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Fixed-Horizon Active Hypothesis Testing
Dhruva Kartik , Ashutosh Nayyar , Senior Member, IEEE, and Urbashi Mitra , Fellow, IEEE

Abstract—Two active hypothesis testing problems are
formulated. In these problems, the agent can perform a
fixed number of experiments and then decide on one of the
hypotheses or declare its experiments inconclusive. The
first problem is an asymmetric formulation in which the ob-
jective is to minimize the probability of incorrectly declaring
a particular hypothesis to be true while ensuring that the
probability of correctly declaring that hypothesis is moder-
ately high. This formulation is a generalization of the formu-
lation in the Chernoff–Stein lemma to an active setting. The
second problem is a symmetric formulation in which the
objective is to minimize the misclassification probability
while ensuring that the true hypothesis is declared conclu-
sively with moderately high probability. For these problems,
lower and upper bounds on the optimal misclassification
probabilities are derived and these bounds are shown to
be asymptotically tight. Novel experiment selection strate-
gies are provided. It is shown that these strategies are
asymptotically optimal and using numerical experiments,
it is demonstrated that these strategies have a significantly
better performance in the nonasymptotic regime.

Index Terms—Anomaly detection, Chernoff–Stein
lemma, controlled sensing, hypothesis testing.

I. INTRODUCTION

W E FREQUENTLY encounter scenarios wherein we
would like to deduce whether one of several hypotheses

is true by gathering data or evidence. This problem is referred
to as multihypothesis testing. If we have access to multiple
candidate experiments or data sources, we can adaptively select
more informative experiments to infer the true hypothesis. This
leads to a joint control and inference problem commonly referred
to as active hypothesis testing. There are numerous ways of for-
mulating this problem and the precise mathematical formulation
depends on the target application.

Manuscript received November 13, 2019; revised January 27, 2021;
accepted May 16, 2021. Date of publication June 21, 2021; date of
current version March 29, 2022. This work was supported in part under
Grants ONR N00014-15-1-2550, NSF CCF-1817200, ECCS 1750041,
NSF CCF-2008927, and ARO W911NF1910269, in part by Cisco Foun-
dation under Grant 1980393, in part under Grant ONR 503400-78050, in
part by DOE under Grant DE-SC0021417, in part by Swedish Research
Council under Grant 2018-04359, and in part by Okawa Foundation.
This paper was presented in part at the 2019 IEEE International Sympo-
sium on Information Theory, Maison de la Mutualite, Paris, France, July
2019. Recommended by Associate Editor P. G. Mehta. (Corresponding
author: Dhruva Kartik.)

The authors are with the Ming Hsieh Department of Electrical and
Computer Engineering, University of Southern California, Los Ange-
les, CA 90089 USA (e-mail: mokhasun@usc.edu; ashutosn@usc.edu;
ubli@usc.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2021.3090742.

Digital Object Identifier 10.1109/TAC.2021.3090742

In this article, we consider a scenario in which there is an agent
that can perform a fixed number of experiments. Subsequently,
the agent can decide on one of the hypotheses using the collected
data. The agent is also allowed to declare the experiments
inconclusive if needed. In this fixed-horizon setting, we consider
two formulations. In the first formulation, we are interested in
minimizing the probability of incorrectly declaring a particular
hypothesis to be true while ensuring that the probability of
correctly declaring the same hypothesis is moderately high.
Thus, we would like to declare that this hypothesis is true only
if we have very strong evidence supporting it. This formulation
is intended for applications like anomaly detection wherein
incorrectly declaring the system to be safe (i.e., anomaly-free)
can be very expensive whereas a moderate number of false
alarms can be tolerated. This formulation, and thus our results,
can be viewed as a generalization of the classical Chernoff–Stein
lemma [1] to an active multihypothesis testing setup.

In the second formulation, we are interested in minimizing the
probability of making an incorrect inference (misclassification
probability) while ensuring that the true hypothesis is declared
conclusively with moderately high probability. The key differ-
ence between the first and second formulations is that the former
is asymmetric, i.e., it focuses on reliably inferring a particular
hypothesis, whereas the latter formulation is symmetric in the
sense that it aims to avoid misclassifying every hypothesis. This
symmetric formulation is of particular interest when the penalty
for making any incorrect inference is significantly higher than
the penalty for making no decision. In such cases, it is reasonable
for the agent to abstain from drawing conclusions unless there
is strong evidence supporting one of the hypotheses.

In both these problems, the agent can select experiments at
each time in a data-driven manner. We refer to the strategy
used for selecting these experiments as the experiment selection
strategy. We refer to the strategy used by the agent to make an
inference (or to declare its experiments inconclusive) based on
all the data collected as the inference strategy. Thus, the two
problems described above involve optimization over the space
of inference and experiment selection strategy pairs.

Our contributions in this article pertaining to these hypothesis
testing problems can be summarized as follows.

1) We find lower and upper bounds on the optimal mis-
classification probabilities in our constrained optimiza-
tion problems. These bounds are asymptotically (w.r.t.
the time-horizon) tight under some mild assumptions.
Thus, we characterize the optimal misclassification error
exponents in each problem.

2) We propose a novel approach for designing experiment
selection strategies. Unlike the classical approach which
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results in randomized and, in some cases, open-loop
strategies, this approach allows us to design determin-
istic and adaptive experiment selection strategies that are
asymptotically optimal.

3) We demonstrate numerically that the experiment selec-
tion strategies designed using our approach, when cou-
pled with appropriate inference strategies, achieve su-
perior nonasymptotic performance in comparison to the
classical approaches.

The rest of the article is organized as follows. In Section I-
A, we summarize key prior literature on hypothesis testing and
discuss how our problem is related to various other formulations.
In Section I-B, we describe our notation. We describe our system
model in Sections II-A and II-B, we formulate our problems.
We state the main results in Section II-C and sketch the proof
of our results. We provide a detailed analysis of our hypothesis
testing problems in Sections III and IV. In Section V, we discuss
an anomaly detection example and provide the results of our
numerical experiments. We conclude the article in Section VI.

A. Related Work

Hypothesis testing is a long-standing problem and has been
addressed in various settings. Works that are closely related
to active hypothesis testing can be broadly classified into the
following paradigms.

1) Fixed-Horizon Hypothesis Testing: In the simplest
fixed-horizon hypothesis testing setup, we have binary hypothe-
ses and a single experiment. The inference is made based on
a fixed number of i.i.d. observations obtained by repeatedly
performing this experiment. In this setup, there are two popular
formulations: 1) the Neyman–Pearson type asymmetric formu-
lation used in the Chernoff–Stein lemma [1]; 2) the uncon-
strained symmetric formulation that involves minimizing the
Bayesian error probability [1]. While our asymmetric formula-
tion is a generalization of the Neyman–Pearson type formula-
tion, our symmetric formulation is different from Bayesian error
probability minimization in [1]. The key difference is that in
Bayesian error minimization, the agent is not allowed to declare
its experiments inconclusive at the end of the horizon and must
declare one of the hypotheses to be true. More general works
in this paradigm include [2]–[6]. All the aforementioned works
are passive in the sense that there is only one experiment and
thus, the experiment selection strategy is trivial. Nevertheless,
we employ many of the analysis techniques developed in these
works all of which are available in the form of lecture notes
in [7].

An active fixed-horizon formulation has been considered
in [8] in which the objective is to minimize the maximal error
probability. This formulation is symmetric and does not allow
the inconclusive declaration. Allowing the inconclusive decla-
ration makes the nature of our analysis and results significantly
different from the formulation in [8].

2) Sequential Hypothesis Testing: In sequential hypoth-
esis testing, the time horizon is not fixed and the agent can
continue to perform experiments until a stopping criterion is
met. The objective then is to minimize the Bayesian risk which

is a combination of the expected stopping time and the error
probability. Inspired by Wald’s sequential probability ratio test
(SPRT) [9], Chernoff first addressed the problem of active se-
quential hypothesis testing in [10]. This work was later general-
ized in [8], [11], and [12]. These works focused on characterizing
the asymptotic behavior1 of the Bayesian risk in the regime
where the cost of performing experiments is much lower than
the cost of making an incorrect inference.

Our fixed-horizon formulations are most closely related to this
sequential hypothesis testing framework. In both these settings,
the optimal error rates and the strategies used to achieve them
are very similar. Intuitively, this is because in both the sequential
setting and our fixed-horizon setting, the agent conclusively
declares a hypothesis to be true only if there is strong evidence
supporting it. If strong enough evidence is not found, the agent in
the sequential setting continues to perform experiments whereas
the agent in our setting simply declares the experiments incon-
clusive. Fixed-horizon formulations are useful in applications
with hard time constraints where the agent does not have the
luxury to keep performing experiments until strong enough
evidence is obtained. A key distinction between sequential and
fixed-horizon formulations is that in the sequential setting, much
of the analysis is focused on computing the expected stopping
time. On the other hand, in our fixed-horizon setting, the stopping
time is fixed but there are constraints on the probability of
making conclusive correct inference. Proving that the designed
strategies satisfy these constraints calls for a different set of
mathematical tools.

In all the aforementioned works on the sequential setting,
the experiment selection strategy has a randomized compo-
nent. Although these randomized strategies are asymptotically
optimal, their non-asymptotic performance may be poor. De-
terministic strategies were proposed in [10] and [13] but in
many cases, these strategies are not asymptotically optimal. In
this article, we develop an approach that helps us in designing
deterministic, adaptive and asymptotically optimal experiment
selection strategies. Moreover, in some scenarios like anomaly
detection, our deterministic strategies have a significantly better
non-asymptotic performance. For some specific kinds of se-
quential hypothesis testing problems, deterministic strategies
were designed and analyzed in [14] and [15]. Our strategy
design is similar in spirit to these designs. While these works
are more general than ours in certain respects such as allowing
different experiment costs and infinite observation spaces, they
make some other restrictive technical assumptions which are
not required in our analysis. These assumptions include the last
assumption in [14, p. 513] and in [15, Assumption 1.6]. Because
of these assumptions, there are settings where our results apply
while those of [14], [15] do not. In Section V-A6, we provide one
simple example where this is the case. Some of the techniques
used to design and analyze our strategy share some similarities
with those used in multiarmed bandits [16].

3) Anomaly Detection: Many anomaly detection problems
can be viewed as active hypothesis testing problems. In anomaly
detection, there are multiple normal processes which exhibit a

1In [12], certain nonasymptotic results are also provided.
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certain kind of statistical behavior. Among these processes, there
could be an anomaly with statistical characteristics distinct from
the normal processes. There are various mechanisms to probe
these processes and the objective is to reliably detect the anomaly
as quickly as possible. Some recent works in anomaly detection
include [17]–[21]. All these works are in the sequential setting. It
has been noted in [17]–[19] that deterministic strategies achieve
better performance. We believe that these deterministic strate-
gies may be related to ours.

The problem of oddball detection has been considered in [22]
and [23]. The approach used in [22] and [23] is similar to
Chernoff’s approach in [10] but the key innovation is that they
do not assume knowledge of the underlying distributions.

4) Variable-Length Coding With Feedback: This problem
is concerned with designing variable-length codes for dis-
crete memoryless communication channels with perfect feed-
back [24], [25]. It can be viewed as a sequential hypothesis
testing problem and a detailed discussion on this can be found
in [25]. Our framework can be used to formulate a fixed-horizon
analogue of the variable-length coding problem wherein the
receiver is allowed to declare the transmission inconclusive if
needed.

B. Notation

Random variables are denoted by upper case letters (X), their
realization by the corresponding lower case letter (x). We use
calligraphic fonts to denote sets (U ). The probability simplex
over a finite setU is denoted by∆U . In general, subscripts denote
time indices unless stated otherwise. For time indices n1 ≤ n2,
Yn1:n2 denotes the collection of variables (Yn1 , Yn1+1, . . ., Yn2).
For a strategy g, we use P g[·] and Eg[·] to indicate that the
probability and expectation depend on the choice of g. For
an hypothesis i, Eg

i [·] denotes the expectation conditioned on
hypothesis i. For a random variable X and an event E , E[X; E ]
denotes E[X1E ], where 1E is the indicator function associated
with the even E . The cross-entropy and Kullback-Leibler diver-
gence between two distributions p and q over a finite space Y
are respectively given by

H(p, q) = −
∑

y∈Y
p(y) log q(y). (1)

The Kullback–Leibler divergence between distributions p and q
is given by

D(p||q) =
∑

y∈Y
p(y) log

p(y)

q(y)
. (2)

We use the convention that if x ≤ 0, then log x
.
= −∞.

II. MINIMUM MISCLASSIFICATION ERROR PROBLEMS

In this section, we will formulate the two active hypothesis
testing problems. We will describe our assumptions and state
our main results on the asymptotic behavior of optimal misclas-
sification probabilities.

A. System Model

Let X = {0, 1, . . . ,M − 1} be a finite set of hypotheses and
let the random variable X denote the true hypothesis. The

prior probability on X is ρ1. Without loss of generality, let us
assume that the distribution ρ1 has full support. At each time
n = 1, 2, . . ., an agent can perform an experiment Un ∈ U and
obtain an observation Yn ∈ Y . We assume that the sets U and Y
are finite. The observation Yn at time n is given by

Yn = ξ(X,Un,Wn) (3)

where {Wn : n = 1, 2, . . . } is a collection of mutually inde-
pendent and identically distributed primitive random variables.
The probability of observing y after performing an experiment
u under hypothesis i is denoted by pui (y)

pui (y)
.
= P (Yn = y | X = i, Un = u).

The time horizon, that is, the total number of experiments
performed is fixed a priori to N < ∞.

At time n = 1, 2, . . . , N , the information available to the
agent, denoted by In, is the collection of all experiments per-
formed and the corresponding observations up to time n− 1

In
.
= {U1:n−1, Y1:n−1}. (4)

Let the collection of all possible realizations of information In
be denoted by In. At time n, the agent selects a distribution over
the set of actions U according to an experiment selection rule
gn : In → ∆U and the action Un is randomly drawn from the
distribution gn(In), i.e.,

Un ∼ gn(In). (5)

For a given experiment u ∈ U and information realization
I ∈ In, the probability P g[Un = u | In = I ] is denoted by
gn(I : u). The sequence {gn, n = 1, . . . , N} is denoted by g
and referred to as the experiment selection strategy. Let the
collection of all such experiment selection strategies be G.

After performing N experiments, the agent can declare one
of the hypotheses to be true or it can declare that its experiments
were inconclusive. We refer to this final declaration as the agent’s
inference decision and denote it by X̂N . Thus, the inference
decision can take values in X ∪ {ℵ}, where ℵ denotes the
inconclusive declaration. Using the information IN+1, the agent
chooses a distribution over the set of hypotheses according to an
inference strategy f : IN+1 → ∆(X ∪ {ℵ}) and the inference
X̂N is drawn from the distribution f(IN+1), i.e.,

X̂N ∼ f(IN+1). (6)

For a given inference x̂ ∈ X ∪ {ℵ} and information realization
I ∈ IN+1, the probability P f,g[X̂N = x̂ | IN+1 = I ] is de-
noted by fN (I : x̂). Let the set of all inference strategies be F .
For an experiment selection strategy g and an inference strategy
f , we define the following probabilities.

Definition 1: For i ∈ X , let ψN (i) be the probability that the
agent infers hypothesis i given that the true hypothesis is i, i.e.,

ψN (i)
.
= P f,g[X̂N = i | X = i]. (7)

We refer to ψN (i) as the correct-inference probability of type-i.
Let φN (i) be the probability that the agent infers i given that the
true hypothesis is not i, i.e.,

φN (i)
.
= P f,g[X̂N = i | X )= i]. (8)

We refer to φN (i) as the misclassification probability of type-i.
We will also be interested in the event that the agent declares

an incorrect hypothesis to be true. That is, we will consider
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the event ∪i∈X {X̂N = i,X )= i}. We refer to this event as the
misclassification event.

Definition 2: Let γN be the probability of making an incorrect
inference, i.e.,

γN
.
= P f,g[∪i∈X {X̂N = i,X )= i}]. (9)

We will refer to γN as the misclassification probability.
Remark 1: Note that the misclassification probability γN can

be expressed in terms of the misclassification probabilitiesφN (i)
of type-i in the following manner:

γN =
∑

i∈X
P f,g[X̂N = i | X )= i]P [X )= i] (10)

=
∑

i∈X
φN (i)(1− ρ1(i)). (11)

B. Problem Formulation and Preliminaries

We will consider two active hypothesis testing formulations.
The first one is an asymmetric formulation in which the focus
is on a particular hypothesis i and involves minimizing the
misclassification probability φN (i) of type-i. The second for-
mulation is a symmetric formulation that involves minimizing
the misclassification probability γN .

1) Asymmetric Formulation (P1): In this formulation, we
are interested in designing an experiment selection strategy g
and an inference strategy f that minimize the misclassifica-
tion probability φN (i) of type-i subject to the constraint that
the correct-inference probability ψN (i) of type-i is sufficiently
large. In other words, we would like to solve the following
optimization problem:

inf
f∈F,g∈G

φN (i)

subject to ψN (i) ≥ 1− εN (P1)

where 0 < εN < 1. Let the infimum value of this optimization
problem be φ∗N (i). Note that this problem is always feasible
because the agent can trivially satisfy the correct-inference
probability constraint by always declaring hypothesis i. We refer
to this problem as the minimum misclassification error problem
of type-i or simply Problem (P1).

Remark 2: Problem (P1) can be seen as a binary hypothesis
testing problem with null hypothesis {X = i} and alternate
hypothesis {X )= i}. We observe that when there is only one
experiment and two hypotheses, this formulation is identical to
that of the Chernoff–Stein lemma in [1].

This formulation is helpful in modeling scenarios in which the
cost of incorrectly declaring a particular hypothesis to be true is
very high. For instance, consider a system which can potentially
have various types of anomalies. We are interested in testing
whether the system has no anomalies (hypothesis X = i) or has
some anomaly (hypothesis X )= i). In such systems, a few false
alarms may be tolerable but declaring that the system is free of
anomalies when there is one can be very expensive. Therefore,
we would like to minimize the probability of falsely declaring the
system to be free of anomalies subject to the constraint that the
probability of raising false alarms is sufficiently small. Clearly,

this scenario can be modeled using the asymmetric formulation
(P1).

2) Symmetric Formulation (P2): In this formulation, we
are interested in designing an experiment selection strategy g
and an inference strategy f that minimize the misclassification
probability γN while satisfying the constraint that the correct-
inference probability ψN (i) of type-i is sufficiently large for
every hypothesis i ∈ X . In other words, we would like to solve
the following optimization problem:

min
f∈F,g∈G

γN

subject to ψN (i) ≥ 1− εN , ∀i ∈ X (P2)

where 0 < εN < 1. Let γ∗N denote the infimum value of this
optimization problem. We define γ∗N

.
= ∞ if the optimization

problem is infeasible. We refer to this problem as the minimum
misclassification error problem or simply Problem (P2).

The above formulation is intended for scenarios where the
penalty for making an incorrect inference is much higher than
the penalty for not making any inference. In such cases, it is
reasonable for the agent to abstain from drawing conclusions
when the evidence is not strong enough. The constraints on type-
i correct-inference probabilities ψN (i) ensure that the agent
does not abstain from drawing conclusions too often. Thus, the
optimization problem (P2) aims to find experiment selection and
inference strategies that misclassify the least among all those
strategies that make the correct inference with high probability.

Definition 3 (Log-likelihood ratio): For an experiment u ∈ U
and any pair of hypotheses i, j ∈ X let

λi
j(u, y)

.
= log

pui (y)

puj (y)
(12)

be the log-likelihood ratio associated with an observation y ∈ Y .
We make the following assumptions on our system model.
Assumption 1 (Common support): For any given experiment

u ∈ U , there exists a non-empty setY(u) ⊆ Y such that for every
hypothesis i ∈ X , the support of the distribution pui is Y(u). In
other words, for every hypothesis i ∈ X , pui (y) > 0 if and only
if y ∈ Y(u).

Let B > 0 be a constant such that |λi
j(u, y)| < B for every

experiment u ∈ U , observation y ∈ Y(u) and any pair of hy-
potheses i, j ∈ X . Note that the existence of such a constant B
is guaranteed because of Assumption 1.

Since our focus is on minimizing the incorrect inference
probabilities, we make the following assumption on εN . This
assumption captures the fact that we need the correct-inference
probabilities to be large, but not necessarily too large.

Assumption 2: We have that the bound 1− εN on the type-
i correct-inference probability satisfies εN → 0. Further, there
exists a constant b > 0 such that limN→∞ εNN b = ∞.

The following assumption is standard in the active hypothesis
testing literature and ensures that every pair of hypotheses can
be distinguished by performing some experiment.

Assumption 3: For any pair of distinct hypotheses i, j ∈ X ,
there exists an experiment u ∈ U such that D(pui ||puj ) > 0.

Before stating our main results, we will define some important
quantities.
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Definition 4 (Max–min Kullback–Leibler divergence): For
each hypothesis i ∈ X , define

D∗(i)
.
= max
α∈∆U

min
j )=i

∑

u

α(u)D(pui ||puj ) (13)

= min
β∈∆X̃i

max
u∈U

∑

j )=i

β(j)D(pui ||puj ) (14)

where X̃i = X \ {i}. Note that α is a distribution over the set
of experiments U and β is a distribution over the set of alter-
nate hypotheses X̃i. The max–min Kullback–Leibler divergence
D∗(i) can be viewed as the value of a two-player zero-sum
game [10], [26]. In this zero-sum game, the maximizing player
selects a mixed strategy α ∈ ∆U and the minimizing player
selects a mixed strategy β ∈ ∆X̃i. The payoff associated with
these strategies is

∑

u

∑

j )=i

α(u)D(pui ||puj )β(j). (15)

The equality of the min–max and max–min values follows from
the minimax theorem [26] because the sets U and X are finite
and the Kullback–Leibler divergences are bounded by B due to
Assumption 1. Let the max-minimizer in (13) be denoted by αi∗

and the min–maximizer in (14) be denoted by βi∗.
Definition 5 (Posterior belief): The posterior belief ρn on the

hypothesis X based on information In is given by

ρn(i) = P [X = i | U1:n−1, Y1:n−1] = P [X = i | In]. (16)

Note that given a realization of the experiments and observa-
tions until time n, the posterior belief does not depend on the
experiment selection strategy g or the inference strategy f .

Definition 6 (Confidence level): For a hypothesis i ∈ X and a
distribution ρ on X such that 0 < ρ(i) < 1, the confidence level
Ci(ρ) associated with hypothesis i is defined as

Ci(ρ)
.
= log

ρ(i)

1− ρ(i)
. (17)

The confidence level is the logarithm of the ratio of the prob-
ability (w.r.t. the distribution ρ) that hypothesis i is true versus
the probability that hypothesis i is not true.

C. Main Results

We will now state our three main results on some asymptotic
aspects of Problems (P1) and (P2).

1) Asymptotic Decay-Rate of Optimal Misclassification
Probability φ∗

N (i) in Problem (P1): The following theorem can
be viewed as a generalization of the classical Chernoff–Stein
lemma [1] to the setting of active hypothesis testing. It states that
the optimal value φ∗N (i) in Problem (P1) decays exponentially
with the horizon N and its asymptotic rate of decay is equal
to the max–min Kullback–Leibler divergence D∗(i) defined in
Definition 4.

Theorem 1: The asymptotic rate of the optimal misclassifica-
tion probability in Problem (P1) is given by

lim
N→∞

− 1

N
log φ∗N (i) = D∗(i). (18)

Proof: To prove this result, we use the following approach.
We first establish a lower bound on the misclassification proba-
bility φN (i) for any pair of experiment selection and inference

strategies (g, f) that satisfy the constraint ψN (i) ≥ 1− εN .
The asymptotic decay-rate of this lower bound is equal to the
max-min Kullback–Leibler divergenceD∗(i). We then construct
experiment selection and inference strategies that asymptotically
achieve this rate. The details of the proof of this result are
included in Section III. !

The inference strategy constructed in the achievability proof
of Theorem 1 has the following threshold structure:

fN (ρN+1 : i) =

{
1 if Ci(ρN+1)− Ci(ρ1) ≥ θN
0 otherwise

(19)

where θN = ND∗(i)− o(N). The precise value of the thresh-
old θN is provided in Appendix G. The experiment selection
strategy used is as follows: at each time n, randomly select
an experiment u from the max-min distribution αi∗ as defined
in Definition 4. This strategy design is motivated from the
design in [10]. Note that this is a completely open-loop strategy,
that is, the experiments are selected without using any of the
information acquired in the past.

The open-loop randomized experiment selection strategy
described above is asymptotically optimal for Problem (P1).
However, in the nonasymptotic regime, there may be other
experiment selection strategies that perform significantly better
than this open-loop randomized strategy. For some specialized
problems such as anomaly detection, it was observed in recent
active hypothesis testing literature [17]–[19] that there exist
deterministic and adaptive strategies that are asymptotically
optimal and also outperform the classical Chernoff-type ran-
domized strategies in the nonasymptotic regime. Even in [10],
Chernoff proposed a deterministic and adaptive strategy (see
[10, Sec. 7]) but he also presented a counter-example in which
the strategy was not asymptotically optimal.

In this article, we propose a class of deterministic and adaptive
strategies that are asymptotically optimal for Problem (P1). To
the best of our knowledge, this is the first proof of asymptotic
optimality of such strategies in a general active hypothesis
testing setting. For a simple anomaly detection example, we
also demonstrate numerically in Section V that our deterministic
adaptive strategy (DAS) (when paired with an appropriate infer-
ence strategy) performs significantly better than the open-loop
randomized strategy αi∗ in the nonasymptotic regime.

2) Asymptotically Optimal Experiment Selection Strate-
gies for Problem (P1): Let the moment generating function of
the negative log-likelihood ratios −λi

j(u, Y ) for an experiment
u be denoted by µi

j(u, s), i.e.,

µi
j(u, s)

.
= Ei[exp

(
−sλi

j(u, Y )
)
]. (20)

Definition 7: For a given experiment u ∈ U , belief ρ ∈ ∆X
and 0 ≤ s ≤ 1, define

Mi(u, ρ, s)
.
=

∑
j )=i(ρ(j))

sµi
j(u, s)∑

j )=i(ρ(j))
s

. (21)

Using this definition, we will now define a class of experiment
selection strategies.

Criterion 1: For a given time horizon N , consider an exper-
iment selection strategy gN

.
= (gN1 , gN2 , . . . , gNN ) such that at
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each time n, αn
.
= gNn (In) ∈ ∆U satisfies

∑

u∈U
αn(u)Mi(u, ρn, sN ) ≤

∑

u∈U
αi∗(u)Mi(u, ρn, sN ) (22)

with probability 1. Here, ρn is the posterior belief at time n and

sN
.
= min




1,

√
2 log M

εN

NB2




 . (23)

Observation 1: Criterion 1 captures three experiment selec-
tion strategies of interest. These are the following.

1) Open-loop randomized strategy (ORS): At any time n,
gNn (In)

.
= αi∗. This is the open-loop randomized strategy

discussed earlier in Section II-C1.
2) Deterministic adaptive strategy (DAS): At each time n,

gNn (In) selects the experiment u ∈ U that minimizes
Mi(u, ρn, sN ). This is a deterministic and adaptive strat-
egy.

3) DAS with restricted support (DAS-RS): At each time n,
gNn (In) selects the experiment u from the support of αi∗

that minimizesMi(u, ρn, sN ). This is also a deterministic
and adaptive strategy.

For all these experiment selection strategies, we have the
following result.

Theorem 2: Let fN be as defined in (19) and gN be an exper-
iment selection strategy that satisfies Criterion 1. Then the class
of strategies {(fN , gN ) : N ∈ N} is asymptotically optimal. In
other words, if ψN (i) and φN (i) are the correct-inference and
misclassification probabilities associated with the strategy pair
(fN , gN ), then ψN (i) ≥ 1− εN for every N and

lim
N→∞

− 1

N
log φN (i) = D∗(i). (24)

Proof: See Section III-C.
Remark 3: Theorem 2 holds as long as the value of sN used

in Criterion 1 satisfies sN → 0 and NsN → ∞. We chose the
value of sN that maximizes the value of θN defined in (126).

Remark 4 (Zero-sum game Interpretation): Note that se-
lecting an experiment that minimizes Mi(u, ρ, s) over the set
U is equivalent to selecting an experiment that maximizes
(1− Mi(u, ρ, s))/s. When s is small, this function can be
approximated as follows:

1− Mi(u, ρ, s)

s
=

∑
j )=i(ρ(j))

s(1− µi
j(u, s))

s
∑

j )=i(ρ(j))
s

(25)

≈
∑

j )=i(ρ(j))
sD(pui ||puj )∑

j )=i(ρ(j))
s

(26)

since (1− µi
j(u, s))/s → D(pui ||puj ) as s → 0. Thus, we can

interpret the strategy DAS in terms of the zero-sum game dis-
cussed earlier in Section II-B after Definition 4. In the zero-sum
game, if the minimizing player selects an alternate hypothesis j
with probability β(j) = (ρ(j))s/

∑
k )=i(ρ(k))

s, then the strat-
egy DAS selects an approximate best-response to the minimizing
player’s strategy with respect to the payoff function in (15).

Given a horizonN , the strategies DAS and DAS-RS described
in this section are time-invariant functions of the posterior belief.
However, they depend on the value of sN and thus, on the horizon
N of the problem. In some cases, these strategies turn out to be

independent of the value sN which results in fully stationary
(with respect to the posterior belief ρn) strategies. We show that
this is the case in the example discussed in Section V. It may
be possible to show that for such stationary strategies in [10,
Lemma 2] holds and thus, they are asymptotically optimal even
in the sequential formulation in [10].

3) Asymptotic Decay-Rate of Optimal Misclassification
Probability γ∗

N in Problem (P2): Similar to the result in The-
orem 1, we can characterize the decay-rate of the optimal mis-
classification probability γ∗N as follows.

Theorem 3: The optimal misclassification probability γ∗N in
Problem (P2) decays exponentially with the horizon N and its
asymptotic decay-rate is equal to mini∈X D∗(i), i.e.,

lim
N→∞

− 1

N
log γ∗N = min

i∈X
D∗(i). (27)

Proof: The methodology used for proving this result is very
similar to that of Theorem 1. We first obtain a lower bound
on the misclassification probability γN for any pair of exper-
iment selection and inference strategies (g, f) that satisfy the
constraints of Problem (P2). This lower bound is very closely
related to the lower bounds established for Problem (P1). Then
we construct a class of experiment selection and inference strate-
gies that achieve this lower bound asymptotically. This class of
experiment selection strategies includes the randomized strategy
proposed in [10] and also, deterministic strategies similar to DAS
and DAS-RS introduced in Section II-C2. The derivation of the
lower bound and the construction of the experiment selection
and inference strategies are discussed in detail in Section IV. !

III. ANALYSIS OF PROBLEM (P1)

In this section, we analyze the asymmetric formulation (P1).
To optimize the misclassification error of type-i in Problem (P1),
we need to design both an experiment selection strategy g and an
inference strategy f . We will first arbitrarily fix the experiment
selection strategy g. For a fixed g, we derive a lower bound
on the misclassification probability φN (i) associated with any
inference strategy f that satisfies the constraint in Problem (P1).
These bounds are obtained using the weak converse approach
described in [7]. In these derivations, we will introduce some
useful properties of the confidence level defined in Definition 6.
Using these properties, we will then weaken the lower bounds
to derive a bound that does not depend on the strategy g.
Further, we will show that any experiment selection strategy
satisfying Criterion 1 defined in Section II-C2, coupled with an
appropriate inference strategy, can asymptotically achieve this
strategy-independent lower bound. Finally, we will discuss some
methods for obtaining better nonasymptotic lower bounds on the
misclassification probability φN (i) using the strong converse
theorem in [7].

A. Lower Bound for a Fixed Experiment
Selection Strategy

In this section, we fix the experiment selection strategy to
an arbitrary choice g and analyze the problem of optimizing
the inference strategy for this particular experiment selection
strategy. This analysis will help us in obtaining a lower bound
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on the misclassification probability and in designing inference
strategies for Problem (P1). Consider the following optimization
problem:

min
f∈F

φN (i)

subject to ψN (i) ≥ 1− εN . (P3)

To analyze problem (P3), we will first define some useful quan-
tities related to the confidence level in Definition 6.

For the hypothesis i and a strategy g ∈ G, define the likelihood
distributions P g

N,i and Qg
N,i over the set IN+1 as follows:

P g
N,i(IN+1)

.
= P g[IN+1 = IN+1 | X = i] (28)

Qg
N,i(IN+1)

.
= P g[IN+1 = IN+1 | X )= i]. (29)

Proposition 1: Under any experiment selection strategy g,
with probability 1, we have

log
P g
N,i(IN+1)

Qg
N,i(IN+1)

= Ci(ρN+1)− Ci(ρ1). (30)

Proof: For any instance IN+1 ∈ IN+1 such that P g[IN+1 =
IN+1] > 0, we have the following using Bayes’ rule:

log
P g
N,i(IN+1)

Qg
N,i(IN+1)

= Ci(ρN+1)− Ci(ρ1) (31)

where ρN+1 is the posterior belief associated with the in-
stance IN+1. Note that because of Assumption 1, P g[IN+1 =
IN+1] > 0 implies that both the numerator and the denomi-
nator in (31) are nonzero and thus, the expression in (31) is
well-defined. Since (31) is true for every instance IN+1 with
nonzero probability, we have our result. !

Thus, the increment in confidence level is a log-likelihood
ratio.

Definition 8 (Expected confidence rate): We define the ex-
pected confidence rate Jg

N (i) as

Jg
N (i)

.
=

1

N
Eg

i [Ci(ρN+1)− Ci(ρ1)] . (32)

Remark 5: Due to Proposition 1, the expected confidence
rate is the averaged Kullback–Leibler divergence between the
distributions P g

N,i and Qg
N,i. That is

Jg
N (i) =

1

N
D(P g

N,i||Q
g
N,i).

When the experiment selection strategy is fixed, we can view
the problem (P1) as a one-shot hypothesis testing problem in
which we are trying to infer whether the collection of actions
and observations IN+1 is drawn from distribution P g

N,i or Qg
N,i.

This interpretation allows us to use the classical results [1], [7]
on one-shot hypothesis testing and derive various properties.

We will first obtain a lower bound on the misclassification
probability φN (i) in Problem (P3) using the data-processing in-
equality of Kullback–Leibler divergences [7]. This is commonly
known as the weak converse [5], [7].

Lemma 1 (Weak converse): Let g be any given experiment
selection strategy. Then for any inference strategy f such that
ψN (i) ≥ 1− εN , we have

− 1

N
log φN (i) ≤ Jg

N (i)

1− εN
+

log 2

N(1− εN )
(33)

where Jg
N (i) is the expected confidence rate. Therefore

− 1

N
log φ∗N (i) ≤

supg∈G J
g
N (i)

1− εN
+

log 2

N(1− εN )
(34)

where φ∗N (i) is the optimum value in Problem (P1).
Proof: See Appendix B. Note that this lemma is true for every

0 ≤ εN < 1.
The bound (34) suggests that we can obtain a strategy-

independent lower bound on φ∗N by obtaining upper bounds on
the quantity supg∈G J

g
N (i). In the next section, we will focus on

obtaining this upper bound.

B. Strategy-Independent Lower Bound

We will first describe some important properties of the con-
fidence level Ci(ρ) which will be used to derive a strategy-
independent lower bound on the misclassification probability
in problem (P1).

Definition 9: For a given experiment selection strategy g and
an alternate hypothesis j )= i, define the total log-likelihood ratio
up to time n as

zn(j)
.
=

n∑

k=1

λi
j(uk, yk); Z̄n

.
=
∑

j )=i

βi∗(j)Zn(j),

where the log-likelihood ratio λi
j is as defined in equation

(\ref{llrdef}) and βi∗ is the min-maximizing distribution in
Definition.

Notice that the processes Zn(j) for each j )= i and Z̄n are
submartingales with respect to the filtration In+1 when X = i.
We will now establish the relationship between the total log-
likelihood ratios Zn(j) and the confidence level Ci.

Lemma 2: For any experiment selection strategy g and for
each 1 ≤ n ≤ N , we have

Ci(ρn+1)− Ci(ρ1)

= − log




∑

j )=i

exp (log ρ̃1(j)− Zn(j))



 (35)

where ρ̃1(j) = ρ1(j)/(1− ρ1(i)).
Proof: This is a consequence of simple algebraic manipula-

tions. See Appendix C for details. !
Note that for any vector z, we have − log

∑
j exp(−z(j)) ≈

minj z(j). Thus, the interpretation of this lemma is that the in-
crement in confidence level Ci(ρN+1)− Ci(ρ1) approximately
represents the smallest total log-likelihood ratio minj )=i ZN (j).
Therefore, this lemma can be seen as the first step towards
establishing the relationship between the average expected in-
crement in confidence Jg

N and the max–min Kullback–Leibler
divergence D∗(i). To formally establish this relationship, we
use Lemma 2 to decompose the increment in confidence into
a nonpositive cross-entropy term and a sub-martingale. This
decomposition will be used in deriving strategy-independent
lower bounds, both weak and strong, on the misclassification
probability in Problem (P1).

Lemma 3 (Decomposition): For any experiment selection
strategy g, we have

Ci(ρn+1)− Ci(ρ1) = −H(βi∗, ρ̃n+1) + Z̄n +H(βi∗, ρ̃1).
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Here, ρ̃n(j) = ρn(j)/(1− ρn(i)). As a result of the nonnega-
tivity of cross entropy, we have

Ci(ρn+1)− Ci(ρ1) ≤ Z̄n +H(βi∗, ρ̃1). (36)

Proof: This is an algebraic consequence of Lemma 2. See
Appendix D for details.

Using Lemma 3, we will now establish the relationship be-
tween the confidence rate Jg

N (i) and the max–min Kullback–
Leibler divergence D∗(i) defined in (13). This, in conjunction
with Lemma 1, will give us a strategy-independent lower bound
on φ∗N (i).

Lemma 4: For any experiment selection strategy g, we have

Jg
N (i) ≤ D∗(i) +

H(βi∗, ρ̃1)

N
(37)

where ρ̃1(j) = ρ1(j)/(1− ρ1(i)). Further, using Lemma 1 and
Assumption 2, we can conclude that

lim sup
N→∞

− 1

N
log φ∗N (i) ≤ D∗(i). (38)

Proof: See Appendix E.

C. Achievability of Decay-Rate D∗(i) in Problem (P1)

We will now construct inference and experiment selection
strategies that satisfy the constraint on hit probability ψN (i) and
asymptotically achieve misclassification decay-rate of D∗(i).
We will begin with the construction and analysis of the inference
strategy.

The following is an upper bound on the misclassification
probability associated with a deterministic confidence-threshold
based inference strategy of the form discussed in Section II-C.
Incidentally, this bound does not depend on the experiment
selection strategy g. Similar upper bounds on error probabilities
are commonly used in hypothesis testing [1], [10].

Lemma 5: Let f be a deterministic inference strategy in which
hypothesis i is decided only if Ci(ρN+1)− Ci(ρ1) ≥ θ. Then
φN (i) ≤ e−θ.

Proof: See Appendix F.
The inference strategy fN is constructed as follows:

fN (ρN+1 : i) =

{
1 if Ci(ρN+1)− Ci(ρ1) ≥ θN
0 otherwise

(39)

where θN = ND∗(i)− o(N) and its precise value is provided
in (142) in Appendix G. Due to Lemma 5, we can say that under
the inference strategy fN , any experiment selection strategy
g achieves achieves φN (i) ≤ e−θN . However, the inference
strategy and the experiment selection strategy must also satisfy
the constraint ψN (i) ≥ 1− εN . In Section II-C2, we discussed
experiment selection strategies that satisfy Criterion 1. Let gN

be any such experiment selection strategy that satisfies Criterion
1. Let the type-i correct-inference and misclassification proba-
bilities associated with the strategy pair (gN , fN ) be ψN (i) and
φN (i), respectively. We can show that this strategy pair satisfies
the constraint ψN (i) ≥ 1− εN . The proof is in Appendix G.
Using the result (38), Lemma 5 and the fact that θN/N → D∗(i)
as N → ∞, we can say that

lim
N→∞

1

N
log

1

φN (i)
= D∗(i). (40)

Thus, the experiment selection strategies that satisfy Criterion
1 (including ORS, DAS, and DAS-RS discussed in Section II-
C2), when used in conjunction with the inference strategy fN

described above, are feasible solutions for the optimization prob-
lem (P1) and asymptotically achieve a type-i misclassification
probability decay rate of D∗(i). This concludes the proof of
Theorem 2.

Since the inference strategy fN and the experiment selection
strategy gN described above are feasible strategies with respect
to the optimization problem in (P1), we can say that φ∗N (i) ≤
φN (i) ≤ e−θN .And since under Assumption 2, θN/N → D∗(i)
as N → ∞, we have

lim inf
N→∞

− 1

N
log φ∗N (i) ≥ D∗(i). (41)

Combining this result with the upper bound on the asymptotic
decay rate of φ∗N (i) in Lemma 4, we have Theorem 1.

Remark 6: We observe that our proof methodology shares
some similarities with that of prior works [8], [10],[12] on active
hypothesis testing. Nonetheless, many of our techniques are
novel, especially those used to prove the asymptotic optimality
of strategies that satisfy Criterion 1.

D. Tighter Nonasymptotic Lower Bounds

In this section, we will provide an alternate approach to finding
lower bounds on the misclassification probability φN (i). This
approach can be used to obtain tight lower bounds in some
special cases. We will later illustrate this procedure with the
help of an example.

For any given pair of inference and experiment selection
strategies f, g that are feasible in Problem (P1), recall that the
increment in confidence can be viewed as a log-likelihood ratio
(30). Therefore for this strategy pair f, g, we have the following
for every χ ∈ R:

− log φN (i) (42)
a
≤ χ− log(ψN (i)− P g

i [Ci(ρN+1)− Ci(ρ1) > χ]) (43)

b
≤ χ− log(1− εN − P g

i [Ci(ρN+1)− Ci(ρ1) > χ]) (44)

= χ− log(P g
i [Ci(ρN+1)− Ci(ρ1) ≤ χ]− εN ). (45)

Inequality (a) is a consequence of the strong converse theorem
in [7]. Inequality (b) holds because ψN (i) ≥ 1− εN . However,
much like the weak converse in Lemma 1, this lower bound
on φN (i) depends on the experiment selection strategy g. We
made use of the decomposition in Lemma 3 to obtain a strategy-
independent lower bound in Lemma 4. We will follow a similar
approach here. We have

P g
i [Ci(ρN+1)− Ci(ρ1) ≤ χ] (46)
a
= P g

i [−H(βi∗, ρ̃N+1) + Z̄N +H(βi∗, ρ̃1) ≤ χ] (47)

b
≥ P g

i [Z̄N +H(βi∗, ρ̃1) ≤ χ]. (48)

Equality (a) is a consequence of Lemma 3, and since
H(βi∗, ρ̃N+1) ≥ 0, we have that the event

{−H(βi∗, ρ̃N+1) + Z̄N +H(βi∗, ρ̃1) ≤ χ} (49)
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⊇ {Z̄N +H(βi∗, ρ̃1) ≤ χ} (50)

which results in the inequality (b). Combining (45) and (48)
leads us to the following lemma.

Lemma 6 (Stong converse): For any given pair of inference
and experiment selection strategies f, g that are feasible in
Problem (P1), we have for every χ ∈ R

− log φN (i) ≤ χ− log(P g
i [Z̄N +H(βi∗, ρ̃1) ≤ χ]− εN )

with the convention that log x .
= −∞ if x ≤ 0.

Note that this lower bound is also dependent on the strategy g.
However, it may be easier to derive strategy-independent lower
bounds using the bound in Lemma 6. This is because the process
Z̄n − nD∗(i) is a super-martingale givenX = i. In fact, if every
experiment in U is in the support of αi∗ (which is the case in
many problems), then the process Z̄n − nD∗(i) is a martingale
given X = i. Thus, a lower bound on φN (i) may be obtained
using a strategy-independent lower bound on the tail probability
P g
i [Z̄N +H(βi∗, ρ̃1) ≤ χ] [28]. In some special cases, it may

even occur that the evolution of the process Z̄n is completely
independent of the strategy g. We will discuss an example that
satisfies this condition in Section V.

IV. ANALYSIS OF PROBLEM (P2)

In this section, we will analyze Problem (P2) and prove Theo-
rem 3. Let f, g be inference and experiment selection strategies
that satisfy the constraints in Problem (P2), i.e.ψN (i) ≥ 1− εN
for every i ∈ X , where ψN (i) is the type-i correct-inference
probability associated with strategies f, g. Let φN (i) be the
type-i misclassification probability associated with strategies
f, g. Since the strategy pair f, g satisfies ψN (i) ≥ 1− εN , we
can use Lemma 1 to obtain the following inequality:

− 1

N
log φN (i) ≤

Jg
N (i) + log 2

N

1− εN
(51)

for every i ∈ X . Let γN be the misclassification probability
associated with strategy pair f, g. Then, we have

γN =
∑

i∈X
(1− ρ1(i))φN (i) (52)

≥
∑

i∈X
(1− ρ1(i)) exp

(
− (NJg

N (i) + log 2)

1− εN

)
. (53)

Rearranging the terms above, we have

− 1

N
log γN (54)

≤− 1

N
log
∑

i∈X
(1− ρ1(i))e

(
−

(NJ
g
N

(i)+log2)

1−εN

)

(55)

− 1

N
log
∑

i∈X
e

(
−

(NJ
g
N

(i)+log2)

1−εN
+log(1−ρ1(i))

)

(56)

a
≤ − 1

N
max
i∈X

(
− (NJg

N (i) + log 2)

1− εN
+ log(1− ρ1(i))

)
(57)

= min
i∈X

(
Jg
N (i) + log 2

N

1− εN
− log(1− ρ1(i))

N

)
(58)

where inequality (a) is because log
∑

i exp(xi) ≥ maxi(xi).
Using the definition of γ∗N , we have

− 1

N
log γ∗N (59)

= sup
f,g:ψN (i)≥1−εN ,i∈X

[
− 1

N
log γN

]
(60)

b
≤ min

i∈X

(
supg J

g
N (i) + log 2

N

1− εN
− log(1− ρ1(i))

N

)
(61)

c
≤ min

i∈X

(
D∗(i) + H(βi∗,ρ̃1)+log 2

N

1− εN
− log(1− ρ1(i))

N

)
. (62)

Inequality (b) is due to the result in (58) and inequality (c)
follows from Lemma 4. Thus, we can conclude that

lim sup
N→∞

− 1

N
log γ∗N ≤ min

i∈X
D∗(i). (63)

This establishes an upper bound on the asymptotic decay rate
of the optimal misclassification probability γ∗N in Problem (P2).
We will now show that this rate is asymptotically achievable
by constructing appropriate experiment selection and inference
strategies.

For a given horizon N and for each i ∈ X , let gN,i be an ex-
periment selection strategy that satisfies Criterion 1 with respect
to hypothesis i. Let the maximum likelihood (ML) estimate at
time n be

īn
.
= arg max

i∈X
ρ̄n(i) (64)

where ties are broken arbitrarily in the arg max operator and ρ̄n
is the posterior belief at time n formed using uniform prior at
time 1 instead of ρ1. Let N .

= {0al1 : l ∈ N, 0al1 ≤ N}, where
a > 1 is a constant and is defined in Appendix H.

1) Experiment Selection Strategy: If n ∈ N , then the ex-
periment Un is selected randomly according to the uniform
distribution over U . If n /∈ N and īn = i, then Un is selected
randomly with distribution gN,i

n (In). We denote this experiment
selection strategy by ḡN (or ḡ). Note that if gN,i is ORS, then
the strategy ḡN is identical to the one in [8].

2) Inference Strategy: Consider the following determinis-
tic inference strategy f̄N where for each i ∈ X :

f̄N (ρN+1 : i) =

{
1 if Ci(ρN+1)− Ci(ρ1) ≥ θN (i)

0 otherwise

where −Ci(ρ1) < θN (i) = ND∗(i)− o(N) and is precisely
defined in Appendix H. Notice that if f̄N (ρN+1 : i) = 0 for
every i ∈ X , then f̄N (ρN+1 : ℵ) = 1.

Since θN (i) > 0 for every i ∈ X , the threshold condition in
f̄N can be satisfied by at most one hypothesis. Thus, f̄N declares
hypothesis i if and only if the confidence increment associated
with i exceeds the threshold θN (i). Hence, for each hypothesis
i ∈ X , the inference strategy f̄N admits the structure required
for Lemma 5 and thus, using Lemma 5, we can conclude that
for each hypothesis i ∈ X , φN (i) ≤ e−θN (i). Therefore, under
the strategies (f̄N , ḡN ), we have

γN ≤
∑

i∈X
(1− ρ1(i)) exp(−θN (i)). (65)
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TABLE I
CONDITIONAL PROBABILITIES P [Y = 1 | X,U ]: IN OUR NUMERICAL

EXPERIMENTS ν = 0.6 WHICH INDICATES THAT THE OBSERVATIONS FROM
THESE SENSORS ARE VERY NOISY

In Appendix H, we show that there exists an integer N̄ such that
for every N ≥ N̄ , the strategy pair (f̄N , ḡN ) also satisfies all
the type-i correct-inference probability constraints in problem
(P2). Thus, for every N ≥ N̄ , we have

γ∗N ≤ γN ≤
∑

i∈X
(1− ρ1(i)) exp(−θN (i))

and hence

lim inf
N→∞

− 1

N
log γ∗N (66)

≥ lim
N→∞

− 1

N
log
∑

i∈X
(1− ρ1(i)) exp(−θN (i)) (67)

≥ lim
N→∞

− 1

N
log

(
M max

i∈X
{(1− ρ1(i)) exp(−θN (i))}

)

= lim
N→∞

− 1

N

(
max
i∈X

{log ((1− ρ1(i)) exp(−θN (i)))}
)

(68)

= min
i∈X

{
lim

N→∞

θN (i)− log(1− ρ1(i))

N

}
(69)

= min
i∈X

D∗(i). (70)

Using the results (63) and (66), we can conclude that

lim
N→∞

− 1

N
log γ∗N = min

i∈X
D∗(i). (71)

This concludes the proof of Theorem 3.

V. EXAMPLE: ANOMALY DETECTION

Consider a system with two sensors A and B. These sensors
can detect an anomaly in the system in their proximity. The
system state X can take three values {0, 1, 2} where X = 0
indicates that the system is safe, i.e., there is no anomaly in
the system. On the other hand, X = 1 indicates that there is an
anomaly near sensor A and X = 2 indicates that there is an
anomaly near sensor B. The prior belief ρ1 is uniform over
the set {0, 1, 2}. There is a controller that can activate one
of these sensors at each time to obtain an observation. Thus,
the collection of actions that the controller can select from is
U = {A ,B}. The observations are binary, i.e.,Y = {0, 1}. The
conditional probabilities P [Y = 1 | X,U ] associated with the
observations given various states and actions are given in Table I.

1) Formulation: After collectingN observations from these
sensors, we are interested in determining whether the system is
safe or unsafe. We consider a setting where incorrectly declaring
the system to be safe can be very expensive while a few false
alarms can be tolerated. In this setting, the inconclusive decision
ℵ is treated as an alarm. Therefore, we would like to design
an experiment (sensor) selection strategy g and an inference

strategy f that minimize the probability φN (0) of incorrectly
declaring the system to be safe subject to the condition that the
probability ψN (0) of correctly declaring the system to be safe
is sufficiently high. This can be formulated as

min
f∈F,g∈G

φN (0)

subject to ψN (0) ≥ 1− εN (P4)

where εN = min{0.05, 10/N} in our numerical experiments.
Notice that this fits the formulation of Problem (P1).

2) Asymptotically Optimal Rate and Weak Converse:
Using Theorem 1, we can conclude that the asymptotically
optimal misclassification rate is

D∗(0) = max
α∈∆U

min
j )=0

∑

u

α(u)D(pu0 ||puj ) = (ν−1/2) log
ν

1−ν .

The max–minimizer α0∗(A ) = α0∗(B) = 0.5 and the min-
maximizer β0∗(1) = β0∗(2) = 0.5. For convenience, we will
refer to α0∗ as α∗ and β0∗ as β∗. Also, notice that the bound on
the log-likelihood ratiosB = log ν

1−ν , ν > 0.5. Therefore using
the weak converse in Lemma 1 and Lemma 4, we have

1

N
log

1

φ∗N (0)
≤
(
ν − 1/2

1− εN

)
log

ν

1− ν
+

2 log 2

N(1− εN )
.

3) Strong Converse: We will now use the lower bound in
Lemma 6 to derive a strategy-independent lower bound one
φN (0). Define

Ln
.
= β∗(1)λ0

1(Un, Yn) + β∗(2)λ0
2(Un, Yn). (72)

Notice that given X = 0, for either experiment u ∈ U , we have

β∗(1)λ0
1(u, Y ) + β∗(2)λ0

2(u, Y ) =

{
1
2 log

ν
1−ν w.p. ν

1
2 log

1−ν
ν w.p. 1− ν.

Let the moment generating function of the variable above be
µ̄(s). Therefore, for any strategy g, we have

Eg
0

[
exp

(
n∑

k=1

skLk

)]

= Eg
0

[
E0 exp

(
n∑

k=1

skLk

)
| In

]
(73)

= Eg
0

[
exp

(
n−1∑

k=1

skLk

)
E0 [exp(snLn) | In]

]

= Eg
0

[
exp

(
n−1∑

k=1

skLk

)]
µ̄(sn) = Πn

k=1µ̄(sk). (74)

Thus, Ln is an i.i.d. sequence and the process Z̄n is the sum
of these i.i.d. random variables. We can also exploit the fact
that the observations are binary valued. Let the number of 0’s
in N observations be K. Then K has binomial distribution with
parameters N, ν. Further

Z̄N ≤ χ− log 2 ⇐⇒
(
K − N

2

)
log

ν

1− ν
≤ χ− log 2.

(75)

Define χ∗ = (Q(2εN )−N/2) log ν
1−ν + log 2, where Q is the

quantile function of the binomial distribution with parameters
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Fig. 1. Plot depicts the performance of strategies ORS and DAS.
Both are asymptotically optimal but DAS is better in the nonasymptotic
regime. When the horizon N = 500, we see a 13 dB improvement in the
misclassification probability with DAS. Also notice that the strong bound
on misclassification probability is very close to the performance of DAS.

N, ν. Using the relation (75), we can conclude that

P g
0 [Z̄N +H(βi∗, ρ̃1) ≤ χ∗] ≥ 2εN (76)

under any experiment selection strategy g. Finally, using Lemma
6, we have for any pair of inference and experiment selections
strategies that satisfy the constraints in Problem (P4)

log
1

φN (0)
≤ χ∗ − log(εN ). (77)

4) Deterministic Adaptive Strategy: If the sensor A is
selected, then the log-likehood ratio λ0

2(A , Y ) is identically
0. Therefore, µ0

2(A , s) = 1 for every s. Further, it can eas-
ily be verified that µ0

1(A , s) = 1 at s = 0 and s = 1. This
fact combined with the convexity of µ0

1(A , s) implies that
µ0
1(A , s) ≤ 1 for every 0 ≤ s ≤ 1. Similarly, µ0

1(B, s) = 1 for
every s and µ0

2(B, s) ≤ 1 for every 0 ≤ s ≤ 1. Because of this,
the deterministic adaptive experiment selection strategy (DAS)
in Section II-C2 reduces to the following:

gn(ρn : A ) =

{
1 if ρn(1) ≥ ρn(2)

0 otherwise.
(78)

From Theorem 2, we know this strategy is asymptotically op-
timal. Note that the strategy described above is independent of
the time-horizon N . This strategy happens to coincide with the
one designed in [14], [15].

5) Numerical Results: We compare the performance of the
open-loop randomized strategy α0∗ and the DAS described
above in Fig. 1. We observe that the performance of DAS is
significantly better in the nonasymptotic regime. We also plot
the weak and strong bounds established earlier. We observe that
the strong bound is very close to the performance of DAS. In
our numerical experiments, the inference strategy is a confidence
threshold based strategy. Instead of computing the threshold, we
empirically find the best threshold using binary search.

6) Chernoff’s Deterministic Strategy: In [10], Chernoff
described a fully deterministic strategy for sequential hypothesis
testing but gave an example scenario for which his strategy was

TABLE II
CONDITIONAL PROBABILITIES P [Y = 1 | X,U ] FOR THE PROBLEM SETUP

IN SECTION V-8.

not asymptotically optimal [10, Sec. 7]. We will now demon-
strate that even in such pathological scenarios, our strategies
designed based on Criterion 1 are asymptotically optimal and
also, have a better performance in the nonasymptotic regime.

Consider the same anomaly detection setup and formulation
as in Section V-A1 with two additional experiments C and D .
The conditional distributions of the observations associated with
these experiments are provided in Table II. Chernoff’s approach
to deterministic strategy design is as follows. Let j̄n be the most-
likely alternate hypothesis at time n, i.e.,

j̄n
.
= arg maxj )=0ρ̄n(j) (79)

where ρ̄n is the posterior belief at time n formed using a uniform
prior. Then at time n, perform the experiment that maximizes
D(pu0 ||puj̄n). In other words, select the experiment that can
best distinguish the most-likely alternate hypothesis from the
hypothesis of interest (in this case, it is X = 0). In our setup,
Chernoff’s deterministic strategy reduces to the following:

Un =

{
A if ρn(1) ≥ ρn(2)

B otherwise.
(80)

It can be shown that this strategy is not asymptotically optimal.
Chernoff’s randomized strategy (ORS) in this case reduces to
selecting either experiment C or D with probability 0.5.

On the other hand, with some simple calculations, we can
show that our strategy DAS-RS described in Section II-C2
reduces to

Un =

{
C if ρn(1) ≥ ρn(2)

D otherwise.
(81)

Because of Theorem 2, we know that both ORS and DAS-RS
are asymptotically optimal. The performances of ORS, DAS-RS
and Chernoff’s deterministic strategy are shown in Fig. 2. In this
case, the strategy DAS-RS does not depend on the time-horizon
N whereas the strategy DAS depends on N . We note that the
last assumption in [14, p. 513] and in [15, Assumption 1.6] do
not apply for the above example.

VI. CONCLUSION

We formulated two fixed horizon active hypothesis testing
problems (asymmetric and symmetric) in which the agent can
decide on one of the hypotheses or declare its experiments incon-
clusive. Using information-theoretic techniques, we obtained
lower bounds on optimal misclassification probability in these
problems. We also derived upper bounds by constructing appro-
priate strategies and analyzing their performance. We proposed
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Fig. 2. Type-0 misclassification probability associated with strategies
DAS-RS, ORS, and Chernoff’s deterministic strategy. Both ORS and
DAS-RS are asymptotically optimal and Chernoff’s deterministic strat-
egy is not. Notice that DAS-RS outperforms all the other strategies in
the nonasymptotic regime.

a novel approach to designing deterministic and adaptive strate-
gies for these active hypothesis testing problems. We proved
that these deterministic strategies are asymptotically optimal,
and through numerical experiments, demonstrated that they have
significantly better performance in the nonasymptotic regime in
some problems of interest.

In this article, our analysis was restricted to the setting where
the observation space is finite. We believe that our analysis can
be extended to cases where the observation space is infinite and
the log-likelihood ratios are sub-Gaussian. We hope to address
this extension in future work. Another direction for future work
is to consider potentially infinite composite hypothesis spaces
which arise in a variety of problems like oddball detection [22]
and drug efficacy testing [10].

APPENDIX A
AUXILIARY RESULTS

The proposition and its corollary stated below are conse-
quences of simple algebraic manipulations.

Proposition 2: Let i ∈ X be a hypothesis. For any j )= i and
at each time n, let ρ̃n(j) = ρn(j)/(1− ρn(i)). Then for any
experiment selection strategy g, we have

ρ̃n(j) =
e(log ρ̃1(j)−Zn−1(j))∑
k )=i e

(log ρ̃1(k)−Zn−1(k))
(82)

with probability 1. Here, Zn(j) is the total log-likelihood ratio
defined in Definition 9.

Corollary 1: Under the setting of Proposition 2, we have for
each 0 ≤ s ≤ 1 and j )= i

(ρn(j))s∑
k )=i(ρn(k))

s
=

e(s log ρ̃1(j)−sZn−1(j))∑
k )=i e

(s log ρ̃1(k)−sZn−1(k))
. (83)

Lemma 7: Let i, j ∈ X . If 0 ≤ s ≤ 1, then under any strategy
g and for every n, we have

Eg
i [exp (s log ρ̃1(j)− sZn(j))] ≤ 1. (84)

Proof: We have

Eg
i [exp (s log ρ̃1(j)− sZn(j))]

= Eg
i [exp (s log ρ̃1(j)− sZn−1(j))]E

g
i [µ

i
j(Un, s) | In]

a
≤ Eg

i [exp (s log ρ̃1(j)− sZn−1(j))]

b
≤ Eg

i [exp (s log ρ̃1(j))] ≤ 1.

Inequality (a) is because for any experiment u, µi
j(u, s) is

convex and µi
j(u, 0) = µi

j(u, 1) = 1. Inequality (b) is obtained
by inductively applying the same arguments.

APPENDIX B
PROOF OF LEMMA 1

Define a random variable X† as follows: X† .
= 1 if X̂N = i

and X† .
= 0 otherwise. Thus, we have

ψN (i) = P f,g[X† = 1 | X = i] (85)

φN (i) = P f,g[X† = 1 | X )= i]. (86)

In this proof, let us denote ψN (i) with ψ and φN (i) with φ for
convenience. Notice that under strategies g and f , the variables
X, IN+1 and X† form a Markov chain. That is

P f,g[X† = 1 | X, IN+1] = P f,g[X† = 1 | IN+1]. (87)

Therefore, using the data-processing property of relative en-
tropy [5], [7], we can conclude that

D(P g
N,i||Q

g
N,i) ≥ ψ log

ψ

φ
+ (1− ψ) log

1− ψ

1− φ
a
≥ −ψ log φ+ ψ logψ + (1− ψ) log (1− ψ)

b
≥ −ψ log φ− log 2

c
≥ −(1− εN ) log φ− log 2.

Inequality (a) follows from the fact that 1− φ ≤ 1. Inequality
(b) holds because −ψ logψ − (1− ψ) log (1− ψ) is a binary
entropy and can at most be log 2. Inequality (c) follows from
our assertion that ψN (i) ≥ 1− εN . Therefore, we have

− 1

N
log φN (i) ≤ Jg

N (i)

1− εN
+

log 2

N(1− εN )
. (88)

APPENDIX C
PROOF OF LEMMA 2

We have

log
ρn+1(i)

1− ρn+1(i)
− log

ρ1(i)

1− ρ1(i)
(89)

a
= log

ρ1(i)
∏n

m=1 p
Um
i (Ym)

∑
j )=i ρ1(j)

∏n
m=1 p

Um
j (Ym)

− log
ρ1(i)

1− ρ1(i)
(90)

= log

∏n
m=1 p

Um
i (Ym)

∑
j )=i ρ̃1(j)

∏n
m=1 p

Um
j (Ym)

(91)

= − log
∑

j )=i

exp

(
log ρ̃1(j) +

n∑

m=1

λ
j
i (Um, Ym)

)
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= − log




∑

j )=i

exp (log ρ̃1(j)− Zn(j))



 . (92)

Equality (a) follows from the fact that the observation Ym is
independent of the past Im = {U1:m−1, Y1:m−1} conditioned
on the hypothesis X and the current experiment Um.

APPENDIX D
PROOF OF LEMMA 3

Using the definition of cross-entropy, we have

−H(βi∗, ρ̃n+1) =
∑

j )=i

βi∗(j) log ρ̃n+1(j)

a
=
∑

j )=i

βi∗(j) log

(
ρ̃1(j)e−Zn(j)

∑
k )=i ρ̃1(k)e

−Zn(k)

)

= −H(βi∗, ρ̃1)− Z̄n − log




∑

k )=i

exp (log ρ̃1(k)− Zn(k))





b
= −H(βi∗, ρ̃1)− Z̄n + Ci(ρn+1)− Ci(ρ1).

Equality (a) follows from Proposition 2 in Appendix A and
equality (b) is a consequence of Lemma 2.

APPENDIX E
PROOF OF LEMMA 4

Using the definition of expected confidence rate, we have

Jg
N (i) =

1

N
Eg

i [Ci(ρN+1)− Ci(ρ1)]

a
≤ H(βi∗, ρ̃1)

N
+

1

N
Eg

i




∑

j )=i

βi∗(j)
N∑

n=1

λi
j(Un, Yn)





b
=

H(βi∗, ρ̃1)

N
+

1

N
Eg

i




∑

j )=i

βi∗(j)
N∑

n=1

D(pUn
i ||pUn

j )





=
H(βi∗, ρ̃1)

N
+

1

N
Eg




N∑

n=1

∑

j )=i

βi∗(j)D(pUn
i ||pUn

j )





c
≤ H(βi∗, ρ̃1)

N
+

1

N
Eg

i

[
N∑

n=1

D∗(i)

]

=
H(βi∗, ρ̃1)

N
+D∗(i). (93)

Equality (a) is a consequence of Lemma 3. Equality (b) follows
from the fact that

Eg
i

N∑

n=1

λi
j(Un, Yn) = Eg

i

N∑

n=1

Ei[λ
i
j(Un, Yn) | Un] (94)

= Eg
i

N∑

n=1

D(pUn
i ||pUn

j ). (95)

Inequality (c) follows from the definition of the min–max distri-
bution βi∗. Combining inequalities (93) and (34) from Lemma
1 gives us (38).

APPENDIX F
PROOF OF LEMMA 5

Let AN+1 be the region in which the inference policy f
described in Lemma 5 selects hypothesis i, that is

AN+1 := {I : f(I : i) = 1,P f,g[IN+1 = I ] )= 0}.
We have

P f,g[X̂N+1 = i,X )= i] = P g[IN+1 ∈ AN+1, X )= i]

=
∑

I∈AN+1

P g[IN+1 = I , X = i]e

[
− log

Pg [IN+1=I ,X=i]

Pg [IN+1=I ,X )=i]

]

a
=

∑

I∈AN+1

P g[IN+1 = I , X = i] exp [−Ci(ρ)] (96)

b
≤

∑

I∈AN+1

P g[IN+1 = I , X = i] exp [−(θ + Ci(ρ1))] (97)

c
≤ ρ1(i)e

−(θ+Ci(ρ1)) = (1− ρ1(i))e
−θ. (98)

In equality (a), ρ is the posterior belief on X given information
I . Equality (a) follows from the definition of confidence level.
Inequality (b) follows from the fact that Ci(ρ) ≥ θ + Ci(ρ1)
for every I ∈ AN+1. And inequality (c) is simply because
P g[IN+1 = I , X = i] ≤ P [X = i]. Therefore

φN (i) = P f,g[X̂N+1 = i | X )= i] ≤ e−θ. (99)

APPENDIX G
PROOF OF THEOREM 2

Let us fix the horizon N . In this proof, we will drop the
superscript from gN and simply refer to it as g for convenience.
Since the inference strategy has a threshold structure [see (19)],
proving that ψN (i) ≥ 1− εN is equivalent to proving that

P g
i [Ci(ρN+1)− Ci(ρ1) < θN ] ≤ εN .

To this end, we will begin with obtaining upper bounds on the
moment-generating function (MGF) of the confidence incre-
ment and then obtain a Chernoff bound based on these upper
bounds.

1) Confidence Level and Log-Likelihood Ratios: Let 0 <
s ≤ 1. Using Lemma 2, we have

Eg
i exp[− s(Ci(ρN+1)− Ci(ρ1))]

= Eg
i




∑

j )=i

exp (log ρ̃1(j)− ZN (j))




s

(100)

= Eg
i




∑

j )=i

(exp (s log ρ̃1(j)− sZN (j)))1/s




s

a
≤ Eg

i




∑

j )=i

exp (s log ρ̃1(j)− sZN (j))



 (101)
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=
∑

j )=i

Eg
i exp (s log ρ̃1(j)− sZN (j)) . (102)

Inequality (a) holds because ‖ · ‖1/s ≤ ‖ · ‖1. Inequality (102)
provides an upper bound on the MGF of the confidence incre-
ment in terms of the MGFs of the log-likelihood ratios.

2) Open-Loop Randomized Experiment Selection At
Time n+ 1: Let n < N . Consider a scenario in which all the
experiments upto time n are selected using strategy g but the
experiment Un+1 is randomly selected using the distribution
αi∗ instead of using the strategy g. Under this modified strategy
(say g̃), for some alternate hypothesis j )= i, we have

Eg̃
i exp (s log ρ̃1(j)− sZn+1(j)) (103)

= Eg
i [E

g̃
i [exp (s log ρ̃1(j)− sZn+1(j)) | In+1]]

= Eg
i [exp (s log ρ̃1(j)− sZn(j))

× Eg̃
i [exp(−sλi

j(Un+1, Yn+1)) | In+1]].
(104)

Let us analyze the term Eg̃
i [exp(−sλi

j(Un+1, Yn+1)) | In+1]
in (110) separately. Since the observation Yn+1 is conditionally
independent of In+1 given the experiment Un+1 and the true
hypothesis X [see (3)], we have

Eg̃
i [exp(−sλi

j(Un+1, Yn+1)) | In+1]

=
∑

u

αi∗(u)Ei[exp(−sλi
j(u, Y ))] =

∑

u

αi∗(u)µi
j(u, s).

(105)

Also, under the same strategy αi∗, the random variable
λi
j(Un+1, Yn+1) has mean Di

j
.
=
∑

u α
i∗D(pui ||puj ) and is

bounded by B with probability 1 because of Assumption 1.
Bounded variables are sub-Gaussian (see Hoeffding’s lemma
in [29]), and thus, we have

Eαi [exp(−sλi
j(Un+1, Yn+1)) | In+1]

≤ exp(−sDi
j + s2B2/2) (106)

≤ exp(−sD∗(i) + s2B2/2) (107)

where the last inequality follows from the fact that Di
j ≥ D∗(i)

for all j )= i. Combining the results (105) and (107), we can say
that when Un+1 is selected using αi∗

∑

j )=i

exp (s log ρ̃1(j)− sZn(j))

× Eg̃
i [exp(−sλi

j(Un+1, Yn+1)) | In+1] (108)

=
∑

j )=i

exp (s log ρ̃1(j)− sZn(j))
∑

u

αi∗(u)µi
j(u, s) (109)

≤
∑

j )=i

exp (s log ρ̃1(j)− sZn(j)) exp(−sD∗(i) + s2B2/2).

(110)

We will use the result in (110) to inductively obtain a bound on
the MGF of the confidence increment under the strategy g.

3) Inductive Step: Having established the results (104) and
(110), we will now prove the following key Lemma.

Lemma 8: For any experiment selection strategy g that satis-
fies Criterion 1, we have∑

j )=i

Eg
i exp (s log ρ̃1(j)− sZn+1(j)) (111)

≤




∑

j )=i

Eg
i exp (s log ρ̃1(j)− sZn(j))



 (112)

× exp(−sD∗(i) + s2B2/2). (113)

Proof: Since g satisfies Criterion 1, using Corollary 1 in
Appendix A, we have

∑
j )=i

∑
u(ρn+1(j))sαn+1(u)µi

j(u, s)∑
j )=i(ρn+1(j))s

≤
∑

j )=i

∑
u(ρn+1(j))sαi∗(u)µi

j(u, s)∑
j )=i(ρn+1(j))s

⇐⇒
∑

j )=i

exp (s log ρ̃1(j)− sZn(j))
∑

u

αn+1(u)µ
i
j(u, s)

≤
∑

j )=i

exp (s log ρ̃1(j)− sZn(j))
∑

u

αi∗(u)µi
j(u, s).

(114)

Recall that αn+1 ∈ ∆U is the distribution selected by the strat-
egy g at time n+ 1. Thus, we have
∑

j )=i

Eg
i exp (s log ρ̃1(j)− sZn+1(j)) (115)

=
∑

j )=i

Eg
i [E

g
i [exp (s log ρ̃1(j)− sZn+1(j)) | In+1]] (116)

=
∑

j )=i

Eg
i [exp (s log ρ̃1(j)− sZn(j)) (117)

× Eg
i [exp(−sλi

j(Un+1, Yn+1)) | In+1]]

a
= Eg

i

∑

j )=i

exp (s log ρ̃1(j)− sZn(j))
∑

u

αn+1(u)µ
i
j(u, s)

b
≤ Eg

i

∑

j )=i

exp (s log ρ̃1(j)− sZn(j))
∑

u

αi∗(u)µi
j(u, s)

c
≤ Eg

i

∑

j )=i

exp (s log ρ̃1(j)− sZn(j))

× exp(−sD∗(i) + s2B2/2) (118)

where equality (a) follows from the fact that the observation
Yn+1 is conditionally independent of In+1 givenαn+1. Inequal-
ity (b) follows from the result in (114) and inequality (c) is a
consequence of the result (110).

Using the result in (102) and applying Lemma 8 inductively,
we have

Eg
i exp[− s(Ci(ρN+1)− Ci(ρ1))] (119)

≤
∑

j )=i

(ρ̃1(j))
s exp(−sND∗(i) + s2NB2/2) (120)

≤ M exp(−sND∗(i) + s2NB2/2). (121)
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4) Chernoff Bound: We can use the Chernoff bound [27] to
conclude that

P g
i [Ci(ρN+1)− Ci(ρ1) < θ] (122)

≤ Eg
i exp[−s(Ci(ρN+1)− Ci(ρ1)− θ)] (123)

a
≤ M exp(sθ − sND∗(i) + s2NB2/2) (124)

b
= εN . (125)

Inequality (a) follows from the result in (121). Equality (b) is
obtained by substituting θ = θN and s = sN where

θN
.
= ND∗(i)− sNNB2

2
− 1

sN
log

M

εN
(126)

and sN is as defined in (23). Under Assumptions 2, one can
easily verify that θN/N → D∗(i) as N → ∞. Thus, we have
shown that for the strategy pair (fN , gN ), ψN (i) ≥ 1− εN .

APPENDIX H
FEASIBILITY OF STRATEGY IN SECTION IV-A1 FOR PROBLEM

(P2)

Let T be the smallest time index such that ML hypothesis
īn = X for every n ≥ T . That is

T = min{n′ : īn = X ∀n ≥ n′}. (127)

Under Assumption 3, it was shown in [8, Appendix B-2] that
for a constant a sufficiently close to 1, there exists a constant
K > 0 such that for every i ∈ X , we have P ḡ

i [T > n] ≤ Kn−b.
Let

N ′ .
=

⌈(
2K

εN

)1/b
⌉
. (128)

This ensures that P ḡ
i [T > N ′] ≤ εN/2. Fix a hypothesis i. De-

fine the following event for each n ≥ N ′

Zn = {̄ik = X,N ′ ≤ k ≤ n}. (129)

Clearly, the events Zn are decreasing with n. Also, we have
{T ≤ N ′} ⊆ Zn, for every n ≥ N ′.

Due to the threshold structure of the inference strategy f̄N ,
proving that ψN (i) ≥ 1− εN is equivalent to showing that

P g
i [Ci(ρN+1)− Ci(ρ1) < θN (i)] ≤ εN .

To do so, we will use a Chernoff-bound based approach similar
to the approach in Appendix G. We have

P g
i [Ci(ρN+1)− Ci(ρ1) < θN (i)] (130)

= P g
i [Ci(ρN+1)− Ci(ρ1) < θN (i), T > N ′] (131)

+ P g
i [Ci(ρN+1)− Ci(ρ1) < θN (i), T ≤ N ′] (132)

≤ εN/2 + P g
i [Ci(ρN+1)− Ci(ρ1) < θN (i), T ≤ N ′] (133)

where the last inequality follows from the definition of N ′.
1) Bounds on the MGF of Confidence Increment: For

some 0 ≤ s ≤ 1, define

τn(s)
.
=

{
1 if n ∈ N
exp(−sD∗(i) + s2B2/2) otherwise.

(134)

Consider the following:

Eḡ
i exp[−s(Ci(ρN+1)− Ci(ρ1));T ≤ N ′] (135)

a
≤
∑

j )=i

Eḡ
i [exp (s log ρ̃1(j)− sZN (j)) ;T ≤ N ′] (136)

b
≤
∑

j )=i

Eḡ
i [exp (s log ρ̃1(j)− sZN (j)) ;ZN ] (137)

c
≤
∑

j )=i

Eḡ
i [exp (s log ρ̃1(j)− sZN−1(j)) ;ZN ]τN (s) (138)

d
≤
∑

j )=i

Eḡ
i [exp (s log ρ̃1(j)− sZN−1(j)) ;ZN−1]τN (s)

e
≤
∑

j )=i

Eḡ
i [exp (s log ρ̃1(j)− sZN ′−1(j))] (139)

× (exp(−sD∗(i) + s2B2/2))N−N ′−N †+1 (140)

f
≤ M(exp(−sD∗(i) + s2B2/2))N−N ′−N †+1. (141)

Here, N † is the number of indices in N that are at least N ′.
Note that N † < 0loga N1. Inequality (a) is a consequence of
the result in (102). Inequality (b) holds because the event {T ≤
N ′} ⊆ ZN . We consider two cases for obtaining inequality (c).
1) If N ∈ N , then we select UN uniformly and inequality (c)
follows from the same arguments used to prove Lemma 7 in
Appendix A. 2) Notice that under the events ZN and {X = i},
we have īN = i, and by the construction of strategy ḡN , the
experiment UN is selected using the control law gN,i

N if N /∈ N .
This control law at time N satisfies Criterion 1 which is the
condition required for using Lemma 8. Thus, inequality (c) can
be obtained from the same arguments used to prove Lemma
8. Inequality (d) holds because ZN ⊆ ZN−1. Inequality (e)
is obtained by inductively applying the arguments (b)− (d).
Inequality (f) is due to Lemma 7 in Appendix A.

2) Chernoff Bound: Let N ′′ .
= N −N ′ −N † + 1 and let

ζ > 0 be any small constant. Define

θN (i)

.
= max

{
ζ − Ci(ρ1), N ′′D∗(i)− sNN ′′B2

2
− 1

sN
log

2M
εN

}

(142)
where sN is as defined in (23). Under Assumption 2, one can
verify that θN (i)/N → D∗(i). Further, we can say that there
exists an integer N̄ such that N ′′ > 0 and for every i ∈ X and
N ≥ N̄ , we have θN (i) > ζ − Ci(ρ1). Thus, for every N ≥ N̄ ,
using the Chernoff bound [27], we have

P g
i [Ci(ρN+1)− Ci(ρ1) < θN (i), T ≤ N ′]

≤ Eg
i exp[−s(Ci(ρN+1)− Ci(ρ1)− θN (i));T ≤ N ′]

a
≤ M(exp(sθN (i)− sN ′′D∗(i) + s2 N ′′B2/2))

b
≤ εN/2

where inequality (a) follows from (141) and inequality (b) is
obtained by substituting the values of θN (i) and sN . Combining
this result with (133), we have

P g
i [Ci(ρN+1)− Ci(ρ1) ≤ θN (i)] ≤ εN .

Therefore, the strategy pair (f̄N , ḡN ) defined in Section IV-A1
satisfies the constraints in Problem (P2).
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