτ as a biased tracer of the density field for which the role of long-wavelength displacements

responsible for the damping are well understood and then relate cumulants of δτ to the flux

correlation function using Eq. (2.6). What our calculations make clear, however, is that the

broadening of the BAO peak in the Lyα forest will be different at each (higher) order in optical

depth than it is for tracers such as galaxies or QSOs. Each of the cumulants in Eq. (2.6)

responds to the long wavelengths differently, and thus the broadening has the potential to be

more complex than a single exponential damping factor sometimes used in the literature. We

defer further investigation of this to future work.
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A Exponential mapping and the 2-point function

A.1 Flux autocorrelation

The two point function of the flux field is given by〈
F (x)F (x′)

〉
F

= F 2
0

〈
1 +

〈
δF (x)δF (x′)

〉
δF

)
=
〈
e−τ(x)−τ(x

′)
〉
τ

(A.1)

where the subscripts on 〈· · · 〉 indicates which distribution is used in the average. We will make

use of the cumulant expansion to simplify this expression. Defining

Zτ (J) = ln

〈
exp

[∫
dx J(x)τ(x)

]〉
τ

and
〈
τmx τ

n−m
x′

〉
τ,c
≡ ∂n

∂Jmx ∂J
n−m
x′

Zτ

∣∣∣∣
J=0

(A.2)

we see the cumulant is the coefficient of Jmx J
n−m
x′ /m!/(n−m)! in the expansion of Zτ . Rewriting

1/m!/(n−m)! as
(
n
m

)
/n! and using

F 2
0 = exp

(
2
∞∑
n=1

(−1)n

n!
〈τn〉c

)
(A.3)

we have

1 +
〈
δFδF ′

〉
δF

= exp

[ ∞∑
n=2

(−1)n

n!
Cn

]
with Cn =

n−1∑
m=1

(
n

m

)〈
τmτ ′n−m

〉
τ,c

(A.4)

where we have used the shorthand τ ′ = τ(x′).

We want to express these correlators in terms of fluctuations of optical depth δτ . Replacing

τ(x) = τ0(1 + δτ(x)) in the definition of Zτ it follows that〈
τmτ ′n−m

〉
τ,c

=
dm

dJm
dn−m

dJ ′n−m
Zτ (J)

∣∣∣
J=0

=
dm

dJm
dn−m

dJ ′n−m

[
τ0

∫
J + Zδτ (τ0J)

]∣∣∣
J=0

. (A.5)

Since n ≥ 2 the τ0
∫
J term does not contribute and we have 〈τmτ ′n−m〉τ,c = τn0 〈δτmδτ ′n−m〉δτ,c.

Introducing

ξ(ij)(r) =
〈
δτ iδτ ′j

〉
δτ,c

, r = x− x′, (A.6)

we have

Cn(r) = τn0

n−1∑
m=1

(
n

m

)
ξ(m,n−m)(r), (A.7)

and thus

ln
(

1 +
〈
δFδF ′

〉 )
=
∞∑
n=2

(−1)n

n!
Cn(r) (A.8)

=

∞∑
n=2

τn0

[
1 + (−1)n

2(n/2)!
ξ(n/2,n/2)(r) + 2

(−1)n

n!

bn−1
2
c∑

m=1

(
n

m

)
ξ(m,n−m)(r)

]
. (A.9)

Note that the cumulants, ξ(n,m), contain the large–scale physics but the overall expression is

complex which explains why the flux correlation function can look like linear theory on large

scales but have complex, scale-dependent bias factors on smaller scales.
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A.2 Flux-quasar cross correlations

Let us briefly comment on the modeling of cross-correlations of the flux field with another tracer of

large-scale structure, e.g. quasars or damped Lyα systems. As we did for the flux auto-spectrum

we shall neglect important observational issues such as continuum fitting, high column density

systems, the proximity effect, etc. and focus on the intrinsic signal. Thus we seek to model e.g.〈
(1 + δQ)e−τ

〉
= F0 +

〈
δQe

−τ〉 = F0 (1 + ξ×) (A.10)

In perturbation theory we would write δQ as an expansion in powers of the matter overdensity,

δ. We can proceed by considering the generating function Z×(J,K) = ln 〈exp [Jτ +Kδ]〉 where

τ = τ(x) and δ = δ(x′). As usual we define the cumulants6 as

κm,n =
∂m+n

∂Jm∂Kn
Z×

∣∣∣∣
J=K=0

(A.11)

so that κm,n is the coefficient of JmKn/m!/n! in the expansion of Z× and

〈
eKδ+Jτ

〉
δ,τ

= exp

[∑
m,n

JmKn

m!n!
κm,n

]
. (A.12)

Taking J = −1 and considering K-derivatives of the above (then setting K = 0) it is straightfor-

ward to show that

〈
δne−τ

〉
= F0

∑
m

(−1)m

m!
κm,n , F0 = exp

[∑
m

(−1)m

m!
κm,0

]
. (A.13)

If we use this formula with the normal bias expansions for δQ and δτ the form of ξ× quickly

follows.

B Eulerian perturbation theory calculation

In this appendix we give details of the redshift-space τ cumulants at one-loop order in (standard)

Eulerian perturbation theory. We include this calculation because the formalism may be familiar

to many readers, and to make connection with similar calculations within this framework.

At linear order the second cumulant gives the usual super-cluster infall effect which in Fourier

space takes P → (b1+fµ2)2P [69]. Beyond linear theory the second cumulant remains equivalent

to the redshift-space correlation function of a biased tracer, so we will not repeat the expression

here but refer readers to e.g. ref. [50] and the previous appendix for the expression with the same

biasing convention. We note that some of these loop contributions are proportional to the linear

P (k) on large scales, modifying the amplitude of this term by factors depending upon small-scale

physics. Also, at one-loop order any correlator involving four powers of τ must be disconnected,

so the fourth cumulant vanishes. This leaves us with the third cumulant,
〈
δτ1δτ

2
2

〉
, which we

now compute. Our focus will be on the terms most sensitive to small-scale physics, the so-called

UV-sensitive terms.
6For this section we find it easier to use cumulants of τ rather than δτ as it leads to slightly more compact

expressions. The two differ only by powers of τ0 and a constant for the first cumulant.
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There are two contributions to the third cumulant quadratic in the linear power spectrum:〈
δτ1δτ

2
2

〉
= 2

〈
δτ

(1)
1 δτ

(1)
2 δτ

(2)
2

〉
+
〈
δτ

(2)
1 δτ

(1)
2 δτ

(1)
2

〉
. (B.1)

The first is

FT
〈
δτ (1)s (r1) δτ

(1)
s δτ (2)s (r2)

〉
= 2Z1(k)P (k)

∫
d3p

(2π)3
Z1(p)Z2(k,p)P (p). (B.2)

The first and second order redshift space kernels are given by [48]

Z1(k1) = b1 + fµ21 (B.3)

and

Z2(k1,k2) = b1F2(k1,k2) + fµ2kG2(k1,k2) +
b2
2

+ bs

(
(k1 · k2)

2

k21k
2
2

− 1

3

)
+
fkµk

2

[
µ1
k1

(b1 + fµ22) +
µ2
k2

(b1 + fµ21)

]
(B.4)

where µk = k̂ · n̂, k = k1 + k2 and F2 and G2 are the standard density and velocity kernels in

Eulerian perturbation theory [48]:

F2(k1,k2) =
5

7
+

1

2

k1 · k2

k1k2

(
k1
k2

+
k2
k1

)
+

2

7

(k1 · k2)
2

k21k
2
2

(B.5)

G2(k1,k2) =
3

7
+

1

2

k1 · k2

k1k2

(
k1
k2

+
k2
k1

)
+

4

7

(k1 · k2)
2

k21k
2
2

(B.6)

To isolate the pieces sensitive to small-scale physics, let us take the k→ 0 limit of the integrand

in Equation B.2 (or more correctly consider k � p). Dropping the terms that are odd in p̂ we

get

Z2(k,p)→

[
b1

(
5

7
+

2

7
[p̂ · k̂]2

)
+

(
3

7
+

4

7
[p̂ · k̂]2 +

b1
2

+
fµ2k

2

)
fµ2p +

b2
2

+ bs

(
[p̂ · k̂]2 − 1

3

)]
.

Using the angular averages∫
dΩp

4π
(k̂ · p̂)2 =

1

3
,

∫
dΩp

4π
(k̂ · p̂)2(n̂ · p̂)2 =

1 + 2µ2k
15

,

∫
dΩp

4π
(k̂ · p̂)2(n̂ · p̂)4 =

1 + 4µ2k
35

(B.7)

Equation (B.2) then becomes

2σ2(b1 + fµ2k)

([
5

7

(
b1 +

f

3

)
+

2

7

(
b1
3

+
1 + 2µ2k

15
f

)
+
b2
2

]
b1

+

[
3

7

(
b1
3

+
f

5

)
+

4

7

(
1 + 2µ2k

15
b1 +

1 + 4µ2k
35

f

)
+
b2
6

+

(
1 + 2µ2k

15
− 1

9

)
bs

]
f

+
f

2
(b1 + fµ2k)

(
b1
3

+
f

5

))
P (k) (B.8)
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where

σ2 =

∫
p2 dp

2π2
P (p) . (B.9)

As k → 0 this is of the form

2 (A0 +A2µ
2)(b1 + fµ2) σ2 P (k) (B.10)

with

A0 =
17b21
21

+
46b1f

105
+
b21f

6
+

5f2

49
+
b1f

2

10
+
b1b2

2
+
fb2
6
− 2fbs

45
(B.11)

A2 =
4b1f

35
+

16f2

245
+
b1f

2

6
+
f3

10
+

2fbs
15

. (B.12)

Note that this has similar angular structure to the linear theory result, but the coefficients of

the powers of µ are different and depend upon large momenta in the integral over P , i.e. on

small-scale physics.

Similarly, the second contribution is given by

FT
〈
τ (2)|τ (1)τ (1)

〉
= 2

∫
d3p

(2π)3
Z2(p, k − p)Z1(−p)Z1(p− k)P (p)P (k − p)

→ “const0” + “const
(0)
2 ”

k2

k2?
+ “const

(2)
2 ”µ2

k2

k2?
+ . . . (k → 0) (B.13)

Taking the same limit in this equation simply produces a constant at leading order in k, which

leads to a δ-function in configuration space.

C General structure in the large-scale limit

In this appendix we fill in the technical details of the argument in Section 4.4 and consider in

general terms the effects of loop contributions beyond those enumerated in the previous appendix.

We shall focus on those that renormalize the linear theory predictions while commenting briefly

at the end on contributions beyond it.

C.1 Renormalizing linear theory

As in the main text let us write the order n contribution to the δτm as∫
p1...pn

K(m)
n (p1, ..., pn) δ0(p1)...δ0(pn) (2π)3δD(k −

∑
pi). (C.1)

The contributions of interest come from those linking only one power of the linear field between

two points (Fig. 4)∫
k,pi

∫
k′,qi

K(a)
n (k, p1, ..., pn−1)K

(b)
m (k′, q1, ..., qm−1)〈

δ0(k)δ0(p1)...δ0(pn−1) (2π)3δD(
∑

pi) δ0(k
′)δ0(q1)...δ0(qn−1) (2π)3δD(

∑
qi)
〉
.
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Contracting the k, k′ modes yields the contribution

(2π)3δD(k + k′) κan(k) κbm(k) P (k) (C.2)

where we have defined

κ(a)n =

∫
pi

K(a)
n (k, p1, ..., pn−1)

〈
δ0(p1)...δ0(pn−1) (2π)3δD(

∑
pi)
〉

(C.3)

which can depend on µ at leading order in k as evident in our explicit calculation for a, b =

1, 2. That these contributions can all be so factored implies that the total contribution to the

correlation function logarithm can be summarized by a single renormalized linear bias factor

FT{ln(1 + ξFF )} ⊃
∑
a,b

κ(a)κ(b)P (k) =
(∑

a

κ(a)
)2

P (k)→ b2(µ)P (k) as k → 0 (C.4)

where we have defined κ(a) =
∑

n κ
(a)
n .

Let us now consider the structure of b(µ) by inspecting the large scale (k → 0) limit. To do so

we expand the kernels K
(a)
n in k to consider the O(k0) contributions. Generically this will take

the form

lim
k→0

K(a)
n (k, p1, ..., pn−1) = a(0) + a

(2)
ij k̂ik̂j + a

(4)
ijklk̂ik̂j k̂kk̂l + ... (C.5)

The coefficients a(n) come from integrating over the pi modes and, by the symmetries of the

problem, must be factorable into products of the Kronecker δ and the line-of-sight direction n̂.

They are defined to be order O(k0) so are the relevant contributions in the large scale limit.

Indeed we can see that the integrals in Equation B.7 fall into this form and truncate at a
(2)
ij . The

µ dependence of b(µ) therefore depends on at what order in k̂ this expansion truncates. As a

first simplifying step we note that K
(a)
n are products of redshift-space densities in configuration

space, i.e. convolutions of nth order redshift-space kernels in Fourier space, that is

K(a)
n (k, p1, ..., pn) = Zn1(k, p1, ..., pn1−1) Zn2(pn1 , ...) Zn3(pn1+n2 , ...) ... (C.6)

with conservation of momentum enforced by a delta function when integrating over k, pi. Since

k only appears in one of the Zni it is sufficient to look at these independently.

In fact, the redshift-space kernels can themselves be decomposed into constituent density,

velocity and bias kernels. Specifically we can write [48]

δs(k) =
∞∑
n=0

∫
ki

[
δ(k1) + fµ21θ(k1)

] (fµk)n−1

(n− 1)!

µ2
k2
θ(k2)...

µn
kn
θ(kn)(2π)3δD(k−

∑
i

ki). (C.7)

From this structure we can deduce that for each power of δ or θ either (a) they are linear modes

with momentum ki, in which case their k̂i dependence can either come from a µ2i or µi/k or

(b) they are nonlinear modes with total momentum ki dominated by short modes with one long

mode p hidden inside, in which case the angular dependence on the long mode depends solely on

the nonlinear kernel of δ or θ since µi doesn’t depend on p to lower order.
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Indeed, the nonlinear bias and matter kernels also satisfy this structure. Let us begin with

the latter as an instructive example. The nonlinear matter density and velocity kernels Fn and

Gn obey recursion relations that take the schematic form [48]

Fn(q1, ...,qn) ∼ Gm(q1, ...,qm)
(
α(k1,k2)Fn−m(qm+1, ...,qn) + β(k1,k2)Gn−m(qm+1, ...,qn)

)
where we have omitted the implied sum over m and numerical factors, and defined [48]

α(k1,k2) =
k12 · k1

k21
, β(k1,k2) =

k212(k1 · k2)

2k21k
2
2

, (C.8)

with k1 = q1 + ...+ qm, k2 = qm+1 + ...+ qn and k12 = k1 + k2. The velocity kernels, Gn, have

the same form. We are interested in the limit where one of the momenta (p) is much smaller

than the others, such that it can be ignored when summed with other momenta, qi. In this

limit we see that the leading contribution of p to the denominators of α and β are at most order

O(p2) when m = 1, n − 1, and O(p0) otherwise. However in both of these cases they multiply

F1, G1 = 1. Thus in general the terms contributing to kernels at order n have denominators 1/p2

coming from α, β or from the F ’s and G’s themselves, which do not produce additional orders

when multiplied because they carry different momenta. This implies that each term has at most

p2 in the denominator. This then implies that expansion as in Equation C.5 must terminate at

pipj/p
2 = p̂ip̂j . Recently, [53] showed that all real-space bias operators can be expressed at each

order by combining lower-order operators X,Y though

XY,
(
∂iX

)( ∂i
∂2
Y
)
,
(∂i∂j
∂2

X
)(∂i∂j

∂2
Y
)

(C.9)

e.g. the quadratic shear bias can be formed by applying the third combination to the linear

operator δ. From a similar argument about joining operators that we used in the redshift-

space formula above we can conclude that no real-space bias operator can produce a dependence

on long modes more complicated than second-order in k̂ using just the structure of dynamical

nonlinearities in structure formation.

C.2 Two and more soft modes

We can also extend the arguments of the previous subsection to the response of the flux field to

more than one long-wavelength mode. To do so it is necessary to consider the nth order kernel

above with more than one long-wavelength mode, i.e.

κ(a)n (k1,k2) =

∫
pi

K(a)
n (k1, k2, , p1, ..., pn−2)

〈
δ0(p1)...δ0(pn−m) (2π)3δD(

∑
pi)
〉
. (C.10)

We can consider two cases. In one the two soft modes can eventually be reduced to two different

redshift-space kernels, i.e. Zn1(k1, p1, ...)Zn2(k2, p2, ...) in which case previous arguments imply

factorizable forms like

δ(p)
qzqz
q2

δ(q),
pzpz
p2

δ(p) δ(q),
pzpz
p2

δ(p)
qzqz
q2

δ(q). (C.11)
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However, these two linear modes can also be coupled by nonlinearities. For this argument it

will be useful to write down the general form of anisotropic couplings induced by redshift-space

distortions; from Section 3 of ref. [70] we can see that these generally take the form of

αs(k1,k2) =
k1,z(k1,z + k2,z)

k21
∼ X n̂in̂j

∂i∂j
∂2

Y, (n̂i∂iX) n̂j
∂j
∂2
Y (C.12)

βs(k1,k2) =
(k1 + k2)

2k1,zk2,z
2k21k

2
2

∼ (n̂i∂iX) n̂j
∂j
∂2
Y,
(∂i∂n̂
∂2

X
)(∂i∂n̂

∂2
Y
)
. (C.13)

There are essentially two cases of this—they can be couple by real-space nonlinearities, with

anisotropy introduced “in front” e.g. µ2p+qGn(p, q, ...) or directly coupled in an anisotropic way

i.e. p̂ip̂zδ(p) q̂iq̂zδ(q). At quadratic order this recovers the terms in ref. [34], though we have

neglected displacement effects due to operators in the form of ∂i/∂
2, whose coefficients can be

fixed by equivalence-principle considerations [53]. We intend to return to this topic in a future

work.
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