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Abstract
Ageneralmodel for zero-sumstochastic gameswith asymmetric information is considered. In
this model, each player’s information at each time can be divided into a common information
part and a private information part. Under certain conditions on the evolution of the common
and private information, a dynamic programming characterization of the value of the game
(if it exists) is presented. If the value of the zero-sum game does not exist, then the dynamic
program provides bounds on the upper and lower values of the game.

Keywords Dynamic games · Asymmetric information · Upper and lower values

1 Introduction

Zero-sum games have been widely used as a model of strategic decision making in the pres-
ence of adversaries. Such decision-making scenarios arise in a range of domains including
(i) security of cyber-physical and infrastructure systems such as the power grid and water
networks in the presence of cyber or physical attacks [2,3,38,41,42,44], (ii) cyber-security of
networked computing and communication systems [1,41], (iii) designing anti-poachingmea-
sures [7–9], (iv) military operations in the presence of hostile agents [15] and (v) competitive
markets and geopolitical interactions [4,24]. In many cases, the adversarial interactions occur
over time in a dynamic and uncertain environment. Zero-sum stochastic games provide a use-
ful model for these situations. In these games, two players may jointly control the evolution
of the state of a stochastic dynamic system with one player trying to minimize the total cost
while the other trying to maximize it. In stochastic games with symmetric information, all
players have the same information about the state and action histories. Such games have been
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extensively studied in the literature in both zero-sum and nonzero-sum settings [6,10,11]. In
many situations of interest, however, the players may have different information about the
state and action histories. A potential attacker of a cyber-physical system, for example, may
not have the same information as the defender; adversaries in a battlefield may have different
information about the surroundings and about each other. The focus of this paper is on such
asymmetric information settings.

We adopt a model of asymmetric information that was originally developed for decentral-
ized stochastic control [28]. This model partitions each player’s information at each time into
a common information part and a private information part. The common information at time
t is known to all players at that time and at all times in the future. In addition to the common
information, each player may have some private information. It has been noted in the existing
literature that this model subsumes a wide range of information structures [26,28].

In our model, it may be the case that no player knows the current state of the underlying
stochastic system perfectly. Further, since each player may have some private information,
one player’s information is not necessarily included in the other player’s information. The
partial observability of the state, the asymmetry of information and the fact that each player
may have some private information complicate the characterization and computation of the
equilibrium cost (value) and equilibrium strategies. We provide two results for this general
model of zero-sum stochastic game with asymmetric information: (i) If the game has a Nash
equilibrium in behavioral strategies, then our result provides dynamic programming-based
characterizations of the value of the game. Each step of these programs involves a min–max
(or a max-min) problem over the space of prescriptions which are functions from players’
private information to actions. (ii) If the game does not have a Nash equilibrium, then our
dynamic programs provide a lower bound on the upper value of the game and an upper bound
on the lower value of the game.

1.1 RelatedWork and Our Contributions

1. Stochastic games of symmetric information: In this stochastic game model, the players
have access to the same information. Thus, at any time t , each player has no uncertainty
regarding other players’ information and makes a decision anticipating the other players’
strategies. Such games of symmetric information have been extensively studied in the
literature [6,10,11]. Because of this symmetry, players’ shared information (or a function
of it) can be treated as a state and utilized to decompose a dynamic game into simpler
single-stageBayesian games. These single-stage games can then be solved in a backward-
inductive manner to obtain the value and Nash equilibria (if any exist). In this paper,
we focus on models in which players have different pieces of information and thus the
methodology described above for symmetric information games is not directly applicable
to our model. We provide a backward-inductive characterization of value for a general
model of zero-sum stochastic games of asymmetric information. Our model subsumes,
as a simple special case, zero-sum stochastic games of symmetric information.

2. Zero-sum games with a more informed player: Stochastic zero-sum games in which one
player knows the other player’s information have been investigated before with varying
degrees of generality. Some of these works [12,20,23,32,33,35] considered both finite-
horizon and infinite-horizon games and focused on studying the existence of a uniform
value [23]. Other works [19,43] focused on the computational aspects associated with
finding the value and Nash equilibrium strategies in these games. The most general
treatment of these games can be found in [12] and [20]. All of these works assume



Dynamic Games and Applications (2021) 11:363–388 365

that the players have perfect recall. We make a weaker assumption of perfect recall of
common information for our results. Further, in our model (described in Sect. 2), each
player may have some information that the other does not.

3. Incomplete information on both sides: Stochastic zero-sum game models in which both
players have private information have been considered in [4,13,34]. In these works, the
private information either does not change with time [4,34] or evolves in an uncontrolled
manner [13]. Further, players in these works have perfect recall and their actions are pub-
licly observed. Our model described in Sect. 2 makes substantially weaker assumptions
on players’ information structure.

4. General zero-sum games: A general model of zero-sum games is described in Section
IV.3 of [23]. A characterization of the value is provided in [23] using a recursive formula.
The recursive formula in [23] is in terms of certain probability distributions on an abstract
space referred to as the universal belief space. Our results differ from the results in [23]
in two key respects. Firstly, the model in [23, Section IV.3] assumes that the players have
perfect recall, whereas we do not make this assumption. Secondly, the minimizations
and maximizations in our dynamic program are over smaller spaces than those in the
recursive formula of [23, Section IV.3]. We elaborate on these differences in Sect. 4.3.

5. Stochastic games of asymmetric information with strategy-independent common infor-
mation beliefs: In [26], a common information-based dynamic program was developed
for finding Nash equilibria in general (i.e., not necessarily zero-sum) stochastic games
of asymmetric information. The key idea in this approach is to first convert the game of
asymmetric information into a virtual game of symmetric information. This virtual game
of symmetric information is then solved using a common information-based dynamic
program. However, this approach relies on an assumption on the players’ information
(see Assumption 2 in [26]). This assumption holds only for certain classes of informa-
tion structures and may not necessarily be true for the asymmetric information games
described in Sect. 2. A key contribution of our work is to obtain a characterization of
value for models not covered by [26].

6. Common information-based perfect Bayesian equilibria in stochastic games of asymmet-
ric information: Authors in [30] consider a stochastic game model in which the system
state can be decomposed into a public state that is commonly observed by all players and
a private state that is privately observed by each player. In this model, all the players’
past actions are commonly observed and, additionally, an imperfect version of players’
private state may be disclosed to all the players at each time. A special case of this model
has been considered in [40]. For the models in [30] and [40], the authors provide char-
acterizations of perfect Bayesian equilibria under some assumptions on the evolution
of players’ private state. In this paper, we focus only on two-player zero-sum games.
However, the system dynamics and the information structure in our model are more gen-
eral than those in the model of [30,40]. For instance, unlike in [30,40], players’ actions
may not be fully observed in our model. Further, the solutions in [30,40] rely on strong
existence assumptions that may not be true in general. Our result provides a characteri-
zation of upper and lower values for a wide class of games under a mild assumption on
the information structure and no assumption on the existence of any particular kind of
equilibrium.

Our work is most closely related to [25] and [26]. We follow the approach in [25] and
build on its results. The system model in [25] conformed to a specific structure; that is, the
system state could be decomposed into three components: a public state that is commonly
observed (perhaps partially) and a privately observed component for each player. The model
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in our paper is substantially more general than in [25]. Another major restriction in [25]
was that the players were allowed to play only pure strategies. In this paper, we allow the
players to play behavioral strategies. Our model is similar to [26] but we do not make the
critical assumption made in [26] that the common information-based beliefs are strategy-
independent (see Assumption 2 of [26]). Removing this assumption makes our model much
more widely applicable than the model in [26].

We note that a common assumption inmuch of thework outlined above is that players have
prefect recall, i.e., each player remembers its past observations and actions at each time. The
modelwe study in the paper (and themodel in [26]) does notmake this assumption. Instead,we
make the weaker assumption that only the common information among the players (defined
precisely in Sect. 2) should be perfectly recalled. Our results show that even under this weaker
assumption, a dynamic programming characterization of value can be obtained. This suggests
that nondecreasing common information among players as opposed to nondecreasing total
information of each player is themore fundamental condition for characterizing value. Games
without perfect recall but with nondecreasing common information could provide useful
models for strategic interactions when the players are in fact devices with limited memories.
These players may be able to access public information that is located on a public database
(e.g., a cloud server) and is perfectly recalled but can only use limited amount of private
information due to their memory constraints. We note that several bounded memory models
have been investigated for single-agent [14,21,37] and cooperative multiagent [39] decision
problems.

1.2 Notation

Random variables/vectors are denoted by uppercase letters and their realizations by the corre-
sponding lowercase letters. In general, subscripts are used as time index, while superscripts
are used to index decision-making agents. For time indices t1 ≤ t2, Xt1:t2 (resp. gt1:t2 ) is
the shorthand notation for the variables (Xt1 , Xt1+1, ..., Xt2) (resp. functions (gt1 , . . . , gt2)).
Similarly, X1:2 is the shorthand notation for the collection of variables (X1, X2). Oper-
ators P(·) and E[·] denote the probability of an event and the expectation of a random
variable, respectively. For random variables/vectors X and Y , P(·|Y = y), E[X |Y = y] and
P(X = x | Y = y) are denoted by P(·|y), E[X |y] and P(x | y), respectively. For a strategy
g, we use P

g(·) (resp. E
g[·]) to indicate that the probability (resp. expectation) depends on

the choice of g. For any finite set A, ΔA denotes the probability simplex over the set A.

1.3 Organization

The rest of the paper is organized as follows. We formulate the game in Sect. 2 and construct
a virtual game with symmetric information in Sect. 3. In Sect. 4, we construct an expanded
virtual game and use it provide a dynamic programming characterization of the value. We
conclude the paper in Sect. 5. Proofs of key results are provided in Appendices.

2 Problem Formulation

Consider a dynamic system with two players. The system operates in discrete time over a
horizon T . Let Xt ∈ Xt be the state of the system at time t , and let Ui

t ∈ U i
t be the action of

player i at time t , where i = 1, 2. The state of the system evolves in a controlled Markovian
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manner as

Xt+1 = ft (Xt ,U
1
t ,U 2

t ,Ws
t ), (1)

where Ws
t is the system noise. There are two observation processes Y 1

t ∈ Y1
t and Y 2

t ∈ Y2
t

given as

Y i
t = hit (Xt ,U

1
t−1,U

2
t−1,W

i
t ), i = 1, 2, (2)

where W 1
t and W 2

t are observation noises. We assume that the sets Xt ,U i
t and Y i

t are finite
for all i and t . Further, the random variables X1,Ws

t ,Wi
t (referred to as the primitive random

variables) can take finitely many values and are mutually independent.

2.1 Information Structure

The collection of variables (i.e., observations, actions) available to player i at time t is
denoted by I it . I

i
t is a subset of all observations until time t and actions until t − 1, i.e.,

I it ⊆ {Y 1:2
1:t ,U 1:2

1:t−1}. The set of all possible realizations of I it is denoted by Ii
t .

Information I it can be decomposed into private and common information, i.e., I it =
Ct ∪ Pi

t . Common information Ct is the set of variables known to both players at time t ,
while variables in the private information Pi

t are known only to player i . Let Ct be the set of
all realizations of common information at time t , and let P i

t be the set of all realizations of
private information for player i at time t . Wemake the following assumption on the evolution
of common and private information. This is similar to Assumption 1 of [26]1.

Assumption 1 The evolution of common and private information available to the players is
as follows:

1. The common information Ct is nondecreasing with time, i.e., Ct ⊂ Ct+1. Let
Zt+1:=Ct+1 \ Ct be the increment in common information. Thus, Ct+1 = {Ct , Zt+1}.
Furthermore,

Zt+1 = ζt+1(P
1:2
t ,U 1:2

t , Y 1:2
t+1), (3)

where ζt+1 is a fixed transformation.
2. The private information evolves as

Pi
t+1 = ξ it+1(P

i
t ,U

i
t , Y

i
t+1), (4)

where ξ it+1 is a fixed transformation.

2.2 Examples of Information Structures that Satisfy Assumption 1

As noted in [28] and [26], a number of information structures satisfy the above assumption.
We briefly mention a few below:

1. No common information: Consider the case where each player only has access to its
own observations and actions, i.e., I it = {Y i

1:t ,Ui
1:t−1}, i = 1, 2. In this case, there is no

common information, i.e., Ct = ∅. It is easy to verify that Assumption 1 is valid in this
case.

1 Note that we do not impose Assumption 2 of [26].
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2. No private information: Consider the case where all observations and actions are public,
i.e., I it = {Y 1:2

1:t ,U 1:2
1:t−1}. In this case, players do not have any private information, i.e.,

Pi
t = ∅. Once again, Assumption 1 is true.

3. Player 1 is more informed: Consider the case where Player 1 knows both players’ obser-
vations and actions, i.e., I 1t = {Y 1:2

1:t ,U 1:2
1:t−1}. On the other hand, player 2 has access only

to its own observations and actions, i.e., I 2t = {Y 2
1:t ,U 2

1:t−1}. Thus, the common informa-
tion Ct = I 2t . Player 1’s private information P1

t = {Y 1
1:t ,U 1

1:t−1}, and Player 2 does not
have any private information. Clearly, the common information is increasing with time
and the private information satisfies Assumption 1. This model has been considered in
[12]. With additional restrictions, it has also been considered in [19,32,33,35,43].

4. Full state information on one side and quantized state information on the other:Consider
themodel inwhich player 1 knows the state Xt and player 2 sees a quantized version of Xt .
That is, Y 1

t = Xt and Y 2
t = q(Xt )where q is an arbitrary function. Both players’ actions

are commonly observed. Since player 1 knows the state Xt and Y 2
t is a deterministic

function of the state, player 1 also knows player 2’s observation Y 2
t . Thus, in this case,

I 1t = {Y 1:2
1:t ,U 1:2

1:t−1} and I 2t = {Y 2
1:t ,U 1:2

1:t−1}. Therefore, Ct = {Y 2
1:t ,U 1:2

1:t−1}, P1
t = Y 1

1:t
and P2

t = ∅. Clearly, this model satisfies Assumption 1.
5. Delayed sharing: In this model, players’ actions and observations become pub-

lic with a delay of s > 1 time steps. Thus, player i’s information at time t is
given by I it = {Y 1:2

1:t−s,U
1:2
1:t−s, Y

i
t−s+1:t ,Ui

t−s+1:t−1}. The common information Ct =
{Y 1:2

1:t−s,U
1:2
1:t−s}, which is increasing with time. Player i’s private information is Pi

t =
{Y i

t−s+1:t ,Ui
t−s+1:t−1} which satisfies Assumption 1. Notice that the new information

received by Player 1 at time t is Y 1
t , Y 2

t−s,U
2
t−s . Thus, in our model, players may receive

signals that depend on past states and actions.
6. Bounded private memory: Consider a setup in which players’ actions are common infor-

mation. Each player stores its observations on a private device with bounded memory.
Let the size of this memory be s. Player i’s information is given by I it = {Y i

t−s:t ,U 1:2
1:t−1}.

In this case, the common information Ct = U 1:2
1:t−1 and for player i , private information

Pi
t = Y i

t−s:t . Clearly, this information structure satisfies Assumption 1. Also, note that
players do not have perfect recall in this game.

7. Bounded private memory with strategic memory updates: Consider a setup where there
is no common information and players do not have perfect recall. Instead, at each time t ,
player i has a private memory state Mi

t that can take values in a finite set M. Based on
its current memory state, the player picks an action Ui

t to influence the state evolution
and a memory update action Li

t . Here, L
i
t is an action that affects the memory update

through the following fixed transformation: Mi
t+1 = ξ it+1(M

i
t , Y

i
t+1, L

i
t ). This model can

be viewed as an instance of our general model with Mi
t as player i’s private information

and (Ui
t , L

i
t ) as the player’s actions.

8. Information structure in [40]: In this model, player i has a private state Xi
t , i = 1, 2.

Player i knows its private state and both players’ actions are commonly observed. This
information structure can be seen as a special case of our model in the following manner:
Let the state Xt :=(X1

t , X
2
t ) and the observation processes Y i

t = Xi
t for i = 1, 2. Define

the information sets at time t as I it = {Y i
1:t ,U 1:2

1:t−1}. In this case, Ct = {U 1
1:t−1,U

2
1:t−1}

and Pi
t = Y i

1:t . Clearly, this information structure satisfies Assumption 1. Similarly,
information structures in [30] and [25] can also be seen as special cases of our model.
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2.3 Strategies andValues

Players can use any information available to them to select their actions, and we allow
behavioral strategies for both players. Thus, player i chooses a distribution δUi

t over its
action space using a control law git : Ii

t → ΔU i
t , i.e.

δUi
t = git (I

i
t ) = git (P

i
t ,Ct ). (5)

Player i’s action at time t is randomly chosen from U i
t according to the distribution δUi

t . We
will at times refer to δUi

t as player i’s behavioral action at time t . It will be helpful for our
analysis to explicitly describe the randomization procedure used by the players. To do so, we
assume that player i has access to i.i.d. random variables K i

1:T that are uniformly distributed
over the interval (0, 1]. The variables K 1

1:T , K 2
1:T are independent of each other and of the

primitive random variables. Further, player i has access to a mechanism κ that takes as input
K i
t and a distribution over U i

t and generates a random action with the input distribution. Thus,
player i’s action at time t can be written as Ui

t = κ(git (I
i
t ), K

i
t ).

Remark 1 One choice of the mechanism κ can be described as follows: Suppose U i
t =

{1, 2, ..n} and the input distribution is (p1, ...pn). We can partition the interval (0, 1] into
n intervals (ai , bi ] such that the length of i th interval is bi − ai = pi . Then, Ui

t = k if
K i
t ∈ (ak, bk] for k = 1, . . . , n.

The collection of control laws gi = (gi1, . . . , g
i
T ) is referred to as the control strategy of

player i , and the pair of control strategies (g1, g2) is referred to as a strategy profile. Let the
set of all possible control strategies for player i be Gi .

The total expected cost associated with a strategy profile (g1, g2) is

J (g1, g2):=E
(g1,g2)

[
T∑
t=1

ct (Xt ,U
1
t ,U 2

t )

]
, (6)

where ct : Xt × U1
t × U2

t → R is the cost function at time t . Player 1 wants to minimize the
total expected cost, while Player 2 wants to maximize it. We refer to this zero-sum game as
Game G .

Definition 1 The upper value of the game G is defined as

Su(G ):= inf
g1∈G1

sup
g2∈G2

J (g1, g2). (7)

The lower value of the game G is defined as

Sl(G ):= sup
g2∈G2

inf
g1∈G1

J (g1, g2). (8)

If the upper and lower values are the same, they are referred to as the value of the game and
denoted by S(G ).

A Nash equilibrium of the zero-sum game G is a strategy profile (g1∗, g2∗) such that for
every g1 ∈ G1 and g2 ∈ G2, we have

J (g1∗, g2) ≤ J (g1∗, g2∗) ≤ J (g1, g2∗). (9)

Nash equilibria in zero-sum games satisfy the following property [29].
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Proposition 1 If a Nash equilibrium in Game G exists, then for every Nash equilibrium
(g1∗, g2∗) in Game G , we have

J (g1∗, g2∗) = Sl(G ) = Su(G ) = S(G ). (10)

Remark 2 Note that the existence of aNash equilibrium is not guaranteed in general.However,
if players have perfect recall, i.e.

{Ui
1:t−1} ∪ I it−1 ⊆ I it (11)

for every i and t , then the existence of a behavioral strategy equilibrium is guaranteed by
Kuhn’s theorem [22].

The objective of this work is to characterize the upper and lower values Su(G ) and Sl(G )

of Game G . To this end, we will define a virtual game Gv and an “expanded” virtual game
Ge. These virtual games will be used to obtain bounds on the upper and lower values of the
original game G .

3 Virtual Game Gv

The virtual game Gv is constructed using the methodology in [26]. This game involves the
same set of primitive random variables as in Game G . The two players of game G are replaced
by two virtual players in Gv . The virtual players operate as follows. At each time t , virtual
player i selects a function Γ i

t that maps private information Pi
t to a distribution δUi

t over
the space U i

t . We refer to these functions as prescriptions. Let Bi
t be the set of all possible

prescriptions for virtual player i at time t (i.e. Bi
t is the set of all mappings from P i

t to ΔU i
t ).

Once the virtual players select their prescriptions, the action Ui
t is randomly generated

according to distribution Γ i
t (Pi

t ). More precisely, the system dynamics for this game are
given by:

Xt+1 = ft (Xt ,U
1:2
t ,Ws

t ) (12)

Pi
t+1 = ξ it+1(P

i
t ,U

i
t , Y

i
t+1) i = 1, 2, (13)

Y i
t+1 = hit+1(Xt+1,U

1:2
t ,Wi

t+1) i = 1, 2, (14)

Ui
t = κ(Γ i

t (Pi
t ), K

i
t ) i = 1, 2, (15)

Zt+1 = ζt+1(P
1:2
t ,U 1:2

t , Y 1:2
t+1), (16)

where the functions ft , hit , ξ
i
t , κ and ζt are the same as in G .

In the virtual game, virtual players use the common information Ct to select their pre-
scriptions at time t . The i th virtual player selects its prescription according to a control law
χ i
t , i.e., Γ i

t = χ i
t (Ct ). For virtual player i , the collection of control laws over the entire

time horizon χ i = (χ i
1, . . . , χ

i
T ) is referred to as its control strategy. Let Hi

t be the set of all
possible control laws for virtual player i at time t , and letHi be the set of all possible control
strategies for virtual player i , i.e., Hi = Hi

1 × · · · × Hi
T . The total cost associated with the

game for a strategy profile (χ1, χ2) is

J (χ1, χ2) = E
(χ1,χ2)

[
T∑
t=1

ct (Xt ,U
1
t ,U 2

t )

]
, (17)

where the function ct is the same as in Game G .
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The following lemma establishes a connection between the original gameG and the virtual
game Gv constructed above.

Lemma 1 Let Su(Gv) and Sl(Gv) be, respectively, the upper and lower values of the virtual
game Gv . Then,

Sl(G ) = Sl(Gv) and Su(G ) = Su(Gv).

Consequently, if a Nash equilibrium exists in the original game G , then S(G ) = Sl(Gv) =
Su(Gv).

Proof See “Appendix 1.” 	


The authors in [26] use the virtual game to find equilibrium costs and strategies for a
stochastic dynamic game of asymmetric information. However, the methodology in [26]
is applicable only under the assumption that the posterior beliefs on state Xt and private
information P1,2

t given the common information Ct do not depend on the strategy profile
being used (see Assumption 2 in [26]). We will refer to this assumption as the strategy-
independent beliefs (SIB) assumption. As pointed out in [26], the SIB assumption is satisfied
by some special systemmodels and information structures but is not true for general stochastic
dynamic games. A simple examplewhich does not satisfy the SIB assumption is the following
delayed sharing information structure [27]: Consider game G with common information
Ct = {Y 1,2

1:t−2,U
1,2
1:t−2} and Pi

t = {Y i
t , Y

i
t−1,U

i
t−1}.

Thus, we are faced with the following situation: If our zero-sum game satisfies the SIB
assumption, we can adopt the results in [26] to find equilibrium costs (i.e., the value) of
our game. However, if the zero-sum game does not satisfy the SIB assumption, then the
methodology of [26] is inapplicable. In the next section, we will develop a methodology to
bound the upper and lower values of the zero-sum game G even when the game does not
satisfy the SIB assumption.

4 Expanded Virtual Game Ge with Prescription History

In order to circumvent the SIB assumption, we now construct an expanded virtual game Ge by
increasing the amount of information available to virtual players in gameGv . In this new game
Ge, the state dynamics, observation processes, primitive random variables and cost function
are all the same as in the game Gv . The only difference is in the information used by the virtual
players to select their prescriptions. The virtual players now have access to the common
information Ct as well as all the past prescriptions of both players, i.e., Γ 1:2

1:t−1. Virtual player

i selects its prescription at time t using a control law χ̃ i
t , i.e., Γ

i
t = χ̃ i

t (Ct , Γ
1:2
1:t−1). Let H̃i

t be

the set of all such (measurable) control laws at time t for virtual player i . H̃i :=H̃i
1×· · ·×H̃i

T
is the set of all control strategies for player i . The total cost associated with the game for a
strategy profile (χ̃1, χ̃2) is

J (χ̃1, χ̃2) = E
(χ̃1,χ̃2)

[
T∑
t=1

ct (Xt ,U
1
t ,U 2

t )

]
. (18)

Remark 3 Note that any strategy χ i ∈ Hi is equivalent to the strategy χ̃ i ∈ H̃i that satisfies
the following condition: For each time t and for each realization of common information
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ct ∈ Ct ,
χ̃ i
t (ct , γ

1:2
1:t−1) = χ i

t (ct ) ∀ γ 1:2
1:t−1 ∈ B1:2

1:t−1. (19)

Hence, with slight abuse of notation, we can say that the strategy space Hi in the virtual
game Gv is a subset of the strategy space H̃i in the expanded game Ge. For this reason, the
function J in (18) can be thought of as an extension of the function J in (17).

Remark 4 Expansion of information structures has been used in priorwork to find equilibrium
costs/strategies. See, for example, [5] which studies a linear stochastic differential game
where both players have a common noisy observation of the state. Similar virtual games
with expanded information structures referred to as auxiliary games have also been used in
[12,23,32,33,35].

4.1 Upper and Lower Values of Games Gv and Ge

We will now establish the relationship between the upper and lower values of the expanded
game Ge and the virtual game Gv . To do so, we define the following mappings between the
strategies in games Gv and Ge.

Definition 2 Let 
i : H̃1 × H̃2 → Hi be an operator that maps a strategy profile (χ̃1, χ̃2) in
virtual gameGe to a strategyχ i for virtual player i in gameGv as follows: For t = 1, 2, . . . , T ,

χ i
t (ct ):=χ̃ i

t (ct , γ̃
1:2
1:t−1), (20)

where γ̃
j
s = χ̃

j
s (cs, γ̃ 1:2

1:s−1) for every 1 ≤ s ≤ t − 1 and j = 1, 2. We denote the ordered
pair (
1, 
2) by 
.

The mapping 
 is defined in such a way that the strategy profile (χ̃1, χ̃2) and the strategy
profile 
(χ̃1, χ̃2) induce identical dynamics in the respective games Ge and Gv .

Lemma 2 Let (χ1, χ2) and (χ̃1, χ̃2) be strategy profiles for games Gv and Ge, such that
χ i = 
i (χ̃1, χ̃2), i = 1, 2. Then,

J (χ1, χ2) = J (χ̃1, χ̃2). (21)

Proof See “Appendix 2.” 	

The following theorem connects the upper and lower values of the two virtual games and

the original game.

Theorem 1 The lowerandupper values of the threegamesdefinedabove satisfy the following:

Sl(G ) = Sl(Gv) ≤ Sl(Ge) ≤ Su(Ge) ≤ Su(Gv) = Su(G ).

Consequently, if a Nash equilibrium exists in the original game G , then S(G ) = Sl(Ge) =
Su(Ge).

Proof See “Appendix 3. 	

Using Theorem 1, we can obtain bounds on the upper and lower values of the original

game by computing the upper and lower values of the expanded game Ge.
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4.2 The Dynamic Programming Characterization

We now describe a methodology for finding the upper and lower values of the expanded
game Ge. Suppose the virtual players are using the strategy profile (χ̃1, χ̃2) in the expanded
game Ge. Let �t be the virtual players’ belief on the state and private information based on
their information in game Ge. Thus, �t is defined as

�t (xt , p
1:2
t ):=P

(χ̃1,χ̃2)(Xt = xt , P
1:2
t = p1:2t | Ct , Γ

1:2
1:t−1), ∀xt , p1t , p2t .

Werefer to�t as the common information belief (CIB).�t takes values in the setSt :=Δ(Xt×
P1
t × P2

t ).

Definition 3 Given a belief π on the state information and private information at time t and
mappings γ i , i = 1, 2, from P i

t to ΔU i
t , we define γ i (pit ; u) as the probability assigned to

action u under the probability distribution γ i (pit ). Also, define

c̃t (π, γ 1, γ 2):=
∑

xt ,p1:2t ,u1:2t

ct (xt , u
1
t , u

2
t )π(xt , p

1
t , p

2
t )γ

1(p1t ; u1t )γ 2(p2t ; u2t ). (22)

c̃t (π, γ 1, γ 2) is the expected value of the cost at time t if the state information and private
information have π as their probability distribution and γ 1, γ 2 are the prescriptions chosen
by the virtual players.

Lemma 3 For any strategy profile (χ̃1, χ̃2), the common information-based belief�t evolves
almost surely as

�t+1 = Ft (�t , Γ
1:2
t , Zt+1), t ≥ 1, (23)

where Ft is a fixed transformation that does not depend on the virtual players’ strategies.
Further, the total expected cost can be expressed as

J (χ̃1, χ̃2) = E
(χ̃1,χ̃2)

[
T∑
t=1

c̃t (�t , Γ
1
t , Γ 2

t )

]
, (24)

where c̃t is as defined in Eq. (22).

Proof See “Appendix 4.” 	

Remark 5 Because (23) is an almost sure equality, the transformation Ft in Lemma 3 is not
necessarily unique. In “Appendix 4,” we identify a class of transformations such that for any
transformation Ft in this class, Lemma 3 holds. We denote this class by B.

We now describe two dynamic programs, one for each virtual player in Ge.

4.2.1 The Min–Max Dynamic Program

The minimizing virtual player (virtual player 1) in game Ge solves the following dynamic
program. Define V u

T+1(πT+1) = 0 for every πT+1. In a backward-inductive manner, at each
time t ≤ T and for each possible common information belief πt and prescriptions γ 1

t , γ 2
t ,

define

wu
t (πt , γ

1
t , γ 2

t ):=c̃t (πt , γ
1
t , γ 2

t ) + E[V u
t+1(Ft (πt , γ

1:2
t , Zt+1)) | πt , γ

1:2
t ] (25)

V u
t (πt ):= inf

γ 1
t

sup
γ 2
t

wu
t (πt , γ

1
t , γ 2

t ). (26)
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4.2.2 The Max-Min Dynamic Program

The maximizing virtual player (virtual player 2) in game Ge solves the following dynamic
program. Define V l

T+1(πT+1) = 0 for every πT+1. In a backward-inductive manner, at each
time t ≤ T and for each possible common information belief πt and prescriptions γ 1

t , γ 2
t ,

define

wl
t (πt , γ

1
t , γ 2

t ):=c̃t (πt , γ
1
t , γ 2

t ) + E[V l
t+1(Ft (πt , γ

1:2
t , Zt+1)) | πt , γ

1:2
t ] (27)

V l
t (πt ):= sup

γ 2
t

inf
γ 1
t

wl
t (πt , γ

1
t , γ 2

t ). (28)

Lemma 4 For any realization of common information-based belief πt , the inf and sup in (26)
are achieved; i.e. there exists a measurable mapping Ξ1

t : St → B1
t such that

V u
t (πt ) = min

γ 1
t

max
γ 2
t

wu
t (πt , γ

1
t , γ 2

t ) = max
γ 2
t

wu
t (πt , Ξ

1
t (πt ), γ

2
t ). (29)

Similarly, for any realization of common information-based belief πt , the sup and inf in (28)
are achieved, i.e., there exists a measurable mapping Ξ2

t : St → B2
t such that

V l
t (πt ) = max

γ 2
t

min
γ 1
t

wl
t (πt , γ

1
t , γ 2

t ) = min
γ 1
t

wl
t (πt , γ

1
t , Ξ2

t (πt )). (30)

Proof See “Appendix 6.” 	


Definition 4 Define strategies χ̃1∗ and χ̃2∗ for virtual players 1 and 2, respectively, as follows:
For each instance of common information ct and prescription history γ 1:2

1:t−1, let

χ̃1∗
t (ct , γ

1:2
1:t−1):=Ξ1

t (πt ) (31)

χ̃2∗
t (ct , γ

1:2
1:t−1):=Ξ1

2 (πt ), (32)

where Ξ1
t and Ξ2

t are the mappings defined in Lemma 4 and πt (which is a function of
ct , γ 1:2

1:t−1) is obtained in a forward-inductive manner using the relation

π1(x1, p
1
1, p

2
1) = P[X1 = x1, P

1
1 = p11, P

2
1 = p21 | C1 = c1] ∀ x1, p

1
1, p

2
1, (33)

πτ+1 = Fτ (πτ , γ
1
τ , γ 2

τ , zτ+1), 1 ≤ τ < t . (34)

Note that Fτ is the common information belief update function defined in Lemma 3.

The following theorem establishes that the two dynamic programs described above char-
acterize the upper and lower values of game Ge.

Theorem 2 The upper and lower values of the expanded virtual game Ge are given by

Su(Ge) = E[V u
1 (�1)], (35)

Sl(Ge) = E[V l
1(�1)]. (36)

Further, the strategies χ̃1∗ and χ̃2∗ as defined in Definition 4 are, respectively, min–max and
max-min strategies in the expanded virtual game Ge.

Proof See “Appendix 7.” 	
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Theorem 2 gives us a dynamic programming characterization of the upper and lower
values of the expanded game. As mentioned in Theorem 1, the upper and lower values of the
expanded game provide bounds on the corresponding values of the original game. Further, if
the original game has a Nash equilibrium, the dynamic programs of Theorem 2 characterize
the value of the game. Note that this applies to any dynamic game of the form in Section 2
where the common information is nondecreasing in time and the private information has a
“state-like” update equation (see Assumption 1). As noted before, a variety of information
structures satisfy this assumption [26,28].

The computational burden of solving the dynamic programs of Theorem 2 would depend
on the specific information structure being considered, i.e., on the exact nature of common
and private information. At one extreme, we can consider the following instance of the
original game G : Ct = (X1:t ), P1

t = P2
t = ∅. It is easy to see that in this case, the common

information belief can be replaced by the current state in the dynamic programs and the
prescriptions are simply distributions on the players’ finite action sets. Also, in this case,
wu
t and wl

t are bilinear functions of the prescriptions and the min–max/max–min problems
at each stage of the dynamic program can be solved by a linear program [31]. On the other
extreme, we can consider an instance of game G with Ct = ∅, Pi

t = Y i
1:t , i = 1, 2. In this

case, the common information belief will be on the current state and observation histories
of the two players and the prescriptions will take values in a large-dimensional space. Also,
the functions wu

t and wl
t (for t < T ) in this case do not have any apparent structure that can

be exploited for efficient computation of the min–max and max-min values in the dynamic
program. One general approach that can be used for any instance of game G is to discretize
the CIB belief space and compute approximate value functions V u

t and V l
t in a backward-

inductive manner. However, we believe that significant structural and computational insights
can be obtained by specializing the dynamic programs of Theorem 2 to the specific instance
of the game being considered. We demonstrate this in [18] where we consider an information
structure in which one player has complete information while the other player has only partial
information. For this information structure, it is shown in [18] that the functions wu

t and wl
t

turn out to be identical at all times t and they satisfy some structural properties that can be
leveraged for computation.
Comparison with [30] and [40]: In [30], the authors considered an n-player stochastic game
modelwhich can potentially be nonzero sum. In thismodel, each player has a private state that
is privately observed by the corresponding player and a public state that is commonly observed
by all the players. The model in [30] additionally allows players’ private information to be
partially revealed in the form of common observations. The actions of all the players in this
model are commonly observed. The authors also make the assumption that the evolution of
the private states of the players is conditionally independent. Themodel in [40] can be viewed
as a special case of the model in [30]. For these models, backward-inductive algorithms were
presented to compute perfect Bayesian equilibria. Consider the case when the number of
players in the games of [30] and [40] is two and the games are zero-sum. Then:

1. The models in [30] and [40] can be viewed as special cases of our model in Sect. 2.
2. The players in these games have perfect recall. Hence, we can use Kuhn’s theorem to

conclude that a Nash equilibrium and, thus, the value exist for these zero-sum games.
Therefore, we can use the dynamic programs in Sect. 4.2 to the characterize the value of
these zero-sum games. This characterization does not make any additional assumptions.
The backward-inductive algorithms in [30] and [40], however, require the existence of
a particular kind of fixed point solution at each stage. This fixed-point solution is not
guaranteed to exist in general. Thus, there may be instances where the approaches in
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[30] and [40] fail to characterize the value of the game, while our dynamic program in
Sect. 4.2 can always characterize it.

4.3 Connections with the Recursive Formula in [23]

A general model of zero-sum games is described in Section IV.3 of [23]. The state dynamics
and the observation model in [23, Section IV.3] are similar to the state dynamics (Eq. (1))
and observation model (Eq. (2)) we described in Sect. 2. We would like to highlight two
key differences between our model and the model in [23, Section IV.3]. Firstly, the model in
[23, Section IV.3] assumes that the players have perfect recall, whereas we do not make this
assumption. In our setup, players may or may not have perfect recall. We only require the
common information to be recalled perfectly by the players (see Assumption 1). Secondly,
in the model of [23, Section IV.3], the new information (or the signal) a player gets at each
stage can be seen as a function of the current and previous states, the actions taken at previous
stage and some random noise. In our model, the new information that a player gets at each
stage includes the new private information and an increment in common information that
could depend on the history of past states and actions (through the term Pi

t in equations (3)
and (4))2. In order to accommodate this feature in the state dynamics and observation model
of [23, Section IV.3], one needs to redefine the state in [23, Section IV.3] to consist of both
the original system state and the state of players’ private information.

Since the players in the model of [23, Section IV.3] have perfect recall, the value of the
game exists. A characterization of this value is provided in [23] using a recursive formula.
The recursive formula in [23] is in terms of certain probability distributions Pt and has the
following structure3:

VT+1(PT+1) = 0 (37)

Vt (Pt ) = min
g1t

max
g2t

(
E

(g1t ,g
2
t )

[
ct (Xt ,U

1
t ,U 2

t )
] + Vt+1(Pt+1)

)
. (38)

Here, git is player i’s behavioral strategy at time t . While this recursive formula appears to
be similar to our dynamic programming characterization, it has some key differences which
are listed below:

1. The minimization and maximization in the recursive formula are over behavioral strate-
gies at each time. Note that the behavioral strategy at each time is a mapping from a
player’s entire information at that time to probability distributions over its action sets. In
our dynamic program, the minimization and maximization are over prescription spaces
B1
t and B2

t , respectively. Recall that a prescription is a mapping from a player’s pri-
vate information to probability distributions over its action sets. Since a player’s private
information may be much smaller than the entire information available to it, the pre-
scription spaces in our dynamic program may be much smaller than behavioral strategy
spaces. This conceptual difference in the two characterizations may also have computa-
tional implications since minimizing/maximizing over the smaller space of prescriptions
would generally be easier than minimizing/maximizing over the larger space of behav-
ioral strategies at each time.

2. The information state in the recursive formula (i.e., the arguments of the value functions
above) is a probability distribution on an abstract space referred to as the universal belief

2 For example, see the delayed sharing information structure in Sect. 2.2.
3 Our notation is different from [23, Section IV.3].
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space4. The information state in our dynamic program is the common information belief,
which is more tangible and is explicitly defined as a posterior probability distribution on
the current state and players’ private information based on the common information. We
believe that this explicit description of the information state as a common belief is both
conceptually more illuminating and computationally more useful.

5 Conclusion

In this paper, we considered a general model of zero-sum stochastic games with asymmetric
information. We model each player’s information as consisting of a private information part
and a common information part. In our model, players need not have perfect recall. We only
need the common information to be perfectly recalled. For this general model, we provided
a dynamic programming approach for characterizing the value (if it exists). This dynamic
programming characterization of value relies on our construction of two virtual games that
have the same value as our original game. If the value does not exist in the original game,
then our dynamic program provides bounds on the upper and lower values of the original
game.

Proof of Lemma 1

It was shown in [26] that there exist bijective mappings Mi : Gi → Hi , i = 1, 2, such that
for every g1 ∈ G1 and g2 ∈ G2, we have

J (g1, g2) = J (M1(g1),M2(g2)). (39)

Therefore, for any strategy g1 ∈ G1, we have

sup
g2∈G2

J (g1, g2) = sup
g2∈G2

J (M1(g1),M2(g2)) (40)

= sup
χ2∈H2

J (M1(g1), χ2). (41)

Consequently,

inf
g1∈G1

sup
g2∈G2

J (g1, g2) = inf
g1∈G1

sup
χ2∈H2

J (M1(g1), χ2) (42)

= inf
χ1∈H1

sup
χ2∈H2

J (χ1, χ2). (43)

This implies that Su(G ) = Su(Gv). We can similarly prove that Sl(G ) = Sl(Gv).

Remark 6 We can also show that a strategy profile (g1, g2) is a Nash equilibrium in game G
if and only if (M1(g1),M2(g2)) is a Nash equilibrium in game Gv .

Proof of Lemma 2

Let us consider the evolution of the virtual game Gv under the strategy profile (χ1, χ2) and
the expanded virtual game Ge under the strategy profile (χ̃1, χ̃2). Let the primitive variables

4 We refer the reader to [23, Chapter III] for a detailed discussion on the universal belief space.



378 Dynamic Games and Applications (2021) 11:363–388

and the randomization variables K i
t in both games be identical. The variables such as the

state, action and information variables in the expanded game Ge are distinguished from those
in the virtual game Gv by means of a tilde. For instance, Xt is the state in game Gv and X̃t is
the state in game Ge.

We will prove by induction that the system evolution in both these games is identical over
the entire horizon. This is clearly true at the end of time t = 1 because the state, observations
and the common and private information variables are identical in both games. Moreover,
since χ i = 
i (χ̃1, χ̃2), i = 1, 2, the strategies χ i

1 and χ̃ i
1 are identical by definition (see

Definition 2). Thus, the prescriptions and actions at t = 1 are also identical.
For induction, assume that the system evolution in both games is identical until the end

of time t . Then,

Xt+1 = ft (Xt ,U
1:2
t ,Ws

t ) = ft (X̃t , Ũ
1:2
t ,Ws

t ) = X̃t+1.

Using Eqs. (2), (4) and (3), we can similarly argue that Y i
t+1 = Ỹ i

t+1, P
i
t+1 = P̃i

t+1 and

Ct+1 = C̃t+1. Since χ i = 
i (χ̃1, χ̃2), we also have

Γ̃ i
t+1 = χ̃ i

t+1(C̃t+1, Γ̃
1:2
1:t )

a= χ i
t+1(C̃t+1)

b= Γ i
t+1. (44)

Here, equality (a) follows from the construction of the mapping 
i (see Definition 2) and
equality (b) follows from the fact that Ct+1 = C̃t+1. Further,

Ui
t+1 = κ(Γ i

t+1(P
i
t+1), K

i
t+1) = κ(Γ̃ i

t+1(P̃
i
t+1), K

i
t+1) (45)

= Ũ i
t+1. (46)

Thus, by induction, the hypothesis is true for every 1 ≤ t ≤ T . This proves that the virtual
and expanded games have identical dynamics under strategy profiles (χ1, χ2) and (χ̃1, χ̃2).

Since the virtual and expanded games have the same cost structure, having identical
dynamics ensures that strategy profiles (χ1, χ2) and (χ̃1, χ̃2) have the same expected cost
in games Gv and Ge, respectively. Therefore, J (χ1, χ2) = J (χ̃1, χ̃2).

Proof of Theorem 1

For any strategy χ1 ∈ H1, we have

sup
χ̃2∈H̃2

J (χ1, χ̃2) ≥ sup
χ2∈H2

J (χ1, χ2), (47)

because H2 ⊆ H̃2. Further,

sup
χ̃2∈H̃2

J (χ1, χ̃2) = sup
χ̃2∈H̃2

J (
1(χ1, χ̃2), 
2(χ1, χ̃2)). (48)

= sup
χ̃2∈H̃2

J (χ1, 
2(χ1, χ̃2)) (49)

≤ sup
χ2∈H2

J (χ1, χ2), (50)

where the first equality is due to Lemma 2, the second equality is because 
1(χ1, χ̃2) = χ1

and the last inequality is due to the fact that 
2(χ1, χ̃2) ∈ H2 for any χ̃2 ∈ H̃2.
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Combining (47) and (50), we obtain that

sup
χ2∈H2

J (χ1, χ2) = sup
χ̃2∈H̃2

J (χ1, χ̃2). (51)

Now,

Su(Ge):= inf
χ̃1∈H̃1

sup
χ̃2∈H̃2

J (χ̃1, χ̃2) (52)

≤ inf
χ1∈H1

sup
χ̃2∈H̃2

J (χ1, χ̃2) (53)

= inf
χ1∈H1

sup
χ2∈H2

J (χ1, χ2), (54)

=: Su(Gv). (55)

where inequality (53) is true since H1 ⊆ H̃1 and the equality in (54) follows from (51).
Therefore, Su(Ge) ≤ Su(Gv). We can use similar arguments to show that Sl(Gv) ≤ Sl(Ge).

Proof of Lemma 3

We begin with defining the following transformations for each time t . Recall that St is the
set of all possible common information beliefs at time t and Bi

t is the prescription space for
virtual player i at time t .

Definition 5 (i) Let P j
t : St × B1

t × B2
t → Δ(Zt+1 × Xt+1 × P1

t+1 × P2
t+1) be defined as

P j
t (πt , γ

1:2
t ; zt+1, xt+1, p

1:2
t+1) (56)

:=
∑

xt ,p1:2t ,u1:2t

πt (xt , p
1:2
t )γ 1

t (p1t ; u1t )γ 2
t (p2t ; u2t )P[xt+1, p

1:2
t+1, zt+1 | xt , p1:2t , u1:2t ].

(57)

Wewill use P j
t (πt , γ

1:2
t ) as a shorthand for the probability distribution P j

t (πt , γ
1:2
t ; ·, ·, ·).

The distribution P j
t (πt , γ

1:2
t ) can be viewed as a joint distribution over the variables

Zt+1, Xt+1, P1:2
t+1 if the distribution on Xt , P1:2

t is πt and prescriptions γ 1:2
t are chosen

by the virtual players at time t .
(ii) Let Pm

t : St × B1
t × B2

t → ΔZt+1 be defined as

Pm
t (πt , γ

1:2
t ; zt+1) =

∑
xt+1,p1:2t+1

P j
t (πt , γ

1:2
t ; zt+1, xt+1, p

1:2
t+1). (58)

The distribution Pm
t (πt , γ

1:2
t ) is the marginal distribution of the variable Zt+1 obtained

from the joint distribution P j
t (πt , γ

1:2
t ) defined above.

(iii) Let Ft : St × B1
t × B2

t × Zt+1 → St+1 be defined as

Ft (πt , γ
1:2
t , zt+1) =

⎧⎨
⎩

P j
t (πt ,γ

1:2
t ;zt+1,·,·)

Pm
t (πt ,γ

1:2
t ;zt+1)

if Pm
t (πt , γ

1:2
t ; zt+1) > 0

Gt (πt , γ
1:2
t , zt+1) otherwise,

(59)

where Gt : St ×B1
t ×B2

t ×Zt+1 → St+1 can be any arbitrary measurable mapping. One
suchmapping is the one thatmaps every elementπt , γ

1:2
t , zt+1 to the uniform distribution

over the finite space Xt+1 × P1
t+1 × P2

t+1.
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Let the collection of transformations Ft that can be constructed using the method described
in Definition 5 be denoted byB. Note that the transformations P j

t , Pm
t and Ft do not depend

on the strategy profile (χ̃1, χ̃2) because the term P[xt+1, p1:2t+1, zt+1 | xt , p1:2t , u1:2t ] in (57)
depends only on the system dynamics (see Eqs. (12–16)) and not on the strategy profile
(χ̃1, χ̃2).

Consider a strategy profile (χ̃1, χ̃2). Note that the number of possible realizations of
common information and prescription history under (χ̃1, χ̃2) is finite. Let ct+1, γ

1:2
1:t be a

realization of the common information and prescription history at time t + 1 with nonzero
probability of occurrence under (χ̃1, χ̃2). For this realization of virtual players’ information,
the common information-based belief on the state and private information at time t + 1 is
given by

πt+1(xt+1, p
1:2
t+1)

= P
(χ̃1,χ̃2)[Xt+1 = xt+1, P

1:2
t+1 = p1:2t+1 | ct+1, γ

1:2
1:t ]

= P
(χ̃1,χ̃2)[Xt+1 = xt+1, P

1:2
t+1 = p1:2t+1 | ct , γ 1:2

1:t−1, zt+1, γ
1:2
t ]

= P
(χ̃1,χ̃2)[Xt+1 = xt+1, P1:2

t+1 = p1:2t+1, Zt+1 = zt+1 | ct , γ 1:2
1:t ]

P(χ̃1,χ̃2)[Zt+1 = zt+1 | ct , γ 1:2
1:t ] . (60)

Notice that expression (60) is well defined; that is, the denominator is nonzero because
of our assumption that the realization ct+1, γ

1:2
1:t has nonzero probability of occurrence.

Let us consider the numerator in expression (60). For convenience, we will denote it with
P

(χ̃1,χ̃2)[xt+1, p1:2t+1, zt+1 | ct , γ 1:2
1:t ]. We have

P
(χ̃1,χ̃2)[xt+1, p

1:2
t+1, zt+1 | ct , γ 1:2

1:t ]
=

∑
xt ,p1:2t ,u1:2t

πt (xt , p
1:2
t )γ 1

t (p1t ; u1t )γ 2
t (p2t ; u2t )P(χ̃1,χ̃2)[xt+1, p

1:2
t+1, zt+1 | ct , γ 1:2

1:t , xt , p
1:2
t , u1:2t ]

(61)

=
∑

xt ,p1:2t ,u1:2t

πt (xt , p
1:2
t )γ 1

t (p1t ; u1t )γ 2
t (p2t ; u2t )P[xt+1, p

1:2
t+1, zt+1 | xt , p1:2t , u1:2t ] (62)

= P j
t (πt , γ

1:2
t ; zt+1, xt+1, p

1:2
t+1), (63)

where πt is the common information belief on Xt , P1
t , P2

t at time t given the realization5

ct , γ 1:2
1:t−1 and P j

t is as defined in Definition 5. The equality in (62) is due to the structure of
the system dynamics in game Ge described by Eqs. (12–16). Similarly, the denominator in
(60) satisfies

0 < P
(χ̃1,χ̃2)[zt+1 | ct , γ 1:2

1:t ] =
∑

xt+1,p1:2t+1

P j
t (πt , γ

1:2
t ; zt+1, xt+1, p

1:2
t+1)

= Pm
t (πt , γ

1:2
t ; zt+1), (64)

where Pm
t is as defined is Definition 5. Thus, from Eq. (60), we have

πt+1 = P j
t (πt , γ

1:2
t ; zt+1, ·, ·)

Pm
t (πt , γ

1:2
t , zt+1)

= Ft (πt , γ
1:2
t ; zt+1), (65)

5 Note that the belief P
(χ̃1,χ̃2)[xt , p1:2t | ct , γ 1:2

1:t−1] = P
(χ̃1,χ̃2)[xt , p1:2t | ct , γ 1:2

1:t ] because γ i
t =

χ̃ i
t (ct , γ

1:2
1:t−1), i = 1, 2.
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where Ft is as defined inDefinition 5. Since relation (65) holds for every realization ct+1, γ
1:2
1:t

that has nonzero probability of occurrence under (χ̃1, χ̃2), we can conclude that the common
information belief �t evolves almost surely as

�t+1 = Ft (�t , Γ
1:2
t , Zt+1), t ≥ 1, (66)

under the strategy profile (χ̃1, χ̃2).
The expected cost at time t can be expressed as follows

E
(χ̃1,χ̃2)[ct (Xt ,U

1
t ,U 2

t )] = E
(χ̃1,χ̃2)[E[ct (Xt ,U

1
t ,U 2

t ) | Ct , Γ
1:2
1:t ]] (67)

= E
(χ̃1,χ̃2)[c̃t (�t , Γ

1
t , Γ 2

t )], (68)

where the function c̃t is as defined in Eq. (22). Therefore, the total cost can be expressed as

E
(χ̃1,χ̃2)

[
T∑
t=1

ct (Xt ,U
1
t ,U 2

t )

]
= E

(χ̃1,χ̃2)

[
T∑
t=1

c̃t (�t , Γ
1
t , Γ 2

t )

]
. (69)

Some Continuity Results

In this section, we will state and prove some technical results that will be useful for proving
Lemma 4.

Let St denote the set of all probability distributions over the finite setXt ×P1
t ×P2

t . Thus,
St is the set of all possible common information-based beliefs at time t . Define

S̄t :={απt : 0 ≤ α ≤ 1, πt ∈ St }. (70)

The functions c̃t in (22), P
j
t in (56), Pm

t in (58) and Ft in (65) were defined for any πt ∈ St .
We will extend the domain of the argument πt in these functions to S̄t as follows. For any
γ i
t ∈ Bi

t , i = 1, 2, zt+1 ∈ Zt+1, 0 ≤ α ≤ 1 and πt ∈ St , let
(i) c̃t (απt , γ

1
t , γ 2

t ):=αc̃t (πt , γ
1
t , γ 2

t )

(ii) P j
t (απt , γ

1:2
t ):=αP j

t (πt , γ
1:2
t )

(iii) Pm
t (απt , γ

1:2
t ):=αPm

t (πt , γ
1:2
t )

(iv) Ft (απt , γ
1:2
t , zt+1):=

{
Ft (πt , γ

1:2
t , zt+1) if α > 0

0 if α = 0,

where 0 is a zero vector of size |Xt × P1
t × P2

t |.
Having extended the domain of the above functions, we can also extend the domain of the

argument πt in the functions wu
t (·), wl

t (·), V u
t (·), V l

t (·) defined in the dynamic programs of
Section 4.2. First, for any 0 ≤ α ≤ 1 and πT+1 ∈ ST+1, define V u

T+1(απT+1):=0. We can
then define the following functions for every t ≤ T in a backward-inductive manner: For
any γ i

t ∈ Bi
t , i = 1, 2, 0 ≤ α ≤ 1 and πt ∈ St , let

wu
t (απt , γ

1
t , γ 2

t ):=c̃t (απt , γ
1
t , γ 2

t ) +
∑
zt+1

[
Pm
t (απt , γ

1:2
t ; zt+1)V

u
t+1(Ft (απt , γ

1:2
t , zt+1))

]
(71)

V u
t (απt ):= inf

γ 1
t

sup
γ 2
t

wu
t (απt , γ

1
t , γ 2

t ). (72)
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Note that when α = 1, the above definition of wu
t is equal to the definition of wu

t in Eq. (26)
of the dynamic program.We can similarly extendwl

t and V
l
t . These extended value functions

satisfy the following homogeneity property. A similar result was shown in [19, Lemma III.1]
for a special case of our model.

Lemma 5 For any constant 0 ≤ α ≤ 1 and any πt ∈ S̄t , we have αV u
t (πt ) = V u

t (απt ) and
αV l

t (πt ) = V l
t (απt ).

Proof The proof can be easily obtained from the above definitions of the extended functions.

The following lemmas will be used in “Appendix 6” to establish some useful properties of
the extended functions.

Lemma 6 Let V : S̄t+1 → R be a continuous function satisfying V (απ) = αV (π) for every
0 ≤ α ≤ 1 and π ∈ S̄t+1. Define

V ′(πt , γ
1
t , γ 2

t ):=
∑
zt+1

Pm
t (πt , γ

1:2
t ; zt+1)[V (Ft (πt , γ

1:2
t , zt+1))].

For a fixed γ 1
t , γ 2

t , V
′(·, γ 1

t , γ 2
t ) is a function from S̄t+1 to R. Then, the family of functions

F1:={V ′(·, γ 1
t , γ 2

t ) : γ i
t ∈ Bi

t , i = 1, 2} (73)

is equicontinuous. Similarly, the following families of functions

F2:={V ′(πt , ·, γ 2
t ) : γ 2

t ∈ B2
t , πt ∈ S̄t } (74)

F3:={V ′(πt , γ
1
t , ·) : γ 1

t ∈ B1
t , πt ∈ S̄t } (75)

are equicontinuous in their respective arguments.

Proof A continuous function is bounded and uniformly continuous over a compact domain
(see Theorem 4.19 in [36]). Therefore, V is bounded and uniformly continuous over S̄t+1.

Using the fact that V (απ) = αV (π) and the definition of Ft in Definition 5, the function
V ′ can be written as

V ′(πt , γ
1
t , γ 2

t ) =
∑
zt+1

V
(
P j
t (πt , γ

1:2
t ; zt+1, ·, ·)

)
. (76)

Recall that P j
t is trilinear in πt , γ

1
t and γ 2

t with bounded coefficients for a fixed value of

zt+1 (see (56)). Therefore, for each zt+1, {P j
t (·, γ 1

t , γ 2
t , zt+1)} is an equicontinuous family

of functions in the argument πt , where P j
t (πt , γ

1
t , γ 2

t , zt+1) is a shorthand notation for the

measure P j
t (πt , γ

1
t , γ 2

t , zt+1, ·, ·) over the space Xt+1 × P1
t+1 × P2

t+1.

Also, since V is uniformly continuous, the family
{
V

(
P j
t (·, γ 1:2

t , zt+1)
)}

is equicontin-

uous in πt for each zt+1. This is because composition with a uniformly continuous function
preserves equicontinuity. Therefore, the family of functionsF1 is equicontinuous in πt . We
can use similar arguments to prove equicontinuity of the other two families. 	

Lemma 7 Letw : B1

t ×B2
t → R be a function such that (i) the family of functions {w(·, γ 2) :

γ 2 ∈ B2
t } is equicontinuous in the first argument and (ii) the family of functions {w(γ 1, ·) :

γ 1 ∈ B1
t } is equicontinuous in the second argument. Then, supγ 2 w(γ 1, γ 2) is a continuous

function of γ 1 and, similarly, infγ 1 w(γ 1, γ 2) is a continuous function of γ 2.
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Proof Let ε > 0. For a given γ 1, there exists a δ > 0 such that

|w(γ 1, γ 2) − w(γ ′1, γ 2)| ≤ ε ∀γ 2,∀||γ 1 − γ ′1|| ≤ δ. (77)

Let γ̄ 2 be a prescription such that

w(γ 1, γ̄ 2) = sup
γ 2

w(γ 1, γ 2). (78)

Note that the existence of γ̄ 2 is guaranteed because of continuity of w(γ 1, ·) in the second
argument and compactness of B2

t . Pick any γ ′1 satisfying ||γ 1 − γ ′1|| ≤ δ. Let γ̄ ′2 be a
prescription such that

w(γ ′1, γ̄ ′2) = sup
γ 2

w(γ ′1, γ 2). (79)

Using (77), we have

(i) w(γ 1, γ̄ 2) − w(γ ′1, γ̄ ′2) ≥ w(γ 1, γ̄ ′2) − w(γ ′1, γ̄ ′2)
≥ −ε, (80)

(i i) w(γ 1, γ̄ 2) − w(γ ′1, γ̄ ′2) ≤ w(γ 1, γ̄ 2) − w(γ ′1, γ̄ 2)

≤ ε. (81)

Equations (78)–(81) imply that supγ 2 w(γ 1, γ 2) is a continuous function of γ 1. We can use
a similar argument for showing continuity of infγ 1 w(γ 1, γ 2) in γ 2. 	


Proof of Lemma 4

We first use the definitions of extensions of wu
t , w

l
t , V

u
t , V l

t in “Appendix 5” and Lemmas 5
and 6 to establish the following equicontinuity result.

Lemma 8 The families of functions

F a
t :={wu

t (·, γ 1
t , γ 2

t ) : γ i
t ∈ Bi

t , i = 1, 2} (82)

F b
t :={wu

t (πt , ·, γ 2
t ) : γ 2

t ∈ B2
t , πt ∈ S̄t } (83)

F c
t :={wu

t (πt , γ
1
t , ·) : γ 1

t ∈ B1
t , πt ∈ S̄t } (84)

are all equicontinuous in their arguments for every t ≤ T . A similar statement holds for wl
t .

Proof We use a backward-induction argument for the proof. For induction, assume that V u
t+1

is a continuous function for some t ≤ T . This is clearly true for t = T . Using the continuity
of V u

t+1, we will establish the statement of the lemma for time t and also prove the continuity
of V u

t . This establishes the lemma for all t ≤ T .
Equicontinuity of wu

t : Since c̃t (πt , γ
1
t , γ 2

t ) is linear in πt with uniformly bounded coef-
ficients for any given γ 1:2

t (see (22)), it is equicontinuous in the argument πt . In Lemma 5,
we showed that the value functions V u

t satisfy the condition V u
t (απ) = αV u

t (π) for every
0 ≤ α ≤ 1, π ∈ St . Further, due to our induction hypothesis, V u

t+1 is continuous. Thus, using
Lemma 6, the second term of wu

t ,∑
zt+1

Pm
t (πt , γ

1:2
t ; zt+1)V

u
t+1(Ft (πt , γ

1:2
t , zt+1)),
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is also equicontinuous in πt . Hence, the family F a
t is equicontinuous in πt .

Continuity of V u
t : Due to the equicontinuity of the familyF a

t , we have the following. For
any given ε > 0 and πt ∈ S̄t , there exists a δ > 0 such that

|wu
t (πt , γ

1
t , γ 2

t ) − wu
t (π

′
t , γ

1
t , γ 2

t )| < ε (85)

for every γ 1
t , γ 2

t and π ′
t satisfying ||πt − π ′

t || < δ. Therefore,

wu
t (πt , γ

1
t , γ 2

t ) < wu
t (π

′
t , γ

1
t , γ 2

t ) + ε ∀γ 1
t , γ 2

t (86)

�⇒ sup
γ 2
t

wu
t (πt , γ

1
t , γ 2

t ) ≤ sup
γ 2
t

wu
t (π

′
t , γ

1
t , γ 2

t ) + ε ∀γ 1
t (87)

�⇒ inf
γ 1
t

sup
γ 2
t

wu
t (πt , γ

1
t , γ 2

t ) ≤ inf
γ 1
t

sup
γ 2
t

wu
t (π

′
t , γ

1
t , γ 2

t ) + ε

�⇒ V u
t (πt ) ≤ V u

t (π ′
t ) + ε, (88)

for every π ′
t that satisfies ||πt − π ′

t || < δ. Similarly, V u
t (πt ) ≥ V u

t (π ′
t ) − ε for every π ′

t that
satisfies ||πt − π ′

t || < δ. Therefore, V u
t (πt ) is continuous at πt .

Hence, by induction, we can say that the family F a
t is equicontinuous in πt for every

t ≤ T . We can use similar arguments to prove the equicontinuity of the other families. 	

The continuity of wu

t established above implies that supγ 2
t

wu
t (πt , γ

1
t , γ 2

t ) is achieved for

every πt , γ
1
t . Further, Lemma 8 implies that wu

t and wl
t satisfy the equicontinuity conditions

in Lemma 7 for any given realization of belief πt . Therefore, we can use Lemma 7 to argue
that supγ 2

t
wu
t (πt , γ

1
t , γ 2

t ) is continuous in γ 1
t . And since γ 1

t lies in the compact space B1
t ,

a minmaximizer exists for the function wu
t . Further, we can use the measurable selection

condition (see Condition 3.3.2 in [16]) to prove the existence of measurable mappingΞ1
t (πt )

as defined in Lemma 4. A similar argument can be made to establish the existence of a
maxminimizer and a measurable mapping Ξ2

t (πt ) as defined in Lemma 4. This concludes
the proof of Lemma 4.

Proof of Theorem 2

Let us first define a distribution �̃t over the space Xt × P1
t × P2

t in the following manner.
The distribution �̃t , given Ct , Γ

1:2
1:t−1, is recursively obtained using the following relation

�̃1(x1, p
1
1, p

2
1) = P[X1 = x1, P

1
1 = p11, P

2
1 = p21 | C1] ∀ x1, p

1
1, p

2
1, (89)

�̃τ+1 = Fτ (�̃τ , Γ
1
τ , Γ 2

τ , Zτ+1), τ ≥ 1, (90)

where Fτ is as defined in Definition 5 in “Appendix 4.” We refer to this distribution as the
strategy-independent common information belief (SI-CIB).

Let χ̃1 ∈ H̃1 be any strategy for virtual player 1 in game Ge. Consider the problem of
obtaining virtual player 2’s best response to the strategy χ̃1 with respect to the costJ (χ̃1, χ̃2)

defined in (18). This problem can be formulated as a Markov decision process (MDP) with
common information and prescription history Ct , Γ

1:2
1:t−1 as the state. The control action at

time t in thisMDP isΓ 2
t , which is selected based on the informationCt , Γ

1:2
1:t−1 using strategy

χ̃2 ∈ H2. The evolution of the state Ct , Γ
1:2
1:t−1 of this MDP is as follows

{Ct+1, Γ
1:2
1:t } = {Ct , Zt+1, Γ

1:2
1:t−1, χ̃

1
t (Ct , Γ

1:2
1:t−1), Γ

2
t }, (91)
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where

P
(χ̃1,χ̃2)[Zt+1 = zt+1 | Ct , Γ

1:2
1:t−1, Γ

2
t ] = Pm

t [�̃t , Γ
1
t , Γ 2

t ; zt+1], (92)

almost surely. Here, Γ 1
t = χ̃1

t (Ct , Γ
1:2
1:t−1) and the transformation Pm

t is as defined in Defi-
nition 5 in “Appendix 4.” Notice that due to Lemma 3, the common information belief �t

associated with any strategy profile (χ̃1, χ̃2) is equal to �̃t almost surely. This results in the
state evolution equation in (92). The objective of this MDP is to maximize, for a given χ̃1,
the following cost

E
(χ̃1,χ̃2)

[
T∑
t=1

c̃t (�̃t , Γ
1
t , Γ 2

t )

]
, (93)

where c̃t is as defined in Eq. (22). Due to Lemma 3, the total expected cost defined above is
equal to the cost J (χ̃1, χ̃2) defined in (18).

TheMDP described above can be solved using the following dynamic program. For every
realization of virtual players’ information cT+1, γ

1:2
1:T , define

V χ̃1

T+1(cT+1, γ
1:2
1:T ):=0.

In a backward-inductive manner, for each time t ≤ T and each realization ct , γ 1:2
1:t−1, define

V χ̃1

t (ct , γ
1:2
1:t−1):= sup

γ 2
t

[c̃t (π̃t , γ
1
t , γ 2

t ) + E[V χ̃1

t+1(ct , Zt+1, γ
1:2
1:t ) | ct , γ 1:2

1:t ]], (94)

where γ 1
t = χ̃1

t (ct , γ 1:2
1:t−1) and π̃t is the SI-CIB associated with the information ct , γ 1:2

1:t−1.
Note that the measurable selection condition (see condition 3.3.2 in [16]) holds for the

dynamic programdescribed above. Thus, the value functions V χ̃1

t (·) aremeasurable and there
exists a measurable best-response strategy for player 2 which is a solution to the dynamic
program described above. Therefore, we have

sup
χ̃2

J (χ̃1, χ̃2) = EV χ̃1

1 (C1). (95)

Claim 1 For any strategy χ̃1 ∈ H̃1 and for any realization of virtual players’ information
ct , γ 1:2

1:t−1, we have

V χ̃1

t (ct , γ
1:2
1:t−1) ≥ V u

t (π̃t ), (96)

where V u
t is as defined in (26) and π̃t is the SI-CIB belief associated with the instance

ct , γ 1:2
1:t−1. As a consequence, we have

sup
χ̃2

J (χ̃1, χ̃2) ≥ EV u
1 (�1). (97)

Proof The proof is by backward induction. Clearly, the claim is true at time t = T + 1.
Assume that the claim is true for all times greater than t . Then, we have

V χ̃1

t (ct , γ
1:2
1:t−1) = sup

γ 2
t

[c̃t (π̃t , γ
1
t , γ 2

t ) + E[V χ̃1

t+1(ct , Zt+1, γ
1:2
1:t ) | ct , γ 1:2

1:t ]]

≥ sup
γ 2
t

[c̃t (π̃t , γ
1
t , γ 2

t ) + E[V u
t+1(Ft (π̃t , γ

1:2
t , Zt+1)) | ct , γ 1:2

1:t ]]

≥ V u
t (π̃t ).
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The first equality follows from the definition in (94), and the inequality after that follows
from the induction hypothesis. The last inequality is a consequence of the definition of the
value function V u

t . This completes the induction argument. Further, using Claim 1 and the
result in (95), we have

sup
χ̃2

J (χ̃1, χ̃2) = EV χ̃1

1 (C1) ≥ EV u
1 (�̃1) = EV u

1 (�1).

	

We can therefore say that

Su(Ge) = inf
χ̃1

sup
χ̃2

J (χ̃1, χ̃2) ≥ inf
χ̃1

EV u
1 (�1) = EV u

1 (�1). (98)

Further, for the strategy χ̃1∗ defined in Definition 4, inequalities (96) and (97) hold with
equality. We can prove this using an inductive argument similar to the one used to prove
Claim 1. Therefore, we have

Su(Ge) = inf
χ̃1

sup
χ̃2

J (χ̃1, χ̃2) ≤ sup
χ̃2

J (χ̃1∗, χ̃2) = EV χ̃1∗
1 (C1) = EV u

1 (�1). (99)

Combining (98) and (99), we have

Su(Ge) = EV u
1 (�1).

Thus, the inequality in (99) holds with equality which leads us to the result that the strategy
χ̃1∗ is a min–max strategy in game Ge. A similar argument can be used to show that

Sl(Ge) = EV l
1(�1),

and that the strategy χ̃2∗ defined in Definition 4 is a max–min strategy in game Ge.
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