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ABSTRACT: There is great interest in controlling the spatial DOPAD .

dispersion of inorganic nanoparticles (NPs) in an organic polymer Labeling =3 =" ;a’m

matrix because this centrally underpins the property enhancements & A

obtained from these hybrid materials. Currently, qualitative Cutting i

information on NP spatial distribution is obtained by visual kil oo

inspection of transmission electron microscopy (TEM) images. ’2TEM lmages 279,057 Labeled Images

Quantitative information is only indirectly obtained through the @ Training

use of scattering probes such as small-angle X-ray/neutron Iy EPosin’onSize
scattering (SAXS/SANS). While the main challenge, that A e
scattering probes operate in reciprocal space, can be remedied | . V| ) || [T ) (2. e |l

by Fourier inverting the data into real space, a much harder issue o 3

deconvolves the contribution of the particle form factor (which is
affected by the details of the NP size and shape) from the structure
factor that contains information on NP spatial distribution. These problems become acute when we deal with the popular topic of
NPs grafted with polymer chains because the polymeric corona and hence the particle form factor becomes context-dependent and is
hard to quantify. To make progress, we develop and apply a deep-learning-based image analysis method to quantify the distribution
of spherical NPs in a polymer matrix directly from their real-space TEM images. A dataset of NP detection (DOPAD) is built by
manually labeling particle positions on experimental TEM images of diverse polymer composite systems. A convolutional neural
network object detection model is then trained on DOPAD. Together with sliding-window and merging algorithms, an automated
pipeline is established, which takes a large TEM image as input and extracts NP locations and sizes. We validate the structural
information resulting from this method against SAXS-derived structural information for NPs ordered by polymer crystallization and
then use it to distinguish between different states of the assembly of polymer-grafted NPs in a polymer matrix achieved by using their
surfactancy. We show that this data-rich protocol allows us to draw critical facets of experimental behavior which have previously not
been accessible. The DOPAD dataset, Python source code, and trained model are shared on GitHub at https://dopad.github.io.

1. INTRODUCTION exacerbated for high-filler loadings where the image of NPs in
Organic polymers mixed with (inorganic) nanoparticles (NPs), different layers in a TEM slice (typically 100 nm in thickness)
such as silica nanospheres,” carbon nanotubes,” and graphene can overlap in the resulting two-dimensional image. This
nanolayers,” are capable of exhibiting significantly enhanced makes it difficult to properly resolve individual NPs and hence
mechanical, electrical, thermal, and barrier properties in characterize their dispersion state. Given the ever-increasing
comparison with pure polymers.”® These property improve- amount of experimental data, a fast and reliable way to
ments are strongly affected by the shape, loading, and, in quantitatively extract positions and sizes of NPs from TEM
particular, the spatial dispersion of the NPs in the polymer images becomes crucial for high-throughput material develop-
matrix. Due to the natural tendency of NPs to agglomerate and ment.

phase separate from polymers,” a great deal of effort has been Deep learning methods based on convolutional neural

applied to control their dispersion;”® the quantitative
characterization of the NP dispersion state is then the
prerequisite for rational design of composite materials.
Unlike other characterization techniques, transmission
electron microscopy (TEM) of polymer nanocomposites
directly reveals the morphology of nanofillers. However,
further analysis of TEM images usually rely on manual
processing and human-centered experience, or at best, with the
help of hand-engineered computer algorithms,” which can be
inaccurate and inefficient.'” These problems are particularly

networks (CNNs) can address these issues and provide
suitable solutions.'' Recently, this type of approach has been

Received: November 5, 2020
Revised:  February 25, 2021
Published: April 2, 2021

© 2021 American Chemical Society https://doi.org/10.1021/acs.macromol.0c02483

W ACS Publications 3034 Macromolecules 2021, 54, 3034-3040


https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.macromol.0c02483&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c02483?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c02483?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c02483?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c02483?goto=supporting-info&ref=pdf
https://dopad.github.io
https://pubs.acs.org/doi/10.1021/acs.macromol.0c02483?fig=abs1&ref=pdf
https://pubs.acs.org/toc/mamobx/54/7?ref=pdf
https://pubs.acs.org/toc/mamobx/54/7?ref=pdf
https://pubs.acs.org/toc/mamobx/54/7?ref=pdf
https://pubs.acs.org/toc/mamobx/54/7?ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.macromol.0c02483?rel=cite-as&ref=PDF&jav=VoR
https://pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org/Macromolecules?ref=pdf

Macromolecules

pubs.acs.org/Macromolecules

l e
]
- W

Figure 1. Examples of training images in DOPAD, each of 416 X 416 pixels, containing three to nine particles labeled by red rectangles.

used to locate magnetite particles,"” recognize local atomic
structure,” reconstruct holography of microparticles,'* identify
atomic defects,'” recognize metal NPs dsposited on graphite,'®
and resolve liquid-phase TEM videos.'” Attempts have even
been made to directly map two-dimensional (2D) image 8pixels
to high-level predictions, such as material properties'® and
structural types.'® Despite the wide variety of research efforts,
the problem of detecting NPs in polymer composites still
remains an open challenge. The challenges here are two-fold:
first, one has to establish a suitable dataset, namely,
representative TEM images of polymer nanocomposites.
Using datasets of other systems or styles to solve this problem
will give biased predictions. Second, TEM images of polymer
nanocomposites can be complicated by the presence of a vast
number of (sometimes overlapping) NPs and their exotic
morphologies.

In this article, we create a large and representative dataset of
TEM images of polymer nanocomposites filled with spherical
NPs (Sections 2.1 and 2.2). Compared with fibers, tubes, or
rods, spheres are a major type of nanofillers that can be
synthesized with various chemical compositions.”””" A state-
of-the-art object detection method in deep learning, YOLOv3
(Section 2.3), is then used to locate particles with rectangular
bounding boxes™ (Section 2.4). An efficient pipeline using a
sliding-window method is established to process large TEM
images and make accurate predictions about tens of thousands
of fillers within minutes. The same task would normally cost a
human labeler an hour. Particle locations and sizes are
automatically extracted, which allows for further quantitative
analysis>® (Section 3). The end-to-end predictor in this work is
deployed on GitHub” to facilitate the task of NP character-
ization. The dataset and Python source code are also shared,
which can be used to systematically improve the performance
of our method in the future.

2. METHODS

2.1. Experimental Preparation of TEM Images. We use data
from several experimental situations that have been studied previously
by our groups. Three types of NPs were used: small iron oxide NP
(11 nm diameter), a large silica NP (~50 nm diameter), and a
smaller NP (~14 nm) mixed with a variety of matrices. These are
typical NPs used in polymer nanocomposites, which can represent a
large number of systems. However, one should be cautious when
applying the model developed in this work to study images of
extremely different styles.

We first consider a mixture of SO nm diameter NPs with poly(2-
vinyl pyridine) (P2VP)—more details of this system are presented in
ref 24, but for the purposes of this work, it is sufficient to note that
these NPs are well dispersed. In a second class of samples, we mix
(magnetic) iron oxide NPs in a poly(methylmethacrylate) (PMMA)
matrix—in these cases, the magnetic moment of the NPs locally aligns
head-to-tail into clusters. The third class of systems we examine are
composites comprised of the semicrystalline polymer—polyethylene-
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oxide (PEO) mixed with 14 nm diameter NPs. The silica NPs are
grafted with PMMA chains to ensure that the they are compatible
with the PEO in the melt state. In this case, the process of polymer
crystallization moves the 14 nm diameter silica NPs into the
interlamellar zone. Previous small-angle X-ray scattering (SAXS)
data and the TEM picture confirm this ordering, but the analysis is
complicated by three factors: (i) the convolution of the NP form
factor with the structure factor. Here, it is critical to note that the
silica NPs are polydisperse, making the determination of structure
complicated. (ii) The presence of the PMMA brush which affects the
structure factor, but which essentially has no contrast with the
PMMA, complicates the structural assignment. (iii) There is a (small)
contrast between the crystal and amorphous regions of the polymer
which contributes to the scattering, complicating the analysis of the
scattering data. A proper analysis of TEM images could be used to
mimic the NP structure factor by only using the positions of the NP
centers (i.e, treating them as point scatterers) and from there to
obtain detailed information of the structure. Finally, we examine the
case of 14 nm silica NPs grafted with polyisoprene chains placed in a
polyisoprene matrix. The grafting density and chain length of the
grafted chains control the surfactancy of the NPs; when combined
with the chain length of the matrix, we can obtain a variety of NP
assemblies. In this work, we examine a particular case where the NPs
phase separate from the matrix and form large agglomerates.”

These polymer nanocomposite samples were typically formed by
codissolving the NPs and the matrix polymer into a common solvent
followed by solvent casting and drying.zs'26 The nanocomposites were
annealed and subsequently microtomed using a Leica Ultracut UCT
microtome to sections 60—200 nm thick. Samples were then imaged
on a Philips CM12 TEM with a Gatan 4k X 2.7k digital camera. For
model training, we prepare 72 large TEM images of different polymer
nanocomposites, each containing about 3500 NPs. The resolution of
these images ranges from 2000 X 2000 to 6000 X 6000 pixels. More
high resolution TEM images are held for final testing of the model’s
performance.

2.2. Dataset and Preprocessing. In each of the 72 large TEM
images, we first manually labeled the positions of all NPs,
distinguishable by the naked eye, with rectangular bounding boxes
using the online tool Colabeler.”” A neural network to detect
thousands of NPs on the whole TEM image at once will be extremely
complex for having too many parameters. To reduce the complexity of
the model, each large TEM image is cut into many small square
images of the same size, each containing only a few particles (less than
30, typically 4—S5). In each cutting, the dimension of small images, N
X N pixels, is set by randomly choosing an integer N from [75, 375].
Because the neural network architecture used in this work requires the
linear dimension of input images to be a multiple of 32, all the small
images are then rescaled to 416 X 416 pixels such that particles appear
to have different sizes across different samples. The moderate number
416 = 32 X 13 is often used because it gives a good balance between
resolution and computational efficiency. With this protocol, we arrive
at a dataset of 279,057 labeled square images, DOPAD (dataset of
nanoparticle detection), as shown by examples in Figure 1.

After randomly shuffling, the total dataset is then split into a
training set of 251,151 (90%) and a validation set of 27,906 (10%)
images. For data augmentation, photometric distortions are applied to
the training set. Each small square image is subjected to randomized
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hue (+£20%), randomized saturation (50—150%), randomized
brightness (50—150%), randomized contrast (50—150%), and a
50% chance of being flipped horizontally. We also apply spatial
distortions to NPs by randomly shearing square images horizontally
with a strain uniformly drawn from [—0.1, 0.1]. The empty margins
due to shearing are then padded with averaged pixel values with
Gaussian noise. Examples of the effects of such photometric and
spatial distortions are shown in the Supporting Information.

2.3. Neural Network Model. We adopt the classical deep CNN
model, YOLOv3,”>*® which has 251 layers based on the Darknet-53
backbone,”® to fulfill this object detection task. The model is built
with Keras®® and tensorflow 2.0°" and modified from the
implementation by Zang.’> Each input image i with 416 x 416
pixels and three color channels is formatted as a (416, 416, 3)
dimensional array X;, whose entries are integer values between 0 and
255. These integers are rescaled to floats between 0 and 1 before
being fed to the neural network.

The output contains information on (multiple) predicted bounding
boxes. Each bounding box j on image i is characterized by two parts:
(coordinates, score). The coordinate part has a form of
(% iV ninXawVnax), Which are the coordinates of the lower-left and
upper-right corners, or equivalently, («, y/, w/, W), which are the center
coordinates, width and height. The confidence score s; is a value
between 0 and 1, representing the confidence of the bounding box.
The overall output Y; of image i with m bounding boxes thus contains
alist of arrays (¥, ¥, ), W, ), j = 1,2, .., m. Our model can detect up
to m = 100 objects in each image, which is more than enough for
current task. Typically, the model returns m = 4—5 bounding boxes
for each small image in DOPAD.

2.4. Training and Prediction. The model is trained on the
Nvidia RTX 3090 GPU—the process typically takes 1—2 days for the
whole dataset. With transfer learning, the pretrained weights of
YOLOv3 on the COCO dataset is loaded®® for parameter
initialization (see Supporting Information for the training curve).
We use the mini-batch gradient descent of the batch size n = 32 with
the Adam optimizer and a starting learning rate 7 = 0.0001.>* The
learning rate is scheduled to reduce by a factor of 10 when
performance stagnates. The training is guided by a standard loss
function used in object detection, which combines the mean-square
error of the locations of bounding boxes (L;,) and the cross-entropy of
the confidence score (L,)*

loss = AyLy + AL,

(1)

We set the relative weight factors to be 4, = 1, 4, = 10 in our
training. To reduce overfitting, I regularization is applied. The
regularization strength o and initial learning rate # are then tuned for
model selection. The final performance of the model is evaluated by
the mean average precision (mAP),*® a numerical score within [0, 1]
with 1 being the best. The word “average” refers to a weighted sum of
recall over all precisions, and “mean” refers to average over all classes
of objects (there is only one class in our case). The mAP is
numerically computed from the area under the precision-recall (PR)
curve, which is obtained by varying the threshold confidence score to
assign a true positive detection case. To better estimate the accuracy
of the prediction, 10-fold cross validation is performed.

After the CNN model for DOPAD is optimized, a given large TEM
image of arbitrary size can be analyzed by sliding a small square
window over the entire image and then merging predictions from all
windows (see Supporting Information). The code then outputs
coordinates (ix; y;) of each located NP in a text file, together with an
estimate of its diameter 6; = min{w,h;}. Technical details about our
deep-learning predictor are contained on the GitHub site https://
dopad.github.io.

3. RESULTS AND DISCUSSION

3.1. Training the CNN Model for Small Square Images
in DOPAD. The CNN model is trained using 20, 40, 60, 80,
and 100%of the training set up to 25 epochs, as shown by the
training curves in Figure 2. While significant overfitting exists
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Figure 2. Training (solid symbols) and validation (empty symbols)
loss as a function of learning epoch for different data sizes. Inset:
optimized training loss (epoch 25) and the corresponding validation
loss value as a function of data size. Hyperparameter a = 0.001 and 7
= 0.0001.

for the smallest dataset (20%), the learning curve suggests that
validation loss is reduced as the size of dataset increases. We
expect that collecting more images of a similar type for this
problem can further improve the performance of the model on
unseen data.

We also explore different hyperparameters @ and #. The
corresponding optimized validation mAP for each model with
an intersection over union (IoU) threshold 0.5 is calculated
from the PR curve. Here, IoU is a metric within [0, 1] used in
object detection to quantify the similarity between the ground
truth and predicted bounding boxes. The threshold 0.5 is a
standard value chosen in object detection research to make
benchmark comparisons. As compared in Table I, the best-
performed model with 94.8% mAP is trained at & = 0.001 and
n = 0.0001, which is used for further prediction and analysis.

Table 1. mAP with IoU Threshold 0.5 on the Validation Set
for Different Regularization Hyperparameters & and
Starting Learning Rates 7

a n mAP (%)
0.0005 0.0001 90.4
0.001 0.0001 94.8
0.001 0.00001 932
0.005 0.0001 91.0
0.005 0.00001 94.3

3.2. Performance on Large TEM Images from the
Dataset. After the CNN model for DOPAD is optimized, we
apply it, together with the sliding-window and merging
protocol, on the original large TEM images in our dataset to
test the model’s ability to combine predictions on small square
images. An example TEM image with predicted bounding
boxes is shown in Figure 3. Results from a standard tool in this
field, Image],” are also included for comparison.

After loading the optimized weight, our end-to-end
prediction takes less than 1 min on a GPU to locate 2745
NPs on this 6000 X 4800 pixel image, which is known to
contain 2715 ground truth particles, giving a F1 score of
0.9443. Image], by contrast, detects 1626 particles with a F1
score of 0.7218.

More prediction examples are provided in the Supporting
Information and shared in the GitHub site of this work.
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Figure 3. Deep learning-predicted bounding boxes (blue) for NPs on
a large TEM image, whose small cuts are used in training. Particle
locations predicted by Image] (red dots) are also shown. The sample
is 10 wt % 50 nm silica in 100 kDa P2VP.

Empirically, we find that the method performs less satisfactory
in images where NPs are surrounded by white color air
bubbles.

3.3. Performance on Unseen Images. The ultimate test
of a supervised learning model is to examine its ability to
generalize to new data, possibly from a different distribution.
We thus apply our model to new TEM images that are not
used in DOPAD to test its performance. To challenge the
model, we select extreme cases with exotic structures, low
contrast, or low resolutions. Examples are shown in Figure 4,
which have NPs in cluster, stripe structures or at extremely
high loading. More prediction results can be found in the
Supporting Information and GitHub. When NPs agglomerate
into clusters or stripes, Image] is unable to distinguish between
them, while our method successfully detects most NPs. The
performance of Image] also suffers from high loading, which
leads to the overlap of NP images from other layers in the
image. The variation of contrast in different regimes of the
image presents another obstacle to apply Image]. In
comparison, our model excels at NP detection in these
extreme cases, even if they were not used in training and some
of them cannot be clearly resolved by the human eye. A
quantitative comparison with the F1 score is shown in Table 2.

3.4. NP Size Distribution. The quantity that is the easiest
to obtain is the diameter ¢ of NPs, which is estimated by the
size of the bounding boxes. This information can be used to
draw the size distribution in each case. The histograms of NP
sizes in the low-density (nominally SO nm diameter NPs,
Figure 3) and high-density disordered samples (nominally 14
nm diameter, Figure 4c) are fitted with log-normal
distributions. It is often believed that the impact of the
Ultracut microtome would cause the measured particle sizes on
2D images to deviate from the true values in 3D samples. Here,

Table 2. Number of Particles Detected by Our Model and
Image] from Sample Images in Figure 4

sample ground truth our model Image]
4a 7670 6362 (0.9064) 1526 (0.2398)
4b 1940 2166 (0.6732) 799 (0.3147)
4¢ 7472 5397 (0.8355) 2738 (0.4284)

“F1 score is shown in parentheses.

we find that despite the interference of particle projections
from different slices, the mean values predicted from deep
learning analysis, 48.9 and 14.4 nm, are close to manufacturer
specifications, S0 = S5 and 14 + 4 nm, respectively. This
validates our method and gives us confidence in its predictions
(Figure 5).

3.5. Assembly State of NPs. Extracting the locations of
the NPs from TEM images allows us to efficiently and
quantitatively characterize their dispersion.”’ Besides micros-
copy methods, X-ray and neutron scatterin_; are standard tools
to resolve polymer composite structures.”” One can compare
experimentally measured scattering patterns with theoretical
predictions, calculated from particle coordinates, to better
understand the structural properties of the composites.*®

For example, the NP stripes aligned by polymer crystal-
lization in Figure 4b give rise to two major peaks in the two-
dimensional structure factor, S(q,,q,), with these gq’s being
perpendicular to the parallel stripes (Figure 6). At the two
peaks, the magnitude of the scattering vector q* =~ 14757,
which corresponds to an interstripe spacing of A = 2zn/q* ~
4.30. Given that 6 = 14 + 4 nm, this yields that the separation
of the centers of NP layers is %60 nm. Previously, SAXS results
had yielded similar numbers, validating this approach.*

To distinguish different disordered packings of NPs in
Figures 3 and 4c, we focus on the particle number fluctuations
&(R) = (N(R)*) — (N(R))* within a circular window of
radius R. This information allows us to understand the
different spatial dispersion states of the NPs and in particular
to distinguish between states that appear to have a uniform
distribution of NPs across the entire image.*” In ordinary non-
hyperuniform disordered samples, such as liquids or glasses,
particle number fluctuation grows as fast as window size, that
is, o%(R) ~ R In hyperuniform disordered samples,
fluctuations are suppressed at large length scales, which leads
to the exotic consequence that the system becomes
thermodynamically incompressible.

We calculate o5(R) by randomly throwing 1000 circles of
radius R on the image and counting the number of particles
N(R) in each circle. Because the finite image size imposes

Figure 4. Predicted bounding boxes (blue) for NPs on unseen TEM images. Only a small portion of each full image is shown here. Particle
locations predicted by Image]J (red dots) are also shown. The samples are (a) clustered S wt % 11 nm y-Fe,O; NPs in 115 kDa PMMA, (b) striped
10 wt % 14 nm silica (PMMA-g-silica, 0.1 ch/nm?, 40 kDa) in 100 kDa PEO (*cryomicrotome, cryoTEM), and (c) high-density disordered 4 wt %
14 nm silica (PI-g-silica, 0.25 ch/nm? 38 kDa) in 35kDa PI (*cryomicrotome).
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Figure 6. Two-dimensional structure factor S(q,4q,) of NP stripes,
whose coordinates are extracted by our deep learning method and
shown in the inset. Two major peaks are observed in the direction
perpendicular to the parallel stripes at a radius g* ~ 14767 (green
solid circle). The scattering signal of amorphous packing around a
distance of particle diameter o is at a radius 27z/0 (red dashed circle).

strong correlations between different sampling windows as
their size approaches the image size, we only measure R up to a
quarter of the minimum dimension of each image (Figure 7).

Among the four samples in Figures 3 and 4, the most
interesting are the two systems which appear to have a
relatively uniform distribution of the NPs. The sample in
Figure 3, which corresponds to a well-dispersed mixture of NPs
and the polymer, shows that 6%(R) decays faster than R* at
least at small R, implying that the system is apparently
hyperuniform locally. This system thus appears to have
suppressed concentration fluctuations at short scales, con-
sistent with it being miscible. In contrast, the high-density
disordered sample in Figure 4c is an ordinary liquid (not
hyperuniform), that is, ox(R) grows faster than R%. (It
eventually decreases at the largest R, not shown, but i.e.
because of the finite size of the TEM images.) Since we know
that the latter sample corresponds to NP agglomeration due to
phase separation from the polymer matrix, as deduced from
larger field of views, it is apparent that the small R behavior of
ox(R) is an efficient means of distinguishing between the
different states of NP/polymer miscibility.
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Figure 7. Particle number fluctuation o(R) as a function of the
radius R of sampling circular windows for the low-density disordered
packing in Figure 3 and cluster, stripe, high-density disordered
packing in Figure 4. The curve for stripe is magnified by 10 times and
that for high-density packing is magnified by SO times to enhance
visualization. The horizontal axis is rescaled by particle diameter ¢ in
each image.

We now consider the two other images. The clusters
obtained for the iron oxide NPs (Figure 4a) show that o%(R)
scales as R? for all except smallest distances—thus, this system
appears to have a liquid-like ordering of NP clusters. In the
case with the string-like NP morphologies formed by PEO
crystallization we find that 6%(R) increases as R? for small R
but then starts to decrease for larger R. While the initial
increase is likely due to the anisotropic ordering of the NPs,
larger scale fluctuations are suppressed. This likely speaks to
the long-ranged order imposed on the NPs by the underlying
semicrystalline polymer morphology. (This regularity is likely
only relevant locally inside a spherulite.)

Although our method enables quantitative characterization
of particle assembly states in 2D slices, it should be kept in
mind that the genuine packing and hyperuniformity states in
3D samples need to be further examined, for example, from
tomographic techniques.*'

4. CONCLUSIONS

In this work, we propose a DOPAD built from experimental
TEM images of polymer nanocomposites. A CNN model is
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trained on DOPAD to predict NP locations inside each small
square image. In combination with sliding-window and
merging algorithms, a large TEM image can be fed into the
pipeline for end-to-end analysis, which automatically extracts
NP locations and sizes. The method established here thus
paves the way for efficient and quantitative characterization of
NP dispersion. More exploring efforts can potentially make
additional improvements to the model, for example, to include
particle shape distortion during data augmentation or to fine-
tune neural network architectures.

We validate the structural information resulting from this
method against SAXS-derived structural information for NPs
ordered by polymer crystallization and then use it to
distinguish between different states of the assembly of
polymer-grafted NPs in a polymer matrix achieved by using
their surfactancy. We show that this data-rich protocol allows
us to draw critical facets of experimental behavior by reducing
hours of manual work to minutes of automated processes. It
would be interesting in the future to combine the fast 2D
detector proposed here with tomographic TEM images to
reconstruct 3D dispersion states of NPs in the polymer matrix.

The current model, which excels at many NP detection tasks
compared with traditional computer tools, is deployed on
GitHub. Different from a shallow pixel classifier,”” the
performance of the deep neural network predictor can still
be further improved by enriching the dataset to include more
diverse cases, such as nonspherical particles, extremely large or
small particles, and particles at image boundaries. Detection of
particles of other shapes, such as nanotubes and nanolayers,
can also be made possible, but the model has to be carefully
retrained. To facilitate future development of this line of
research, we also release the source code and dataset to the

public.
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