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Abstract— We investigate finite-horizon stochastic dynamic
games among teams. Each team has its own dynamic system,
whose evolution is affected by the actions of all players in
all teams. Within each team, members share their local states
with each other with a delay of d > 0. Actions are observed
by all agents along with noisy observations of the systems.
Such games feature the difficulties of the increasing domain
of strategies and interdependence of actions and information
over time. In these games, we identify a subclass of Nash
Equilibria where the agents use Sufficient Private Information
Based (SPIB) strategies, i.e. agents make decisions based on
compressed versions of their private information along with
the common information. We establish the existence of such
equilibria; the proof of existence is not based on standard
techniques since SPIB strategies do not feature perfect recall.
Finally, we investigate a special case of our model where each
agent has their own dynamic system. We show that agents can
compress their private information further in this case. Our
results provide a foundational step in addressing the difficulties
of dynamic games among teams.

I. INTRODUCTION

In numerous engineering and socioeconomic applications,
multiple agents/players participate in dynamic games with
asymmetric information. In these games, agents make de-
cisions over time on top of a dynamically evolving phys-
ical environment in order to achieve their respective long-
term goal. Examples of such applications include sensor
networks, edge computing systems, transportation networks,
spectrum markets, and e-commerce. For example, in trans-
portation networks, online map services provide road and
traffic information to drivers. Subsequently, drivers decide
on their driving directions based on this information, then
their actions in turn cause the traffic conditions to change.
Another example involves dynamic markets, where multiple
companies compete over time in an ever changing market.
All these games have the feature that agents need to consider
how their actions could influence the system evolution in
addition to their current payoffs when making a decision.

In many instances of dynamic games, some of the asym-
metrically informed agents have aligned interest, thus, they
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can form a team. Team members choose their strategy jointly
in order to achieve team optimality (i.e. the joint strategy
profile that maximizes the total reward over all joint strategy
profiles) rather than person-by-person optimality (i.e. each
member’s strategy is a best response to other members’
strategies). The aligned interest creates an incentive for team
members to share their information with each other, but
despite this information asymmetry can still persist. This
is since in many applications the system is evolving fast
while the communication is limited or costly. One example
of a dynamic game among teams with asymmetric infor-
mation is ride-sharing services with autonomous vehicles,
where fleets of autonomous cars of rival companies compete
with each other for customers [2]. Another example is
decentralized spectrum sharing, which is exemplified in the
DARPA Spectrum Challenge [3], where agents work in teams
to establish wireless communication with their teammates.
Each team collaborates to survey the spectrum situation,
avoid interference with other teams, and utilize the spectrum
resource as efficiently as possible [3].

The main/key challenges in the analysis of dynamic
games of asymmetric information are: (i) interdependence
of players’ actions and information over time, (ii) increasing
information and growing domain of strategies over time, and
(iii) belief formation among players with conflicting goals.
In games among teams there is an additional challenge,
namely, the coordination of strategies in a team to optimize
the reward for the team, especially when the members of the
team have asymmetric information.

In this paper, we address the following problems/issues:
(i) the coordination within teams by transforming the game
among teams into an equivalent game among individuals,
where the individual’s strategies in the transformed game
indicate how agents in the same team should coordinate with
each other, and (ii) the problem of increasing information by
identifying a suitable compression of private information for
each agent in each team.

In the control literature, there are numerous papers re-
lated to the analysis of the non-strategic dynamic team-
s/dynamic decentralized stochastic control problem. These
papers present approaches to obtain structural results of
optimal team strategies, or methods to determine team opti-
mal strategies or person-by-person optimal strategies. These
methods include (i) the person-by-person approach [4], [5];
(ii) the designer’s approach [6], [7]; and (iii) the coordinator’s
approach [8]-[10]. We adopt the coordinators’ approach to
our games among teams model in this paper. In this approach,
a fictitious player called the coordinator is introduced into
each team. The coordinator is assumed to have access to the
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team members’ common information. Based on this infor-
mation, the coordinator assigns instructions/prescriptions to
each member. These instructions/prescriptions describe how
a member should map their other part of information into ac-
tions. By introducing a coordinator, one can transform a team
into a single decision making agent with full recall, where
the decisions this agent make at each time are instructions
instead of actions.

In the economics literature, there is a vast literature on
repeated games (see [11] or [12] for a list of references). In
those games, agents repeatedly interact in a static physical
environment/system. Games where the agents operate in a
dynamically evolving physical environment and make de-
cisions over time have been studied by economists, control
theorists, and computer science theorists (see [13] for a list of
references). Our work is mainly influenced by [14]-[16]. In
[14], the authors introduce the concept of a Markov Perfect
Equilibrium (MPE) for games with perfectly observable
actions and system states. In [15], the authors propose the
concept of a Common Information Based Markov Perfect
Equilibrium (CIB-MPE), which is an extension of the MPE
concept to dynamic games with asymmetric information. The
authors establish the existence of CIB-MPE and provide a
sequential procedure to determine such equilibria. The result
is obtained under a crucial assumption, namely that the CIB
belief is strategy independent. In [16], the authors analyze
a game model where the aforementioned assumption is not
true. They introduce and analyze the concept of a Common
Information Based Perfect Bayesian Equilibrium (CIB-PBE).
They provide a backward induction procedure to find such
equilibria whenever the procedure succeeds. They conjecture
that CIB-PBE always exists. Our work is different from
[14] since we focus on games with asymmetric information.
Moreover, different from [15], the CIB belief in our model is
strategy-dependent. Our work is closest to [16]. However, as
we discuss in detail in Section III, the results of [16] cannot
be directly applied in this work.

In contrast to games among individual players, games
among teams have not been extensively studied in the litera-
ture. There have been a few works either solving specialized
models (e.g. [17]), analyzing models with restrictive assump-
tions (e.g. [18]), or studying games among teams empirically
(e.g. [19]).

See [1] for a more extensive list of references and a
detailed discussion of the literature on decentralized control,
dynamic games, and dynamic games among teams.

In this paper, we investigate a family of finite-horizon
stochastic dynamic games among teams with asymmetric
information. Each team has its own dynamic system, whose
evolution is affected by the actions of all players in all teams.
Within each team, members share their local states with each
other with a delay of d > 0. Actions are observable to all
agents along with noisy observations of the systems. Our
model generalizes that of [16] to games among teams.

Contributions: (i) We transform the game among teams to
an equivalent game among individuals, where the strategies
of the individuals in the new game indicate how agents
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in the same team should collaborate. (ii) We identify an
appropriate way to compress the team-private information
of each team. Such an information compression leads to the
Sufficient Private Information Based (SPIB) strategies. (iii)
We show that SPIB-strategy-based Nash Equilibria always
exist. Since SPIB strategies do not feature full recall, we
combine techniques in the economics and control literature
to establish this result. (iv) In a special case of our model
where a dynamic system is associated with each agent instead
of each team, we identify an appropriate way to further
compress each agent’s information.

Organization: We organize the rest of the paper as
follows. In Section II we formally present our model and
problem. In Section III we transform the game among teams
into an equivalent game among coordinators where each
coordinator represents a team. In Section IV we introduce
the compression of private information and SPIB strategies,
and we show the existence of SPIB-strategy-based equilibria.
We present a special case of our results in Section V. We
conclude in Section VI.

Notation: We use capital letters to represent random
variables, bold capital letters to denote random vectors,
and lower case letters to represent realizations. We use
superscripts to indicate teams and agents, and subscripts to
indicate time. We use t¢; : to to indicate the collection of
timestamps (¢1,t1 + 1,--- ,t2). For example X{, stands
for the random vector (X7, X4, X1). For random variables
or random vectors, we use the corresponding script capital
letters (italic capital letters for greek letters) to denote the
space of values these random vectors can take. For example,
H: denotes the space of values the random vector H;
can take. We use P(-) and E[-] to denote probabilities and
expectations, respectively. We use A({2) to denote the set of
probability distributions on a finite set 2.

II. PROBLEM FORMULATION
A. System Model and Information Structure

We consider a finite horizon dynamic game among
finitely many teams each consisting of a finite number of
agents, where agents have asymmetric information. Let Z =
{1,---,1I} denote the set of teams and 7 = {1,---,T}
denote the set of time indices. We use a tuple (4,j) to
indicate the j-th member of team i. For a team ¢ € Z,
let N; = {(:,1),---, (4, N;)} denote team i’s members. Let

= U;ez Ni denote the set of all agents. At each time
t € T, each agent (i, j) selects an action U;” € U;”’, where
U, denotes the action space of agent (i, j) at time ¢. Each
team is associated with a vector-valued dynamical system
X} = (Xy7)(i,j)en; which evolves according to

i—‘,—l :ftZ(XiZHUhth’X)a ZGIa

where U; = (Utk7'j)(k,j)€N, and (W;™);ez.e7 is the noise
in the dynamical system. We assume that XZ’j € Xti’j for
(i,5) e N.

We assume that the actions of all agents are publicly
observed. Further, at time ¢, after all the agents take actions,
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a public observation of team ¢’s state is generated via

Vi =0(XEL U, WY, e,

where Y/ € Vi and (W;""
noises.

We assume that the functions (f})iez.te7, (0i)icz teT are
common knowledge among all agents. We further assume
that (X1)icz, (W iczre7, and (W)Y )icz se7 are mu-
tually independent primitive random variables whose distri-
butions are also common knowledge among all agents. As a
result, the teams’ dynamics (X%);c7,i € Z are conditionally
independent given the actions, and the public observations of
different teams’ systems are conditionally independent given
the states and actions of all teams.

At each time t, the following information is available to
all agents:

)iez,teT are the observation

Hi? = (Y1:t717 Ul:tfl)a

where Y; = (Y})iez, U = (Uti’j)(i)j)e,\/. We refer to Hy
as the common information among teams.

We assume that each agent (i, j) observes her own state
X;". Further, agents in the same team share their states with
each other with a time delay d > 1. Thus, at time ¢, all agents
in team i have access to H{, given by

Hi = (Y14-1,U14-1,X%,_g), i€T.

We call H} the common information within team 4.
Finally, the information available to agent (i, j) at time ¢,
denoted by H;”, is

Xi

4] _ @
Ht = (let—laUlzt—th:t—d7 t

Zavia)s (4) €N

This model captures the hierarchy of information asym-
metry among teams and team members. It is an abstract
representation of dynamic oligopoly games [20] where each
member of the oligopoly is a team.

To illustrate the key ideas of the paper without dealing
with technical difficulties arising from continuum spaces, we
assume that all the system random variables (i.e. all states,
actions, and observations) take values in finite sets.

Assumption 1. X7 Vi U7 are finite sets for all (,j) €
N,teT.

B. Strategies and Reward Functions

For games among teams, there are three possible types
of team strategies one could consider: (1) pure strategies,
i.e. deterministic strategies; (2) randomized strategies where
team members independently randomize; and (3) randomized
strategies where team members jointly randomize.

A pure strategy profile of a team is a collection of
functions p* = (i) (i jyens s> Where pp? - Hy? s U
Define M as the space of functions from H;” to U;”. Let
M= Tler i jyen, M- Any randomized strategy of
a team, either of type 2 or type 3, can be described through a
mixed strategy o' € A(M?). In particular, if team members
independently randomize, the mixed strategy o being used
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to describe the strategy profile will be a product of measures
on M =TT, My for (i,7) € N;.

Team ¢’s total reward under a pure strategy profile u =
(1) (i) en e 8

where the functions (r});czte7,7i + X x Up — R, repre-
senting the instantaneous rewards, are common knowledge
among all agents. Team ¢’s total reward under a mixed
strategy profile o (0V)iez,0" € A(M?), is then an
average of the total rewards under pure strategy profiles, i.e.
J' (o) = ZMGM [Hiel UZ(NZH J' ().

Note that while members of the same team may jointly
randomize their strategies, the randomizations of different
teams are independent of each other.

TH(u) =E* |y ri(Xe, Uy)

teT

Remark 1. For convenience of notation and proofs, for ¢ €
{=(d—1),---,-1,0}, we define X’ =U,;” =Y} = {0}
and 7{(X;,U;) =0 for all i € N and (i,5) € N.

C. Solution Concept

In this work, a team refers to a group of agents that have
asymmetric information and the same objective. Because of
the shared objective, members of the same team can jointly
decide on the strategy to use before the start of the game for
the collective benefit of the team. Hence, we can assume that
every member of the team knows the strategy of the others
in the team. Therefore, when considering an equilibrium
concept, we should consider team deviations rather than
individual deviations, i.e. multiple members of the same team
may decide to play a different strategy than the equilibrium
strategy. We consider randomized strategies where team
members jointly randomize. Example 1 of Section II-C.1
illustrates why such strategies must be considered when we
study games among teams.

The above discussion motivates the definition of a Team
Nash Equilibrium.

Definition 1 (Team Nash Equilibrium). A mixed strategy
profile o* = (0*);c7, 0% € A(M?), is said to form a Team
Nash Equilibrium (TNE) if J*(0*, 0*~%) > Ji(5%, 0* ) for
any mixed strategy profile 5° € A(M?) for all i € Z.

The primary objective of this paper is to characterize a
subclass of Team NE and establish the existence of these
Team NE.

1) A Motivating Example: The following example il-
lustrates the importance of considering jointly randomized
mixed strategies when we study games among teams. Similar
to the role mixed strategies play in games among individual
players, the space of jointly randomized mixed strategies is
rich enough to ensure that an equilibrium exists in games
among teams. In particular, if we restrict the teams to
use pure or independently randomized strategies, i.e. type
1 and type 2 strategies described in Section II-B, then
an equilibrium may not exist. This example is similar to
the example in Section 2 of [21] in spirit, with the main
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difference that in our example the players in the same team
have asymmetric information.

Example 1 (Guessing Game). Consider a two-stage zero-
sum game (i.e. T = {1,2}) of two teams Z = {A, B},
each consisting of two players. The set of all agents is
given by N' = {(A,1),(4,2),(B,1),(B,2)}. Let X{
(xM X e {1, 1}? and Team B does not have a state,
ie. XP = @. Assume U;” = {—1,1} for t =1,i = A or
t=2,i= B and U;” = & otherwise, i.e. Team A moves at
time 1, and Team B moves at time 2. At time 1, Xf L and
X are independently uniformly distributed on {—1,1}.
Team A’s system is assumed to be static, i.e. X4 = X\
The rewards of Team A are given by

A
(X Un) = Tpppaxpeppe iy
A
5 (X2, Usz) = *1{X2A'1:UQB’1} - l{XzA’2:UzB'2}’

and the rewards of Team B satisfies (X, Uy)
—r Xy, Uy) for t = 1,2.

Assume that there are no additional common observations
other than past actions, i.e. Y; = &. We set the delay d = 2,
i.e. agent (A, 1) does not know XtA’2 throughout the game
and a similar property is true for agent (A, 2). In this game,
the task of Team A is to choose actions according to their
states at ¢ = 1 in order to earn a positive reward, while
not revealing too much information through their actions to
Team B. The task of Team B is to guess Team A’s state.

An equilibrium where Team A randomizes in a correlated
manner is given in the following: At ¢t = 1, Team A
plays 74 = (y*!,442) with probability 1/2, and 74 =
(341, 44:2) with probability 1/2, where

P ar) =i =

F ) = et 3 ()
and at ¢ = 2, the two members of Team B choose in-
dependent and uniformly distributed actions on {—1,1},
independent of their action and observation history. In this
equilibrium, each agent (A, j) chooses a uniform random
action irrespective of their states. However, (A, 1) and (A4, 2)
choose these actions in a correlated way to ensure that they
obtain the full instantaneous reward while not revealing any
information.

It can be verified that if we restrict both teams to use
independently randomized strategies (including determinis-
tic strategies), then there exists no equilibria: Since the
game is a zero-sum game, it can be easily verified that if
an independently randomized equilibrium existed, it would
achieve the same expected payoff for each team as the jointly
randomized equilibrium described above. One can obtain the
Team A’s value by computing Team A’s expected payoff at
the equilibrium given in the example. Then one can verify
that no independently randomized strategies of Team A can
attain this value.

III. GAME OF COORDINATORS

In this section we present a game among individual players
that is equivalent to the game among teams formulated in

A2 ) = —a?

Y

)
— A2
=]

) )
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Section II.

We view the agents of a team as being coordinated by
a fictitious coordinator as in [9]: At each time ¢, team 7’s
coordinator instructs the members of team 7 how to use their
private information H,”\ H}. The coordinator’s instructions
are based on H} and her past instructions up to time ¢—1 (see
[9]). Using this vantage point, we can view the games among
teams as games among coordinators, where the coordinators’
actions are the instructions, or prescriptions, provided to
individual agents. Notice that unlike agents’ actions, coordi-
nators’ actions (prescriptions) cannot be publicly observed.
To proceed further we formally define coordinators’ actions
and strategies, and prove Lemma 1.

Definition 2 (Prescription). Coordinator i’s prescriptions at
time ¢ is a collection of functions ~; = (7;)(; j)en; Where

5,7 . piJ %,J
Vet X g o U

Define Ai’j to be the space of functions that maps

4,7 ©,J i 1,
X7, to Uy Define Aj = H(i,j)e/\fi A7

Definition 3 (Pure Coordination Strategy). Define the aug-
mented team-common information of team ¢ to be F; =
(H},T%.,_ 1), where T, _, are past prescriptions assigned
by the coordinator of team i. A pure coordination strategy
of team ¢ is a collection of mappings v* = (v})ic7 Where
vy H, — A

The next lemma establishes the equivalence between pure
coordination strategies and pure strategies of a team.

Lemma 1. For every pure coordination strategy profile v,
there exists a pure strategy profile  that yields the same
payoffs for all teams and vice versa.

Proof. Follows from [9]. O]

Based on the above lemma, we can immediately conclude
that a mixed strategy profile for the teams in the original
game is equivalent to a mixed coordination strategy (i.e. a
distribution on the space of pure coordination strategies) pro-
file . As a result, Team Nash Equilibria, as defined in Section
II-C, will be equivalent to Nash Equilibria of coordinators,
where the coordinators can use mixed coordination strategies.

Therefore, we can transform the games among teams to
games among individual players, where each player is a
(team) coordinator whose actions are prescriptions. Follow-
ing the standard approach in game theory, we now consider
behavioral strategies of the individuals (i.e. coordinators) in
this lifted game since, unlike mixed strategies, behavioral
strategies allow for independent randomizations across time
and are therefore more amenable to a sequential analysis.

Definition 4 (Behavioral Coordination Strategy). A behav-
ioral coordination strategy of team ¢ is a collection of

mappings ¢ = (g!);e1 where gi : H, — A(A).

Given that the coordinators have perfect recall, that is, at
any time ¢, each coordinator remembers all her observations
up to time ¢, and all her “actions” (prescriptions) up to
time ¢ — 1, we can conclude from Kuhn’s theorem [22] that
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behavioral coordination strategies are equivalent to mixed
coordination strategies in the following sense.

Lemma 2. For any behavioral coordination strategy profile,
there exists a mixed coordination strategy profile with the
same expected payoffs and vice versa.

Based on the above equivalence we can first define Co-
ordinator’s Nash Equilibria in behavioral strategies and then
restate our objective from Section II-C.

Definition 5 (Coordinators’ Nash Equilibrium). For any
behavioral coordination strategy profile g, define J*(g)
E9 [ ,c7 (X, Uy)]. A behavioral coordination strategy
profile g* =(gi")iezser where gi' @ H, = A(A}) is
said to form a Coordinator’s Nash Equilibrium (CNE) if
Ji(g*t, g*=%) > JU(§*, g**) for any behavioral coordination
strategy g' for each team i € Z.

Given that we have lifted the game among teams to a
game among coordinators, we adjust the terminology for
the information structure accordingly. From now on, we will
refer to the common information among all teams (i.e. Hf) as
simply the common information, while the information that
members of team 7 share but is not known to other teams
(ie. H\H? = (X, ,, T4, 1)) will be referred to as the
private information of coordinator ¢. The information that
is private to an agent (i.e. X;”, ) will be referred to as
hidden information, since none of the coordinators observe
this information.

Remark 2. The games among coordinators we obtain have
similarities to the dynamic games considered in [16]. How-
ever, the results of [16] do not apply here because of a
few key differences between the two classes of games:
(1) Actions in [16] are publicly observable. As mentioned
before, in our game among coordinators, the “actions”
(prescriptions) of the coordinators are private information.
(ii) The local state X in [16] is perfectly observable by
player ¢ without delay. In our game among coordinators,
at time ¢, a coordinator can only observe her local state
up to time t — d. (iii) The transitions of local states in
[16] are conditionally independent given the actions, i.e.
P(z¢y1|ze,ue) = [, P(zi4q]2t, w). In our game among
coordinators, transition of local states are not independent
given the prescriptions. (iv) The public observation process
of local states in [16] is conditionally independent given
the actions, i.e. P(y|z¢, us) = [, P(yi|z}, ut). In our game
among coordinators, public observations of local states are
not independent given the prescriptions and local states.

IV. COMPRESSION OF PRIVATE INFORMATION

In this section, we identify a subset of a coordinator’s
private information that is sufficient for decision-making
for the game of coordinators formulated in Section III. We
refer to this subset of private information as the Sufficient
Private Information (SPI). We then restrict attention to Suf-
ficient Private Information Based (SPIB) strategies, where
coordinators choose prescriptions based on their sufficient
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private information along with the common information. As
a result, the coordinators do not need full recall to play SPIB
strategies. We show that there always exists a Coordinator’s
Nash Equilibrium where coordinators play SPIB strategies.
Therefore, the restriction to SPIB strategies does not hurt the
existence of equilibria.

We proceed as follows. We first present a structural result
on the coordinators’ beliefs that plays an important role in
the subsequent analysis. We then separately treat the d = 1
and d > 1 cases, where d is the delay in information sharing
within the same team. The SPI for d = 1 case turns out to
be structurally simpler than that for d > 1 case. Finally, for
both d = 1 and d > 1 cases, we show that CNEs where
coordinators play SPIB strategies always exist.

A. A Preliminary Result

We show that the states and prescriptions of different co-
ordinators are conditionally independent given the common
information.

Lemma 3 (Conditional Independence). Under any behav-
ioral coordination strategy profile g and for each time
te T, (Xb,, Tk Vrer are conditionally independent given
the common information HY. Furthermore, the conditional
distribution of (X%, ,T%,) given H? depends on g only
through g*.

Proof. Can be shown through induction on time ¢, where the
induction step is established via Bayes rule. See [1, Appendix
C] for all the details. O

As a result of Lemma 3, coordinator 7’s estimation of other
coordinators’ states and prescriptions is independent of her
own strategy and private information. In other words, while
coordinator ¢ has access to both the common information and
her private information, her belief on the other coordinators’
private information (i.e. history of states and prescriptions)
is solely based on the common information.

B. Result for d =1

While coordinator i’s private information consists of
(X%, 1,T%,_ 1), she does not have to use all of it to form
a best response.

Lemma 4. Under d = 1, for any behavioral coordination
strategy profile g~* of all coordinators other than i, there
exists a best response behavioral coordination strategy g° for
coordinator i that chooses randomized prescriptions based
solely on (H?,X:_ ).

Proof. Deferred to the proof of Lemma 6. O

Lemma 4 shows that the coordinators can ignore much
of their private information without compromising their
objective.

C. Result for d > 1

We now identify a compressed version of private informa-
tion for d > 1 that is sufficient for decision-making.
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Recall that coordinator 7’s information at time ¢ consists
of Hy = (Y14-1,Up_1, X%, ;. T%, ;). To choose her
prescriptions at time f, coordinator 7 needs to estimate
her hidden information (i.e. XL dr1:4)- When d = 1, the
belief on hidden information is simply constructed using
(X¢ ,,U;_1) and the knowledge of the transition proba-
bilities of the underlying system. However, when d > 1,
more information in addition to (X! _,, U;_4.¢—1) is needed
to form the belief.

To illustrate this, we start with the case d = 2. When
d = 2, the belief of coordinator 7 on her hidden information
would depend on the last prescription I';_; in addition to
(X! 5, Us_94—1). This is due to the signaling effect of
the action Uj_;: since coordinator ¢ knows Uj_;, she can
infer something about X! ; through the prescription used to
produce these actions (recall that U7, = T07 (X[, 1)
for (i, j) € N;). Hence at time ¢, coordinator ¢ needs to take
I'!_, into account when forming her belief on the hidden
information.

Furthermore, for d = 2, when making a decision at
time t, coordinator ¢ can use a compressed version of the
prescription I, instead of I'i_, itself. This is because at
time ¢, coordinator i has learned X¢_, that she didn’t know
at time t— 1. The coordinator can then focus on the following
essential question: given the knowledge of X!_,, what is the
relationship between Xi_; and U:_,?

Similarly, for a general d > 1, to estimate the hidden
information, each coordinator needs to utilize her past (d—1)
prescriptions. Again, a coordinator can use a compressed
version of the past (d — 1) prescriptions, since she can
incorporate the additional information she knows at time
t that she did not know back when the prescriptions were
chosen. Each coordinator can now focus on the relationship
between the unknown states and the known actions, given
what is already known. This motivates the definition of
(d — 1)-step partially realized prescriptions (PRPs).

Deﬁnition 6. The (d — 1)-step partially realized prescrip-
tions' (PRPs) for coordinator ¢ at time ¢ is a collection of
functions ®¢ := ((I)t ”)(”)ENMKKd 1, Where

‘I’zlz 1= FtLZ(XtLlde:tfd’ )

)
is a function from Xt FERTNA u,”,.

PRPs have smaller dimension than prescriptions. To il-
lustrate this point consider the case where d = 2: A
prescription 7, L can be represented as a table, where the
rows represent z,”, € X;J,, the columns represent 7, €
XZ’Jl, and the entries represent the corresponding action
u? = A7 (., ) to take. On the other hand, the 1-
step partially realized prescription gf)t” = 'yt 1(% ;) can
be represented by one row of the table of ~,/; chosen based
on the realization of Xti’_j2

In addition to (X}_,, U;_g—1,®}), coordinator i also
needs to use Y;' ;.,, ; to form a belief on her hidden

IThe (d — 1)-step PRPs are the same as the partial functions defined in
the second structural result in [8].

information since Y , +1:¢—1 can provide additional insight
onX! ;. ., that (X! _, Us_gs_1, ®}) cannot necessarily
provide. The belief coordinator 7 has on her hidden informa-
tion is summarized in the following lemma.

Lemma 5. Suppose that the behavioral coordination strategy
profile g = (g')ier is being played Then the conditional
distribution of Xt dilct gtven H under g can be expressed
as a fixed function of (Y;' 4, 1., 1,Ut dt—1, Xi_ 4, BY), ie.

. —i
Pg(zi_d+1;t|ht)
_ pif.i i i iy It - At
= P/ (T _qy1al¥i—as1a—1, Ut—dit—1, Tp_q, 1) Vhy € H,
for some function P} that does not depend on g.

Proof. Using Lemma 3, we can compute the belief of
coordinator 7 by replacing g~% with surrogate strategies and
adding conditionally independent random variables into the
condition, i.e.

i i ; —1 i a—i P -t
P99 (xi—d+1:t|ht) = P99 (xzzf—d+1:t|ht7xtld:t)7

where §~% is an open-loop strategy profile that always
generates the actions uy,y_,,and z, ', , € X", is such that
pya (2, g |h;) > 0. The proof then follows by computing
Pgi’g_i(xt_d+1:t|hi,x;_id:t) with Bayes rule and the chain
rule. See [1, Appendix D] for a detailed proof. O

Remark 3. The above result can be interpreted in the fol-
lowing way: X! _, is perfectly observed, hence coordinator
4 can discard Xizt_ 4—1 Which are irrelevant information due
to the Markov property. Since X! _, +1:¢—1 are not perfectly
observed by coordinator ¢, every public observation and
action based upon X}, ., ; are important to coordinator
7 since‘ it can help in estimating the state X}_, 11 Note
that @} encodes the essential information coordinator ¢ needs
to remember at time ¢ about her previous signaling strat-
egy: how does X!_,. ., ; (unknown) map to U,_ .,
(known)? With this piece of information, coordinator 7 can
fully interpret the signals sent through U?_, i1

We claim that while coordinator ¢’s private informa-
tion consists of (X!, , T%, ;), she only needs to use
(Xi_,, ®!) along with the common information to choose
prescriptions.

Lemma 6. Given an arbitrary d > 1, for any behavioral
coordination strategy profile g~* of all coordinators other
than 1, there exists a best response behavioral coordination
strategy g* for coordinator i that chooses randomized pre-
scriptions based solely on (HY,Xi_, ®1).

Proof. Using Lemma 5, one can show that with a fixed g7,
coordinator ¢ faces a Markov Decision Process (MDP) with
(HP, X% _,,®!) as the state. The lemma then follows from
standard results on MDPs. O

Remark 4. Lemmas 5 and 6 and their proofs also apply to
d = 1, in which case the (d — 1)-step PRP ®! is empty by
definition.
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From now on, we unify the results for d = 1 and d > 1.
We formally define the Sufficient Private Information (SPI)
and SPIB strategies which will be used in the rest of the

paper.

Definition 7 (Sufficient Private Information). For a given
d > 0, the Sufficient Private Information (SPI) for coordina-
tor 7 at time ¢ is defined as S; = (X!_,, ®?).

Definition 8 (Sufficient Private Information Based Strategy).
A Sufficient Private Information Based (SPIB) strategy for
coordinator i is a collection of functions p* = (pi)ieT, pi

HY x S — A(AL).

It can be easily verified that S can be sequentially
updated, i.e., there exists a fixed, strategy-independent func-
tion « such that S}, = ¢{(S},X}_,,,,T'}). Therefore, a
coordinator does not need full recall to play an SPIB strategy.

D. Coordinators’ Nash Equilibrium in SPIB Strategies and
its Existence

Since the coordinators have perfect recall, we know from
standard results for dynamic games that a CNE, as defined
in Definition 5, exists (see Chapter 11 of [23], for example).
However, in those CNEs, coordinators do not necessarily
play SPIB strategies, hence the standard arguments that
guarantee the existence of CNE cannot be used to establish
the existence of CNE in SPIB strategies. Moreover, SPIB
strategies do not feature full recall, hence one cannot directly
apply standard arguments to establish the existence of CNE
in SPIB strategies.

An SPIB strategy profile p = (pi)iczieT,pl : HY x
Si +— A(AY) is called a Sufficient Private Information
Based Coordinators’ Nash Equilibrium (SPIB-CNE) if p,
seen as a profile of behavioral coordination strategies, forms
a Coordinator’s Nash Equilibrium.

Theorem 1. There exists at least one SPIB-CNE for the
dynamic game among coordinators.

Proof Sketch. The complete proof is presented in [1, Ap-
pendix F]. We sketch the key steps of the proof here.

Step 1: Restrict attention to e-trembling SPIB strategies of
coordinators, where all prescriptions have probability greater
or equal to e.

Step 2: Recall the proof of Lemma 6: Fixing ¢g—*, co-
ordinator ¢ faces a Markov Decision Process (MDP) with
state (H?,Xi_,, ®%). Define a best response correspondence
using the dynamic program that solves the above MDP.

Step 3: Use Kakutani’s fixed point theorem to argue the
existence of equilibria in the restricted game.

Step 4: Take the limit as e goes to 0.

i
’

O

E. Implementing SPIB Strategies in a Team

We have established the existence of CNE in the game of
coordinators when all coordinators play SPIB strategies. In
this subsection, we return our attention to teams and discuss
how a team can implement SPIB strategies that are defined
in the context of coordinators. Given an SPIB strategy p’ for
coordinator ¢, members of team ¢ can implement the strategy
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in the following way: They can utilize a correlation device
which generates a random seed R! at each time ¢. In the
absence of a correlation device that can be used in real-
time, a team can also collectively generate all the random
seeds R:,--- , RY. before the game begins. The members of
team ¢ agree on a common deterministic procedure (called
ChooseRandom) to choose random prescriptions based on
the random seed R and a given distribution. During the
game, each member of team ¢ acts as the coordinator on
their own, and chooses actions by applying prescriptions on
their d most recent private states. The implementation of the
above procedure is described in Procedure 1.

Procedure 1: Agent (¢,j)’s implementation of an
SPIB strategy

input : An SPIB strategy p' = (p})ic7 at begining;
(Yi-1, U1, X7, X777 RY) at each time
t.

output: Actions U, at each time ¢.

// Initialize according to Remark 1:

Cl « HY: // Common Information
SPI «+ Si; // Sufficient Private
Information

HI <—X“%d 1):0 // Hidden Information
Pres « TI'%; // Prescriptions

// During the game:

for t < 1 to T do

// At time t:

Cl <« Concatenate (Cl, Y1, U1
SPI « i(SPI, HI[1], X;’ 7, Pres);

Hl + Concatenate (HI[2:end], XZ’j) ;
DistPres « p! (Cl, SPI);

Pres «+ ChooseRandom (DistPres, Ri);
U}« Pres[j])(HD;

end

V. SPECIAL CASE: SEPARATED DYNAMICS

Consider a special case of the model in Section II where
the state of each member of each team evolves independently
given the actions, i.e.

t+1—ft7]( j)a

where (W, )teT(i,j)en are mutually independent primitive
random variables. In this case, we can consider equilibria
where the coordinators a551gn prescriptions that map X, to
U7 (instead of mapping X, |, to U;”); this is because,
given H;, the belief of member (i, j) about her teammates’

states is independent of X, .. In other words, one can
replace the hidden information Xj_, 1t with the sufficient
hidden information X:.> We elaborate on this point below.

U, W (1)

2The compression of hidden information to sufficient hidden information
is similar to the shedding of irrelevant information in [24].
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Definition 9 (Simple Prescriptions). A simple prescription
for coordinator ¢ at time ¢ is a collections of functions 0;
(9?3)(i,j)e/\fw9§’j X Y

Lemma 7. Suppose that ¢~* is a behavioral coordination
strategy profile for coordinators other than coordinator 1,
then there exists a best response behavioral coordination
strategy g° for coordinator i that chooses randomized simple

. . =
prescriptions based on H,.

Proof Sketch. A more detailed proof is presented in [1,
Appendix M]. We sketch the key steps here.

Step 1: Fixing the strategy profile for all agents of all
teams other than agent (i, j), show that agent (i,j) faces
an POMDP with state Z; = (H?, X4, T1v 1, X077, X7
and observation Ht’ g,

Step 2: Show that the conditional distribution of Z; given
Hy” does not depend on X,” ., ;. Conclude that agent
(i,7) can optimize team i’s payoff by choosing a strategy
where her action at time ¢ does not depend on X7, ;.. ;.

Step 3: Conclude that team ¢ can form a best response to

g~ " with strategies that always assign simple prescriptions.
O

Given the above result, one can restrict the set of feasible
prescriptions for each coordinator to contain only the simple
prescriptions. With this modification, results analogous to
that of Sections IV can be derived. In particular, we have
the following analogue of Theorem 1.

Theorem 2. Consider the game formulated in Section II but
with dynamics given by (1). Then there exist at least one
SPIB-CNE for the dynamic game among coordinators where
each coordinator uses only simple prescriptions.

VI. CONCLUSION AND FUTURE WORK

We studied a model of dynamic games among teams with
asymmetric information, where agents in each team share
their observations with a delay of d. Each team is associated
with a controlled Markov Chain, whose dynamics are influ-
enced by the actions of all agents. We proposed Sufficient
Private Information Based (SPIB) strategies, where agents
can use a compression of their information rather than full
information to make decisions. Such strategies do not feature
full recall. Nevertheless, we showed that SPIB-strategy-based
equilibria are guaranteed to exist. We also analyzed a special
case of our model where the state of each member of each
team evolves independently given the actions and showed
that the agents can compress their information further in this
case. Our results provide an important first step in addressing
all the difficulties associated with dynamic games of teams.

Moving forward, there are a few research problems arising
from this work: (i) identifying a non-empty subset of SPIB
strategy-based equilibria where agents compress the common
information among all agents as well; (ii) investigating the
payoff properties of SPIB-strategy-based equilibria in com-
parison to general Nash Equilibria; (iii) developing efficient
algorithms to find SPIB-strategy-based equilibria.
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