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ABSTRACT: Ensembles of predictions are critical to modern weather forecasting. However, visualizing ensembles and
their means in a useful way remains challenging. Existing methods of creating ensemble means do not recognize the physi-
cal structures that humans could identify within the ensemble members; therefore, visualizations for variables such as
reflectivity lose important information and are difficult for human forecasters to interpret. In response, the authors create
an improved ensemble mean that retains more structural information. The authors examine and expand upon the object-
based Geometry-Sensitive Ensemble Mean (GEM) defined by Li and Zhang from a meteorological perspective. The
authors apply low-intensity thresholding to WRF-simulated radar reflectivity images of lake-effect snowbands, tropical
cyclones, and severe thunderstorms and then process them with the GEM system. Gaussian mixture model-based signa-
tures retain the geometric structure of these phenomena and are used to compute a Wasserstein barycenter as the centroid
for the ensemble; D2 clustering is employed to examine different scenarios among the ensemble members. Three types of
ensemble mean image are created from the centroid of the ensemble or cluster, which each improve upon the traditional
pixel-wise average in different ways, successfully capture aspects of the ensemble members’ structure, and have potential
applications for future forecasting efforts. The adjusted best member is a better representative member, the Bayesian
posterior mean is an improved structure-based weighted average, and the mixture density mean is an outline of the key
structures in the ensemble. Each is shown to improve upon a simple arithmetic mean via quantitative comparison with
observations.
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1. Introduction several types of ensemble mean—an approximate consensus
reached by averaging the ensemble members. These tools are
very useful for certain applications, such as track predictions
for tropical cyclones, which often display either each mem-
ber’s predicted path as well as a simple average [e.g., a plume
diagram as in Figs. 4 and 11 of Wu et al. (2010)] or cones of
probabilities based on the spread of the ensemble. Another
way to display ensembles is a spaghetti-style plot, in which a
selected contour value for each member is displayed on a
map [e.g., cover of Kalnay (2002), discussed in Roberts et al.
(2019)]. In this way, the consensus and uncertainty informa-
tion of an ensemble, which is critical to modern forecasting
(Joslyn et al. 2007; AMS 2008; Novak et al. 2008; Demuth
et al. 2009), can be efficiently conveyed to forecasters making
time-sensitive decisions. Spaghetti- and plume-style plots
unfortunately do not adapt well to all fields. For example,
although a spaghetti-style plot can outline each member in an

Modern weather forecasting relies heavily upon the use of
ensembles of predictions- using multiple models or variations
on a single model to generate several different versions of a
forecast (Kalnay 2002). These methods provide meteorolo-
gists with a range of potential outcomes and uncertainties
(i.e., probabilistic forecasts instead of deterministic), the con-
sensus of which allows for more accurate predictions and
warnings for the most probable event (Hirschberg et al. 2011;
Karstens et al. 2015). While more resource-intensive, ensem-
ble forecasting as a whole is a significant improvement over
single-model forecasting. However, forecasters cannot incor-
porate all the ensemble members (often dozens to hundreds)
into a useful consensus just by considering the results of each
member separately, such as in a postage stamp plot. Doing so
provides too much information for a human to easily recon-
cile, leading to information overload. Especially because of ; .
the limited time available to create forecasts, having too much ensemble of snowbands, doing so only coarsely depicts how

available information obfuscates the forecasting process, the membe;s concentrate m and .generally agree on the
rather than clarifying it (Sivillo et al. 1997). central region and loses information on the intensity of

the snowbands’ interiors. Another widespread technique, the
arithmetic mean, is fairly well suited to continuous meteoro-
logical variables commonly displayed in two dimensions, such
as temperature. However, applying it to ensembles of a more
physically structured variable, with sharp gradients, such as
reflectivity (precipitation strength), also results in a greater
loss of information (to be demonstrated later). This loss of
Corresponding author: Jonathan J. Seibert, jjs5895@psu.edu information, which impacts some variables more than others,

To address the challenge of ensemble visualization, the sci-
entific community has developed visual summary tools and
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can be just as dangerous as information overload—either can
result in increased subjectivity and inaccuracy in forecasts,
potentially leading to increased casualties during severe
weather events. Thus, how to best display ensembles’ infor-
mation is critical to modern weather forecasting. The visuali-
zation challenge has been examined and emphasized by
Sivillo et al. (1997), Kalnay (2002), and the National Research
Council (2006), yet remains insufficiently addressed.

Several approaches have been developed in recent years to
combating the difficulties of ensemble visualization while best
utilizing the advantages of probabilistic forecasting. For exam-
ple, Lee et al. (2009) and Eipper et al. (2019) employed a best-
member approach that treated the member with the smallest
mean absolute error (to observations) as the ensemble consen-
sus. Roberts et al. (2019) provide a style of plot combining
paintball plot (all members plotted together, each in a different
color; e.g., Greybush et al. 2017, their Fig. 16) of member
threshold exceedance with neighborhood maximum ensemble
probability contours that could provide useful probabilistic guid-
ance. The performance-weighted averaging approach to ensem-
ble means improves on the simple arithmetic mean, weighting
each member’s contribution to the mean by some measure of
prior performance (Woodcock and Engel 2005; Greybush et al.
2008). The Bayesian model-averaging technique (Raftery et al.
2005) makes particular use of the weighted average of posterior
probability distributions, as well as observed prediction skill, to
predict an improved forecast.

These techniques reduce the information loss inherent to
pixel-wise averaging, but remain insufficient for ensemble
fields relating to clouds and precipitation. Effectively, any var-
iation on the arithmetic mean treats each point in the region
as separate. It does not recognize any physical structure in the
ensemble members, resulting in an average that is not
informed by the physical “objects” that a human would see. A
truly “geometry sensitive” mean would retain much more of
that information by identifying each member’s components as
distinct objects, and accounting for their structure and relative
location in the calculation of the average. Figure 1 provides
an illustrative example: suppose a small number of ensemble
member thunderstorms with similar structure and intensity of
precipitation, but varying locations. An equally weighted
mean yields a smeared-out ellipse of weak precipitation (fea-
ture blurring). A more realistic mean would be a single, cen-
tralized cell that retains the major structures and intensity of
each member.

This is especially important because of the value of those
physical structures when forecasting, such as the shape of a
bow echo thunderstorm or the intensity of a particular snow-
band. (“Intensity” will hereinafter refer to the brightness of
an image for a particular point, region, or object; for this
application, intensity represents composite reflectivity.) In
essence, for a variable such as temperature, with much less
variation over a short distance, an arithmetic mean will tend
to produce a reasonable result. However, cloud and precipita-
tion related variables have much stronger spatial gradients
and variations and differences in location, intensity, and ori-
entation of features. Thus, an arithmetic mean will tend to
blur features and obscure the interpretation.
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FIG. 1. (bottom left) Idealized arithmetic (pixel-wise) mean vs
(bottom right) GEM for (top) an ensemble of storm cells. Whereas
the arithmetic mean takes the strict average on a per-pixel basis,
resulting in loss of intensity and structure information, the ideal
GEM gives a more realistic mean that retains that information.

Object-based techniques bearing similarities to the authors’
have been employed in meteorology before, but have gener-
ally been focused on forecast verification and not been
adapted to ensemble consensus applications. The three sys-
tems most relevant to this approach are those of Davis et al.
(2009, hereinafter D09), Nehrkorn et al. (2014, hereinafter
N14), and Han and Szunyogh (2016, hereinafter HS16). N14
and HS16 both developed “feature alignment” techniques
based on defining the difference, or error, between a forecast
and its matching observation for the same time, thus defining
vector difference fields. D09’s Method for Object-Based
Diagnostic Evaluation (MODE) attempts to identify corre-
sponding features in a forecast and its verifying observation.
It was originally developed to approximate the viewpoint of a
human when identifying objects. D09 identifies individual
objects by using a combination of radial smoothing and
thresholding to mask the variable field. They use an “interest
function” to roughly describe the likelihood of match between
each object pair, based on weighted similarities in all
described attributes. N14 developed a solution specifically for
data assimilation. Using a nonlinear cost function minimiza-
tion, they generate a field of displacement vectors, con-
strained to be smooth and nondivergent to get physically
realistic results. These displacement fields are then used to
adjust the forecasts to minimize error with respect to their
corresponding observations, improving future forecasts down
the data assimilation chain. This technique was also applied to
an ensemble of forecasts, using the mean square error (MSE)
as “distance” between the values of the members and a simple
mean to choose a best member. HS16’s “optical flow” method
operates more iteratively, transitioning the forecast image to
best match the observation by iteratively moving larger to
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smaller sections of pixels. Thus, coarse structures are matched
first, and then finer details, which “preserves global precip-
itation” and some finer structures. However, they had to work
around the accompanying tendency to over-converge precipi-
tation elements. A subsequent paper (Han and Szunyogh
2018) further developed HS16’s algorithm by employing it
and a rigid motion adjustment repeatedly, in sequence.

This research aims to address information loss and overload
in ensemble forecasting by demonstrating a new method
of creating improved ensemble means, using a different
approach to object-based design. This method, the geometry-
sensitive ensemble mean (GEM), considers the underlying
geometry in each member, capturing the physical structure of
the phenomena they depict to reduce feature blurring. Specifi-
cally, this paper will examine the principles laid out in the
proof-of-concept (Li and Zhang 2018) from a meteorological
perspective, and discuss direct applications for the meteoro-
logical community through the example of an ensemble of
radar reflectivity imagery of lake-effect snowbands, with trop-
ical cyclone and severe thunderstorm reflectivity ensembles as
supporting cases. (Henceforth, the authors discuss ensemble
members as images, rather than fields of values.) To achieve a
geometry-sensitive mean, the authors have created three dis-
tinct new types of mean image: the adjusted best member
(ABM), the Bayesian posterior mean (BPM), and the mixture
density mean (MDM). These collectively compose GEM,
originally defined in Li and Zhang (2018). The ABM and
BPM utilize best-member and Bayesian posterior mean com-
ponents similar to those of Lee et al. (2009) and Raftery et al.
(2005). However, our approach differs in that the criterion for
weighting ensemble members uses a nontraditional distance
metric to a related ensemble centroid, rather than relying
upon outside information (e.g., prior performance). Addition-
ally, by using three distinct types of mean in conjunction, the
authors hope to overcome the disadvantages of each individ-
ual type, such as a best-member alone losing information on
the ensemble’s spread. For the purposes of this paper, a cen-
troid (also known as a barycenter) is defined as the arithmetic
mean of the location of all points in a group. GEM’s
“ensemble centroid” relies upon this principle as well, but
requires additional background that will be given in section 3.
GEM is based on preserving the basic form of the structures
in each ensemble member through object recognition via con-
cepts from computer vision. MODE is conceptually similar,
attempting to simulate human vision, and distinguishes objects
by combining smoothing and thresholding. GEM employs
thresholding (section 2a), but identifies objects using two dis-
tinct clustering algorithms, also addressing N14’s concerns
about manual object recognition. Being based on adjustment
of forecasts to match observations, both N14 and HS16’s meth-
ods share more similarities with the GEM best member (sec-
tion 2d) than the geometry-based ensemble centroid at GEM’s
core. In general, GEM finds the best match or alignment for
the entire ensemble, rather than matching one forecast to its
corresponding observation. In addition, GEM employs the
Wasserstein distance (WD) metric, which considers differences
in both value and location (section 2c). The WD is similar in
nature to D09’s simpler attribute-based matching system, but is
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based in statistical methods and does not require explicit attrib-
utes beyond location, intensity, and shape.

The remainder of the paper will be organized as follows:
section 2 will describe the data and techniques such as image
processing, centroid calculation, and averaging methods
(Fig. 2 shows the overall flow of the GEM system). Section 3
will discuss the results of applying this modified GEM system
to the three reflectivity ensembles and interpretation for use
in forecasting, as well as quantitatively comparing those
results with observations. Section 4 will draw conclusions and
outline areas for further development.

2. Data and methods
a. Data and preprocessing

The data for this research consists of three separate ensem-
bles of simulated composite radar reflectivity images, gener-
ated by the Weather Research and Forecasting (WRF) Model.
Each ensemble forms one of the three cases: lake-effect snow-
bands, a tropical cyclone, and severe thunderstorms.

The first dataset, forming the core of the study, contains
30 members (9 of which are displayed in Fig. 3) depicting
composite reflectivity for simulated lake-effect snowbands. The
raw reflectivity images were generated by WRF, version 3.7.1
(Skamarock et al. 2008), using the Advanced Research WRF
dynamics core. The model was run over three one-way nested
domains: a 27-km outer grid over the Great Lakes region, a
9-km intermediate grid, and a 3-km convection-allowing inner
grid containing Lakes Huron, Erie, and Ontario. For the
purposes of this paper, only the results from the innermost
3-km grid were used. The physics used for this run included
Thompson et al. (2008) graupel microphysics, Rapid Radia-
tive Transfer Model (RRTM) longwave radiation (Mlawer
et al. 1997), Dudhia (1989) shortwave radiation, Mellor—
Yamada-Janji¢ boundary layer (Janji¢ 1990), and the Noah
Land Surface Model’s surface physics (Ek et al. 2003). Ini-
tial and boundary conditions were provided by the Global
Forecast System. Perturbations for each ensemble member
were generated by NCEP’s fixed background error covari-
ance method for 3DVAR, “CV3” (Saslo and Greybush
2017 and references therein). The model was run from 1200
UTC 10 December 2013 to 1200 UTC 12 December 2013.
The images chosen are valid for 1700 UTC 11 December
2013 (Saslo and Greybush 2017; Greybush and Saslo 2018).

The second dataset, from Minamide (2018), is a 60-member
ensemble of simulated reflectivity images of the 2017 Hurri-
cane Harvey. The model was run with a similar 27-9-3-km
two-way nested grid, again with only the innermost being
used here. Model physics used for this run were the single-
moment 6-class mixed-phase microphysics scheme (Hong and
Lim 2006), the Yonsei University planetary boundary scheme
(Hong et al. 2006), and RRTM for both longwave and short-
wave radiation schemes. These images are valid for 0000
UTC 24 August 2017. Figure 4 displays the first nine members
of this ensemble (see below for a description of thresholding).
Because the ensemble members for the lake-effect snowband
case and the tropical cyclone case were not generated in
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FIG. 2. Descriptive diagram of GEM system architecture. The central split denotes the choice of whether to use D2 clustering.

Re-apply physical color
scale to mean images

composite form, composite reflectivity images for each mem-  was also generated by WRF 3.7, using the same model physics
ber were created by calculating the maximum reflectivities and resolution as the first case. These are valid for 2300 UTC

across all vertical levels. 20 April 2015. Figure 5 displays the first nine members of this
The third dataset, from Hanson (2016), is a 30-member ensemble.
ensemble of composite reflectivity images of simulated severe In the initial stage of the GEM system for a given ensem-

thunderstorms over Pennsylvania and Maryland. This ensemble  ble, each member image is put through low-intensity
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FIG. 3. Postage stamp plot of composite reflectivity (dBZ) from the first nine images of the snowband ensemble. All have a similar basic
structure but significant variance in band orientation, intensity, and other properties. Note that dBZ is a logarithmic variable, having mean-
ing at and below 0, but that values below 0 are here considered negligible.

thresholding, in which all regions of minimal reflectivity—
below the specified threshold—are set to the threshold value.
This focuses the analysis on high-precipitation regions of
interest, and allows the algorithm—and human forecasters—
to more easily distinguish discrete objects, such as individ-
ual bands within multiband snow systems coming off Lake
Huron. (The GEM system is also run with the nonthre-
sholded version of the ensembles for the sake of compari-
son.) The threshold used in this research is 0 dBZ, because
the unit scale of reflectivity is logarithmic, and values
below 0 generally indicate negligible amounts of precipita-
tion. However, the GEM system is designed to allow any
threshold value.

After thresholding, each image is then converted from
reflectivity values (units of dBZ) to decimal grayscale (0-1)
using the following equation:
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where e, and en, are the ensemble maximum and en-
semble minimum reflectivity, respectively. (Note that e,
becomes equal to the threshold value beforehand, if one is
applied.) This shifts the range of dBZ values present in each
image such that the minimum intensity becomes 0, and all
values are normalized to fractions of 1 by the adjusted
ensemble maximum reflectivity. This process makes it much
easier to represent the reflectivity values in the main cal-
culations and to allow for use of the Wasserstein distance
(section 2c) while preserving the physical relationships
between the intensities of the ensemble members. In
addition, because this conversion occurs after the thresholding
step, the low reflectivity values that were set to the threshold
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FIG. 4. As in Fig. 3, but for the first nine members of the tropical cyclone ensemble, thresholded.

value are mapped to 0 in grayscale. Thus, the minimal reflec-
tivity values are still effectively removed from the calculation,
while also allowing the remaining values to be defined more
precisely across the entire grayscale range. This process is
demonstrated in Fig. 6. The final results are mapped back
from grayscale to the physically interpretable dBZ units of
reflectivity using the inverse of Eq. (1), divided by 255 (to
return to decimal grayscale before conversion), and with the
mean of the original members’ minimum and maximum
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reflectivity replacing the overall ensemble minimum and
maximum.

It is possible to use a quantile of the above-threshold values
(or of the members’ maxima) instead of said means, but the
authors chose to use said means over a quantile, as they offer
the best consistent representation of the lake-effect snowband
ensemble, which is the primary case for this research. Systems
were added to the GEM code to allow for use of various
quantile methods if desired. In addition, while it is possible
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dBZ

FIG. 5. Asin Fig. 3, but for the first nine members of the severe thunderstorm ensemble, thresholded.

that some error is introduced by transforming the logarithmic
dBZ values linearly, the main system is agnostic to the vari-
able in use and is designed to create results with value ranges
that are as faithful to the ensemble as possible.

b. Two-tiered signature

To calculate the ensemble centroid, GEM generates a two-
tiered signature (2TS) that captures the geometry of physical
structures depicted in each image by splitting them into
smaller objects called “patches.” Similarly to a pixel count,
the number of patches used to define the structures in each
image determines the granularity of the image and the scale
of the features captured by individual patches. If too many
patches are used, it effectively becomes a pixel representation,
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defeating the point of the method, and if too few are used,
they cannot capture enough detail in the physical structures
of the image (Fig. 7). Neither extreme retains significant geo-
metric information, and so the optimal setting lies between
the two.

The two tiers of the signature for a given image are then
defined by the patches describing their contents. The first tier
is the centroid of each patch, weighted by the total patch
intensity. The second tier is defined by the parameters of a
Gaussian distribution fitted to the intensity-weighted loca-
tions of the other points in the patch. Thus, the 2TS is effec-
tively a Gaussian mixture model. Taken together, the 2TS
captures the location, overall intensity, and shape of each
patch, similarly to the SAL method (Wernli et al. 2008) dis-
cussed in D09 and HS16.
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FIG. 6. The (left) thresholded and (right) grayscaled versions of snowband ensemble member 9.

Figure 8 demonstrates how an image is broken into patches
and fitted with a signature. First, all pixels with nonzero inten-
sity are clustered into “cells” using weighted k-means [an
example can be seen in Fig. 2b of Li and Zhang (2018)].
Doing so provides a coarser-resolution version of the image
that still retains intensity and structure—useful when the total
number of pixels is large. (This implementation of k-means
adds clusters until the average squared distance between cluster
mean and members falls below 0.005.) Li et al.’s (2007) hierar-
chical mode association clustering (HMAC) algorithm is then
used to merge these cells into patches. The total intensity, inten-
sity-weighted centroid (red Xs), and covariance of each patch
become the 2TS. The Gaussians defined by those values are
shown as red ellipses. The centroids of those patches are known
as “support points.” The “support size” is how many there are,
representing the granularity of the calculation. In general, sup-
port points are points of reference in each set, by which the dif-
ferences between the sets are calculated. Each point has a set of
coordinates (two dimensional, in this case) and an intensity,

representing the mean location and total intensity of its patch.
The shape (covariance) of the patch is tracked separately by the
second tier of the signature. Collectively, these patches and their
attributes define the geometry of the physical structures in the
image. The only details of the HMAC algorithm that are
affected by GEM are the input bandwidth values (see section 2e);
additional details can be found in the references.

c. Wasserstein distance and barycenter

Prior work in object-based forecasting has used simple
Euclidean distance between objects as one of the criteria—or
the only criterion—for matching two corresponding objects
in different images. However, Euclidean distances between
points with differing intensities cannot independently repre-
sent meaningful differences between their images. The authors
employ the Wasserstein distance between images to make up
for this shortcoming.

The Wasserstein distance (Rachev 1985) is the counterpart
of the Euclidean distance-based mean for Euclidean vectors.

/ Wasserstein Distance: considers location & intensity difference

'] \
. A
0 X i*‘ Tier 1: Location &
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Fixed grid support Dynamic support J
] . J‘ [ \ One shape for
Pixel reﬂgresentation: no geometry / U entire image
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@ 9 \ *
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FIG. 7. Schematic diagram illustrating the two-tiered signature (2TS). The 2TS captures the

structural information by describing the location,

intensity (shown here in grayscale), and shape

of each cloud patch in a dynamic fashion—the support points are not constrained to specific pre-
set locations. Too many or too few patches both fail to describe useful details in the geometry.

The figure is adapted from Li and Zhang (2018).
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FIG. 8. Schematic illustrating the process of clustering pixels into cloud patches and fitting the Gaussian of their 2TS: (a) the starting
reflectivity source image, in grayscale; (b) image broken into patches, outlined in different colors; and (c) intensity-weighted centroid (red
star) and Gaussian distribution (red ellipse) calculated for each patch.

The WD was originally used to define distance between prob-
ability distributions, but can also be employed for geometri-
cally dispersed intensity distributions (i.e., grayscale images)
summarized by support points. (The authors now consider
each member image to be defined by a set of support points
as described above, and we will refer to them as such.)
Applied to this case, the smallest possible WD between
images matches each support point with its closest counter-
part from the other image, both in Euclidean distance and
value (or intensity). It is the smallest possible sum of the prod-
ucts of the matching support points’ differences in location
and their differences in value. As each of these is a vector,
their product is a matrix, and the new distance is the sum of
all the elements in that matrix. The WD is also known as the
earth-mover’s distance—this method seeks out the minimum
possible work required to balance out the differences, as if
manually shifting piles of dirt from one location to another to
equalize the two sets. The matrix of “matching weights” mini-
mized by the algorithm provides instructions on how to move
the probabilities (or “piles of dirt”) from one distribution to
the other with the least effort. One advantage of this method
is that the number of support points in the two distributions
do not need to be the same. Part of the reason that existing
methods of creating ensemble means are insufficient for cer-
tain meteorological purposes is that those methods do not
account for the structural information that makes ensemble
members physically meaningful. Using the WD to create a
mean retains that critical information on the geometric struc-
ture of the distributions being averaged.

The WD is defined formally as follows: Let W be the
Wasserstein distance between two distributions under the L2
norm (|| ||) in n-dimensional space. (The L2 norm is the length
of a vector, defined for a vector x = {x1, xp, ..., X,,) as
IIx]| = y/x? + x3 + -+ + x2.) Let the superscripts a and b indi-
cate the two sets of support points D* and D?, the subscripts i
and j indicate the current support point in their corresponding
sets (i for set a; j for set b), and m“ and m?® indicate the corre-
sponding support size (total number of support points). (Note
that m“ and m® are not required to be equal between sets.)
The xl@ and xgb) are then the support point coordinates in
n-dimensional ‘space with w* and w/(-”) being their corre-
sponding intensities. Then

Brought to you by Pennsylvania State University, Paterno Library | Unauthenticated | Downloaded 04/19/22 07:00 PM UTC

b

m' m
{W[D("),D(b)]}z := min ) Z Z i
i=1 j=1

{11'1,,20

2
)xﬁ”) - x](-b)H s.t

N
Zm,j = wj(.b),j: 1,2,....mP =1, mb
i=1

mp

Smj=w i=1,2.,m" =1, m", )
=1

where ;; is the set of “matching weights” between the two
sets. The matching weights are the values that are optimized
by linear programming in order to minimize the total WD.
The values themselves add up to the intensity of the support
point they match to, and the sum of those weights (for each
point) is multiplied by the distance between each correspond-
ing point to produce the WD. As such, the matching weights
are a function of both Euclidean distance and difference in
value between each support point in a set and all support
points in the other. The L2 norm is here used to assign a
length to the vector of the Euclidean distance between each
possible pair of support points.

The Wasserstein barycenter (WB) is then the centroid of
all members’ sets of support points, defined by minimizing the
total WD between itself and each ensemble member. It thus
acts as the centroid of the ensemble—a kind of skeletal mean.
Specifically, the WB of the ensemble’s first-tier signatures
(intensity and location) is the first-tier signature of a theoreti-
cal, idealized ensemble “mean” and is used as the ensemble
centroid. This study uses Ye et al. (2017)’s algorithm to calcu-
late the WB.

The WD can also serve as a measure of ensemble variance.
Specifically, the average of the squared WD between each
ensemble member and one of the GEM images would then
estimate both the position and intensity variance among the
ensemble.

d. Ensemble mean images

The three types of ensemble mean image generated around
the WB are the mixture density mean, the Bayesian posterior
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TABLE 1. GEM parameters tested (all) and chosen as optimal for this case (boldface type). Nearly infinite combinations are
possible with other values for each parameter, but full sets of results were tested only for combinations listed herein. WB-RM was
disabled for D2 testing only, because the smaller ensemble sizes caused nonrepresentative rigid adjustments in the means.

Bandwidth values (HMAC) Support sizes

Threshold values

WB-RM Rescaling

A (5,8) Automatic 0 dBZ
B @35 9 10 dBZ
C(2,35) 18
D (2) 60

Ensemble min/max
Member mean min/max

Rotation and translation
Rotation only
Translation only

None

mean, and the adjusted best member. These are later compared
with a simple pixel-wise average (PWA) of the images—the tra-
ditional ensemble mean used in meteorology.

The MDM is a physical representation of the 2TS of the
unobserved “true” mean: the first tier (patch centroids) of the
signature is the WB of the ensemble’s first tier. The second
tier is calculated via covariance fusion—an average of the
patches corresponding to each support point across the
ensemble, weighted by the total intensity of the patches and
normalized by the mean total intensity of the ensemble [see
full equation in Li and Zhang (2018), section 3.2.2]. Effec-
tively, the MDM is what the WB would look like when fully
fleshed out by the Gaussian distribution of its support points’
intensities. It serves to demonstrate the skeleton of the
ensemble, highlighting structures common among the ensem-
ble members.

The BPM treats the ensemble members as random samples
to estimate the mean as the truth. Li and Zhang (2018) define
the prior probability distribution of the true mean as a normal
distribution with the MDM as its mean and the average WD
between each ensemble member and the WB as the variance.
From this definition, the BPM—as the posterior mean—can
be expressed as the sum of each ensemble member, weighted
proportionally to the WD between each of them and the WB,
plus the MDM, weighted proportionally to the average WD,
such that the sum of all the weights is 1. Effectively, the BPM
morphs the MDM into a more realistic shape (closer to any
individual ensemble member) by including both the MDM
itself and the ensemble members in an average, and weighting
the lowest-WD members more heavily to better reflect realis-
tic shapes without distorting the mean. If all of the members
are roughly equidistant (in WD), then the BPM becomes a
roughly equally weighted average, but includes the MDM as
an extra ensemble member, thus still better spatially informed
than a simple arithmetic mean. By constructing the mean using
the WD as the member weights, the BPM does not require
outside information on member performance to operate.
Also of note is that if an ensemble member is much closer
to the centroid than the others, the BPM will very strongly
resemble that member, as it will weight it accordingly.

The ABM is a variant on an in-sample mean. Each ensem-
ble member is rotated and translated to best align with the
barycenter by minimizing the WD between them. The ABM
then selects the adjusted member with final lowest pixel-wise
MSE to the MDM image. In doing so, the ABM provides a
realistic example of what may occur, while also indicating the
most representative location and orientation of the precipitation
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features. An option to select the adjusted best member based on
solely the WD has been implemented, but the MSE is used here
for the final step to remain consistent with Li and Zhang (2018).

The MDM and BPM are rescaled such that their maximum
intensity is 255 (in grayscale) following its calculation, prior to
conversion back to dBZ, to make the results visually easier to
interpret. [Examples of each mean image can be found in
Figs. 9, 10, 12, and 13, described in more detail below, and the
full equations are in Li and Zhang (2018).]

e. Variations

The GEM system was run with varied sets of parameters, in
order to test the sensitivity of the mean images to these
choices. Results are generated for the specified ensemble at
several levels of granularity, with and without thresholding,
rotation or translation (when computing the ABM), and
rescaling. By “granularity” the authors refer to the spatial res-
olution of the WB calculation, defined by the support
size—the larger the support size, the more points of reference
are available to define the member and WB signatures. The
granularity is initially controlled by the Gaussian kernel band-
widths for the HMAC algorithm: larger bandwidths merge
more components into one patch, reducing the support size,
and therefore the granularity. Granularity can be finely
adjusted by altering the support size after the point in the sys-
tem execution at which the member 2TSs are calculated (see
Fig. 2 for illustration). This study examines four specific band-
widths, with HMAC input values A (5, 8), B (3,5), C (2, 3.5),
and D (2). These parameters will require tuning on a per-
application basis to generate the most useful results—the
choice is subjective because of the structural differences
between different phenomena. After testing the GEM system
with the parameter variations described above, the authors
determined that bandwidths B and C produced the most appli-
cable results for the three ensembles under examination. There-
fore, the bandwidth-B subset of results were chosen to be
shown and discussed below. Bandwidth A, as the fastest setting
for GEM, was used for D2 clustering tests. These variations are
summarized in Table 1. Not all permutations of results have
been completed for the tropical cyclone and thunderstorm
ensembles at this time, as those cases were added to serve as
proof-of-concept that GEM can function on other phenomena.

f- D2 clustering

The authors also apply the D2 clustering technique (Ye and
Li 2014) to the GEM system. This technique can be used to
section an ensemble into two or more different groups, which
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FIG. 9. Thresholded snowband ensemble results using GEM bandwidth B, shown as grayscale images: (a) PWA,
(b) scaled BPM, (c) ABM, and (d) scaled MDM.

could present multiple forecast scenarios based on the major
structural patterns present in the ensemble (e.g., Kowaleski
and Evans 2016). Effectively, D2 splits the input ensemble
into smaller groupings, based on their WD to multiple cent-
roids. The algorithm functions iteratively, much like k-means
clustering: it first creates N first-guess centroids and assigns all
members to one of them by smallest WD. It then loops
through, calculating the WD between each member and each
centroid and adjusting the centroids and their member assign-
ments to minimize total WD between each centroid and its
members. D2 was chosen over further uses of k-means or sim-
ilar algorithms to remain consistent with Li and Zhang (2018).

g. Comparison with observations

To quantify the improvement of these GEM images over
the PWA, the authors obtained observation data for the
specified time for the lake-effect case from the 11 NEXRAD
stations with ranges in the model domain (product “NCR”),
created a composite reflectivity version, and calculated a root-
mean-square error (RMSE) value between each mean image
and these composited observations. As the resolution of the
observations was higher than that of the ensemble used to cre-
ate the mean images, each was re-gridded to the resolution of
the other. This was accomplished using bilinear interpolation
(for upscaling the mean images) and a dynamic moving-box
average (for downscaling the observations). Additionally, as
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it was noted that the northwestern snowband present in most
ensemble members was not present in the observations, a sec-
ond comparison was made with both observations and mean
images masked to include only data points within 150 km
of each NEXRAD station. This maximum “view range” of
147.7 km (rounded out to 150 km) was computed by account-
ing for the minimum possible height of the radar beam given
distance, curvature of Earth, and minimum elevation angle,
given that lake-effect snowbands are unlikely to appear at
heights above 3 km.

3. Results and interpretation

Overall results for the three ensembles demonstrate that
GEM is capable of capturing the geometric structure of
weather phenomena, and shows agreement between all
results for a given ensemble. Figure 9 shows results for the
snowband ensemble at bandwidth B in grayscale, as it was the
output format for the original GEM system, alongside a sim-
ple pixel-wise average (PWA; e.g., arithmetic mean) for com-
parison. In short, the ABM acts as a better representative
member for the ensemble, the BPM as a better structure-
based weighted average, and the MDM as an outline of the
key structures in the ensemble. However, as these images are
difficult to quantify and interpret in grayscale, the recolored
versions (Fig. 10) were created and plotted against a map of
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FI1G. 10. Thresholded snowband ensemble results using GEM bandwidth B, shown as composite reflectivity images:
(a) PWA, (b) scaled BPM, (c) ABM, and (d) scaled MDM.

their corresponding geographical locations. (For the purposes
of plotting, thresholded results treat any dBZ values of 0 or
less after conversion as “no data,” shown as regions of white.)

Figures 9-12 display the unscaled PWA and ABM along-
side the scaled BPM and MDM for their respective cases. This
format demonstrates the improvements the GEM images
make over the basic PWA, in both structure and intensity.
(The ramifications of the rescaling process are discussed later
in this section.) As an ensemble member modified only in posi-
tion and orientation, rescaling the ABM is unnecessary—its
reflectivity values are already as realistic as the initial model
results.

Each of the three ensemble means can be interpreted as a
form of probability or risk estimation. The MDM and BPM
can both be read as the most likely locations (among the
ensemble members) for common structures and points of
peak intensity. The MDM is a generalized indicator of where
a given proportional intensity of precipitation is likely to fall,
whereas the BPM is a more representative version that fol-
lows the shape of the member reflectivity structures more
closely. The BPM can potentially give a better idea of the cur-
rent stage of development for the ensemble-depicted phe-
nomenon and its relevant physical structures. Additionally,
the wider, semi-realistic central structures of the BPM
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indicate the range of variation among the main structures of
the ensemble, as each is formed by a weighted average of the
overlapping structures from each member. The MDM gives a
more theoretical idea of where the regions of highest precipita-
tion are likely to occur in an area. In that way, it could be used
similarly to a risk map, indicating regions of slight, moderate,
and high risk of certain amounts of reflectivity (or other vari-
able being examined). However, not much should be read into
the stratification visible in Figs. 10-14—it is artificially created
by assigning colors to 5-dBZ-wide swaths of the value range.
The primary result of note from Fig. 10 is that the three
mean images successfully capture the basic structures of the
ensemble, with some improvement over the PWA (which has
significant feature blurring) and are in general agreement
with each other in terms of location and intensity. The BPM
and PWA are very similar in structure, although not identical.
However, the BPM (and MDM) capture the intensity of the
snowbands much better than the PWA, having the same max-
imum intensity as the ensemble average. The MDM shows a
generalized map of where the maxima of reflectivity are likely
to appear, mapping out the structures common to the entire
ensemble. The BPM refines those patterns into a more repre-
sentative shape that is marginally better at focusing the
regions of high reflectivity than the PWA—although not as
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F1G. 11. Thresholded tropical cyclone ensemble results using GEM bandwidth B, shown as composite reflectivity
images: (a) PWA, (b) scaled BPM, (c) ABM, and (d) scaled MDM.

focused as any individual member. Both the BPM and PWA
still succeed in indicating the general areas where significant
reflectivity might be expected, but are too dispersed to be
taken as a literal representation of a likely atmospheric
state. The northwestern snowband in the BPM (from Lake
Huron) more accurately captures the narrowing and split-
ting partway along the band’s length (considering 20 dBZ
and above in the BPM) that is commonly found in the
ensemble members. An uninterrupted band of consistent
width is uncommon, although it does occur in the ensemble.
The other noteworthy difference is that the PWA’s southern-
most snowband (off Lake Erie) displays a dual band, an arti-
fact of the varied latitudes of the members’ bands, whereas the
BPM displays only a single band, as is much more common
among the ensemble members.
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In contrast to the other two, the ABM is essentially the
most representative ensemble member. The ABM for this set
of results differs from the unmodified member 9 (Fig. 3, bot-
tom right) mostly in the translation of the ABM to the north-
east. This is in accordance with its alignment to the WB,
showing the most representative position and orientation
while still retaining its shape. It is possible for this rigid
motion to shift the ABM away from physical features on the
ground it was tied to—such as this ABM’s eastern snowband
no longer being entirely over Lake Ontario—but this adjust-
ment could also potentially serve to correct model biases of a
similar nature. This result indicates that snowbands under
these basic conditions are more likely to form or be oriented
farther to the northeast, with structures similar to those dis-
played by the ABM. Additionally, GEM allows for this rigid
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FI1G. 12. Thresholded thunderstorm ensemble results using GEM bandwidth B, shown as composite reflectivity images:
(a) PWA, (b) scaled BPM, (c) ABM, and (d) scaled MDM.

motion adjustment to be turned off, in the event that the
ensemble it is applied to causes the adjustment to become
nonrepresentative.

Table 2 displays the results of the RMSE comparison
between observations (Fig. 13a) and the GEM images out-
lined in section 2g, quantifying their improvement over a stan-
dard PWA. The GEM images demonstrate noticeable
reduction in error from the PWA in all tested comparison
methods, with the ABM having the largest reduction in all
cases. The significant advantage of the ABM over the other
two mean types in an RMSE comparison was expected, as it
is a rigidly transformed ensemble member with no structural
alteration, and is much closer to the observations than a fully
GEM-synthesized mean. However, these results do conclu-
sively show that, for at least this set of results, the BPM and
MDM images also constitute a significant quantitative improve-
ment over a simple PWA—at least 17% less error than the
PWA in all cases. Strictly as a function of comparison with a
PWA, then, the GEM images are more “realistic” means. A
visualization of the 150-km mask is shown in Fig. 13b.
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Figure 11 shows the results for the tropical cyclone (TC)
case. Their most notable feature is the accuracy with which
the MDM traces out the spiral rainbands of Hurricane
Harvey. The patches that described the original members
were clearly able to capture the important structures in
the cyclone, given sufficient granularity. Although GEM
has not been tested on less sparse TC variables such as
brightness temperature, it is evident that for a variable
such as reflectivity, GEM is capable of describing ensemble
structures well even given relatively wispy individual mem-
bers. GEM thus accomplishes the authors’ primary goal for
this application—creating a descriptive mean for such a vari-
able field without losing much structural information. The
MDM even succeeds in describing the storm cells separate
from the main body of the cyclone to the northeast and far
south with 2-3 patches each. The TC case contains both large-
scale and very small-scale features present in the image, and
is an example where the use of a larger or smaller number
of support points to capture the salient features could be
explored.
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FI1G. 13. (a) Observation data for the snowband case from NEX-
RAD, colored according to the dBZ scale used for results; (b) a
sample BPM result, with the 150-km mask applied over top (dark
gray) to illustrate the restricted range of the available NEXRAD
data.

Figure 12 displays the corresponding results for the thun-
derstorm ensemble. GEM still arrives at a reasonable consen-
sus for location and relative intensity, despite not capturing
the thunderstorm ensemble as well as the snowband and TC
ensembles, possibly due to the higher maximum intensities or
larger location spread. In addition, comparison with Fig. 14
demonstrates that the thunderstorm case BPM is a significant
improvement over the PWA, more successfully focusing the
strongest reflectivity into the central line. While the rescaled
BPM still has too broad of an area with high reflectivities to
be truly representative, its shape is much closer to the individ-
ual members than the PWA, which has much stronger hot-
spots in the northeast and southwest from the members that
are strongest in those locations. Effectively, WD-based
weighting of the BPM here improves upon the PWA by rec-
ognizing spatial outliers and weighting them accordingly. The
MDM here illustrates that spatial consensus, describing the
common central storm line and frequent hotspots along it. It

Brought to you by Pennsylvania State University, Paterno Library | Unauthenticated | Downloaded 04/19/22 07:00 PM UTC

SEIBERT ET AL.

423

also indicates the aforementioned outliers and lower-intensity
features to the west without being overly affected by them.

The other two cases show similar results when comparing
their scaled (Figs. 10-12) and unscaled (Fig. 14) BPM and
PWA images. The BPM is a marginal improvement over the
basic PWA for the snowband and TC cases, as it is likely to
be for most ensembles. The unscaled snowband BPM is more
able to distinguish boundaries between bands than the PWA,
as shown by the more distinct separation of the areas above 5
dBZ. The unscaled BPM has most of the same basic shape
and structures of the PWA, but focuses the regions of higher
intensity slightly more into the cores of each snowband. (This
is also true of the TC case.) Both are too dispersed to be par-
ticularly readable without the application of rescaling. Simi-
larly, while the unscaled snowband MDM is not as useful in
identifying regions of distinctly higher risk, it still captures the
locations and relative intensities more strongly than the corre-
sponding PWA, and displays the consensus of shape more
thoroughly, especially in the NW band.

In both the TC case and thunderstorm case (Figs. 11 and 12),
it is apparent that the rescaling process can result in some or all
regions of concentrated high reflectivity in the mean images
being too strong, broad, or both to be representative. This is
especially evident in Fig. 12, where the maximum reflectivities
of the BPM and MDM are significantly higher and present in
broader areas than some individual members. This effect has
only appeared when reflectivities in excess of 50 dBZ are pre-
sent, and is likely a side effect of having a few ensemble mem-
bers with relatively high maximum reflectivities influencing the
ensemble maximum. Further, this effect is mitigated by the use
of the member-averaged minimum and maximum dBZ values
in the average images’ conversion back to dBZ, as these values
are inevitably less extreme than the overall ensemble minimum
and maximum, and capture the ensemble consensus more
strongly. While this flaw in GEM is significant, GEM is intended
to better summarize an ensemble, not to provide literal depic-
tions of possible observations. The relative intensities and struc-
tures defined by the GEM images still serve to illustrate the
areas of highest risk, and the rescaling and recoloring provides
an easier way for forecasters to visually distinguish those areas.

This issue can also be partially addressed with the use of
quantile-based rescaling (i.e., substituting a specific quantile
of the ensemble’s above-threshold values for the mean of the
members’ maxima). This method reduces the impact of out-
lier maximums, but also reduces the amount of visual distinc-
tion between lower intensities in ensembles with lower
maxima, such as the snowband case. As such, this workaround
is not suitable for all cases.

Figure 15 demonstrates the sensitivity testing employed,
examining the response of each mean image type to varied
support size. The MDM is highly sensitive to granularity, as
shown by the strong response from changing support size
alone. The support size 9 MDM is clearly composed of just
those nine Gaussian shapes, tracing a general triangular
shape, but the support size 18 and 60 MDM images begin to
distinguish the eastern snowband from the southern, among
other increasingly detailed features. This detail is largely a
function of the support size, and the smoothness a result of
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FIG. 14. Unscaled (left) BPM and (right) MDM using bandwidth B for each set of thresholded ensembles, shown as
composite reflectivity images: (a) snowband case, (b) TC case, and (c) thunderstorm case.

Gaussian shapes for each support point overlapping. How-
ever, raising the support size much farther can diminish the
intensity assigned to each to the point where there is no lon-
ger any overlap, return the MDM to an uninformative series
of bright points. The other mean image types do not respond
as strongly to changes in support size, but still display signifi-
cant structural differences between bandwidth values (not
shown). Additionally, the thresholded results are more repre-
sentative of the primary snowband structures than the non-
thresholded results, likely because of lower interference from
regions of low precipitation.
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The testing that has been conducted with D2 clustering has
demonstrated that it is capable of concisely showing several
different scenarios from among the ensemble, as determined
by the members’ primary structures (see the example in
Figs. 16-18). This could be very useful for demonstrating
major possibilities, using each cluster’s mean, from among the
ensemble’s predictions without overloading the forecaster
with information (e.g., Kowaleski and Evans 2016). D2 clus-
tering can successfully group member images by rough sce-
nario, and can do so on a finer level than a human eye alone
when aided by the WD metric. There are clear similarities
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TABLE 2. Breakdown of the RMSE values between the observations (obs) and GEM snowband mean images. Because the
observations use a different resolution than the snowband ensemble, one or the other had to be regridded to match. To avoid bias,
the results of both are shown. In addition, tests were conducted with the 150-km radar mask applied to both the GEM images and
observations, to ensure fair comparison given the limited range of the available NEXRAD stations. The percent improvement of

each RMSE value over that of the PWA for each category is given in parentheses. Each GEM image has at least 17% less error than

the PWA. All values are rounded to one decimal place.

Model regridded to
obs resolution
(150-km mask)

Model regridded to
obs resolution

Obs regridded to
model resolution
(150-km mask)

Obs regridded to
model resolution

ABM-obs 43.6 (35.5%) 30.6 (31.9%)
BPM-obs 55.0 (18.7%) 35.6 (20.8%)
MDM-obs 56.1 (17.1%) 35.6 (20.8%)
PWA-—obs 67.6 449

43.7 (35.4%)

55.0 (18.8%)

56.0 (17.2%)
67.7

31.0 (31.8%)

36.1 (20.5%)

36.1 (20.5%)
454

between the dominant patterns within each cluster, such as
the weaker southern snowband in Fig. 16, versus the more
elongated bands in Figs. 17 and 18. Thus, these results show
that D2 can employ the WD to good effect in numerically
grouping ensemble members by structure and intensity. In
addition to the ABM chosen by MSE to the MDM, each

cluster member in the figures is also ranked by smallest WD
to the cluster centroid, indicating other atmospheric states
more or less representative of the ensemble subset for their
specific scenario. Although the cluster members were chosen
by minimizing WD, there is clear disagreement in all three
clusters between the MSE-based best member (ABM) and

GEM Images: Bandwidth B, Thresholded
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FIG. 15. Results for sensitivity testing the GEM for (top) MDM, (middle) BPM, and (bottom) ABM on bandwidth B using support sizes

(left) 9, (center) 18, and (right) 60. The MDM shows the greatest sensitivity to support size, although all mean image types display recog-
nizable variance between different bandwidths.
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D2 Cluster Comparison: Bandwidth A, Cluster 1 of 3, Thresholded
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FIG. 16. Results for the first of three clusters generated through D2 clustering, using GEM bandwidth A, shown as grayscaled images:
(top) GEM images for the cluster; (remaining rows) each ensemble member assigned to the cluster, sorted by WD to cluster centroid,
labeled as “[Position in sorted list]([Member number]): [WD to cluster WB].”

the WD-based best member (cluster member 1), illustrating The testing with D2 clustering has also highlighted a poten-
the difference between the priorities of each distance metric.  tial problem with these methods—when the ensemble is split
Because the authors have not yet developed a method of into clusters of fewer than 30 members, the translation and
quantifying which option is more useful, both options are dis- rotation fitting process employed in the ABM -calculation
played here. results in poor adjustment. Those ABM results tended to be

D2 Cluster Comparison: Bandwidth A, Cluster 2 of 3, Thresholded
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FIG. 17. As Fig. 16, but for the second of the three clusters.
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D2 Cluster Comparison: Bandwidth A, Cluster 3 of 3, Thresholded
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F1G. 18. As Fig. 16, but for the third of the three clusters.

shifted and rotated unrealistically far, often being partially
out of the image domain. As a result, the ABM images shown
in the D2 results here were calculated with that process dis-
abled, and are simple best members without rotation or trans-
lation. It is likely that this effect is due indirectly to the small
sample size, and that the reduced number of members in each
cluster resulted in a barycenter that was not descriptive
enough to match to the members.

4. Conclusions

The authors apply an expanded version of the GEM system
to three ensembles of composite reflectivity images: a lake-
effect snowband ensemble, a tropical cyclone ensemble, and a
severe thunderstorm ensemble. For each ensemble, each
member image is thresholded and grayscaled (to aid in image
processing, clarity, and object recognition). Two-tiered signa-
tures are then constructed to describe the geometry of each
image, and used to compute the ensemble’s Wasserstein Bary-
center. That centroid is then used with the signatures to com-
pute three types of ensemble mean, each of which has been
shown to retain more useful information than a traditional
pixel-wise average. The MDM is a visualization of the cen-
troid, the BPM is an improved weighted average, and the
ABM is an improved best member.

Each type of mean will have different applications for fore-
casting, and provides an ensemble mean with a different level
of realism. The MDM outlines the key structures present
among the ensemble, can be interpreted as a generalized risk
map for the intensities it depicts, and visually demonstrates
the geometric centroid of the ensemble. As a better weighted
average, the BPM is semi-realistic, showing areas that can
contain variations on the basic structures of the ensemble,
and possibly indicating the current stage of development for
the phenomenon depicted. It refines the outlines of the MDM
by incorporating ensemble members weighted by WD to the
centroid. Finally, ABM can act as a better representative
member, indicating a likely position and orientation while
maintaining the structure of the ensemble member closest to
the centroid in WD space. Each of these has been shown to
be closer to a “fully realistic” mean than the PWA, through
RMSE comparison with observations.
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The authors have improved upon the original GEM system
by applying low-intensity thresholding to the source images
before processing, and by restoring units and colors of dBZ to
the output images and input ensembles for easier interpreta-
tion. The thresholding is designed to allow the algorithm and
human forecasters to more easily distinguish individual
objects among the reflectivity fields.

As demonstrated by the three cases examined above, GEM
is capable of capturing the distinct structures present in multi-
ple types of weather phenomena and creating useful means
for each. Not all phenomena will be equally well suited to
processing via GEM, but the authors have shown that GEM
can describe improved ensemble means for at least lake-effect
snowbands, tropical cyclones, and severe thunderstorms. The
less representative results for the thunderstorm case are
potentially influenced by two factors—1) the wider spread of
ensemble member structures and locations and 2) the inten-
sity rescaling. However, GEM’s consensus is still reasonable
in location and relative intensity despite that increase in vari-
ance, and the rescaling is an optional feature, intended to pre-
serve maximum intensity and make results easier to read and
interpret. These results potentially indicate that GEM as a
whole, and the rescaling feature in particular, may be more
suited to lower-intensity phenomena. Cases with higher maxi-
mum ensemble intensities also tend to have a greater variance
in maximum member intensity, contributing to the above
problem. In all cases, rescaling the MDM and BPM increases
the visibility of the features they describe for the ensemble.

Current applications of D2 clustering to the GEM system
indicate that WB-guided D2 is capable of identifying multiple
rough scenarios, demonstrating several major possibilities for
the ensemble without overloading the forecaster with exces-
sive information. Each scenario has its own mean images, and
offers the cluster members, sorted by WD to the cluster cen-
troid, as more specific possibilities within each. The authors
note that ensemble sizes of less than 30 members, such as
when breaking a 30-member ensemble into two of more clus-
ters, create nonrepresentative ABM images unless the rigid
motion is disabled.

This work also has implications for potential innovations in
ensemble data assimilation contexts. Respecting the underly-
ing objects or features during data assimilation could result
in improved analyses that are more representative of the
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underlying phenomena. Potential applications include com-
paring observations with the prior or adjusting the posterior
ensemble in WD space, rather than RMSE, or using a BPM in
place of a pixel-wise ensemble mean.

To generate best results for specific phenomena and indi-
vidual cases, GEM will require some tuning via deliberate
choice of bandwidths, support sizes, and threshold values.
The authors have not yet devised a system for assisting with
this process, but have determined that a threshold value of
0 dBZ is a reasonable starting point for reflectivity, given the
variable’s logarithmic nature. Additionally, the default set of
four bandwidth options included in GEM span a range wide
enough to assist in identifying an appropriate granularity for a
given application.

GEM can be of aid for forecasting purposes, but may also
be useful for other purposes, such as verification or data
assimilation. It is possible that GEM-guided analysis will
prove useful in identifying atmospheric processes or improv-
ing models in ways that have not yet been explored, as a result
of introducing object-based averaging to the pool of available
techniques. As the GEM system is further developed, its
applications should become even more significant for the
meteorological community.
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