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Abstract. Line intensity mapping (LIM) is a rapidly emerging technique for constraining
cosmology and galaxy formation using multi-frequency, low angular resolution maps. Many
LIM applications crucially rely on cross-correlations of two line intensity maps, or of intensity
maps with galaxy surveys or galaxy/CMB lensing. We present a consistent halo model to
predict all these cross-correlations and enable joint analyses, in 3D redshift-space and for 2D
projected maps. We extend the conditional luminosity function formalism to the multi-line
case, to consistently account for correlated scatter between multiple galaxy line luminosities.
This allows us to model the scale-dependent decorrelation between two line intensity maps, a
key input for foreground rejection and for approaches that estimate auto-spectra from cross-
spectra. This also enables LIM cross-correlations to reveal astrophysical properties of the
interstellar medium inacessible with LIM auto-spectra. We expose the different sources of
luminosity scatter or “line noise” in LIM, and clarify their effects on the 1-halo and galaxy
shot noise terms. In particular, we show that the effective number density of halos can in
some cases exceed that of galaxies, counterintuitively. Using observational and simulation
input, we implement this halo model for the Hα, [Oiii], Lyman-α, CO and [Cii] lines. We
encourage observers and simulators to measure galaxy luminosity correlation coefficients
for pairs of lines whenever possible. Our code is publicly available at https://github.

com/EmmanuelSchaan/HaloGen/tree/LIM. In a companion paper, we use this halo model
formalism and code to highlight the degeneracies between cosmology and astrophysics in
LIM, and to compare the LIM observables to galaxy detection for a number of surveys.
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1 Introduction

Our ability to measure the large-scale structure of the Universe is improving rapidly, providing
a promising means to study a wide variety of topics from theories of the early Universe to
the formation and evolution of galaxies within the evolving cosmic web. The high redshift
Universe, in particular, combines a large cosmological volume for precise statistical inference
with a more linear density field which can be more reliably modeled and which is better
correlated with the initial conditions.

Line intensity mapping (LIM) has emerged as a promising means of efficiently mapping
the high z Universe in 3D with a high density of tracers over a large fraction of the sky
[1, 2]. LIM refers to a low resolution, spectroscopic survey to measure integrated flux from
unresolved sources on large areas of sky at different frequencies. LIM surveys capture the
largest elements of the cosmic web and map out the distribution of matter in very large
cosmological volumes in a fast and efficient manner, with good radial resolution. In this
paper we will focus on LIM in optical/infra-red and sub-mm bands. More specifically, we
implement a halo model for the following lines: Hα (656.28 nm), Lyman-α (121.6 nm), [Oiii]
(495.9 nm and 500.7 nm), [Cii] (158 µm) and CO 1-0 (2.6 mm). Although we are leaving
aside the field of radio-frequency LIM (for a recent survey of this area, see refs. [3, 4]), the
formalism presented here applies identically to the post-reionization 21 cm.

While they can be efficient, LIM surveys are not without their challenges. Confusion
among different lines from different redshifts observed at the same frequency provides a
fundamental challenge to tomographic measurements. To tackle these issues, many methods
have been proposed (see [1, 5] for a summary). Continuum interlopers can be controled
by masking Fourier modes that vary slowly along the line of sight (LOS), corresponding
to smooth spectral energy distributions. Line interlopers can be reduced in some cases by
masking bright voxels, secondary line identification, cross-correlation with a contaminant
template (such as a catalog of unwanted sources). Interlopers at a different redshift can
cause a detectable anisotropy in the power spectrum, analogous to the Alcock-Paczynski
effect [6, 7]. In many cases, cross-correlations of different lines [7], or of a line with a galaxy
survey or with CMB lensing, allow one to suppress uncorrelated foregrounds [8–12]. This
way, cross-correlations may be the path towards unbiased astrophysical and cosmological
constraints at high redshift.

In this case, an accurate model of auto and cross power spectra is required. Galaxy
luminosities in two different lines are generally not perfectly correlated. As a result, two
intensity maps from the same galaxies in two different lines are not perfectly correlated either.
The level of decorrelation determines the ability to use one of the lines as a proxy for the
other, as in foreground cleaning. Accurately modeling the level of decorrelation is also crucial
for estimating auto-spectra from observed cross-spectra, and to use LIM cross-correlations as
astrophysical probes. Such modeling is generally achieved with semi-analytical models [13–
19], frequently based on insights from hydrodynamical simulations [20–23] and spectroscopic
surveys [24–28]. In this paper, we extend the conditional luminosity function (CLF [29])
formalism to the multivariate case, in order to correctly model the correlated scatter between
different lines from the same galaxy. We build a new halo model [30, 31] upon this multi-line
CLF, to predict the auto- and cross-spectra of intensity maps in different lines, including any
potential decorrelation. This formalism consistently predicts cross-correlations of LIM with
galaxy surveys, and galaxy and cosmic microwave background lensing (Appendix. B.2).

Because the galaxy populations at high redshifts are currently highly uncertain, predic-
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tions based on different observed or simulated galaxy luminosity functions can differ wildly.
In this paper, we thus do not mean to improve the accuracy of existing models for the
LIM auto-spectra. Our predicted power spectra may differ significantly from others in the
literature relying on different input. Instead, our goal is to provide a unified formalism, to
consistently convert luminosity function inputs into joint predictions of the LIM auto-spectra,
cross-spectra, and their cross-correlations with galaxy surveys and galaxy and CMB lensing.

We finish with a brief outline of the paper. In §2, we derive the general halo model
based on the multivariate CLF formalism, to consistently predict the mean intensity and
power spectrum of LIM and galaxy clustering in redshift-space and projected maps. We
highlight the importance of scatter in galaxy and halo luminosities, and their effects on the
auto and cross-power spectra. In §3, we review existing observational constraints on the
LIM model derived in §2 for optical, UV and far IR lines. Specifically, we focus on the Hα,
[Oiii], Lyman-α, CO and [Cii] lines. Finally, we use the multi-line halo model to quantify the
decorrelation between intensity maps in different lines, a key quantity for several methods
of line deconfusion. In the companion paper [32], we apply our formalism to highlight the
degeneracies between astrophysics and cosmology with LIM. There, we compare the LIM
observables to galaxy detection as probes of faint galaxies and tracers of the matter density
field.

Throughout this paper, we assume a flat ΛCDM cosmology from ref. [33], with ΩCDM =
0.267, Ωb = 0.0493, H0 = 67.12 km/s/Mpc, AS = 2.3 × 10−9, ns = 0.9624, Neff = 3.046
with massless neutrinos. All distances, volumes and wavevectors are quoted in comoving
units, and typically in h−1Mpc or hMpc−1 units unless otherwise specified. Halo masses
refer to virial masses in h−1M�, defined as the mass enclosed within the virial radius, where
the density is a factor ∆vir crit(z) = 18π2 + 82 [Ωm(z)− 1]− 39 [Ωm(z)− 1]2 higher than the
critical density ρcrit(z) [34]. In all the halo model calculations, we make use of the Sheth &
Tormen halo mass distribution function and linear bias [35]. We summarize the key symbols
used in this paper in Table 1.

2 Multi-line halo model formalism

In this section, we present our halo model formalism, based on the conditional luminosity
function. In the companion paper [32], we use this formalism to quantify the detectability of
various line power spectra, disentangle the cosmological and astrophysical information, and
compare LIM to galaxy detection.

2.1 Origin of nebular emission lines & line correlations

The lines of interest to us come from hot (104 K) clouds of interstellar gas that are heated,
excited and ionized by ultraviolet photons (and the associated photoelectrons) from nearby
hot stars or white dwarfs. These lines have long served as a major source of information about
astrophysical phenomena in galaxies, such as star formation rate, metallicity, gas density and
temperature [19, 36–38]. However, understanding the physical origin of nebular emission lines
is also crucial for cosmology. Indeed, it determines which galaxies and which halos, are most
effective at producing a given line. This in turn determines whether the corresponding line
intensity map is a useful tracer of the matter density field, through the value of its bias and
shot noise (of galaxies and halos). The physical origin of nebular emission lines also informs
the level of correlation between a galaxy’s luminosity in two different lines. Indeed, two lines
produced in the same regions (e.g., Hii regions) will likely be more correlated than lines
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produced in distinct regions (e.g., photodissociation region and supernova remnant). As we
show in this paper, this has implications for, e.g., our ability to undo the contamination from
line interlopers, and thus for constraining cosmology from LIM. For this reason, we briefly
summarize the physical origin of nebular emission lines, based on existing thorough reviews
[36, 39–41], and illustrate it in Fig. 1.

At nebular densities, collisions are largely unimportant for the H and He lines we see,
which are recombination lines. In many nebulae, all Lyman line photons are absorbed by
other atoms (case B recombination). In this scenario the number of optical, Balmer pho-
tons (e.g. Hα and Hβ) equals the number of ionizing photons emitted by the stars. The
level populations depend weakly on electron density and temperature so the line ratios are
largely fixed by atomic physics, though observed line luminosities are additionally sensitive
to absorption and dust attenuation within the nebula and in the interstellar medium. The
situation is more complex for other lines. For example the strength of the collisionally ionized
[Oii] and [Oiii] optical lines depends upon metallicity and excitation state of the gas, and is
more sensitive to dust extinction. The relative strength of the IR CO transitions is sensitive
to a nearly degenerate combination of H2 gas density and temperature, with higher J lines
being associated with warmer and denser gas. The strength of collisionally excited heavy
element lines, relative to hydrogen recombination lines, is determined by the hardness of the
ionizing radiation field (see §7.4 and Eq. 11 in [39]). In addition, there can be multiple gas
components within a galaxy, each with differing metallicity and dust redenning, impacting
the line ratios of optical and UV lines (e.g. Hα, [Oii] and [Oiii]) [42, 43], and far IR lines (e.g.
the various CO transitions) [44]. As expected, metallicity has a strong effect on the relative
flux of lines of different atomic species, and dust has a large effect on the relative flux of lines
widely separated in frequency. Finally, it is expected that gas fraction, density, temperature,
pressure, metallicity and the intensity and hardness of the radiation field will evolve strongly
with redshift.

HII region PDR GMC

Planetary nebula

Supernova shock

H⍺, H!, H", H#,  
[NII]6584A,  
[SIII]9071A, [OIII]5008A, 
[OIII]52$m, [OIII]88$m, 
[NII]122$m, [CII]158$m

H2, CO 
[CII]158$m  
[OI]63$m

H2, CO 
[SiII]34$m

Atomic gas
HI

H⍺, [OIII]5008A

[CII]158$m, [OI]63$m

Figure 1. The line emission of a given galaxy is the sum of the contributions from the atomic
gas, giant molecular clouds (GMC), photodissociation regions (PDR), Hii regions around bright star,
as well planetary nebulae and supernova remnants. The luminosities of lines coming from the same
regions inside a galaxy are likely to be highly correlated.
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2.2 Multi-line CLF: Jointly modeling multiple line intensities and power spectra

One particularly clear way of formalizing the evolution of galaxy properties and their depen-
dence on the host halo mass is through the use of the “conditional luminosity function” (CLF;
[29]), which we generalize to allow multiple luminosities (for the continuum and each line of
interest). We introduce the multivariate conditional luminosity function φ (L1, ..., Ln|m) such
that φ (L1, ..., Ln|m) dL1...dLn is the mean number of galaxies in one halo of mass m with
luminosities L1, ..., Ln in lines 1, ..., n. They satisfy:

φ(L1, ..., Ln−1|m) =

∫
dLn φ(L1, ..., Ln|m). (2.1)

The multivariate CLF describes the distribution of galaxy line luminosities inside halos. It
determines the evolution of the galaxy population with halo mass and redshift.

The usual (unconditional) galaxy luminosity function Φ, frequently found in the litera-
ture, can be recovered from the CLF as

Φ(L1, ..., Ln) =

∫
dm n(m)φ(L1, ..., Ln|m), (2.2)

such that Φ(L1, ..., Ln)dL1...dLn is the mean number density of galaxies with luminosities
L1, ..., Ln in lines 1, ..., n, regardless of host halo mass.

In this paper, we focus on the mean line intensity and the line intensity auto- and cross-
spectra, i.e. we discard the information from higher order correlations (e.g. the bispectrum
[45] or voxel intensity distribution [46]). We give a step-by-step derivation in App. A.1 and
A.3, and simply summarize and discuss the results here. The case of cross-correlating a line
intensity map with a traditional galaxy or quasar survey is discussed in App. A.5 while the
specialization to angular clustering is discussed in App. B. In what follows we shall neglect the
distinction between satellites and centrals primarily due to a paucity of data for constraining
such a model. The full case is described in the appendices and we discuss this simplification
further later in the text. Finally, we ignore radiative transfer once the light is emitted by
the galaxies but note that this is issue can be particularly delicate and important for the
(resonant) Lyman-α line [47–49].

2.2.1 Mean intensity

The mean intensity, Īj , in line j is determined by the univariate CLF, φ (Lj |m). Indeed, the
zero-th moment of the CLF gives the mean number of galaxies in a halo of mass m, Ngal(m),
and the total comoving number density of galaxies:

Ngal(m) =

∫
dL1 φ1(L1|m)

n̄gal =

∫
dm n(m)Ngal(m)

, (2.3)

where n(m) is the halo mass function, the number of dark matter halos per volume per mass.

The first moment of the CLF gives the mean line j luminosity of a halo of mass m,
Lj(m), the total luminosity density per unit comoving volume, Lj , the mean luminosity of

a galaxy in a halo of mass m, Lgal
j (m), and the mean luminosity of a galaxy in the universe,
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n(m, z) Halo mass function
b(m, z) Halo bias
SFR(m, z) Total star formation rate in a halo of mass m at redshift z

φ (L1, ..., Ln|m) Multi-line conditional luminosity function
Φ (L1, ..., Ln) Multi-line (unconditional) luminosity function
φ (Lj |m) Single-line conditional luminosity function
Φ (Lj) Single-line (unconditional) luminosity function
Ngal(m) Mean number of galaxies in a halo of mass m
n̄gal Total comoving number density of galaxies
Lj(m) Mean line-j luminosity of a halo of mass m
Lj Total luminosity density per unit comoving volume

Lgal
j (m) Mean luminosity of a galaxy in a halo of mass m

L̄gal
j Mean luminosity of a galaxy in the universe

Īj mean specific intensity in line j

Pi,j(k, µ, z) Redshift-space cross-spectrum of lines i and j

P 2-halo
i,j (k, µ, z) 2-halo term for lines i and j

bj(k, µ, z) Scale-dependent intensity bias
F (k, µ, z) Effective growth rate of structure

P 1-halo
i,j (k, µ, z) 1-halo term for lines i and j

n̄h eff
i,j (z) Effective mean number density of halos for the 1-halo term

U2
i,j(k, µ, z) Effective squared halo profile for the 1-halo term.

σ2
h i,j Halo “line noise” enhancing the 1-halo term

P shot
i,j (z) Shot noise power spectrum for lines i and j

n̄gal eff
i,j Effective mean number density of galaxies for the shot noise term.

σ2
gal i,j Galaxy “line noise” enhancing the shot noise term

Table 1. List of the main symbols used in this paper.

L̄gal
j : 

Lj(m) =

∫
dLj φ(Lj |m)Lj

Lj ≡
∫
dm n(m)Lj(m)

Lgal
j (m) = Lj(m)/Ngal(m)

L̄gal
j = Lj/n̄gal

. (2.4)

The mean halo luminosity Lj(m), the key ingredient of many halo models in the literature,
can thus be derived from the CLF.

The mean specific intensity in line j is

Īj =
1

4πν0
j

c

H(z)

∫
dLj Φ(Lj)Lj , (2.5)

where ν0
j is the rest-frame frequency of line j. More intuitively

Īj =
1

4πν0
j

c

H(z)
Lj , (2.6)
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which simply converts the total galaxy luminosity per unit volume into an intensity at a
given redshift and frequency.

While the mean intensity is determined by the univariate CLF, φ (L1|m), the power
spectrum also requires knowledge of the bivariate CLF, φ (L1, L2|m). The total power spec-
trum, a function of the comoving wave vector modulus k, cosine of the angle to the line of
sight µ and redshift z, is made of three contributions:

Pi,j(k, µ, z) = P 2-halo
i,j (k, µ, z) + P 1-halo

i,j (k, µ, z) + P shot
i,j (z), (2.7)

which we now describe in detail.

2.2.2 Power spectrum: 2-halo

On large scales, the number density of halos traces the underlying linear matter density field.
This gives rise to the 2-halo term in the intensity power spectrum:

P 2-halo
i,j (k, µ, z) = ĪiĪj

[
bi + Fµ2

] [
bj + Fµ2

]
Plin. (2.8)

The standard assumption of a deterministic, linear, scale-independent but mass-dependent
halo bias b(m), combined with a (normalized) halo profile u(k,m) distorted by the finger-of-
god (FOG) effect, gives rise to a scale-dependent intensity bias:

bj(k, µ, z) ≡ L−1
j

∫
dm n(m) Lj(m) b(m) u(k,m)e−k

2µ2σ2
d(m)/2, (2.9)

where σd = σv 1D/aH is the dispersion of the spurious displacement in redshift space due
to the random LOS motion within halos σv 1D. Following ref. [50], we approximate the
LOS velocity dispersion as that of a singular isothermal sphere of mass m and radius rvir,
i.e. σ2

v 1D = Gm/2rvir. This simple analytical estimate is a good match to the simulation

results reported in ref. [51]. On large scales, where u(k,m)e−k
2µ2σ2

d/2 −→ 1, the intensity
bias becomes scale-independent, and converges to the halo-luminosity-weighted averaged halo
bias, shown in Fig. 2.

0 2 4 6
z

0

2

4

6

8

E
ff

ec
ti

ve
b

ia
s
b

γ=0.6
γ=0.8
γ=1.0
γ=1.1
Growth rate f

0 2 4 6
z

10−2

10−1

100

n̄
h

eff
[(

M
p

c/
h

)−
3
]

γ =0.6
γ =0.8
γ =1.0
γ =1.1

Figure 2. Redshift evolution of the effective halo bias at k = 0 (left), which determines the
amplitude of the 2-halo term. Redshift evolution of the effective halo number density (Eq. 2.13; right),
which determines the amplitude of the 1-halo term. Different curves correspond to halo luminosities
L(M) ∝ SFRγ , with γ ' 1 for optical and UV lines, and γ = 0.6− 1.1 for far IR lines [52, 53].
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In redshift-space, the effective growth rate appears:

F (k, µ, z) ≡ f
∫
dm n(m)

(
m

ρ̄

)
u(k,m)e−k

2µ2σ2
d(m)/2. (2.10)

Here the weighting is simply by halo mass, rather than halo luminosity, since the Kaiser effect
is due to the large scale velocities, which are sourced by the mass. On large scales, where the
FOG-corrected halo profile tends to one, we recover the usual logarithmic growth rate F −→
f ≡ d lnD/d ln a, as long as the matter density consistency relation

∫
dm n(m) (m/ρ̄) = 1 is

satisfied1. As shown in Fig. 2, the growth rate of structure is comparable to the effective halo
bias at the lower redshifts, implying that redshift-space distortions are an important effect.

2.2.3 Power spectrum: 1-halo

On intermediate scales, the assumed Poisson distribution of halos results in a halo shot noise,
called the 1-halo term:

P 1-halo
i,j (k, µ, z) =

(
c

4πH(z)

)2 1

ν0
i ν

0
j

∫
dm n(m) |u(k,m)|2 e−k2µ2σ2

Li(m)Lj(m). (2.11)

Although the CLF formalism can describe the distinction between central and satellite galax-
ies (see §A.2), we ignore this distinction here and assume that all galaxies follow the NFW
profile u(k,m), with u(k → 0,m)→ 1. The 1-halo term can be rewritten more transparently
as:

P 1-halo
i,j (k, µ, z) = ĪiĪj

U2
i,j(k, µ, z)

n̄h eff
i,j

. (2.12)

As expected for a halo shot noise, the 1-halo term scales as the inverse mean number density
of halos. The relevant, effective mean number density of halos, n̄h eff

i,j , depends on the lines i
and j considered and properly counts the halos by taking into account their luminosities in
these lines:

n̄h eff
i,j =

(∫
dm n(m)Li(m)

) (∫
dm n(m)Lj(m)

)∫
dm n(m)Li(m)Lj(m)

. (2.13)

This expression can be understood intuitively in several simple cases. For instance, if line
luminosities were independent of halo mass above some cutoff (i.e. Li(m) and Lj(m) do not
depend on m), then we simply recover n̄h eff

i,j =
∫

min dm n(m), i.e. the total number of halos.
More realistically, if the halo luminosities scale as the star formation rate in a halo of mass
m, SFR(m, z), we see that the halo shot noise scales as the mean squared halo star formation
rate:

P 1-halo
i,j ∝ 1

n̄h eff
i,j

∝
∫
dm n(m)SFR2(m). (2.14)

The effective halo number density is shown in Fig. 2 for cases where L ∝ SFRγ for γ =
0.6− 1.1, as is typical for optical, UV and IR lines.

1In practice, for most mass functions, recovering this consistency relation requires integrating down to
unrealistically low halo masses. As is usual in the halo model, we “correct” this issue by dividing Eq. (2.10)
by

∫
dm n(m) (m/ρ̄). Such a correction is only necessary for Eq. (2.10), not Eqs. (2.9,2.11), where the

luminosity or squared luminosity weighting provides an effective cutoff at low halo masses. The convergence
of the mean intensity, bias and 1-halo term at low masses is shown in Fig. 7 for γ = 1. We verified it for
γ = 0.6− 1.1.
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The scale and angular dependence of the 1-halo term is determined by the effective
squared halo profile:

U2
i,j(k, µ, z) ≡

∫
dm n(m) |u(k,m)|2 e−k2µ2σ2

Li(m)Lj(m)∫
dm n(m)Li(m)Lj(m)

. (2.15)

This is simply the average squared halo profile, weighted by the product of the halo lumi-
nosities in lines 1 and 2. On large-enough scales, where the FOG-corrected halo profile goes
to unity, this takes the simple limit U2

1,2 → 1, such that the 1-halo term is simply:

P 1-halo
i,j (k → 0, µ, z)→ ĪiĪj

n̄h eff
i,j

=

(
c

4πH(z)

)2 1

ν0
i ν

0
j

∫
dm n(m)Li(m)Lj(m), (2.16)

This last equation shows that it is the correlation between halo luminosities in different lines
at the same mass that matters to the amplitude of the 1-halo term. The corresponding 1-halo
amplitude in the k → 0 limit is shown as a function of redshift in the right panel of Fig. 2.

In the halo model, the 1-halo term generically tends to a non-zero constant on large
scales. This behavior appears unphysical for the matter density, where the low-k power
spectrum is expected to approach the linear power spectrum Plin(k) ∝ k [54], and any
perturbation conserving mass and momentum on large scales should scale as δP (k) ∝ k4

[55–57]. This may be corrected by including the effect of halo exclusion [58] or compensated
halo profiles [54], but the complete resolution of this problem remains an open question. In
what follows, we therefore focus only on the small-scale behavior of the 1-halo term, and
leave its large-scale behavior unspecified.

2.2.4 Power spectrum: shot noise

On the smallest scales, the Poisson fluctuations in the number of galaxies in a given halo
produce a galaxy shot noise, which enhances the intensity power spectrum:

P shot
i,j (z) =

(
c

4πH(z)

)2 1

ν0
i ν

0
j

∫
dLidLj Φ(Li, Lj)LiLj . (2.17)

This galaxy shot noise term is the only one which truly requires the bivariate CLF, i.e. a
knowledge of the correlation between the luminosity in different lines from the same galaxy.
This can be rephrased, similarly to the 1-halo term:

P shot
i,j (z) =

ĪiĪj

n̄gal eff
i,j

, (2.18)

where the effective number density of galaxies properly takes into account the contribution
from each galaxy to the intensity:

n̄gal eff
i,j =

(∫
dLi Φ(Li)Li

) (∫
dLj Φ(Lj)Lj

)∫
dLidLj Φ(Li, Lj)LiLj

. (2.19)

Because galaxies are point sources for our purposes, this power spectrum is scale-independent.
Its amplitude scales as the inverse mean number density of galaxies, as expected for a galaxy
shot noise. In Fig. 3, we predict the effective galaxy number density from various luminosity
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functions in the literature, described in §3.1. Different observational determinations of the
luminosity functions lead to quite different n̄gal,eff(z), though in all cases n̄gal,eff is comparable
to the effective density of halos. This suggests that observations of small-scale clustering
in LIM surveys could provide valuable information about the form and evolution of the
underlying luminosity functions.
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Figure 3. Comparison of the effective galaxy number densities, n̄gal,eff (Eq. 2.19), as a function of
redshift, for Hα (left) and [Oiii] (right), as predicted from several observed luminosity functions (S13
[59]; C13 [60]; M15 [61]; C17 [62]). The various references imply very different n̄gal,eff , indicating that
a measurement of the galaxy shot noise would greatly increase our knowledge of the galaxy luminosity
functions. In all cases, the effective number density of galaxies is similar to that of halos (Fig. 2),
indicating that the shot noise and 1-halo terms are comparable in amplitude for Hα and [Oiii].

Looking at the mean intensity and the various power spectrum terms, we see that all the
information is encoded in the multi-line CLF. The mean intensity is entirely determined by
the first moment of the (unconditional) luminosity function, i.e. the mean luminosity density
in the Universe Lj . The 2-halo and 1-halo power spectra are determined by the first moment
of the single-line CLF, i.e. Lj(m). Finally, the shot noise requires the second moment of
the two-line (unconditional) LF

∫
dLidLj Φ(Li, Lj)LiLj . The LIM literature often uses the

quantities Lj , Lj(m) and
∫
dLi Φ(Li)L

2
i as their starting point. Our formalism thus connects

to the literature, extends it to cross-correlations, and shows how these quantities all derive
from the multi-line CLF.

We combine the different components to form the observed power spectrum, in redshift
space, in figure 4. For illustration figure 4 shows the Hα power spectrum for µ = 0 (i.e.
the real-space or tranverse power spectrum) and for µ = 0.5 at z = 0.81, 1.47 and 2.23
with the different contributions to the total indicated by different line types. The power
spectrum evolves only slowly with redshift over the interval shown, since the evolution of the
matter clustering is largely compensated by the evolution of the halo-luminosity connection.
One can see that the two halo term dominates on large scales (low k) with the 1-halo term
dominating at intermediate scales with the shot-noise dominating at very small scales (high
k). For modes close to along the line of sight direction (µ ≈ 1) the 2-halo and 1-halo terms
are more strongly damped near k ' 1hMpc−1 while for transverse modes the 1-halo term
has power to significantly higher k. Comparing the µ = 0 and µ = 0.5, the FOGs act as a
switch, turning the 1-halo term on across the LOS and off along the LOS. Inaccuracies in our
modeling of the FOG only change the scale at which this switch occurs, but not its effect.

The contribution of different halo masses to the total Hα power spectrum is shown in
figure 5, again for µ = 0 and µ = 0.5 at z = 0.81. The left column shows the differential
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Figure 4. The total power spectrum (solid), 1-halo contribution (dashed) and shot noise (dotted)
for the Hα power spectrum as a function of redshift (line colors), for µ = 0 (left) and µ = 0.5 (right).
This assumes the Hα luminosity function from ref. [62].

contribution while the right column shows the cumulative contribution. For this line, at
this redshift, we see the bulk of the power spectrum is contributed by halos in the range
1011 − 1012 h−1M�. This is expected based on the relationship between Hα luminosity and
star-formation rate, the relationship between Ṁ? and M? and the stellar-mass–halo-mass
relation which we discuss further in §3. While different halo mass ranges do not contribute
identically to the 2-halo, 1-halo and shot-noise terms the correspondence is in fact quite good
as can be seen by comparing the ordering of the lines at low and high k in the left column of
figure 5. In this respect having access to the µ-dependence of the clustering signal provides
significant additional information as can be seen by comparing the upper and lower panels
in the left column of figure 5 near k ' 1hMpc−1.

2.2.5 Origin of galaxy and halo shot noise

The halo shot noise, which corresponds to the 1-halo term in the halo model, is determined
by the effective number density of halos n̄h,eff . According to Eq. 2.13, this is the integral of
the mass function conditioned by the manner in which the mean line luminosity in a halo
depends upon halo mass. In particular we expect star formation to be ineffective in low mass
halos, making these halos essentially invisible to the LIM experiment and raising the 1-halo
term. A measurement of the amplitude of the 1-halo term provides an integral constraint on
the way in which luminosity is produced in halos as a function of halo mass.

By contrast the galaxy shot noise term, determined by n̄gal,eff , is a sum of the fluctuations
in galaxy line luminosity within halos of fixed mass and so is a probe of the stochasticity of
the luminosity generation mechanism. One way to think of this stochasticity is in terms of
“line noise”, a concept we introduce below.

Finally, the existence of these two shot noise terms (1-halo term and galaxy shot noise)
results from the assumptions that the number of galaxies in a given halo is Poisson distributed.
This assumption is broken in a toy model where every halo contains either zero or one galaxy.
In this case, the 1-halo and galaxy shot noise terms are identical, and should not be double
counted. However, our assumption holds in the more realistic case where the halo luminosity
is dominated by one galaxy, and most halos only contain zero or one galaxy, but some contain
more, following a Poisson statistics.
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Figure 5. Contribution from different halo mass to the redshift-space power spectrum of Hα. The
power spectrum is shown for wave vectors across the LOS (µ = 0, top) and for wave vectors 60◦ away
from the LOS (µ = 0.5, bottom). The mass contributions are shown for each mass interval (left) and
cumulatively (right). This assumes the Hα luminosity function from ref. [62].

2.3 Enhanced 1-halo term and shot noise from halo and galaxy “line noises”

The above formalism presents two interesting differences with the more familiar, galaxy-
based halo model, leading to modifications to the power spectrum which we shall refer to as
“line noise”. These noise sources can be understood by looking at the expressions for n̄h,eff

ij

and n̄gal,eff
ij which enter the 1-halo and shot-noise power spectra, respectively. In both cases,

the line noise reduces the effective halo and galaxy number densities compared to the naive
expectations, thus enhancing the 1-halo and shot noise power spectra.

As is apparent from Eq. (2.13), if the mass dependence of the mean halo luminosity in

line i is significantly different from that in line j, n̄h,eff
ij can differ significantly from our naive

expectations. Let us formally introduce a “halo line noise” σ2
h i,j as the fractional covariance

of halo luminosities in lines i and j across all halos:

σ2
h i,j ≡

〈Li(m)Lj(m)〉h − 〈Li(m)〉h〈Lj(m)〉h
〈Li(m)〉h〈Lj(m)〉h

(2.20)
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where the expectation value of any function X over all halos is defined as2:

〈X〉h ≡
1

n̄h

∫
dm n(m) X(m) with n̄h =

∫
dm n(m). (2.21)

One can then rephrase the 1-halo power spectrum as:

P 1-halo
i,j (k → 0, µ, z)→ ĪiĪj

n̄h eff
i,j

=
ĪiĪj
n̄h

[
1 + σ2

h i,j

]
. (2.22)

This intuitive expression shows that any variance in the halo line luminosities reduces the
effective number density of halos and enhances the 1-halo term.

A similar situation arises in the galaxy shot-noise term. This is the only term that de-
pends upon the bivariate CLF, and so is sensitive to galaxy-line decorrelations. As Eq. (2.19)

makes clear, n̄gal,eff
ij depends upon how 〈LiLj〉 compares to 〈Li〉〈Lj〉 with the averages being

over the CLF and halo mass function as shown explicitly in Eq. (2.19). To bring out this
point more clearly, and to connect to Appendix A.3, let us introduce “galaxy line noise”,
σ2

gal i,j , as the fractional covariance of lines i and j luminosities across all galaxies:

σ2
gal i,j ≡

〈LiLj〉gal − 〈Li〉gal〈Lj〉gal

〈Li〉gal〈Lj〉gal
(2.23)

where the expectation value over all galaxies is defined as:

〈X〉gal ≡
1

n̄gal

∫
dLidLj Φ(Li, Lj)X, (2.24)

allowing the shot noise power spectrum to be written as:

P shot
i,j =

Ī1Ī2

n̄gal eff
i,j

=
Ī1Ī2

n̄gal

[
1 + σ2

gal i,j

]
. (2.25)

The “galaxy line noise” is thus indeed an additional noise term, which enhances the galaxy
shot noise. Ref. [63] recently used the a similar formalism to show the effect of line noise on
the galaxy shot noise. Here, we have shown that the same formulation applies to the 1-halo
term as well.

We quantify the importance of the halo and galaxy line noises below, and discuss the
potential decorrelation they produce between the two intensity maps in line i and j in §4.2.

2.4 Special cases and ansatz for the CLF

In order to gain some intuition for these noise sources, and for n̄h,eff
ij and n̄gal,eff

ij , let us consider
some special forms of the CLF and see how they affect the amplitudes of the 2-halo, 1-halo
and shot-noise terms.

2A subtlety with this formulation is that both σ2
h i,j and n̄h =

∫
dm n(m) are “cutoff dependent”, i.e.

dependent on the arbitrary choice of the lower bound in the mass integrals. The expression for the 1-halo
power spectrum remains correct for any sufficiently small choice of lower mass bound though, and the intuitive
meaning of halo line noise remains.
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Equal galaxy luminosities If all galaxies in the Universe have the same luminosity, i.e.
if the CLF is

φ (L1, ..., Ln|m) ≡
n∏
i=i

δD
(
Li − L̄i

)
Ngal(m), (2.26)

then we recover the standard HOD description of the galaxy clustering (with Ngal including
both the central and satellite galaxies, which we are not differentiating between). In partic-
ular, as expected, the galaxy line noise σ2

gal i,j is zero in this case, and the effective galaxy

number density is simply n̄gal eff
i,j = n̄gal, without any luminosity weighting.

However, intuitively, there is a non-zero halo line noise, since the halo luminosity
Li(m) = L̄iNgal(m) varies with mass. Formally:

σ2
h i,j =

〈N2
gal(m)〉h

〈Ngal(m)〉2h
− 1. (2.27)

Further, if Ngal(m) ∝ m with a large proportionality constant such that the galaxy shot
noise is negligible, we simply recover the matter power spectrum (in redshift space), up to a
multiplicative factor.

Our ansatz for the CLF In what follows, we will assume the following form for the CLF
of the lines of interest:

φ (L1, ..., Ln|m) ≡ Φ (L1, ..., Ln)∫
dL1...dLn Φ (L1, ..., Ln)

Ngal (m) . (2.28)

In effect, we have separated the dependences in halo mass and galaxy luminosity, a reason-
able simplification given the scarcity of observational and simulation constraints on the CLF.
The CLF φ, on the left-hand side, is expressed as a function of the usual (unconditional)
luminosity function Φ on the right-hand side. The ratio can be interpreted as the joint prob-
ability distribution function for the luminosities L1, ..., Ln in the lines 1, ..., n. However, this
model is sufficient to encode the potential correlation between different line luminosities. As
we describe in §4.1.1, ref. [61] provides a fitting function for the joint galaxy luminosities
in Hα and [Oiii]. This bivariate LF is particularly valuable, as it allows us to compute
the correlation coefficient between these two lines, a crucial input to our ansatz for predict-
ing the LIM cross-power spectra. The halo mass dependence is completely encoded in the
mean number of galaxies Ngal (m) per halo. In particular, the mean halo luminosity is simply
Li(m, z) = L̄iNgal(m, z). This effectively assumes that the galaxy populations in all halos are
identical, except for the number of galaxies per halo. It also means that the halo line ratios
Li(m, z)/Lj(m, z) and galaxy line ratios L̄gal

i (z)/L̄gal
j (z) are independent of mass. This also

ignores the distinction between central and satellite galaxies inside halos, in order to reduce
the number of free parameters in the model, given the sparsity of observational constraints.
However, in Appendix. A.2, we show that the CLF formalism naturally describes this dis-
tinction, and we derive the general expressions there. In practice, we model the number of
galaxies per halo as:

Ngal(m, z) ≡
n̄gal(z) SFRγ(m, z)∫

dm′ n(m′, z) SFRγ(m′, z)
. (2.29)
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This corresponds to the mass scaling Ngal (m) ∝ SFRγ(m), customary in the LIM literature3.
For the halo mass function and linear bias, we implement the fitting function from ref. [35].

To evaluate the star formation rate in a halo of given mass and redshift, we rely on
the mean halo-to-stellar mass relation from ref. [67] (their Eqs. 2, 11-14 and Table 1) and
the mean relation between stellar mass and star formation rate [68]. Refs. [67, 68] find a
lognormal scatter of 0.15 dex (respectively 0.2 dex) in the ref. [67] (respectively ref. [68])
relation. However, as we show in Appendix A.3, the mean intensity, 1-halo and 2-halo
terms only depend on the mean SFR(m) relation, not its scatter. While this is not true
for the galaxy shot noise, this term is computed directly from the line LF, rather than
the SFR(m) relation. In conclusion, we do not need to include the scatter in the SFR(m)
relation to accurately predict the mean intensity, 1-halo, 2-halo and galaxy shot noise terms
in our formalism. Note that this approach only yields the SFR of the central galaxy in the
halo, whereas one should in principle include the sum of the SFRs of all galaxies within
halos. However, as we show in §2.6, the LIM observables are dominated by low-mass halos
(m ∼ 1012M�/h), in which the number and luminosities of satellite galaxies is expected to
be small. Indeed, ref. [69] shows that the mean number of satellites is only a few percent of
the mean number of centrals in these low mass halos (see their Fig. 3). The mass integral is
simply

∫
dm n(m) Ngal(m) = n̄gal(z), as expected. Here, the halo line noise is entirely due

to the mass dependence of the halo star formation rate:

σ2
h i,j ∼

〈SFRγi+γj (m)〉
〈SFRγi(m)〉〈SFRγj (m)〉 − 1. (2.30)

In practice the mass average above is ill-defined in the absence of a mass cutoff, since the
mean number density of halos of all masses diverges. For this reason we have used a ∼ in the
expression above, indicating that it is only a formal relation, but we believe it is still useful
in highlighting the importance of the relative scatter in the halo SFR.

With our CLF ansatz, the galaxy line noise is simply given by the covariance of the
individual galaxy luminosities:

P shot
i,j =

ĪiĪj
n̄gal

[
1 + σ2

gal i,j

]
with σ2

gal i,j =
Cov [Li, Lj ]

L̄iL̄j
. (2.31)

3Taking L ∝SFRγ is a common assumption, also made in refs. [6, 7, 52, 64] as just a few recent exam-
ples. However, recent simulation work [65, 66] suggests that such a simple model may not be an accurate
extrapolation at the lower halo masses.
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In summary, with this ansatz, the halo model expressions simplify to:

Īj =
1

4πν0
j

c

H(z)

∫
dLj Φ(Lj)Lj ,

P 2-halo
i,j (k, µ, z) = ĪiĪj

(
bi + Fµ2

) (
bj + Fµ2

)
Plin

with bj(k, µ, z) =

∫
dm n(m) SFRγj (m) b(m) u(k,m)e−k

2µ2σ2
d(m)/2∫

dm n(m) SFRγj (m)

and F (k, µ, z) = f

∫
dm n(m)

(
m

ρ̄

)
u(k,m)e−k

2µ2σ2
d(m)/2,

P 1-halo
i,j (k, µ, z) =

(
c

4πH(z)

)2 ĪiĪj
ν0
i ν

0
j

∫
dm n(m)SFRγi+γj (m) |u(k,m)|2 e−k2µ2σ2∫

dm n(m)SFRγi+γj (m)
,

P shot
i,j (z) =

(
c

4πH(z)

)2 1

ν0
i ν

0
j

∫
dLidLj Φ(Li, Lj)LiLj .

(2.32)

In what follows, we gather observational and simulation constraints on Ngal(m) and φ(Li, Lj),
in order to evaluate the LIM observables.

2.5 Relative size of the 1-halo and shot noise terms

We have seen that the 1-halo and galaxy shot noise terms scale are I2/n̄h eff and I2/n̄gal eff

on large scales, respectively. Since halos can host several galaxies, one might expect the
effective number density of galaxies to be higher than that of halos. One would thus expect
the 1-halo term to be larger than the galaxy shot noise. In this section, we show that this is
not necessarily the case, and clarify the regime in which this occurs.

From our Appendix A.3, we can write schematically the 1-halo and shot noise terms as:

P = n̄h

N̄2
g 〈Lg〉2︸ ︷︷ ︸
1-halo

+ N̄g〈L2
g〉︸ ︷︷ ︸

shot noise

 , (2.33)

where P is the LIM power spectrum, n̄h the mean number density of halos, N̄g the mean
number of galaxies per halo, and Lg an individual (random) galaxy luminosity. So the
comparison is:

1-halo ≥ shot noise ⇔ N̄g ≥
〈L2

g〉
〈Lg〉2

= 1 + σ2
g . (2.34)

The 1-halo term is thus larger than the shot noise in the regime where halos contain many
galaxies, and the fluctuations in galaxy luminosity are small.

The case of galaxy clustering, instead of intensity mapping, is obtained by setting Lg = 1
for each galaxy, such that galaxies are number-weighted, as opposed to luminosity-weighted.
The comparison between 1-halo term and shot noise is thus simply:

1-halo ≥ shot noise ⇔ N̄g ≥ 1. (2.35)

Thus, for clustering, the 1-halo term is larger than the shot noise if halos host on average
more than one galaxy. In practice, none of these inequalities have to be satisfied. Thus
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the 1-halo term may be larger or smaller than the shot noise. In terms of the CLF, the
comparison can be expressed as:

1-halo ≥ shot noise ⇔∫
dm n(m)

(∫
dL Φ(L|m)L

)2

≥
∫
dm n(m)

∫
dL Φ(L|m)L2.

(2.36)

In the particular case of our CLF ansatz, this becomes:

1-halo ≥ shot noise ⇔
∫
dm n(m) SFR2γ(m)(∫
dm n(m) SFRγ(m)

)2 ≥ ∫
dLi φ(Li)L

2
i(∫

dLi φ(Li)Li
)2 . (2.37)

Given the observed LF and the SFR(m) relation at the corresponding redshift, this inequality
may or may not be true. We illustrate both cases in §3.1 (see Fig. 11).

2.6 Halo masses probed

A question of particular interest is how LIM compares to galaxy catalogs, in terms of the
halo masses probed. For instance, galaxies selected from their emission lines are known to
reside in lower mass halos than luminous red galaxies [69–71], and preferentially in sheets
and filaments [72] where their star formation has not been quenched.

Before continuing it is worth reopening the issue of satellite vs. central galaxies, a distinc-
tion we have neglected in the formalism in the main text since we are unable to meaningfully
constrain the more complex model at this point. For many of our inferences, neglecting this
distinction is a reasonable approximation for LIM, since much of the emission-weighted signal
comes from quite low mass halos (e.g. Fig. 5) where the satellite contribution is expected
to be small. Further, as we move to higher redshift (where LIM becomes increasingly com-
petitive) the number of high mass halos continues to drop but the manner in which galaxies
occupy halos evolves much less dramatically [67] so the relative contribution of satellites is
reduced. Neglecting the satellite-central distinction is however likely to impact our estimates
for the FOG effect. For this reason we regard the estimates presented here as less reliable
than many of our other inferences, and we would require more observational constraints in
order to be able to properly refine them. Conversely LIM measurements could provide the
much-needed constraints on a model including such a central-satellite split if they were able
to tightly constrain the 2D power spectrum in the region where FoG effects dominate.

As shown in Fig. 6, the mean intensity and the 2-halo term (through the squared bias)
receive contribution from a broad range of halo masses. Masses within 1010 − 1013 h−1M�
contribute more than 80% of these quantities. On the other hand, the 1-halo term receives
contributions from a narrower and heavier range of mass: 80% of it comes from 1012 −
1013 h−1M� halos. This is expected, since the 1-halo term weighs halos by their squared
luminosity, thus up-weighting higher mass halos. In Fig. 6, the smooth cutoff at low masses
is due to the SFR(m) relation, whereas the sharper cutoff at high masses is due to the
exponential cutoff in the halo mass function. Galaxies selected by luminosity, stellar mass
or line emission tend to only be found in halos with mass m ≥ 1011 h−1M� [69], especially
at higher z. Through the mean intensity and 2-halo term, LIM may thus enable probing
slightly lower mass halos, down to 1010 h−1M�.
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Figure 6. Contribution of each halo mass to the mean intensity (left), the 2-halo term (middle,
via the squared effective halo bias) and 1-halo terms (right) at various redshifts. Here, we assumed
that the halo luminosity scales as SFR, i.e. γ = 1, as is the case for most UV and optical lines. The
mean intensity and 2-halo term probe similarly low halo masses, whereas the 1-halo term is sensitive
to more massive halos. The grey dashed lines in the cumulative plots (bottom panels) indicate the
10th and 90th percentiles.

2.7 Galaxy luminosities probed

A key astrophysics goal of LIM is to learn about the distribution of luminosities of the galaxies
which make up the intensity map. Our halo model predicts the relative weight of each galaxy
luminosity bin to the LIM observables, as shown in Fig. 7.

3 LIM auto-spectra: single-line luminosity functions

The key quantity in our halo model is the galaxy CLF. The single-line CLF entirely de-
termines the LIM auto-spectrum and the multi-line CLF predicts the LIM cross-spectrum.
These CLFs can be measured in galaxy surveys or from simulations. In this section, we
present several such constraints on the CLF.

3.1 Observational & simulation constraints

As we show, modeling the LIM power spectrum requires knowledge not only of the mean,
but also of the scatter in the galaxy luminosities. Line luminosities can vary by large factors
from galaxy to galaxy, driven in large part by the scatter in star formation rate [19, 36–38].
This scatter in line luminosity enhances the shot noise power spectrum.

Below we model the Hα, [Oiii], Ly-α, [Cii] and CO line luminosities using empirical
fits to observed LFs. Ref. [62] presents Schechter model fits to the Hα LF (table 2). These
fits are based on the High-redshift(Z) Emission Line Survey (HiZELS) survey [59], including
additional and near-infrared narrow-band data from the Canada France Hawaii Telescope
[73]. They cover three redshift bins over z = 0.8−2.2, and are corrected for the contamination
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Figure 7. Contribution from each galaxy luminosity to the Hα mean intensity (left) and shot
noise power spectrum (right), using LFs from ref. [59]. The mean intensity is sensitive to much lower
luminosities than the shot noise. The grey dashed lines in the cumulative plots (bottom panels)
indicate the 10th and 90th percentiles.

from [Nii] lines at 654.8 nm and 658.4 nm. These LFs also include a correction for dust
attenuation, assuming a uniform 1 mag of dust extinction. We undo this correction in order
to obtain the observed, dust attenuated, luminosity distribution. Ref. [60] presents Schechter
model fits to the observed Hα and [Oiii] LFs from the WFC3 Infrared Spectroscopic Parallel
Survey (WISP) program. The Hα LF fits describe two redshift bins over z = 0.3− 1.5. The
LF of the higher redshift bin is consistent with ref. [59], while that of the lower redshift bin
is found to be slightly lower. The [Oiii] LFs is fit in four redshift bins spanning z = 0.7−2.3.
Using data from the WISP program, ref. [61] further estimates the joint bivariate LF in
Hα and [Oiii], providing a fitting function in one redshift bin covering z = 0.8 − 1.2. This
is the observed, dust attenuate LF relevant to our LIM forecast. These measured Hα LFs
have been used as a reference for a number of numerical and semi-analytical models, e.g.
refs. [28, 64, 74–77]. Using HiZELS, ref. [78] measure the Hβ+[Oiii] and [Oii] LFs in five
redshift bins over z = 0.8− 5. They compare their Schechter fits to existing measurements,
including refs. [59, 60]. At z = 1.47, their Hβ+[Oiii] LF is consistent with the [Oiii] LF from
[60] at the bright end, where the [Oiii]-emitting galaxies dominate over the Hβ-emitting
population, but they diverge at the faint end, where the Hβ galaxies dominate. At the same
redshift, their [Oiii] LF is consistent with [59]. We implement the Schechter fits to the [Cii]
and CO LFs predicted by the semi-analytical model of [79] over z = 0− 6. The [Cii] LF was
also measured in the local Universe by [80]. Finally, we implement the Ly-α LF from [81]
over z = 2− 5.

The various LFs are shown in Fig. 8. There is some disagreement in the Hα luminosity
function at z ' 0.8 but the individual estimates agree very well at higher redshift. The [Oiii]
luminosity function shows more diversity, especially at the bright end and at higher redshift
(z ' 1.9).

We compute the first two moments of these LFs, needed to compute the LIM mean
intensity and power spectrum. The first moment gives the mean intensity (Fig. 9), which also
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Figure 8. Galaxy luminosity functions Ψ(L) ≡ dN/d log10 LdV for Hα, [Oiii], Ly-α, [Cii] and
CO1-0 from the various references (S13 [59], C13 [60], M15 [61], C17 [62], P16 [79] and C11 [81]).
The Hα LFs from C17 and S13 are identical at z = 1.47 and 2.23.

normalizes the LIM power spectrum. As might have been expected from the disagreement
in the luminosity functions themselves, the amplitude and evolution of the mean intensity is
not well constrained at present, especially for [Oiii]. The relative sizes of the mean intensities
in different lines can be understood by comparing their LFs and rest-frame frequencies, since
Ī ∝

(∫
dL Φ(L)L

)
/ν0 (Eq. (2.5)). For instance, the mean intensity in CO and optical

lines are similar, even though galaxy CO luminosities are typically ∼ 10, 000 fainter. This
is compensated by the CO rest-frame frequency at ∼ 100 GHz, about ∼ 10, 000 smaller
than for optical lines. On the other hand, the mean intensity is [Cii] is much larger than in
optical lines. This can be understood since the galaxy luminosities in [Cii] are only somewhat
fainter than in the optical lines, and the ∼ THz frequency of the [Cii] line is ∼ 1, 000 smaller
than for the PHz optical lines. The second moment determines the shot noise term (Fig. 10),
through the effective number density of galaxies (Fig. 3 and Eq. 2.19). The level of agreement
is qualitatively similar to that displayed by the first moment, even though the luminosity
weightings are of course different in the two. The wide discrepancies between the predicted
mean intensities (Fig. 9) and shot noises (Fig. 10) from the various measured luminosity
functions is striking.

In Fig. 9, 10, 11, we only show the redshift ranges where luminosity functions from
actual observations are available. We do not show the predictions from simulations such as
EGG.

3.2 LIM auto-spectra: theoretical uncertainty

We show the predicted LIM power spectra from these LFs in Fig. 11. We show a wide
range of scales, where each of the 2-halo, 1-halo and shot noise terms successively dominate.
However, the model should certainly not be trusted out to these extremely small scales.
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Figure 9. Comparison of the mean intensity as a function of redshift, for Hα, [Oiii], Ly-α, [Cii]
and CO1-0, as predicted from the various observed luminosity functions (see Fig. 8) as well as the
EGG simulator [28]. This first moment of the galaxy luminosity function also determines the overall
normalization of the LIM power spectrum. The relative sizes of the mean intensities in the various
lines can be understood by comparing their LFs (Fig. 8) and rest-frame frequencies.

Comparing the power spectra of the various lines, the relative size of the 2-halo and 1-
halo term is determined by the index γ in the relation between mass and SFR. The overall
normalization and its redshift evolution are further determined by the redshift evolution of
the line luminosity function. Overall, the 1-halo and 2-halo terms appear to generally increase
out to z = 1 − 2, then decrease at higher redshift. Because the redshift evolutions of the
1-halo and 2-halo terms are not identical, this corresponds to a complex redshift and scale-
dependent bias. Finally, we note that the relative size of the 1-halo and shot noise terms
depends crucially on our assumption that the galaxies are NFW-distributed within halos.
If all galaxies were instead centrals, the 1-halo term would be much reduced, subdominant
compared to the shot noise. This may be the case for instance for CO and [Cii] at high
redshift.

We compare these power spectra to previous predictions in the literature. Many useful
references for comparison exist, including [82] for many of these lines, and [83–88] for CO
and [Cii]. For the Hα power spectrum, we compare with Fig. 25 in ref. [89]. There, the
z = 2 power spectrum matches our prediction in the 1-halo and shot noise regimes, to about
a factor two. Comparing with Fig. 5 in ref. [64] at z = 1− 2, the 2-halo terms agree again to
a factor of a few, but the shot noise in our analysis is larger by factors 10− 100. For [Oiii],
comparing with Fig. 25 in ref. [89] shows a 2-halo term at z = 2 consistent with ours from
the LF of ref. [61], and larger than those from the LF of ref. [60]. We compare our Ly-α
power spectrum to that in Fig. 6 of ref. [90]. Although the redshifts are slightly different
(z = 7 instead of z = 5.57), the 2-halo terms agree within a factor about two, whereas our
shot noise is larger by a a factor 100. This is probably explained in part by the difference in
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Figure 10. Shot noise power spectrum as a function of redshift, for Hα, [Oiii], Ly-α, [Cii] and CO1-
0, as predicted from the various observed luminosity functions (see Fig. 8). The shot-noise power is
determined by the second moment of the galaxy luminosity function.

redshifts, and in part by the theoretical uncertainty, estimated to be a factor 100 in Fig. 25
of ref. [89] in this range of redshifts. For the CO power spectrum, we compare to ref. [14].
In their Fig. 6 and 10, they show a range of predictions from the literature and from various
relations between SFR and CO luminosity. These span a factor of 1000 at z = 2.4 − 2.8.
Our prediction is within this range: in the upper end for the 2-halo term and in the middle
for the shot noise term. For the [Cii] power spectrum, we compare our prediction to Fig. 16
in ref. [86] at z = 6. This figure shows a factor of about 1000 of theoretical uncertainty.
Our predicted 2-halo term is a factor two lower than their lowest prediction, and our 1-halo
term is more than 10 times smaller than their lowest estimate. Given the large theoretical
uncertainty, this is not completely unexpected. It may be explained by our choice of the LF
of ref. [79]. Indeed, refs. [15, 79] mention that the simulated [Cii] in[79] is lower than most
semi-analytical models.

Thus, in general, the model predictions from different observed LFs or semi-analytical
models differ significantly. This highlights the extreme theoretical uncertainty on the LIM
power spectra, especially at high redshift where the LFs are not well known. This implies that
measuring the LIM mean intensity and power spectrum will provide an important further
constraint on the galaxy luminosity function, and the combination of the measurements
should allow us to better constrain the underlying LFs.

4 LIM cross-spectra & decorrelation: multi-line luminosity functions

4.1 Observational & simulation constraints

Quantifying the correlation between the luminosities in different lines is crucial to correctly
predict their cross-spectra in the shot noise regime, and in particular to assess the degree
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Figure 11. Power spectra of the Hα, Oiii, Ly-α, [Cii] and CO lines, predicted from the various
observed luminosity functions (S13 [59], C13 [60], M15 [61], C17 [62], C11 [81] and P16 [79]). We
show the model predictions out to extremely small scales (k ∼ 100h/Mpc) to illustrate that the 2-halo
term dominates on the largest scales, the 1-halo term on intermediate scales, and the shot noise on
the smallest scales. However, our model should not be relied upon on such small scales.

of correlation of the two intensity maps. As described in §2.1, several physical parameters
can affect the line luminosity ratios [36]. Metallicity, dust redenning and the ionization state
of the gas determine the line ratios of optical and UV lines, such as Hα, [Oii] and [Oiii]
[42], and far IR lines such as the various CO transitions [44]. Naturally, line ratios involving
high excitation lines such as [Oiii] or higher J CO lines are most sensitive to the ionization
state [44]. This ionization state is determined by the local interstellar radiation field, which
itself traces the local star formation rate density. In practice, accurately fitting the spectral
line energy distribution of galaxies can require including multiple gas components inside
the galaxy, with different ionization states. On the other hand, ratios of lines from different
species, such as [Oii]/Hα are more sensitive to metallicity [42]. The impact of dust reddening
on line ratios should depend mostly on the separation in frequency of the two lines. Since
metallicity, dust properties and ionization state vary from galaxy to galaxy and even inside
a single galaxy, they will cause a partial decorrelation of the luminosities in the various lines.
This degree of decorrelation determines the the amplitude of the line cross-power spectrum
in the shot noise regime.

Observationally, measurements of the multi-line LFs, i.e. joint measurements of the
luminosities in several lines for the same galaxy sample, are needed to assess this degree of
correlation.

4.1.1 Mehta model

Using data from the Hubble WFC3 Infrared Spectroscopic Parallel Survey (WISP), ref. [61]
provides a fitting function for the joint galaxy luminosities in Hα and [Oiii] over the redshift
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range z = 0.8−1.2. They model the [Oiii] luminosity function with a realistic Schechter form,
and model the probability distribution for the Hα of a galaxy, given its [Oiii] luminosity, as
lognormal. From this fitting function, we compute the correlation coefficient between the
line luminosities in Hα and [Oiii], finding r = 0.65 in that redshift bin. Such bivariate LF
measurements are crucially needed in order to predict the LIM cross-power spectra.

4.1.2 GOALS survey

We make use of the publicly available catalog of line fluxes from the Great Observatories
All-sky Luminous Infrared Galaxy Survey (GOALS) [27]. This catalog contains [Cii] 158µm,
[Nii] 122µm, [Oi] 63µm and [Oiii] 88µm luminosities for 240 galaxies, observed with the
Herschel Photodetector Array Camera and Spectrometer (PACS). These lines are some of
the most important atomic fine-structure lines in the far IR/sub-mm range of 50 − 200µm.
In this sample, 239 galaxies have measured [Cii] line fluxes, 77 galaxies have [Nii], 239 have
[Oi] and 161 have [Oiii].

These galaxies include4 approximately 180 Luminous Infrared Galaxies (LIRGs) with to-
tal IR luminosity LIR ∈ [1011L�, 1012L�] and more than 20 Ultra-Luminous Infrared Galaxies
(ULIRGs) with LIR ≥ 1012L�. They were selected from the IRAS Revised Bright Galaxy
Sample (RBGS; [91]) with the aim of “provid[ing] an unbiased picture of the processes respon-
sible for enhanced infrared emission in the local Universe, and [to be] excellent analogs for
comparisons with infrared and sub-millimeter selected galaxies at high-redshift.” The RBGS
sample includes 629 of the brightest sources at 60µm, with flux densities above 5.24 Jy and
Galactic latitude above 5◦. “The LIRGs and ULIRGs targeted in GOALS span the full range
of nuclear spectral types (type-1 and type-2 AGN, LINERs, and starbursts) and interaction
stages (major mergers, minor mergers, and isolated galaxies).” The sample has a median
redshift zmed = 0.0215, and spans zmin = 0.0030 to zmax = 0.0918. From this data, we
estimate the line covariances and their correlation coefficients, shown in Fig. 12. We neglect
the scatter from measurement error, which was found to be smaller [27].

4.1.3 EGG simulator

In order to estimate the degree of correlation we might expect between different lines, we also
make use of the “empirical galaxy generator” (EGG5) [28]. EGG works by sampling galaxy
stellar masses and redshifts from observed stellar mass functions for quiescent and star form-
ing galaxies. For each galaxy, the stellar mass, redshift and star forming or quiescent nature
then determine the star formation rate, the UVJ colors and the panchromatic broadband
of the galaxy, through empirical prescriptions. The following emission lines are then simu-
lated: Cii 157µm, Nii 205µm, Ci 609µm, CO1-0 2.6 mm, CO2-1 1.3 mm, CO3-2 867µm,
CO4-3 650µm, CO5-4 520µm, CO6-5 434µm, CO7-6 372µm, Hα 656.3 nm, Hβ 486.1 nm,
Hγ 434.1 nm, Hδ 410.2 nm, Nii 658.4 nm, Nii 654.8 nm, Oiii 500.7 nm, Oiii 495.9 nm, Oii
372.7 nm, Lyα 121.6 nm. This includes all the lines that are relevant for LIM with SPHEREx,
specifically: Hα 656.3 nm, Hβ 486.1 nm, [Oiii] 500.7 nm and Lyα 121.6 nm.

The emission line modeling is described in ref. [92]. The Hα luminosity is assumed to
scale with the star formation rate of the galaxy, with a fixed random scatter in the Kennicutt
relation [93]. The other lines in the Balmer series (Hβ, Hγ, Hδ) are then inferred from Hα
using fixed line ratios from case-B recombination, without scatter. Luminosities in [Oiii] and
[Nii] are then inferred from the Hα and Hβ luminosities using empirical relations, with a

4See http://goals.ipac.caltech.edu/ for more details.
5http://cschreib.github.io/egg/
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Figure 12. Galaxies emits light in various different lines. This figure shows the correlation coefficient
between the line luminosities of a given galaxy in two different lines. These correlation coefficients are
a function of redshift only, and were estimated from the GOALS survey at z = 0.02 (top right) and
the EGG simulator at z = 1.54 (bottom left). The EGG correlation pattern is qualitatively similar
out to z = 4. These correlation coefficients at the individual galaxy level are a key input to determine
the scale-dependent correlation coefficient between two line intensity maps.

mean and scatter dependent on the galaxy metallicity. These relations were built to match
the observed BPT diagrams [94], where available, between redshifts 0 and 2. A similar
approach is adopted for [Oii], inferred from Hβ via an empirical relation where the mean
and scatter are functions of metallicity. For Lyα, the line luminosity is chosen proportional
to Hα, with a fixed proportionality constant, but is subsequently attenuated with a variable
escape fraction. This modeling produces a scatter in the various line luminosities, with a
reasonable level of correlation, and is thus appropriate for our study.

By contrast, the modeling of the far IR lines is more simplified. For instance, the [Cii]
and [Nii] luminosities scale with the total IR luminosity of the galaxy. The CO and Ci lines
scale with the gas mass in the galaxy. While no scatter is introduced between the various
CO transitions, some scatter in present between the CO, [Cii] and [Nii] luminosities.

To simulate the galaxy population seen by a LIM experiment, we run EGG with the
following options:

egg-gencat verbose area=1 mmin=8 mmax=14 zmin=0.05 zmax=10

This corresponds to a stellar mass limited sample, with M? ∈ [108M�, 1014M�], over the
redshift range z ∈ [0.05, 10] and a sky area of 1 deg2. This produces about one million
galaxies split between 109 redshift slices.
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4.2 LIM cross-spectra and decorrelation

One may want to cross-correlate different line lintensity maps, e.g. to suppress line interlopers.
In this case, knowing the amount of correlation between the two intensity maps is crucial.
This is quantified by the scale-dependent correlation coefficient:

r1,2(k, µ, z) ≡ P1,2(k, µ, z)√
P1,1(k, µ, z)P2,2(k, µ, z)

(4.1)

On large scales where the 2-halo term dominates, this ratio is unity r1,2(k, µ, z) = 1 and
the two intensity maps are perfectly correlated. On smaller scales, where the 1-halo or shot
noise term dominates, the power spectrum is of the form

P =
Ī1Ī2

n̄eff
= Ī1Ī2

1

n̄

(
1 + σ2

1,2

)
(4.2)

where n̄eff and n̄ are the effective and mean number density of halos or galaxies and σ2
1,2 the

halo or galaxy line noise contributions in the 1-halo and shot noise regimes, respectively. As
explained in §2.3, these quantities are “cutoff dependent” and must be defined with care.
If the line noise is negligible, σ2

1,2 � 1, then the two intensity maps are again perfectly

correlated: r1,2(k, µ, z) = 1. However, if the noises are large, σ2
1,1, σ

2
1,2, σ

2
2,2 � 1, then the

correlation coefficient drops to

r1,2(k, µ, z) =

√
n̄eff

1,1 n̄
eff
2,2

n̄eff
1,2

'
σ2

1,2

σ1,1σ2,2
, (4.3)

i.e. the correlation coefficient between the two intensity maps is equal to the correlation
coefficient of the halo (galaxy) luminosities in lines 1 and 2, in the 1-halo (shot noise) regime.
Thus, a large scatter in the line luminosities of halos or galaxies can cause a decorrelation
between two intensity maps.

In the 1-halo regime, assuming Li(m) ∝ SFRγi(m, z), the correlation coefficient between
lines 1 and 2 becomes:

r1,2(k → 0, µ, z) =

∫
dm n(m) SFRγ1+γ2(m)√∫

dm n(m) SFR2γ1(m)
∫
dm n(m) SFR2γ2(m)

. (4.4)

In the 1-halo regime, all lines with the same power law index γ = 1 relating luminosity to SFR
will thus be perfectly correlated. This is typically the case of the UV and optical lines. For
far IR lines like Nii 122µm, Niii 58µm, Cii 158µm, which scale as star formation rate to the
power 0.78− 1.02 according to ref. [53], the correlation coefficient is r > 0.96 out to redshift
5. The decorrelation between these lines in the 1-halo regime is thus negligible. However,
CO has γ = 0.6, leading to a significant decorrelation with the other lines considered in the
1-halo regime.

In the shot noise regime, the joint luminosity function for Hα and [Oiii] in ref. [61]
predicts a correlation coefficient between these lines of r = 0.65. In Fig. 12, we show the
correlation coefficients of line luminosities for an individual galaxy, as predicted by the EGG
simulator and the as measured in the GOALS data. The correlation coefficients for line
luminosities from individual galaxies are r = 0.088 − 1 from EGG and r = 0.5 − 1 from
GOALS, depending on the lines considered. Astrophysically, these correlation coefficients are
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a direct consequences of the physical processes inside galaxies responsible for the produceing
the emission lines (Sec. 2.1).

Given the correlation coefficients at the level of individual galaxies, we can compute the
scale-dependent correlation coefficients between any pair of intensity maps. We show them
for a pair of highly-correlated lines (Hα, [Oiii]) and for a pair of low-correlation lines (Ly-α,
CO) in Fig. 13.
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Figure 13. Generic evolution of the correlation coefficient between line intensity maps. We consider
the correlation betwewen Hα [62] and [Oiii] [61] (left panel), and between Ly-α [81] and CO [79] (right
panel). On large scales, where the 2-halo term dominates for both lines, the two maps are perfectly
correlated. On small scales, where both maps are shot noise dominated, we recover the line luminosity
correlation coefficient (red line) r = 0.65 (left, inferred from [61]) or r = 0.088 (right, from [28]). On
intermediate scales, if the 1-halo terms dominate, the correlation coefficient is close to unity. This
occurs at z = 2 for Hα and [Oiii]. If instead the 1-halo and shot noise terms are comparable, e.g. at
z = 1 and k = 1h/Mpc for Hα – [Oiii] (left panel), the correlation coefficient of the sum of 1-halo
and shot noise can actually be lower than that of the shot noise alone (r = 0.65). In both panels,
the FOG effect suppresses the 1-halo term along the LOS, bringing the correlation coefficient down
to the shot noise value. This occurs at k = 1− 20h/Mpc both for Hα – [Oiii] (left panel) and Ly-α –
CO1-0 (right panel).

4.3 Implications

The value of the correlation coefficient computed above has several implications:

1. Estimating the auto-spectrum from cross-spectra only. Cross-spectra allow
reduced foreground contamination. In ref. [12], cross-spectra of 21cm, [Cii] and [Oiii]
lines are therefore combined to estimate the 21cm power spectrum:

P̂aa ≡
PabPac
Pbc

= Paa
rabrac
rbc

. (4.5)

Ref. [12] models the line emission from simulated halos to estimate the level of decor-
relation between these lines, and how it limits the method. Here, we instead use an
analytical halo model to predict the line correlation coefficients, including not only the
effect of individual halos (1-halo term) but also that of individual galaxies (shot noise
term). We further include the effect of RSD on the correlation coefficient. Additional
noise or foregrounds, uncorrelated between intensity maps a, b and c, will drop out of
the cross-correlations. As a result, the relevant correlation coefficients in Eq. (4.5) are
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still the noiseless, foreground free ones. On the other hand, any foreground component
which contaminates two maps, e.g., a and b, will bias the cross-correlation Pab. This
will thus bias the estimated auto-spectrum P̂aa.

2. Using a line at a different frequency as a foreground tracer. Consider a simple
model where the measured line intensity at any frequency is the sum of a target (t) line
and a foreground (f) line. We can produce intensity maps at two frequencies ν1 and
ν2, such that the foreground emission in ν1 comes from the same redshift as the target
emission in ν2. In other words: 

Iν1 = t(z0) + f(z1)

Iν2 = t(z1) + f(z2)︸ ︷︷ ︸
ignore

. (4.6)

How well can one subtract the foreground emission in Iν1 using Iν2? We use a linear
combination:

t̂(z0) = Iν1 − αIν2
= t(z0) + [f(z1)− αt(z1)]︸ ︷︷ ︸

to be reduced

(4.7)

where the coefficient α that minimizes the power spectrum of the square bracket above
is α = P12/P22 = Ptf (z1)/Ptt(z1). The residual power spectrum of the square bracket is

then Pff (z1)
[
1− r2

tf (z1)
]
. In other words, the maximum reduction of the foreground

power spectrum achievable is entirely determined by 1−r2
tf (z1). Equivalently, the total

power spectrum of the estimated target line is Pt̂ = P11

[
1− r2

12

]
, where the maximum

power reduction is determined by
[
1− r2

12

]
. We show the corresponding reduction

factors in Fig. 14.
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Figure 14. Factor 1 − r2, which determines the ability to use one line as a tracer of the other, in
order to subtract foregrounds/interlopers. Values near zero indicate good subtraction while values
near unity indicate ineffective subtraction.

3. Astrophysics of star formation The lines considered in this paper all trace the
star formation rate in galaxies. However, they are produced in different regions of
the interstellar medium, with different densities, temperatures, ionization fractions and
chemical compositions. Thus, the correlation coefficient between two different line
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luminosities, for a given galaxy, informs us about the correlated abundance of these
ISM regions, in a way that would be impossible by measuring each line separately.
This idea was explored in [82, 95, 96]. By connecting the correlation coefficient between
various at the galaxy level to the correlation coefficient observable at the intensity map
level, our formalism enables extracting this astrophysical information from LIM.

5 Conclusions

Line intensity mapping (LIM) has become a new frontier for studying the Universe, with early
observations giving way to dedicated surveys. In this paper, we have provided a new halo
model formalism, consistently capturing the various sources of galaxy and halo luminosity
fluctuations and their effects on the LIM power spectrum.

To this end we have generalized the conditional luminosity function (CLF) formalism of
ref. [29] to a multi-line CLF (§2.2). This extension produces a new, general and flexible halo
model, which predicts not only the mean intensity and auto-spectrum of a line intensity map,
but also cross-spectra of different lines, and the cross-spectra of LIM with galaxy catalogs
and galaxy and CMB lensing (Appendices. A and B). We have provided the corresponding
expressions for the mean, 2-halo, 1-halo and shot noise terms, in 3D redshift-space and for
2D projected maps (Appendices A-B).

The formalism highlights the similarity between the 1-halo and shot noise terms, both
arising from the (approximately) Poissonian shot noise of halos and galaxies, respectively. In
galaxy clustering, they are simply given by the inverse number density of halos and galaxies.
In LIM, the CLF-based halo model shows that they are enhanced by a term we refer to
as halo and galaxy “line noises”, respectively (§2.3). We showed that the halo line noise is
entirely sourced by luminosity fluctuations across halo masses, and is insensitive to luminos-
ity fluctuations at fixed halo mass. The galaxy line noise is instead sourced by all galaxy
luminosity fluctuations, i.e. 〈L2

gal〉 − 〈Lgal〉2. We thus defined LIM-relevant halo and galaxy
“effective number densities”, accounting for these effects. By tracking the sources of lumi-
nosity scatter, we showed that the amplitude of the 1-halo term does not necessarily exceed
that of the shot noise on large scales, for Poissonian halos and galaxies (§2.5). We showed ex-
amples of lines for either case. This has implications for interloper rejection methods relying
on the sparsity of the sources [97] – halos in the 1-halo regime and galaxies in the shot noise
regime [32].Because it encodes the imperfect correlation between different line luminosities
from the same galaxy, the multi-line CLF allows us to quantify the level of decorrelation
between two LIMs from the same redshift (§4.1). This is a crucial modeling improvement,
since many LIM analyses rely on cross-spectra to subtract interlopers or foregrounds, or to
estimate auto-spectra.Furthermore, by connecting LIM cross-correlations to the galaxy-level
properties, the multi-line CLF allows us to constrain properties of the galaxy interstellar
media inaccessible with auto-spectra alone.

To evaluate the halo model, we have relied on observations and simulations (§3). We
used observed luminosity functions for Hα [59, 60, 62], [Oiii] [60, 61], Lyman-α [81], CO [79]
and [Cii] [79]. While most observations and simulations focus on the single-line LF or CLF,
modeling LIM cross-spectra crucially requires knowledge of the multi-line CLF. To estimate
the correlation between different lines (§4.1), we relied on measurements from [61] for Hα and
[Oiii] and the GOALS survey [27] for far infrared lines, as well as simulation results from EGG

[28, 92]. We encourage semi-analytic models (SAMs), simulation and observational studies to
output their multi-line CLFs whenever possible. Fitting functions for them, from simulations
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such as [66], would be a valuable input for the halo model cross-spectra. In return, these
simulations could be used to check the halo model prediction.

Other applications of the CLF are possible. A valuable extension would be to extend this
formalism to also predict higher-point correlators of LIM, or joint multi-line voxel intensity
distributions [46].

We have made our code publicly available at https://github.com/EmmanuelSchaan/

HaloGen/tree/LIM. This modular code computes the LIM mean intensity, auto- and cross-
spectra in 3d redshift-space and 2d projections. A key input to this code is the set of
luminosity functions for the various lines. The uncertainty in these LFs at high redshift is very
large at present, leading to a large uncertainty in the predicted power spectra. Power spectra
from this code should thus not be considered ground truth, and may differ significantly from
predictions in the literature based on different input luminosity functions. For this reason,
the code was made highly modular, allowing the user to easily switch input (luminosity
functions, star formation rate, etc.), making it a useful prediction tool for LIM forecasts.
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A Halo model

A.1 Pedagogical derivation of observables and a halo model

Since there are many expressions and approximations made in different papers in the liter-
ature, in this appendix we present a pedagogical derivation of our basic observables and an
implementation of the halo model tailored to LIM. We have attempted to be clear about
the approximations and assumptions made at each stage. Our approach builds upon the
extensive earlier work in this subject, including refs. [7, 50, 52, 98–103] and the papers cited
therein.

For a galaxy with line luminosity L1 ([W]) in emission line 1, the observed line flux ([W
m−2]), integrated over the frequency width of the line, is L1/

(
4πD2

L

)
= L1/

(
4πχ2(1 + z)2

)
,

where have assumed a spatially flat Universe with comoving radial distance χ(z).
The sky specific intensity Iν ([W m−2 sr−1 Hz−1]), measures the sky flux per spatial

resolution element dΩ ([sr]) and frequency resolution element dν ([Hz]) of the LIM experi-
ment. The narrow emission lines are typically not spectrally resolved, so the observed specific

6https://l2s2.sciencesconf.org/
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intensity at ν = ν0
1/(1 + z) includes the full line luminosity L1 from all galaxies at redshift z:

I1 =
1∫
dνdΩ

∫
dνdΩ︸ ︷︷ ︸

average in spatial and
spectral resolution element

dχ

dν

∫
dL1

dNgal

dΩdχdL1︸ ︷︷ ︸
galaxy number per
resolution element

[sr−1 Hz−1]

L1

4πDL︸ ︷︷ ︸
galaxy line flux

[W m−2]

[W m−2 sr−1 Hz−1]

=
dV

dΩdχ

dχ

dν

∫
dL1

dNgal

dV dL1

L1

4πDL

= χ2 c (1 + z)2

ν0
1H(z)

∫
dm n(m)

∫
dL1 φ(L1|m)

L1

4πχ2(1 + z)2

=
1

4πν0
1

c

H(z)

∫
dm n(m)

∫
dL1 φ(L1|m) L1.

(A.1)

where in the last two lines the first integrals are over halo mass, m, and the halo mass function,
n(m) – the number of halos in mass range (m; dm) per comoving volume – and φ(L1|m) is
the conditional luminosity function defined in §2.2. Hence the mean specific intensity is

Ī1 =
1

4πν0
1

c

H(z)
n̄galL̄1 [W m−2 sr−1 Hz−1], (A.2)

with:
n̄gal =

∫
dm n(m)

∫
dL1 φ(L1|m) Mean galaxy number density [cMpc−3]

L̄1 =
1

n̄gal

∫
dm n(m)

∫
dL1 φ(L1|m) L1 Mean line 1 luminosity [W]

(A.3)

In this halo model, the local number density of halos n(m,x) is a biased, Poisson
sampling of the underlying linear matter density field. This produces the 2-halo and 1-halo
terms in the power spectrum:

〈δn(m, k)δn(m′, k′)〉 = (2π)3 δD(k+ k′) n̄(m)n̄(m′)

b(m)b(m′)Plin(k)︸ ︷︷ ︸
2-halo term

+ δD(m−m′) 1

n̄(m)︸ ︷︷ ︸
1-halo term

 ,
(A.4)

where the 1-halo term is nothing but the shot noise of halos, and the 2-halo term is related
to the linear matter density field through a deterministic, linear, scale independent and mass
dependent halo bias. This bias assumption is expected to be valid on large scales where the
2-halo term is significant.

We further assume that within a given halo, the number density of galaxies is a Pois-
son sampling of the (normalized) NFW profile [104], u(k,m), of the halo. We currently
lack enough observational constraints on satellite vs. central galaxy line emission to include
this distinction in our models, and we will therefore ignore this distinction here. However,
distinguishing satellites and centrals can be done easily in our formalism, as we show in
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Appendix A.2. This Poisson process produces a galaxy shot noise term:

〈n̄(m)δφ(L1, L2, k|m) n̄(m′)δφ(L′1, L
′
2, k
′|m′)〉 = (2π)3 δD(k + k′)

× δD(m−m′)δD(L1 − L′1)δD(L2 − L′2)

× n̄(m)φ(L1, L2|m)︸ ︷︷ ︸
galaxy shot noise

.

(A.5)

Finally, we compute the specific intensity power spectrum in redshift space, following
[7, 50, 52, 98–103]. We take into account the effect of FOG on the halo profile by substituting:

u(s)(k, µ,m, z) = u(k,m)e−k
2µ2σ2(m)/2 (A.6)

where the velocity dispersion σ is possibly mass-dependent. The Kaiser effect follows from
the conservation of the luminosity in redshift-space:

δI
(s)
1 (k)

Ī1
= −∇ ·ψ(s)(k) = −∇ ·ψ(k) + fµ2δm(k) =

δI1(k)

Ī1
+ fµ2δm(k). (A.7)

Here we introduced the Lagrangian displacement, ψ, which sources the matter density fluc-
tuations (δm +∇ ·ψ = 0) and its redshift-space counterpart ψ(s) = ψ + f (ψ · n̂) n̂.

With all the ingredients above, we start with the 2-halo term, where the halo number
density fluctuations trace the matter density field. This 2-halo term corresponds to the first
term in Eq. (A.4), and can be computed by taking the power spectrum of the “2-halo” field:

δI2h
1 =

1

4πν0
1

c

H(z)

×

∫ dm n(m)
[
b(m) + fµ2︸︷︷︸

Kaiser

]
u(k,m) e−k

2µ2σ2(m)/2︸ ︷︷ ︸
FOG

∫
dL1φ(L1|m) L1

 δlin(z)

= Ī1

[
b1(k, µ, z) + F (k, µ, z)µ2

]
δlin,

(A.8)
and therefore

P
(s) 2-halo
1,2 (k, µ, z) = Ī1Ī2

[
b1 + Fµ2

] [
b2 + Fµ2

]
Plin (A.9)

where we have defined the relevant physical parameters:
bj(k, µ, z) ≡

1

n̄galL̄j

∫
dm n(m) Ngal(m)Lj(m) b(m) u(k,m)e−k

2µ2σ2/2

F (k, µ, z) ≡ f
∫
dm n(m)

(
m

ρ̄

)
u(k,m)e−k

2µ2σ2/2

(A.10)

On scales larger than σ, such that the FOG effect is negligible, and on scales larger than the
halo size, such that the halo profile u(k,m) ' 1, the bias bj becomes the scale-independent
large-scale bias of linear theory, and F tends to the usual logarithmic growth rate f . On
smaller scales, both the bias bj and effective growth rate F become scale-dependent and
anisotropic.
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Focusing now on the 1-halo term, due to the Poisson shot noise of halos, we use Eq. (A.4)
to obtain:

P
(s) 1-halo
1,2 (k, µ, z) =

∫
dm n(m) |u(k,m)|2 e−k2µ2σ2(m)

[∫
dL1φ(L1,m)L1

] [∫
dL2φ(L2,m)L2

]
= Ī1Ī2

U2
1,2(k, µ, z)

n̄h,eff
1,2

,

(A.11)
where we further introduced the line-pair-weighted, squared halo profile

U2
1,2(k, µ, z) ≡

∫
dm n(m) |u(k,m)|2 e−k2µ2σ2

L1(m)L2(m)∫
dm n(m) L1(m)L2(m)

(A.12)

which tends to 1 as k → 0 and the total halo number density,

n̄h,eff
1,2 ≡

(∫
dm n(m)L1(m)

) (∫
dm n(m)L2(m)

)∫
dm n(m)L1(m)L2(m)

[cMpc−3] . (A.13)

Finally, the galaxy shot noise, coming from Poisson fluctuations in the number of galax-
ies within a halo, Eq. (A.5), becomes:

P shot
1,2 (z) =

1

(4π)2 ν0
1ν

0
2

(
c

H(z)

)2 ∫
dm n(m)

∫
dL1dL2 φ(L1, L2,m)L1L2

=
Ī1Ī2

n̄gal,eff
1,2

,

(A.14)

with

n̄gal eff
1,2 =

(∫
dm n(m)L1(m)

) (∫
dm n(m)L2(m)

)∫
dm n(m)

∫
dL1dL2 φ(L1, L2|m)L1L2

[cMpc−3] . (A.15)

A.2 Halo occupation distribution: centrals and satellites

In this appendix, we show that our halo model based on the CLF naturally describes the
distinction between satellite and central galaxies. As shown in [105], the particular choice
of halo occupation distribution for the line-emitting galaxies can have a significant impact
on the 1-halo LIM power spectrum. The central galaxies are assumed to be at the centers
of halos, with no velocity with respect to the halo, and therefore no FOG effect, whereas
the satellites are assumed to sample the NFW matter density profile of the halo, and are
alone responsible for the FOG. We define their numbers Ncen(m, z), Nsat(m, z) and mean
luminosities Lcen

j (m, z)Lsat
j (m, z) in a halo of mass m, at redshift z. The mean intensity is

then simply the sum of the satellite and central luminosities:

Īj =
1

4πν0
1

c

H(z)

[
Lcen
j Ncen + Lsat

j Nsat

]
. (A.16)

The 2-halo term is given by:

P 2-halo
1,2 (k, µ, z) = Ī1Ī2

(
b1 + Fµ2

) (
b2 + Fµ2

)
Plin, (A.17)

where the bias is

bj(k, µ, z) ≡ L−1
j

∫
dm n(m) b(m)

[
Lcen
j Ncen + Lsat

j Nsatu(k,m, z)e−k
2µ2σ2

d(m)/2
]

(A.18)
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and the effective growth rate of structure is

F (k, µ, z) ≡ f
∫
dm n(m)

(
m

ρ̄

)
u(k,m)e−k

2µ2σ2
d(m)/2. (A.19)

The 1-halo term becomes:

P 1-halo
i,j (k, µ, z) =

(
c

4πH(z)

)2 1

ν0
i ν

0
j

∫
dm n(m)

[
Lsat 2
j N2

sat |u(k,m, z)|2 e−k2µ2σ2
d(m)

+2NsatNcenL
sat
j Lcen

j e−k
2µ2σ2

d(m)/2
]
.

(A.20)

Finally, the shot noise term is unchanged, since it is not affected by the spatial distri-
bution of the galaxies (centrals vs. satellites) nor by their peculiar velocities.

A.3 Impact of luminosity fluctuations on the halo model

The distribution of galaxy luminosities has a non-zero scatter around its mean. How does this
scatter affect the 2-halo, 1-halo and shot noise terms? In this appendix, we show explicitly
that the 2-halo and 1-halo terms depend only on the mean galaxy luminosity, whereas the
shot noise term is enhanced by the scatter in galaxy luminosities.

To better understand this, let us consider one pixel in configuration space. For now, we
consider only halos of a fixed mass, with number Npix

h within the observed pixel. We want to
compute the variance of the pixel luminosity L, to show how the 2-halo, 1-halo and galaxy
shot noise terms arise, and to show that the fluctuations in galaxy luminosities only affect
the galaxy shot noise term, not the 1-halo term. The statistics of the number of halos in the
pixel is assumed to be Poissonian:

P(Npix
h ) ∼ Poiss(Npix

h |N̄
pix
h ) (A.21)

Each halo contains a certain number Ng of galaxies. For a given halo, the number of galaxies
in the halo is Poissonian:

P(Ng) ∼ Poiss(Ng|N̄g) (A.22)

The total number of galaxies Npix
g in the pixel is the sum of the number of galaxies in all of

the halos in the pixel. A sum of a fixed number of Poisson variables is Poissonian. However,
the sum of a Poisson number of Poisson variables is not Poissonian! In other words:

P(Npix
g ) 6= Poiss(Npix

g |N̄pix
h N̄g)

but P(Npix
g |Npix

h ) ∼ Poiss(Npix
g |Npix

h N̄g)
(A.23)

Here the presence or absence of a bar over Npix
h matters. Finally, each galaxy in a halo

has a luminosity Lg sampled independently from a probability distribution P1(Lg). This
probability distribution is the same object as φ, but normalized to integrate to unity. For
the power spectrum or the variance, all we care about is that this distribution has a mean
L̄g and a variance which we write as L̄2

gσ
2
g .

Finally, the total luminosity L in the pixel is the sum of the luminosities Lg of each

of the Npix
g galaxies in the pixel. Its probability distribution is complex. However, at fixed

Npix
g , it is simply P∗N

pix
g

1 , i.e. the convolution of P1 with itself Npix
g times. For the power
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spectrum, all we care about is that P∗N
pix
g

1 has mean Npix
g L̄g and variance Npix

g L̄2
gσ

2
g . Again,

the absence of a bar on Npix
g matters here. In other words:〈
L2|Npix

g

〉
=
〈
L|Npix

g

〉2
+ var[L|Npix

g ]

= L̄2
g

[
Npix 2
g +Npix

g σ2
g

] (A.24)

Putting all this together, we can compute the variance of the pixel luminosity L:〈
L2
〉

=
∑
Npix
g

P(Npix
g )

〈
L2|Npix

g

〉
= L̄2

g

∑
Npix
g

P(Npix
g )

[
Npix 2
g +Npix

g σ2
g

]
= L̄2

g

∑
Npix
h

P(Npix
h )

∑
Npix
g

P(Npix
g |Npix

h )
[
Npix 2
g +Npix

g σ2
g

]
= L̄2

g

∑
Npix
h

P(Npix
h )

∑
Npix
g

Poiss(Npix
g |Npix

h N̄g)
[
Npix 2
g +Npix

g σ2
g

]
= L̄2

g

∑
Npix
h

P(Npix
h )

[
(Npix

h N̄g)
2 +Npix

h N̄g +Npix
h N̄gσ

2
g

]
= L̄2

g

∑
Npix
h

Poiss(Npix
h |N̄

pix
h )

[
(Npix

h N̄g)
2 +Npix

h N̄g +Npix
h N̄gσ

2
g

]
= L̄2

g

[
(N̄pix

h N̄g)
2 + N̄pix

h N̄2
g + N̄pix

h N̄g + N̄pix
h N̄gσ

2
g

]
= L̄2

g

(N̄pix
h N̄g)

2︸ ︷︷ ︸
2-halo

+ N̄pix
h N̄2

g︸ ︷︷ ︸
1-halo

+ N̄pix
h N̄g(1 + σ2

g)︸ ︷︷ ︸
shot noise + line noise



(A.25)

This confirms that the fluctuations in galaxy luminosities only appear in the galaxy shot
noise term. For the 1-halo and 2-halo terms, everything is as if each halo had the same
luminosity L̄gN̄g, with no variation from halo to halo.

A.4 Multi-line CLF: tracer auto-spectrum

In order to compare the value of galaxy number counts and LIM as tracers of the matter den-
sity field, we need to consistently predict their power spectra, using the same CLF halo model.
We assume that the galaxy sample is selected based on line luminosity, such that the num-
ber of satellites and centrals per halo are determined by the respective CLFs. For example,
for galaxies selected to have a line luminosity above a threshold Lmin, we have Ngal(m, z) =∫∞
Lmin

dL Φ(L|m, z). Here, we simply review the expressions for the clustering power spectrum
in this halo model. For generality, we include the distinction between centrals and satellites.
The mean number density of galaxies is simply n̄g =

∫
dm n(m) [Ncen(m) +Nsat(m)]. The

2-halo term in the power spectrum is given by:

P 2-halo
g (k, µ, z) =

(
bg + Fµ2

)2
Plin, (A.26)

where the bias is

bg(k, µ, z) ≡
∫

1

n̄g
dm n(m) b(m)

[
Ncen +Nsatu(k,m, z)e−k

2µ2σ2
d(m)/2

]
(A.27)
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and the effective growth rate of structure is

F (k, µ, z) ≡ f
∫
dm n(m)

(
m

ρ̄

)
u(k,m)e−k

2µ2σ2
d(m)/2. (A.28)

The 1-halo term becomes:

P 1-halo
g (k, µ, z) =

1

n̄2
g

∫
dm n(m)

[
N2

sat |u(k,m, z)|2 e−k2µ2σ2
d(m)

+2NsatNcene
−k2µ2σ2

d(m)/2
]
.

(A.29)

Finally, the shot noise power spectrum is simply P shot
g = n̄−1

g .

A.5 Multi-line CLF: cross-correlation with a tracer

One important observable in LIM surveys is the cross-correlation with a discrete tracer of
the mass, e.g., individually detected quasars (QSO). Previous papers model these cross-
correlations (e.g., [106]). Here, we describe them in terms of the CLF. To describe such
cross-correlation, we restrict the multi-line CLF to count only sources of a given type. In
what follows, we focus on QSO for concreteness, but the formalism applies identically to any
tracer of the matter density. We thus introduce the QSO multi-line CLF φ(L1, ..., Ln|m,QSO)
such that φ(L1, ..., Ln|m,QSO)dL1...dLn is the mean number of QSOs in a halo of mass m,
with luminosity Li in each line i. In particular, the QSO CLF describes the full complexity
of the QSO selection function. If the QSO selection function is only based on fluxes in several
bands, the QSO CLF can be simply obtained by adding these bands to the standard CLF,
and multiplying it by the selection function. As above, we can then define the mean number
density of QSOs per halo or per unit comoving volume:

NQSO(m) =

∫
dL1 φ(L1|m,QSO)

n̄QSO =

∫
dm n(m)NQSO(m)

, (A.30)

and the mean QSO luminosity in line j:
LQSO
j (m) =

∫
dLj φ(Lj |m,QSO)Lj

LQSO
j ≡

∫
dm n(m)LQSO

j (m)

. (A.31)

The QSO selection function, described by the QSO CLF, typically includes a minimum
luminosity in some bands, corresponding to the detection threshold of the survey considered.
This provides an effective lower luminosity (and halo mass) cutoff in the integrals above.

The cross-power spectrum between the intensity in line 1 I1 and the number density of
QSO nQSO is again the sum of three contributions:

P1,QSO(k, µ, z) = P 2-halo
1,QSO(k, µ, z) + P 1-halo

1,QSO(k, µ, z) + P shot
1,QSO(z), (A.32)

The 2-halo term is given by

P 2-halo
1,QSO(k, µ, z) = Ī1n̄

QSO
(
b1 + Fµ2

) (
bQSO + Fµ2

)
Plin, (A.33)
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where the QSO bias term is

bj(k, µ, z) ≡
1

n̄QSO

∫
dm n(m) NQSO(m) b(m) u(k,m)e−k

2µ2σ2/2. (A.34)

The 1-halo term becomes

P 1-halo
i,QSO (k, µ, z) = Īin̄

QSO
U2
i,QSO(k, µ, z)

n̄h eff
i,QSO

, (A.35)

where the effective halo profile and number densities are given by:
U2
i,QSO(k, µ, z) ≡

∫
dm n(m) |u(k,m)|2 e−k2µ2σ2

Li(m)NQSO(m)∫
dm n(m)Li(m)NQSO(m)

n̄h eff
i,QSO ≡

(∫
dm n(m)Li(m)

) (∫
dm n(m)NQSO(m)

)∫
dm n(m)Li(m)NQSO(m)

(A.36)

Finally, the shot noise cross-power spectrum is given by

P shot
i,QSO(z) =

Īin̄
QSO

n̄gal eff
i,QSO

, (A.37)

with the effective galaxy number density

n̄gal eff
i,j =

(∫
dm n(m)Li(m)

) (∫
dm n(m)NQSO(m)

)∫
dm n(m)

∫
dLi φ(Li|m,QSO)Li

. (A.38)

This formalism thus connects the observable cross-correlations between a tracer and
intensity maps to the underlying CLF of the tracer. By doing so, it provides astrophysical
insights into the abundance of the prevalence of the interstellar medium regions responsible
for each line inside the tracers. Refs. [107, 108] indeed explore these cross-correlations, in
order to learn about the gas abundances in galaxies and the properties of feedback in star
formation at high redshift.

B Projected angular power spectrum

One of the primary advantages of LIM over purely photometric surveys is enhanced redshift
precision. However there is also an intermediate regime, where the redshifts are not highly
precise and redshift errors may have an unknown distribution, for which an analysis of angular
clustering in multiple redshift bins is more appropriate. Our formalism generalizes easily to
this situation, and we include the relevant expressions here for completeness.

IX(n̂) =

∫
dχ WX(χ)I(χn̂) (B.1)

with χ the comoving radial distance and WX defining the shell. The angular power spectrum
of the cross-correlation between two shells is

CXY` =
2

π

∫
dχ1 dχ2 WX(χ1)WY (χ2)

∫
k2 dk PXY (k;χ1, χ2)j`(kχ1)j`(kχ2) (B.2)
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with j` the spherical Bessel function of order `. Except on very large scales, where linear
theory is appropriate, we can approximate PXY (k;χ1, χ2) ' PXY (k, µ, z(χ1)).

If we now decompose our power spectrum at z into

P (k, µ, z) = P 2−halo + P 1−halo + P shot (B.3)

we find significant simplifications. The shot-noise term is k-independent, and so can be pulled
out of the k integral. The integral over k then gives a δ-function so that

Cshot
` =

∫
dχ

χ2
WX(χ)WY (χ)

ĪχĪχ
n̄gal,eff

(B.4)

If the bin width is significantly larger than the velocity dispersion of halos dominating the
emission we can set µ = 0 in the 1-halo term. Since this term typically contributes mostly
on small-scales, we can also use the Limber approximation ([109, 110]; valid for k∆χ � 1,
with ∆χ the width of the shell) to write

C1−halo
` =

∫
dχ

χ2
WX(χ)WY (χ)

ĪχĪχ
n̄h,eff

U2

(
k =

`+ 1/2

χ
, µ = 0

)
(B.5)

This leaves only the 2-halo term. In the Limber approximation

C2−halo
` =

∫
dχ

χ2
WX(χ)WY (χ)ĪχĪχb

2

(
k =

`+ 1/2

χ
, µ = 0

)
Plin

(
k =

`+ 1/2

χ

)
(B.6)

while at large scales one must perform the double integral in Eq. B.2 using Eq. 2.8.

B.1 Thin shell LIM

Finally we comment upon a limit in which the results become particularly simple and intu-
itive. If we take W to be a top-hat centered at χ0 and of width ∆χ � χ0, normalized to
unit integral, and we work in the Limber approximation,

C` ≈ V−1 P

(
k =

`+ 1/2

χ0
, µ = 0, z

)
(B.7)

with V = χ2
0 ∆χ the volume per steradian. In this limit the 2D power spectrum equals the

3D power spectrum for modes of wavelength λ = 2π/k subtending an angle θ = 2π/` at
distance χ0 once accounting for the volume per solid angle.

Similarly, for higher order n-point functions P (n), the Limber approximation

P
(n)
` =

∫
dχ

χ2(n−1)
WX(χ)n P (n)(k =

`+ 1/2

χ
) (B.8)

simplifies in the thin shell regime to:

P
(n)
` = V−(n−1)P (n)(k =

`+ 1/2

χ
). (B.9)

In this limit non-overlapping redshift shells are uncorrelated, so all of the information is
contained in the angular auto-spectra. This makes it particularly easy to see what information
is obtained from what parts of the clustering signal.
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B.2 Cross-correlation with CMB & galaxy lensing

To compute the cross-power spectrum of LIM and galaxy or CMB lensing convergence κ, we
introduce the lensing kernel, for a source located at comoving radial distance χS .

W κ(χ, χS) =
3

2

(
H0

c

)2

Ω0
m

χ

a(χ)

(
1− χ

χS

)
. (B.10)

For CMB lensing, the source distance is the surface of last scatter, at a distance χSLS,
corresponding to zSLS ∼ 1100:

W κCMB(χ) = W κ(χ, χSLS). (B.11)

For galaxy lensing, we average the lensing kernelW κ(χ, χS) over the redshift distribution
dnS/dχS of the source galaxies:

W κgal(χ) =
1

nS

∫
dχS

dnS

dχS
W κ(χ, χS), with nS =

∫
dχ
dnS
dχ

. (B.12)

In the Born and Limber approximations, we can thus predict the cross-spectrum of LIM
with the (galaxy or CMB) lensing convergence. The power spectrum is the sum of a 1-halo
term

C1−halo
` =

∫
dχ

χ2
WLIM(χ)W κ(χ)

(
c

4πH(z)

)
1

ν0
LIM∫

dm n(m)

∣∣∣∣u(k =
`+ 1/2

χ
,m)

∣∣∣∣2 e−( `+1/2
χ

)2
µ2σ2

Li(m)
m

ρ̄m

(B.13)

and a 2-halo term

C2−halo
` =

∫
dχ

χ2
WLIM(χ)W κ(χ)ĪLIM

(
bLIM + Fµ2

) (
bm + Fµ2

)
Plin. (B.14)

Here, ILIM and bLIM are the scale and redshift-dependent mean intensity and bias for LIM,
used throughout this paper. The effective growth rate of structure is the same as Eq. (2.10).
The quantity bm is the usual matter bias in the halo model:

bm(k, µ, z) ≡
∫
dm n(m)

m

ρ̄m
b(m) u(k,m)e−k

2µ2σ2
d(m)/2. (B.15)
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