

pubs.acs.org/JAFC Article

Role of Foliar Biointerface Properties and Nanomaterial Chemistry in Controlling Cu Transfer into Wild-Type and Mutant *Arabidopsis* thaliana Leaf Tissue

4 Yu Shen, Jaya Borgatta, Chuanxin Ma, Gurpal Singh, Carlos Tamez, Neil P. Schultes, Zhiyun Zhang,

Cite This: https://doi.org/10.1021/acs.jafc.1c07873

ACCESS I

III Metrics & More

6 ABSTRACT: Seven Arabidopsis thaliana mutants with differences in cuticle thickness and stomatal density were foliar exposed to 7 50 mg L^{-1} $Cu_3(PO_4)_2$ nanosheets (NS), CuO NS, CuO nanoparticles, and $CuSO_4$. Three separate fractions of Cu (surface-attached, 8 cuticle, interior leaf) were isolated from the leaf at 0.25, 2, 4, and 8 h. Cu transfer from the surface through the cuticle and into the 9 leaf varied with mutant and particle type. The Cu content on the surface decreased significantly over 8 h but increased in the cuticle. 10 Cu derived from the ionic form had the greatest cuticle concentration, suggesting greater difficulty in moving across this barrier and 11 into the leaf. Leaf Cu in the increased-stomatal mutants was 8.5-44.9% greater than the decreased stomatal mutants, and abscisic 12 acid to close the stomata decreased Cu in the leaf. This demonstrates the importance of nanomaterial entry through the stomata and 13 enables the optimization of materials for nanoenabled agriculture.

14 KEYWORDS: Cu nanomaterials, cuticle, stomata, Arabidopsis, hydrophobic surface

15 INTRODUCTION

16 Given the projected pressure on agriculture from an increasing 17 population and a changing climate, nanotechnology has 18 garnered significant attention as a potentially critical tool for 19 maximizing global food production and achieving food 20 security. 1,2 Current potential applications have included 21 nanoscale platforms for nutrient delivery, plant protection 22 strategies for pathogen management, the development of 23 intelligent nanoscale sensing systems for a range of parameters, 24 and strategies to increase photosynthesis or even tolerance to 25 stress, among other uses. $^{3-5}$ A number of studies have focused 26 specifically on the foliar application of a range of nanoparticles 27 as a method to improve crop production and resistance to 28 pathogens. For example, Nandhini et al. reported that the foliar 29 application of 50 mg L⁻¹ zinc oxide nanoparticles (ZnO NPs) 30 to pearl millet resulted in a 35% reduction in downy mildew (Sclerospora graminicola) incidence compared to untreated 32 controls; 250 mg L⁻¹ ZnO increased seedling vigor by 71.5%. 33 Buchman et al. demonstrated that foliar application of 500 mg 34 L⁻¹ chitosan-coated mesoporous Si NPs reduced Fusarium wilt 35 disease by 27% in a greenhouse study with watermelon and 36 under field conditions, increased the fruit yield of watermelon 37 by 70%. Our group has focused significant attention on the 38 role of nanoscale Cu in modulating plant health and resistance 39 to disease.⁸⁻¹² For example, Borgatta et al. found that foliar 40 application of Cu₃(PO₄)₂·3H₂O nanosheets to 2 week old 41 seedlings increased the mass of individual watermelon fruit by 42 38.2% under Fusarium-infested conditions. 13 Similarly, Ma et 43 al. demonstrated that foliar application of nanoscale Cu in 44 different forms could effectively suppress soybean sudden 45 death syndrome (SDS) caused by Fusarium virguliforme, and

importantly, nanomaterial affinity to the leaf surface and 46 dissolution of Cu ions could be modeled computationally. 47 This previous work has clearly demonstrated that nanomaterial 48 attachment to and movement through the leaf biointerface is 49 critical to the observed plant benefits; understanding of the 50 important interactions between nanomaterial chemistry and 51 leaf surface chemistry is lacking. 52

The leaf biointerface is a complex framework of epidermal 53 cells and varied structures such as the cuticle, stomata, and 54 trichomes that forms a hydrophobic barrier between the outer 55 environment and the inner leaf tissue. The leaf surface itself is 56 covered with a waxy cuticle which is impermeable to liquid 57 water and water vapor and chemically consists of a wide range 58 of organic compounds such as palmitic acid, stearic acids, 59 octacosanol, and hentriacontane. 14 Permeated through the 60 cuticle are stomata, which are $3-10 \mu m$ pores that regulate the 61 exchange of gases and water vapor between the outside 62 atmosphere and the interior of the leaf, including mesophyll 63 and vascular tissues. 15,16 Importantly, the mechanistic role of 64 specific leaf structures in the transfer of nanoscale materials 65 and/or dissolved ions from the foliar surface to the leaf interior 66 is not well understood. The foliar surface free energy (SFE) is a 67 quantitative measure of the polar and dispersive surface forces 68 of the leaf and is a function of leaf thickness and the 69

Received: December 9, 2021 Revised: March 24, 2022 Accepted: March 24, 2022

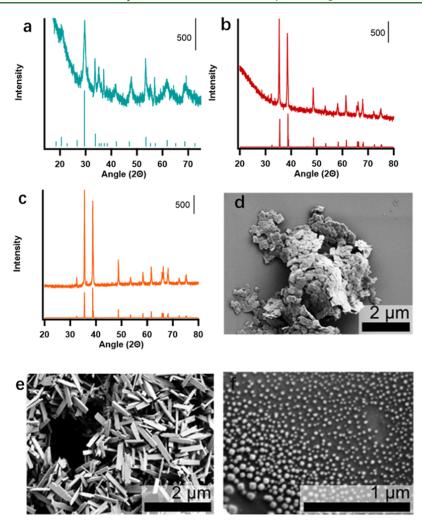


Figure 1. X-ray diffraction patterns of $Cu_3(PO_4)_2$ nanosheets (a), CuO nanosheets (b), and commercial CuO nanoparticles (c) and scanning electron microscopy (SEM) images of $Cu_3(PO_4)_2$ nanosheets (d), CuO nanosheets (e), and commercial CuO nanoparticles (f) at a scale of 1000 nm.

70 distribution and functionality of surface structures. The SFE can roughly be viewed as an indicator of overall surface 72 hydrophobicity/hydrophilicity; plants with low SFE have been 73 reported as being significantly more likely to adhere and retain 74 NPs than plants with higher SFE values. 17 Although SFE 75 speaks directly to particle attachment, mechanisms of particle 76 entry into the leaf are largely uncharacterized. Eichert et al. suggested that plants absorbed liquid NH₄⁺ or NO₃ through 78 the stomatal pores as opposed to the cuticle pathway. 18 79 Similarly, Wang et al. hypothesized that nanoparticles of 80 Fe₂O₃, TiO₂, MgO, and ZnO entered the leaf through the 81 stomatal pathway; NP presence was subsequently confirmed 82 through the leaf stomata by transmission electron micros-83 copy. 19 Avellan et al. demonstrated the importance of chemical 84 coating to particle accumulation by showing that negatively 85 charged citrate-Au NPs were more likely to be retained on the 86 outer cuticle layer of wheat leaves after 2 weeks, whereas positively charged poly(vinylpyrrolidone) (PVP)-Au NPs 88 much more effectively crossed the cuticle. 20 Similarly, Hu et al. observed that positively charged (>15 mV) hydrophilic 90 cerium oxide (CeO₂) and silica (SiO₂) nanoparticles (<20 nm) 91 exhibited more effective transfer through the leaf tissues of 92 cotton and corn than did carbon dots.²¹ Shen et al. compared 93 the movement of ionic and nanoscale Cu across tomato leaves

over 8 h and found that the nanoscale forms were accumulated 94 in the leaf tissue to a significantly greater extent, with the 95 ${\rm CuSO_4}$ foliar application leading to 7-fold greater Cu retention 96 in the cuticle layer. Importantly, this greater intraplant 97 accumulation of Cu with the nanoscale treatment led to 98 increased resistance to the root pathogen Fusarium oxysporum 99 f. sp. lycopersici. However, studies comparing the role of the 100 cuticle and stomata in controlling nanoparticle movement 101 across the plant leaf biointerface are limited, but it is clear that 102 a mechanistic understanding of this process is critical to the 103 success of nanoenabled foliar amendment strategies.

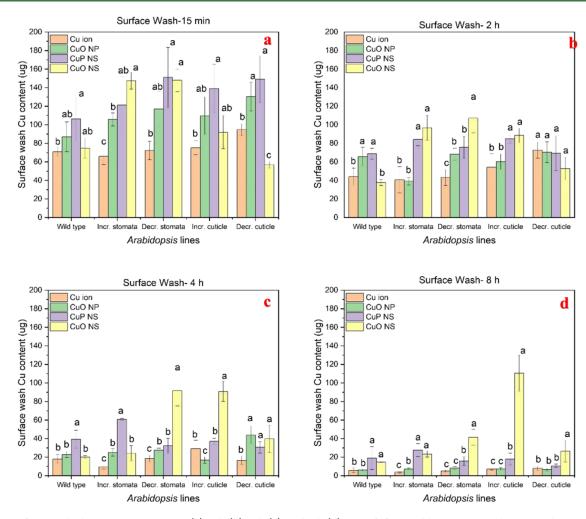
To jointly investigate the role of both leaf surface and Cu $_{\rm 105}$ nanomaterial properties in particle accumulation, CuO nano- $_{\rm 106}$ sheets, CuO nanoparticles, Cu $_{\rm 3}({\rm PO}_4)_2\cdot 3{\rm H}_2{\rm O}$ nanosheets, and $_{\rm 107}$ CuSO $_{\rm 4}$ were foliarly applied at 50 mg L $^{-1}$ total Cu to the leaves $_{\rm 108}$ of wild-type $_{\rm 4}$ rabidopsis spp., as well as to mutants with $_{\rm 109}$ increased- or decreased-cuticle thickness, or decreased- or $_{\rm 110}$ increased-stomatal activity. The time-dependent distributions $_{\rm 111}$ of Cu in the surface-attached, cuticle, and interior leaf fractions $_{\rm 112}$ of $_{\rm 4}$ rabidopsis thaliana leaves were assessed over 8 h. Although $_{\rm 113}$ this approach does not tell us the form of Cu in these fractions, $_{\rm 114}$ this design does enable an assessment of not only the role of $_{\rm 115}$ nanomaterial morphology and dissolution profile in Cu $_{\rm 116}$ accumulation but also a determination of the most important $_{\rm 117}$

118 pathway of uptake: stomata or cuticle. This work increases our 119 basic understanding of nanomaterial accumulation across this 120 important biological interface in the environment and will be 121 useful in optimizing the design of nanoscale agrochemicals for 122 controllable accumulation as part of sustainable nanoenabled 123 agriculture.

MATERIALS AND METHODS

Materials Properties. CuO nanosheets were prepared by a 125 126 hydrothermal microwave synthesis method (Section S1). Cu₃(PO₄)₂: 127 3H₂O nanosheets were synthesized and characterized as reported 128 previously. 8 Commercial nanoscale CuO (30 nm diameter; powder, 129 CuO nanoparticles) was purchased from U.S. Research Nanomaterials 130 (Houston, TX). Copper chloride dihydrate, ammonium phosphate 131 monobasic, and diethylene glycol were obtained from Sigma-Aldrich 132 (St. Louis, MO); all reagents were used as purchased. In the foliar 133 exposure experiments described below, the CuO nanosheets (NS), 134 CuO nanoparticles (NPs), and Cu₃(PO₄)₂·3H₂O (NS) were applied 135 by mass concentration (mg L⁻¹). However, the concentrations added 136 were adjusted based on individual stoichiometries to ensure 137 equivalent doses of Cu; specifically, CuO and Cu₃(PO₄)₂·3H₂O are 138 85 \pm 6 and 44 \pm 4% mass percent Cu, respectively. ^{8,9} Additional 139 information on material synthesis and subsequent characterization by 140 SEM, XRD, and a zetasizer are described in Figures 1 and S4. 141 Importantly, this suite of materials represents different morphologies 142 and compositions that allow us to effectively probe the role of 143 nanomaterial chemistry on attachment to and movement across the 144 leaf biointerface. Cu²⁺ release from commercial CuO NPs, CuO, and 145 Cu₃(PO₄)₂ were evaluated in deionized water, and Cu concentrations 146 were determined by inductively coupled plasma-mass spectrometry 147 (ICP-MS, Agilent 7500ce, Santa Clara, CA) as described in Section 148 **S1**

Plant Growth and Nanomaterial Exposure. A. thaliana seeds 149 150 were purchased from the Arabidopsis Biological Resource Center 151 (ABRC). We selected the following Arabidopsis lines: wild type (Col-152 0), homozygous T-DNA mutants with a decreased/compromised 153 cuticle (SALK 032531; "decreased cuticle"), two mutants with 154 altered cuticle (SALK_036774 and SALK_121760; "increased 155 cuticle"), several mutants with decreased stomatal activity (seed line 156 CS67139 containing homozygous SALK 047918 and SALK 137549 157 mutations and SALK 134698; "decreased stomata"), and a mutant 158 with increased-stomatal activity (SALK 106556; "increased stomata") 159 (Table S1). A. thaliana seeds were surface sterilized with 70% (v/v) 160 ethanol for 5 min, followed by 30% commercial bleach (Clorox; 161 containing 6% sodium hypochlorite) for 30 min. The seeds were then 162 washed four times with autoclaved deionized H2O. Fifty sterilized 163 seeds were placed on Petri dishes and transferred to 4 °C for 24 h for 164 vernalization. After vernalization, the Petri dishes were moved to a 165 controlled environment cabinet (Percival Scientific, Perry, IA) with 16 166 h light and 8 h dark at 22 and 18 °C for 14 days, respectively. A. 167 thaliana seedlings were transferred to 450 mL plastic pots with the 168 Pro-Mix BX soil (Premier Horticulture Inc., PA); the seedlings were 169 fertilized with 20 mL of Peter's soluble 20-10-20 (N-P-K) 170 fertilizer (R.J. Peters, Inc., Allentown, PA) every 7 days. The seedlings 171 grew under controlled conditions (day/night temperature of 25/20 172 °C and relative humidity of 65%) in the greenhouse of the College of 173 Natural Science at the University of Massachusetts, Amherst.

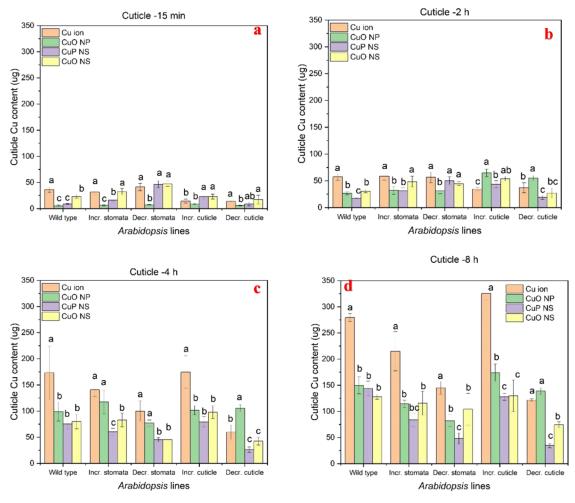

For the foliar exposure, 114.2 mg L^{-1} Cu₃(PQ₄)₂·3H₂O nano-175 sheets, 62.5 mg L^{-1} CuO nanosheets, 62.5 mg L^{-1} CuO commercial 176 nanoparticles, and 125 mg L^{-1} CuSO₄ solution were prepared and 177 were sprayed onto the leaves of *A. thaliana* lines. These 178 concentrations were selected based on previous work that 179 demonstrated positive plant response and no overt phytotoxicity. ^{8,13} 180 Specifically, the solutions were dispersed in a 10 min bath sonicator 181 and ~3 mL of solution was foliar applied on the leaves of each *A*. 182 *thaliana* line. The actual Cu concentration across all treatments was 183 equivalent to 50 mg Cu L^{-1} . At 15 min, 2, 4, and 8 h after foliar 184 application, Cu was extracted from three separation fractions as 185 described below: the surface-attached fraction, the cuticle, and the interior leaf tissue. These time points were chosen based on findings 186 from a previous study indicating significant foliar Cu accumulation 187 within the first 8 h. 13 Twelve biological replicates for each mutant 188 were established for each treatment, and one biological replicate that 189 was the source of three leaves for each leaf fraction was used for Cu 190 measurement.

Cu Measurement. Three uniform leaves that had been amended 192 with Cu were collected from each A. thaliana seedling at each time 193 point: 15 min, 2, 4, and 8 h after application. The isolation of the 194 surface-attached fraction, cuticle fraction, and leaf tissue fraction was 195 conducted according to Shen et al. 13 Briefly, (1) DI water (10 mL) 196 was used to wash the outer surface of the leaf for 5 min, and the 197 collected rinsate was designated as the surface-attached fraction; (2) 198 those same leaves were then transferred into 35% nitric acid (10 mL) 199 for 15 min, and the collected nitric acid was designated as the cuticle 200 fraction; and (3) the same water rinsed- and cuticle-free leaves were 201 then digested in concentrated acid (5 mL diluted to 25 mL for 202 analysis) to isolate the interior absorbed Cu fraction. The nitric acid 203 digestion method was conducted on an open hot plate;²² a 5 mL 204 aliquot of concentrated HNO3 was added to digestion tubes 205 containing 0.50-0.80 g (three leaves) fresh leaves, and then the 206 samples were incubated overnight. The samples were then digested at 207 115 °C on a hot block for 45 min, followed by dilution to 25 mL with 208 DI water after cooling for Cu determination. Copper from surface- 209 attached and interior tissue fractions were quantified by inductively 210 coupled plasma optical emission spectroscopy (ICP-OES; Thermo 211 Fisher iCAP 6500; Thermo Fisher Scientific, Waltham, MA). Because 212 of lower sample masses, ICP-MS was used to quantify Cu in the 213 cuticle fraction. The nutrient Mg was monitored as a biomarker in the 214 cuticle fraction to ensure minimal whole leaf damage during the 215 cuticle isolation procedure.¹³

Stomata and Cuticle Effects. To further explore the roles of the 217 stomata and cuticle in nanomaterial transfer from the leaf surface 218 through the cuticle and into the leaf interior over time, a stomatal 219 closure assay was conducted employing the foliar application of 220 abscisic acid (ABA).²³ An ABA solution (50 μM ABA) was applied by 221 foliar spraying onto *Arabidopsis* mutant and wild-type plants until the 222 surface was fully visible covered; this was done on two consecutive 223 days prior to nanomaterial and CuSO₄ exposure. Then, 114.2 mg L⁻¹ 224 Cu₃(PO₄)₂·3H₂O nanosheets, 62.5 mg L⁻¹ CuO nanosheets, 62.5 mg 225 L⁻¹ CuO commercial nanoparticles, and 125 mg L⁻¹ CuSO₄ solutions 226 were prepared and applied as above. Three uniform leaves were 227 harvested from each *Arabidopsis* mutant at 15 min and 8 h after foliar 228 application; the surface-attached, cuticle, and interior leaf tissue 229 fractions were isolated, and the Cu content was determined as 230 described above.

Leaf Surface Analysis. To characterize the leaf surface of A. 232 thaliana stomatal mutants, leaf surface stomata density was 233 investigated by the Axioplan 2 imaging light microscope (CARL 234 ZEISS, Germany) according to Kim et al.²⁴ To characterize the 235 cuticle of A. thaliana cuticle mutants, fully expanded leaves of each 236 mutant were harvested for analysis by attenuated total reflectance— 237 Fourier-transform infrared spectroscopy (ATR-FTIR), with six leaves 238 collected from each line being evaluated. The experiment was 239 performed using a SHIMADZU IRTracer-100 FTIR spectrometer 240 (Shimadzu, Japan) equipped with attenuated total reflectance (ATR) 241 (PIKE Technologies). Univariate statistical analyses were calculated 242 using Spectragry (v1.2.15, Germany).

Statistical Analysis. The elemental content of the three isolated 244 fractions was statistically analyzed using a one-way ANOVA. Twelve 245 individual plants were established for *A. thaliana* mutant lines. For the 246 collection, 12 biological replicates were set in each treatment, and 247 three replicates were set at each time point of the three-leaf fractions 248 (surface-attached, cuticle, leaf tissue); three separate leaves were 249 analyzed for each *A. thaliana* line at each time point. Means were 250 separated using Duncan's significant difference test at p < 0.05. All 251 analyses were performed using SPSS 25.0 (IBM).


Figure 2. Surface-attached Cu content at 15 min (a), 2 h (b), 4 h (c), and 8 h (d) in *Arabidopsis* wild-type, increased-stomata, decreased-stomata, increased-cuticle, and decreased-cuticle mutants. (Note: within a panel and mutant type, bars with different letters are significantly different; one-way ANOVA with Duncan's test (p < 0.05).)

253 RESULTS

Nanomaterial Characterization and Dissolution. CuO in nanoparticle and nanosheet forms and $Cu_3(PO_4)_3 \cdot 3H_2O$ in 256 nanosheet form were synthesized as described previously. Since CuO and $Cu_3(PO_4)_3 \cdot 3H_2O$ nanomaterials used in the 258 present work are identical to those used previously, we include here only analytical data specific to the batch of nanoparticles used in the present studies.

The ζ -potential values of CuO NP, $Cu_3(PO_4)_2 \cdot 3H_2O$ NS, and CuO NS suspended in deionized water were −11.45, 262 -8.94, and -26.3 mV, respectively (Table S4). The SEM images of these particles are shown in Figure 1a-c and confirm that the morphology of CuO nanosheets were elongated sheets with an average length of 500 ± 200 nm and an average width of 120 ± 40 nm (Figure 1d-f). The nanoparticle powder diffraction pattern was consistent with the monoclinic tenorite 269 crystal structure of CuO. The dissolution of Cu from the different nanomaterials was 0.1–1.4% (Figure S1). Cu₃(PO₄)₂. $3H_2O$ NS exhibited the greatest dissolution at 637.30 μ g L⁻¹ at 24 h; CuO NPs and CuO NS had different patterns of release and had values of 41.46 and 54.62 μ g L⁻¹. These findings align 274 well with previously reported dissolution data for these 275 materials. 11

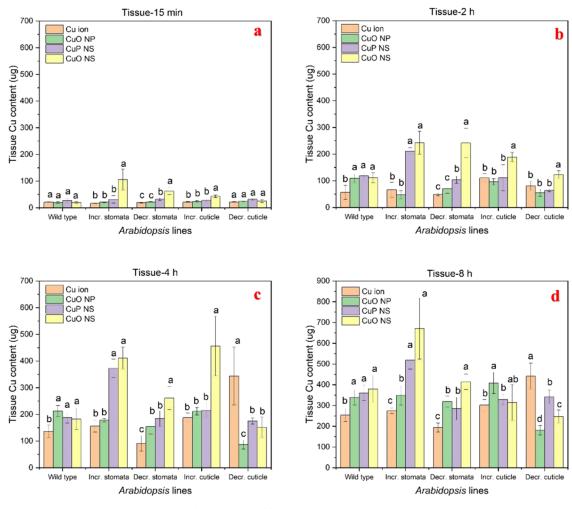
Cu Uptake by Wild-Type A. thaliana. In wild-type A. 276 thaliana, the concentration of Cu in the surface-attached 277 fraction ranged from 70.9 to 106 μ g. Specifically, the amount 278 of Cu observed in leaves after exposure to CuSO₄ solution, 279 CuO NP, Cu₃(PO₄)₂·3H₂O NS, and CuO NS was 70.9, 87.0, 280 106.2, and 74.8 μ g, respectively (Figure 2 and Table S2). 281 f2 These values are not statistically significantly different between 282 the CuO NP, Cu₃(PO₄)₂·3H₂O NS, and CuO NS after a 15 283 min exposure. Over the course of 8 h, the amount of Cu 284 present in the surface-attached fraction steadily declined across 285 all Cu types; notably, these decreases coincided with increases 286 in the cuticle and interior leaf fractions (below). Specifically, 287 for the wild-type, the amount of Cu in the surface-attached 288 fraction with the CuSO₄ solution treatment at 2, 4, and 6 h was 289 44.0, 18.0, and 5.7 μ g, respectively; the amounts for the CuO 290 NP were 65.7, 22.8, and 6.1 μ g, respectively; the amounts for ²⁹¹ the $Cu_3(PO_4)_2 \cdot 3H_2O$ NS were 68.8, 39.4, and 19.0 μ g, 292 respectively; and the amounts for the CuO NS were 37.6, 20.2, 293 and 14.8 μ g, respectively. The amount of Cu in the cuticle 294 fraction at 15 min ranged from 5.31 to 36.3 µg and differed 295 significantly as a function of Cu type (Figure 3 and Table S3). 296 f3 Specifically, the amount in the ionic, CuO NP, Cu₃(PO₄)₂· 297 3H₂O NS, and CuO NS was 36.2, 5.3, 8.6, and 22.9 μg, 298 respectively. Over time, the amount of Cu present in the 299 cuticle fraction increased across all Cu types. The amount of 300

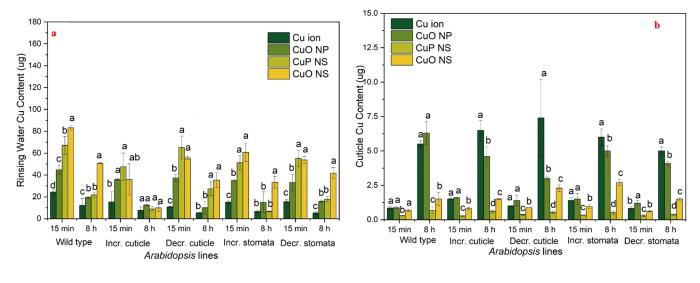
Figure 3. Cuticle Cu content at 15 min (a), 2 h (b), 4 h (c), and 8 h (d) in *Arabidopsis* wild-type, increased-stomata, decreased-stomata, increased-cuticle, and decreased-cuticle mutants. (Note: within a panel and mutant type, bars with different letters are significantly different; one-way ANOVA with Duncan's test (p < 0.05).)

301 Cu in the cuticle fraction with the ionic treatment at 2, 4, and 8 $_{302}$ h was 57.3, 173.4, and 279.6 μ g, respectively; the amounts for 303 the CuO NP were 26.5, 99.1, 149.7 μ g, respectively; the 304 amounts for the $Cu_3(PO_4)_2 \cdot 3H_2O$ NS were 17.0, 75.3, and 305 143.5 µg, respectively; and the amounts for the CuO NS were 30.6 30.7, 79.8, and 128.1 μ g, respectively. Interestingly, the amount 307 of Cu retained in the cuticle fraction at 8 h is significantly 308 greater for the ionic treatment than for the three nanoscale 309 forms of Cu. The amount of Cu in the interior leaf fraction at 310 15 min ranged from 19.3 to 26.8 μg and did not differ as a 311 function of Cu type (Figure 4 and Table S4). The amount of 312 Cu in the interior leaf fraction increased over 8 h for all Cu 313 types. Specifically, the amount of Cu in the interior leaf 314 fraction with the ionic treatment at 2, 4, and 8 h was 57.0, 315 136.6, and 253.4 μ g, respectively; the amounts for the CuO NP 316 were 109.4, 212.6, and 339.5 μ g, respectively; the amounts for 317 the $Cu_3(PO_4)_2 \cdot 3H_2O$ NS were 118.2, 188.5, 361.0 μg_1 318 respectively; and the amounts for the CuO NS were 111.2, 319 182.1, 397.4 μ g, respectively. Similar to the cuticle fraction, the 320 amount of Cu in the interior leaf fraction for the ionic 321 treatment was significantly different from the nanoscale 322 materials, with the nanomaterials having greater Cu content 323 in the interior leaf fraction. In summary, for wild-type A. 324 thaliana, the amount of Cu in the surface-attached fraction 325 steadily declined over 8 h as Cu was transferred to the cuticle

and interior leaf tissue fractions and that movement from the 326 surface to the plant was significantly lower for the ionic 327 treatment relative to the nanomaterials.

Cu Uptake by A. thaliana Cuticle Mutants. The transfer 329 of Cu from the surface to the interior leaf tissue over 8 h was 330 measured in A. thaliana mutants that had either an increased 331 cuticle or possessed a decreased/compromised cuticle. In the 332 increased-cuticle A. thaliana mutants, the concentration of Cu 333 in the surface-attached fraction at 15 min ranged from 75.2 to 334 139.1 μ g; for the decreased-cuticle mutants, the range was 335 56.8–149.2 μ g. Specifically, for the increased-cuticle mutants, 336 the amount in the ionic, CuO NP, Cu₃(PO₄)₂·3H₂O NS, and 337 CuO NS was 75.1, 109.7, 139.1, and 92.0 μ g, respectively 338 (Figure 2); for the decreased-cuticle mutants, these values 339 were 94.8, 130.4, 149.15, and 56.8 μ g, respectively. Notably, 340 similar to the wild-type plants, within each mutant type, there 341 were differences as a function of Cu type, with the ionic and 342 CuO NS generally having less Cu in the 15 min surface- 343 attached fraction than the CuO NP and Cu₃(PO₄)₂·3H₂O NS 344 treatments. When comparing the "increased" to "decreased" 345 mutant types, the differences appear to be somewhat limited; 346 the Cu contents for CuO NP and Cu₃(PO₄)₂·3H₂O NS do not 347 differ significantly based on mutant type. For the ionic 348 treatment, the decreased-cuticle mutants have significantly 349 more Cu in the 15 min surface-attached fraction than do the 350




Figure 4. Interior leaf tissue Cu content at 15 min (a), 2 h (b), 4 h (c), and 8 h (d) in *Arabidopsis* wild-type, increased-stomata, decreased-stomata, increased-cuticle, and decreased-cuticle mutants. (Note: within a panel and mutant type, bars with different letters are significantly different; one-way ANOVA with Duncan's test (p < 0.05).)

351 increased-cuticle plants (94.8 μ g for the decreased cuticle to 352 75.2 μ g for the increased cuticle); however, the pattern of CuO 353 NS is reversed (56.8–92.0 μ g). Across nearly all mutants and 354 Cu types, the amount of Cu in the surface-attached fraction 355 declined over 8 h and did not differ significantly as a function 356 of mutant types, the exception being CuO NS (below). The 357 amount of Cu in the surface-attached fraction of the increased-358 and decreased-cuticle mutants declined to 7.3 and 7.9 μ g, 359 respectively; the amount of Cu for the CuO NP was 7.5 and 360 6.6 μ g (significantly different; p < 0.05), respectively; and the 361 amounts for the Cu₃(PO₄)₂·3H₂O NS were 18.0 and 10.6 μ g, 362 respectively. Conversely, the amount of Cu for the CuO NS in 363 the increased- and decreased-cuticle mutants was 110.5 and 364 26.3 μ g, respectively (significantly different; p < 0.05).

The amount of Cu in the cuticle fraction at 15 min ranged 366 from 9.3 to 22.9 μ g and 5.9 to 17.4 μ g for the increased- and 367 decreased-cuticle mutants, respectively; within both mutant 368 types, the amount of Cu for the CuO NP treatment was 369 significantly less than the other treatments (Figure 3). Across 370 all Cu types and both types of cuticle mutants, the amount of 371 Cu in the cuticle fraction increased significantly over time. At 8 372 h, the amount of Cu in the cuticle of the increased- and 373 decreased-cuticle mutants increased to 325.5 and 121.7 μ g, 374 respectively, for the ionic Cu; the amounts for the CuO NP 375 were 174.1 and 138.6 μ g, respectively; the amounts for the

Cu₃(PO₄)₂·3H₂O NS were 127.9 and 34.9 μ g, respectively; 376 and the amounts for the CuO NS were 129.7 and 74.3 μ g, 377 respectively. For all Cu types, the decreased-cuticle mutants 378 had significantly less Cu than the increased-cuticle mutants, 379 and the Cu contents are 62.6, 20.0, 73.0, and 42.7% less for 380 ionic Cu, CuO NP, Cu₃(PO₄)₂·3H₂O NS, and CuO NS. 381 Although the reasons for the differences as a function of Cu 382 type are unknown, it is not surprising that plants with greater 383 cuticle content would retain larger amounts of analyte in this 384 fraction of the leaf.

The interior leaf tissue Cu content at 15 min ranged from 386 21.5 to 43.2 and 22.1 to 32.0 μ g for the increased- and 387 decreased-cuticle mutants, respectively (Figure 4); there were 388 no statistically significant differences between the mutant types 389 except for CuO NS, where increased- and decreased-cuticle 390 mutants contained 43.2 and 28.2 μ g, respectively (p < 0.05). 391 Over 8 h, the amount of Cu in the interior leaf tissues 392 increased significantly for all plant and Cu types. At 8 h, the 393 amount of Cu in the interior tissues of the increased- and 394 decreased-cuticle mutants increased to 301.5 and 441.2 μ g, 395 respectively, for the ionic treatment; the amounts for the CuO 396 NP were 408.6 and 180.4 μ g, respectively; the amounts for the CuO NP were 328.9 and 341.7 μ g, respectively; 398 and the amounts for the CuO NS were 314.6 and 247.5 μ g, 399 respectively. Notably, for the three nanomaterials, the interior 400

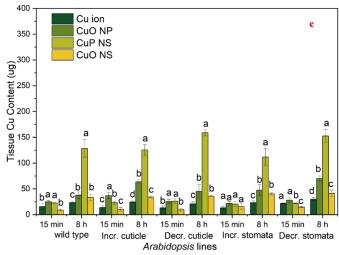


Figure 5. Cu content in surface-attached (a), cuticle (b), and leaf tissue (c) at 15 min and 8 h in *Arabidopsis* wild-type, increased-stomata, decreased-stomata, increased-cuticle, and decreased-cuticle mutants after ABA foliar application. (Note: within a mutant type and time point, bars with different letters are significantly different; one-way ANOVA with Duncan's test (p < 0.05).)

401 leaf tissues of the increased-cuticle mutants had either 402 statistically equivalent or greater Cu content than the 403 decreased-cuticle mutants. This is an important finding 404 because if the cuticle pathway was a significant route of 405 entry for Cu nanomaterials or Cu derived from nanomaterials 406 (ionic Cu), one would expect the opposite finding; a decreased 407 or compromised cuticle would yield greater leaf Cu content. 408 Interestingly, that is precisely the finding for the ionic Cu 409 treatment, the Cu content in the decreased-cuticle mutants is 410 46% greater than in the increased-cuticle mutants in the 411 interior tissues. These findings clearly imply nanoscale-specific 412 processes of attachment, accumulation, and/or dissolution at 413 the leaf biointerface.

Cu Uptake by A. thaliana Stomatal Mutants. The timedependent movement of Cu from the surface to the interior
dependent movement of Cu from the surface to the interior
defends tissue was measured in A. thaliana mutants that had either
defends to decreased-stomatal density. In the increasedstomata density A. thaliana mutants, the concentration of Cu
defends in the surface-attached fraction at 15 min ranged from 66.0 to
defends upg; for the decreased-cuticle mutants, the range was
defends upg. Specifically, for the increased-stomata mutants,
defends

 $3H_2O$ NS, and CuO NS treatment was 66.0, 105.7, 121.2, and $_{423}$ 147.3 µg, respectively (Figure 2); for the decreased-stomata 424 mutants, these values were 72.3, 117.0, 151.0, and 147.9 μ g, 425 respectively. Notably, similar to the wild-type and cuticle 426 mutant plants, within each mutant type, there were differences 427 as a function of Cu source, with the ionic treatment having 428 significantly less Cu in the 15 min surface-attached fraction 429 than the nanomaterial treatments. When directly comparing 430 the increased to decreased mutant types, there were no 431 differences of statistical significance at 15 min in the surface- 432 attached fraction. Across all mutant and Cu types, the amount 433 of Cu in the surface-attached fraction declined over 8 h and did 434 not differ significantly as a function of mutant type; Cu 435 contents for the ionic and CuO NP treatments did differ 436 significantly for the two nanosheets in the surface-attached 437 fraction. The amount of Cu in the surface-attached fraction of 438 the increased- and decreased-stomata mutants declined to 3.8 439 and 5.1 μ g, respectively, for the ionic treatment; the amounts $_{440}$ for the CuO NP were 7.4 and 8.2 μ g, respectively; the amount 441 for the $Cu_3(PO_4)_2 \cdot 3H_2O$ NS was 27.6 and 15.8 μg , 442 respectively (p < 0.05); and the amounts for the CuO NS 443 were 23.4 and 41.5 μ g, respectively (p < 0.05).

541

The amount of Cu in the cuticle fraction at 15 min ranged 446 from 6.4 to 32.6 and 7.4 to 47.6 μg for the increased- and 447 decreased-stomata mutants, respectively; similar to the A. 448 thaliana cuticle mutants, within both stomata mutant types, the 449 amount of Cu for the CuO NP treatment was significantly less 450 than the other treatments (Figure 3a and Table S4). Across all 451 Cu types and both types of stomata mutants, the amount of Cu 452 in the cuticle fraction increased significantly over time. 453 Specifically, at 8 h the amount of Cu in the cuticle of the 454 increased- and decreased-stomata mutants increased to 215.0 455 and 145.1 μ g, respectively, for the ionic Cu; the amounts for 456 the CuO NP were 114.3 and 82.1 μ g, respectively; the 457 amounts for the $Cu_3(PO_4)_2$ ·3H₂O NS were 83.7 and 48.13 μg_1 458 respectively; the amounts for the CuO NS were 115.5 and 459 104.2 μ g. For ionic, CuO NP, and Cu₃(PO₄)₂·3H₂O NS, the 460 increased-stomata mutants had significantly more Cu in the 461 cuticle than the decreased-stomata mutants: 48.1, 39.3, and 462 73.9% more for ionic Cu, CuO NP, and Cu₃(PO₄)₂·3H₂O NS, 463 respectively. It is not surprising that plants with greater 464 stomatal density would accumulate larger amounts of the 465 analyte.

The interior leaf tissue Cu content at 15 min ranged from 467 17.1 to 105.9 and 19.9 to 62.3 μg for the increased-and 468 decreased-stomata mutants, respectively (Figure 4). There 469 were no statistically significant differences between the mutant 470 types except for CuO NS, where increased and decreased 471 mutants contained 105.6 and 62.3 μ g, respectively (signifi-472 cantly different; p < 0.05). The significantly greater 473 accumulation of Cu from the CuO nanosheets in the 474 increased-stomatal mutants is notable relative to all other 475 treatments and A. thaliana plants, including wild type. At 8 h, 476 the amount of Cu in the interior tissues of the increased- and 477 decreased-cuticle mutants increased to 274.7 and 194.1 μ g, 478 respectively, for the ionic treatment; the amount for the CuO 479 NP was 349.0 and 319.5 μ g, respectively; the amount for the 480 $Cu_3(PO_4)_2 \cdot 3H_2O$ NS was 518.4 and 285.1 μ g, respectively; the 481 amount for the CuO NS was 671.3 and 414.2 μ g, respectively. 482 Notably, for all Cu types, the interior leaf tissue of the 483 increased-stomata mutants had greater Cu content than those 484 of the decreased-stomata mutants. This is an important finding 485 because if the stomatal pathway is a significant route of entry 486 for Cu nanomaterials or Cu derived from nanomaterials, one 487 would expect this exact result. To get a final assessment of Cu 488 content at 8 h, the amount of Cu in the surface-attached, 489 cuticle, and interior leaf fractions at the final time point were 490 summed and compared across stomata mutant type. For the 491 decreased-stomata mutants, the total Cu content of the three 492 fractions at 8 h was 344.3, 409.8, 349.0, and 559.8 μ g for the 493 ionic, CuO NP, Cu₃(PO₄)₂·3H₂O NS, and CuO NS 494 treatments, respectively; in comparison, the values for the 495 increased-stomata mutants were 492.8, 470.7, 629.7, and 810.2 496 ug, respectively. The increased-stomata mutant Cu content is 497 1.43-, 1.15-, 1.80-, and 1.45-fold greater for the ionic, CuO NP, 498 Cu₃(PO₄)₂·3H₂O NS, and CuO NS treatments than present in 499 the decreased-stomata mutants. These findings clearly high-500 light the stomatal pathway as the dominant route of Cu entry, 501 regardless of Cu type.

ABA-Induced Stomatal Closure Assay. As noted above, 503 ABA is a plant hormone which is associated endogenously with 504 stomatal closure and has been used as an exogenous 505 amendment to induce the closing of these pores and to 506 study subsequent physiological impacts on plants. ²³ Based on 507 the above findings highlighting the critical role of the stomatal

pathway in the intraleaf accumulation of Cu in both ionic and 508 nanoscale forms, we exogenously applied ABA to the A. 509 thaliana wild-type and mutant leaves and determined the Cu 510 content from ionic and nanoscale foliar amendments in the 511 surface-attached, cuticle, and interior leaf tissues at 15 min and 512 8 h (Figure 5). After 8 h exposure, the content of Cu in the 513 f5 interior leaf tissue was 112.4-145.1 µg and did not differ 514 significantly as a function of A. thaliana mutant type. Notably, 515 regardless of Cu or mutant type, these values are all 516 significantly lower than the non-ABA experiments noted 517 above, where 8 h interior tissue Cu content ranged from 518 180.4 to 414.2 μ g. More importantly, the increased 519 accumulation of Cu noted above in interior leaf tissue for all 520 Cu types in the increased-stomata mutants over the decreased- 521 stomata mutants had completely disappeared with ABA 522 treatment. The contents of Cu in the interior leaf tissue at 8 523 h for the increased and decreased ABA-treated stomata 524 mutants for ionic, CuO NP, Cu₃(PO₄)₂·3H₂O NS, and CuO 525 NS treatments were 26.7 and 33.5 μ g, 46.9 and 60.31 μ g, 112.4 526 and 134.0 μ g, and 42.5 and 34.6 μ g, respectively. This adds 527 further certainty to the more important role of the stomatal 528 pathway for the uptake of Cu derived from foliar applied ionic 529 and Cu nanomaterials relative to the cuticle. Interestingly, 530 there are significant differences in the 8 h interior tissue 531 content as a function of Cu types and these differences do not 532 necessarily coincide with data from the non-ABA-treated 533 plants. For example, with ABA treatment, the Cu content from 534 the Cu₃(PO₄)₂·3H₂O NS treatment ranged from 112.4 to 535 145.1 μ g and was consistently significantly (p < 0.05) greater 536 than the other Cu sources, regardless of mutant types (17.1- 537 64.0 μ g). In the non-ABA-treated plants, there were no 538 instances where the Cu₃(PO₄)₂·3H₂O NS treatment gave rise 539 to the greater 8 h interior leaf tissue content.

DISCUSSION

Nanomaterial Chemistry and Cuticular Pathway. As 542 noted above, there are two main pathways of nanomaterial 543 transfer from the leaf surface to the interior leaf tissue: the 544 cuticle and the stomata. 20,26 The cuticle makes up the vast 545 majority of the leaf surface and is composed of a hydrophobic 546 and insoluble barrier permeated with soluble waxes.²⁷ Vráblová 547 et al. reported that the major organic constituents of the 548 Arabidopsis leaf cuticle included palmitic acids (1.44 mg cm⁻²), 549 stearic acids (0.32 mg cm⁻²), hentriacontane (0.45 mg cm⁻²), 550 octacosanol (0.11 mg cm⁻²), nonacosane (0.27 mg cm⁻²), and 551 hexacosanol (0.07 mg cm⁻²). ¹⁴ Nanoparticle transfer through 552 this surface chemistry of macromolecular organic acids and 553 long-chain alkanes could be difficult and hetero- and 554 homoaggregation to larger particles may be strongly favored.²⁸ 555 For example, paraffin has been used as an agent in which to 556 store Fe₃O₄ nanoparticles, and palmitic acid has been applied 557 as a cap and reducer agent for Fe₃O₄ nanoparticles.²⁹ Similarly, 558 Choudhuri and Datta reported that a two-dimensional network 559 of thiol-capped Au nanoparticle clusters self-organized on a 560 stearic acid monolayer on water; the nanoparticles were unable 561 to penetrate the tension formed at the stearic acid and water 562 interface.³⁰ This level of nanoparticle-organic constituent 563 interaction seems to suggest that most nanomaterials would 564 have difficulty in traversing the complex organic barrier 565 provided by the cuticle.

Importantly, the cuticle is the outer layer, but to a certain 567 extent, it does form a continuum with the polysaccharide- 568 dominated plant cell wall (30–50% cellulose, 20–35% xylem, 569

570 and 10-25% lignin); these components are chemically quite 571 different from that of the cuticle. 31 The cuticle and plant leaf 572 surface, in general, exhibit weak positive field intensities at 573 100-400 V cm⁻¹, and this overall positive charge will 574 electrostatically attract negatively charged particles on the 575 surface. 32,33 The ζ -potential of the materials used in the 576 current study is shown in Table S5. All nanomaterials used 577 here present a negative ζ -potential (-26.3 to -8.94 mV), 578 which would indicate favorable electrostatic interactions with 579 the cuticle surface. This weak electrostatic surface interaction 580 explains why the surface-attached fraction of all of the materials 581 from the leaf surface was initially high at 15 min (Figure 2). 582 Importantly, this pattern was exhibited by the wild-type A. 583 thaliana, with the surface-attached fraction at 15 min 584 containing the greatest amount of Cu from Cu₃(PO₄)₂·3H₂O s8s nanosheets and the least from CuO nanosheets. In solution, s86 Cu from $CuSO_4$ will exhibit a positive charge, 34 leading to 587 weak electrostatic repulsion from the cuticular surface. 588 Additionally, Cu²⁺ may bind electrostatically to any negatively 589 charged macromolecular organic acids with proton-binding 590 characteristics within the cuticle, such as humic and fulvic (hydrophobic) acids.³⁵ Given this, the observed accumulation 592 of Cu from the ionic treatment in the cuticle fraction is not 593 surprising (Figure 3).

In our study, FTIR analysis of A. thaliana mutants revealed 595 that the increased-cuticle mutants have greater amounts of 596 C=C bonds, aldehyde groups, and carbonyl groups relative to 597 the decreased-cuticle mutants and wild-type controls (Figure 598 S2 and Table S2). Importantly, although these rather 599 significant changes in cuticle chemistry and overall amount 600 did result in greater Cu retention within the cuticle, there was 601 no impact on the transfer of Cu derived from Cu nanoma-602 terials through the cuticle and into the leaf interior. 603 Epicuticular waxes are deposited on the outer surface as a 604 more or less uniform and amorphous layer or in the form of 605 discontinuous agglomerations. The cuticle matrix underneath 606 is chiefly composed (40-80% weight) of cutin, a polymer with 607 a network of oxygenated C16 and/or C18 fatty acids cross-608 linked by ester bonds. Depending on the species, the quantity 609 of cutin controls the thickness, and the numbers of ethylene 610 linkages, aldehyde groups, and carbonyl groups can mediate 611 the quantity of cutin. Based on the FTIR results, the number of 612 ethylene linkages of the increased-cuticle mutants is signifi-613 cantly greater (p < 0.05) than that in the wild-type and the 614 decreased-cuticle mutants (Table S2), indicating greater 615 thickness in the increased-cuticle mutants.

Importantly, in addition to charge, Cu movement from the 617 surface to the leaf will also be impacted by particle morphology 618 and dissolution. 36,37 In solution, the measured nanomaterial 619 hydrodynamic size was as follows: Cu₃(PO₄)₂·3H₂O nano-620 sheets (1079 nm) > CuO commercial nanoparticles (628 nm) 621 > CuO nanosheets (319 nm) (Table S5). However, these 622 measurements may have little relevance to Cu nanomaterial 623 fate and transformation on the leaf surface over the course of 8 624 h. The dissolution rates of Cu₃(PO₄)₂·3H₂O NS, CuO NPs, 625 and CuO NS were 240.16, 27.49, and 76.73 μ g L⁻¹ at 8 h, 626 respectively. These data align with the experimental and 627 computational dissolution results of the same materials in Ma 628 et al., 11 both in terms of the absolute amount of Cu release 629 from each material type and the relative amounts across the 630 materials. For the wild-type A. thaliana, although there were 631 some differences in the amount of Cu from the different 632 nanomaterials in the different leaf fractions from 15 min to 4 h,

the amount in the interior leaf tissue at 8 h did not vary 633 significantly as a function of Cu type. A larger number of 634 statistically significant differences in Cu content were noted in 635 the various A. thaliana mutants, but the role of mutant type 636 complicates correlating Cu accumulation with dissolution 637 profile. In addition, given the low overall dissolution rate 638 (less than 1.5%) and a large number of differences between 639 solution-based measurements and the leaf surface, the 640 relationship between dissolution and Cu movement through 641 the leaf fractions over an 8 h period may be tenuous at best. 642

Nanomaterial Composition and Stomatal Pathway. 643 As noted above, the stomatal pathway plays a dominant role in 644 the accumulation of Cu from the nanomaterial and ionic foliar 645 amendments in both wild type and mutant A. thaliana. The 646 summed Cu content of the surface-attached, cuticle, and 647 interior tissue fractions for the increased-stomata mutants was 648 1.15-1.80 times greater than that of the decreased-stomata 649 plants. Not surprisingly, this data correlated with the observed 650 stomatal density on the leaf surfaces; the increased-stomata 651 mutant, decreased-stomata mutant, and wild-type leaves 652 possessed 134.68, 94.70, and 113.64 stomata/mm², respec- 653 tively (Figure S3 and Table S3). In addition, foliar pretreat- 654 ment with ABA to close the stomata reduced Cu content in all 655 mutants across all Cu nanomaterial types and eliminated the 656 differences between the increased- and decreased-stomatal 657 mutants. This data clearly implicates the stomatal pathway as 658 the dominant entry point for Cu derived from Cu nanoma- 659 terials and salt forms. This data aligns well with the previous 660 results demonstrating that the stomata are key to the 661 internationalization of Ag NPs in plant leaves. 38 Similarly, $_{662}$ upon foliar application of Ag NPs and AgNO $_3$ SEM-EDS $_{663}$ showed that Ag NPs were found in the Lactuca sativa leaf 664 stomata, whereas Ag ions were dispersed across the leaf 665 surface. 39 Xiong et al. also reported that on lettuce leaf 666 surfaces, SEM-EDS observation revealed that the majority of 667 CuO NPs were detected in the stomata while the Cu ions were 668 more scattered on the leaf surface. 40 Zhu et al. foliar applied 669 fluorescein isothiocyanate (FITC)-tagged ZnO NPs to wheat 670 leaves and used confocal microscopy to show that these 671 materials appeared to move through the stomata to the 672 apoplast prior to transport into the leaf mesophyll. 673 Importantly, the reduced stomatal aperture was directly 674 associated with decreased Zn content in the leaf apoplast 675 and cytoplasm. 41 These findings align well with the results 676 from our study. Also, stomatal closure was observed during 677 CuO NPs-leaf contact on water hyacinth leaf surfaces, 42 and 678 the data clearly suggested that the more open structure of the 679 stomata, the greater nanomaterial passage into the interior 680 leaf. 43,44 Interestingly, while foliar fertilization with salt or ionic 681 forms of micronutrients has been successfully used to improve 682 plant nutrition in agriculture, 45,46 our results and that of the 683 supporting literature clearly demonstrate that the cuticle serves 684 as an effective barrier for amendments in this form. Nanoscale 685 amendments with strategies that specifically target stomatal 686 and guard cell attachment may prove far more effective at foliar 687 feeding for both crop nutrition and disease resistance.⁴⁷

The plant leaf cuticle is among the most significant 689 environmental biointerfaces serving as a hydrophobic boun- 690 dary between the outer environment and interior plant tissues. 691 The current study demonstrates that the cuticular pathway is 692 not particularly important for Cu nanomaterial uptake, as Cu 693 tissue concentrations for increased-cuticle and decreased- 694 cuticle mutants did not differ. Conversely, the Cu leaf tissue 695

ı

777

785

786

787

795

796

696 content of A. thaliana increased-stomatal mutants was 697 significantly greater than that of the decreased stomatal 698 mutants across all Cu types. In addition, exogenous treatment 699 with ABA to close the stomata reduced Cu content in all 700 mutants across all Cu types and eliminated the differences 701 between the increased- and decreased-stomatal mutants. These 702 findings clearly highlight the significance of the stomatal uptake 703 pathway for nanomaterial foliar accumulation. Additional study 704 should focus on determining the precise form of Cu as the 705 element moves through the cuticle and into the leaf and, 706 importantly, correlate that process with initial nanomaterial 707 properties such as composition, morphology, and dissolution 708 profile. These findings increase our understanding of nanoma-709 terial chemical interactions at the leaf biointerface and directly 710 inform nanomaterial synthesis so as to optimize this 711 functionality for strategies of nutrient amendment in 712 sustainable nanoenabled agriculture.

ASSOCIATED CONTENT

Supporting Information

715 The Supporting Information is available free of charge at 716 https://pubs.acs.org/doi/10.1021/acs.jafc.1c07873.

Section S1: nanomaterial characterization; Section S2: Arabidopsis mutant properties; Section S3: raw data of 718 the surface-attached, cuticle, and tissue fractions; Section 719 S4: ζ -potential and particle size of the nanomaterials in 720 deionized water; Section S5: individual cuticle and 721 stomata mutants' response to Cu nanomaterials; Section 722 S6: three-factor analysis of cuticle and stomata variance 723 (PDF)

AUTHOR INFORMATION

726 Corresponding Authors

Robert J. Hamers – The NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of 728 Wisconsin-Madison, Madison, Wisconsin 53706, United 729 States; orcid.org/0000-0003-3821-9625; 730 Email: rjhamers@wisc.edu 731 Jason C. White – The NSF Center for Sustainable 732 Nanotechnology, Department of Analytical Chemistry, The 733 Connecticut Agricultural Experiment Station, New Haven, 734 Connecticut 06504, United States; o orcid.org/0000-0001-735

5001-8143; Email: Jason.White@ct.gov

737 Authors

727

736

738

739

740

741

742

743

750

751

752

753

Yu Shen - The NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States

Jaya Borgatta - The NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States

744 Chuanxin Ma - The NSF Center for Sustainable 745 Nanotechnology, Department of Analytical Chemistry, The 746 Connecticut Agricultural Experiment Station, New Haven, 747 Connecticut 06504, United States; o orcid.org/0000-0001-748 749

Gurpal Singh - Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, **United States**

Carlos Tamez – The NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of

Wisconsin-Madison, Madison, Wisconsin 53706, United 755 States 756 Neil P. Schultes – The NSF Center for Sustainable 757 Nanotechnology, Department of Plant Pathology and 758 Ecology, The Connecticut Agricultural Experiment Station, 759 New Haven, Connecticut 06504, United States 760 Zhiyun Zhang – Department of Food Science, University of 761 Massachusetts Amherst, Amherst, Massachusetts 01003, 762 United States 763 Om Parkash Dhankher — Stockbridge School of Agriculture, 764 University of Massachusetts Amherst, Amherst, Massachusetts 765 01003, United States; orcid.org/0000-0003-0737-6783 766 Wade H. Elmer - The NSF Center for Sustainable 767 Nanotechnology, Department of Plant Pathology and 768 Ecology, The Connecticut Agricultural Experiment Station, 769 New Haven, Connecticut 06504, United States; o orcid.org/ 770 0000-0003-3308-4899 771 Lili He – Department of Food Science, University of 772 Massachusetts Amherst, Amherst, Massachusetts 01003, 773 United States 774 Complete contact information is available at: 775 https://pubs.acs.org/10.1021/acs.jafc.1c07873 776

Author Contributions

Notes

Y.S., G.S., Z.Z., and C.T. performed the experiment; J.B. 778 synthesized the nanoparticles and performed nanomaterial 779 characterization; W.H.E., J.C.W., and R.J.H. designed the 780 experiment; Y.S., C.M., and J.C.W. carried out the data analysis 781 and Y.S. did the graphics designs; Y.S. drafted the manuscript, 782 and O.P.D., W.H.E., L.H., R.J.H., and J.C.W. reviewed and 783 edited the manuscript.

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This material is based upon work supported by the National 788 Science Foundation under Grant No. CHE-2001611, the NSF 789 Center for Sustainable Nanotechnology (CSN). The CSN is 790 part of the Centers for Chemical Innovation Program. In this 791 study, Craig Musante supported the ICP-MS work; and Dr. 792 Marie Hronková shared information on plant cuticle chemical 793 composition. 794

ABBREVIATIONS

NS, nanosheets; NPs, nanoparticles; NM, nanomaterials

REFERENCES

(1) Handford, C. E.; Dean, M.; Henchion, M.; Spence, M.; Elliott, 798 C. T.; Campbell, K. Implications of nanotechnology for the agri-food 799 industry: Opportunities, benefits and risks. Trends Food Sci. Technol. 800 **2014**, 40, 226-241.

(2) Shen, Y.; Tang, H.; Wu, W.; Shang, H.; Zhang, D.; Zhan, X.; 802 Xing, B. Role of nano-biochar in attenuating the allelopathic effect 803 from Imperata cylindrica on rice seedlings. Environ. Sci.: Nano 2020, 804 7, 116-126.

(3) Dimkpa, C. O.; Andrews, J.; Sanabria, J.; Bindraban, P. S.; Singh, 806 U.; Elmer, W. H.; Gardea-Torresdey, J. L.; White, J. C. Interactive 807 effects of drought, organic fertilizer, and zinc oxide nanoscale and bulk 808 particles on wheat performance and grain nutrient accumulation. Sci. 809 Total. Environ. 2020, 722, No. 137808.

(4) An, J.; Hu, P.; Li, F.; Wu, H.; Shen, Y.; White, J. C.; Tian, X.; Li, 811 Z.; Giraldo, J. P. Emerging investigator series: molecular mechanisms 812

- 813 of plant salinity stress tolerance improvement by seed priming with 814 cerium oxide nanoparticles. *Environ. Sci.: Nano* **2020,** *7,* 2214–2228.
- 815 (5) Wang, A.; Jin, Q.; Xu, X.; Miao, A.; White, J. C.; Gardea-816 Torresdey, J. L.; Ji, R.; Zhao, L. High-throughput screening for 817 engineered nanoparticles that enhance photosynthesis using meso-818 phyll protoplasts. *J. Agric. Food Chem.* **2020**, *68*, 3382–3389.
- 819 (6) Nandhini, M.; Rajini, S. B.; Udayashankar, A. C.; Niranjana, S. 820 R.; Lund, O. S.; Shetty, H. S.; Prakash, H. S. Biofabricated zinc oxide 821 nanoparticles as an eco-friendly alternative for growth promotion and 822 management of downy mildew of pearl millet. *Crop Prot.* **2019**, *121*,
- 824 (7) Buchman, J. T.; Elmer, W. H.; Ma, C.; Landy, K. M.; White, J. 825 C.; Haynes, C. L. Chitosan-Coated Mesoporous Silica Nanoparticle 826 Treatment of Citrullus lanatus (Watermelon): Enhanced Fungal 827 Disease Suppression and Modulated Expression of Stress-Related 828 Genes. ACS Sustainable Chem. Eng. 2019, 7, 19649—19659.
- 829 (8) Borgatta, J.; Ma, C.; Hudson-Smith, N.; Elmer, W.; Plaza Pérez, 830 C. D.; De La Torre-Roche, R.; Zuverza-Mena, N.; Haynes, C. L.; 831 White, J. C.; Hamers, R. J. Copper based nanomaterials suppress root 832 fungal disease in watermelon (*Citrullus lanatus*): Role of particle 833 morphology, composition and dissolution behavior. *ACS Sustainable* 834 *Chem. Eng.* **2018**, *6*, 14847–14856.
- 835 (9) Ma, C.; Borgatta, J.; De La Torre-Roche, R.; Zuverza-Mena, N.; 836 White, J. C.; Hamers, R. J.; Elmer, W. H. Time-dependent 837 transcriptional response of tomato (*Solanum lycopersicum L.*) to Cu 838 nanoparticle exposure upon infection with *Fusarium oxysporum* f. sp. 839 lycopersici. *ACS Sustainable Chem. Eng.* **2019**, 7, 10064–10074.
- 840 (10) Xu, T.; Ma, C.; Aytac, Z.; Hu, X.; Ng, K. W.; White, J. C.; 841 Demokritou, P. Enhancing agrichemical delivery and seedling 842 development with biodegradable, tunable, biopolymer-based nano-843 fiber seed coatings. *ACS Sustainable Chem. Eng.* **2020**, *8*, 9537–9548. 844 (11) Ma, C.; Borgatta, J.; Hudson, B. G.; Tamijani, A. A.; De La 845 Torre-Roche, R.; Zuverza-Mena, N.; Shen, Y.; Elmer, W.; Xing, B.; 846 Mason, S. E.; Hamers, R. J.; White, J. C. Advanced material 847 modulation of nutritional and phytohormone status alleviates damage 848 from soybean sudden death syndrome. *Nat. Nanotechnol.* **2020**, *15*, 849 1033–1042.
- 850 (12) Elmer, W. H.; White, J. C. The use of metallic oxide 851 nanoparticles to enhance growth of tomatoes and eggplants in disease 852 infested soil or soilless medium. *Environ. Sci.: Nano* **2016**, *3*, 1072–853 1079.
- 854 (13) Shen, Y.; Borgatta, J.; Ma, C.; Elmer, W.; Hamers, R. J.; White, 855 J. C. Copper nanomaterial morphology and composition control foliar 856 transfer through the cuticle and mediate resistance to root fungal 857 disease in tomato (*Solanum lycopersicum*). *J. Agric. Food Chem.* **2020**, 858 *68*, 11327–11338.
- 859 (14) Vráblová, M.; Vrabl, D.; Sokolova, B.; Markova, D.; Hronkova, 860 M. A modified method for enzymatic isolation of and subsequent wax 861 extraction from *Arabidopsis thaliana* leaf cuticle. *Plant Methods* **2020**, 862 *16*, No. 129.
- 863 (15) Page, A. P.; Johnstone, I. L. The cuticle. WormBook 2007, 1—864 15.
- 865 (16) Dietrich, P.; Sanders, D.; Hedrich, R. The role of ion channels 866 in light-dependent stomatal opening. *J. Exp. Bot.* **2001**, *52*, 1959–867 1967.
- 868 (17) Kranjc, E.; Mazej, D.; Regvar, M.; Drobne, D.; Remškar, M. 869 Foliar surface free energy affects platinum nanoparticle adhesion, 870 uptake, and translocation from leaves to roots in arugula and escarole. 871 *Environ. Sci.: Nano* **2018**, *5*, 520–532.
- 872 (18) Eichert, T.; Goldbach, H. E. Equivalent pore radii of 873 hydrophilic foliar uptake routes in stomatous and astomatous leaf 874 surfaces-further evidence for a stomatal pathway. *Physiol. Plant* **2008**, 875 132, 491–502.
- 876 (19) Wang, W. N.; Tarafdar, J. C.; Biswas, P. Nanoparticle synthesis 877 and delivery by an aerosol route for watermelon plant foliar uptake. *J. 878 Nanopart. Res.* **2013**, *15*, No. 1417.
- 879 (20) Avellan, A.; Yun, J.; Zhang, Y.; Spielman-Sun, E.; Unrine, J. M.; 880 Thieme, J.; Li, J.; Lombi, E.; Bland, G.; Lowry, G. V. Nanoparticle size 881 and coating chemistry control foliar uptake pathways, translocation,

- and leaf-to-rhizosphere transport in wheat. ACS Nano 2019, 13, 882 5291-5305.
- (21) Hu, P.; An, J.; Faulkner, M. M.; Wu, H.; Li, Z.; Tian, X.; 884 Giraldo, J. P. Nanoparticle charge and size control foliar delivery 885 efficiency to plant cells and organelles. *ACS Nano* **2020**, *14*, 7970—886 7986.
- (22) Shen, Y.; Chen, Q.; Zhang, K.; Zhou, X.; Fang, Y.; Zhan, X. 888 Novel assessment indexes on heavy metal pollution in the 889 environment: Extracellular segregation coefficient and segregation 890 coefficient of intercellular organelles. *Fresenius Environ. Bull.* **2019**, 28, 891 5405–5414.
- (23) van Iersel, M. W.; Seader, K.; Dove, S. Exogenous abscisic acid 893 application effects on stomatal closure, water use, and shelf life of 894 hydrangea (*Hydrangea macrophylla*). *J. Environ. Hortic.* **2009**, 27, 895 234–238.
- (24) Kim, J. H.; Oh, Y.; Yoon, H.; Hwang, I.; Chang, Y. S. Iron 897 nanoparticle-induced activation of plasma membrane H⁺-ATPase 898 promotes stomatal opening in *Arabidopsis thaliana*. *Environ*. *Sci.* 899 *Technol.* **2015**, 49, 1113–1119.
- (25) Liu, N.; Zhao, L.; Tang, L.; Stobbs, J.; Parkin, I.; Kunst, L.; 901 Karunakaran, C. Mid-infrared spectroscopy is a fast screening method 902 for selecting Arabidopsis genotypes with altered leaf cuticular wax. 903 *Plant Cell Environ.* **2020**, 43, 662–674.
- (26) Spielman-Sun, E.; Avellan, A.; Bland, G. D.; Clement, E. T.; 905 Tappero, R. V.; Acerbo, A. S.; Lowry, G. V. Protein coating 906 composition targets nanoparticles to leaf stomata and trichomes. 907 *Nanoscale* **2020**, *12*, 3630–3636.
- (27) Kunst, L.; Samuels, A. L. Biosynthesis and secretion of plant 909 cuticular wax. *Prog. Lipid Res.* **2003**, 42, 51–80.
- (28) Zhang, W. B.; Yu, X.; Wang, C. L.; Sun, H. J.; Hsieh, I. F.; Li, 911 Y.; Dong, X. H.; Yue, K.; van Horn, R.; Cheng, S. Z. D. Molecular 912 nanoparticles are unique elements for macromolecular science: From 913 "Nanoatoms" to giant molecules. *Macromolecules* **2014**, 47, 1221–914 1239.
- (29) Cahyana, A. H.; Reza, A. I. Synthesis and characterization of 916 Fe₃O₄ nanoparticles dispersed in paraffin as solvent. *AIP Conf. Proc.* 917 **2018**, 2049, No. 020047.
- (30) Choudhuri, M.; Datta, A. Long-timescale dynamics of thiol 919 capped Au nanoparticle clusters at the air-water interface. *AIP Conf.* 920 *Proc.* **2014**, *1591*, 904–906.
- (31) Braidwood, L.; Breuer, C.; Sugimoto, K. My body is a cage: 922 mechanisms and modulation of plant cell growth. *New Phytol.* **2014**, 923 201, 388–402.
- (32) Leach, C. M.; Apple, J. D. Leaf surface electrostatics Behavior 925 of detached leaves of beans, maize, and other plants under natural 926 conditions. *Phytopathology* **1984**, *74*, 704–709.
- (33) Fernández, V.; Brown, P. H. From plant surface to plant 928 metabolism: the uncertain fate of foliar-applied nutrients. *Front. Plant* 929 *Sci.* **2013**, *4*, No. 289.
- (34) Lević, L.; Tekić, M.; Djurić, M.; Kuljanin, T. CaCl₂, CuSO₄ and 931 AlCl₃ & NaHCO₃ as possible pectin precipitants in sugar juice 932 clarification. *Int. J. Food Sci.* **2007**, 42, 609–614.
- (35) van Schaik, J. W. J.; Kleja, D. B.; Gustafsson, J. P. Acid—base 934 and copper-binding properties of three organic matter fractions 935 isolated from a forest floor soil solution. *Geochim. Cosmochim. Acta* 936 **2010**, 74, 1391–1406.
- (36) Lane, E. W.; Carlson, E. J. Some observations on the effect of 938 particle shape on the movement of coarse sediments. *EOS, Trans. Am.* 939 *Geophys. Union* **1954**, *35*, 453–462.
- (37) Wang, G.; Sassa, K. Pore-pressure generation and movement of 941 rainfall-induced landslides: effects of grain size and fine-particle 942 content. *Eng. Geol.* **2003**, *69*, 109–125.
- (38) He, J.; Zhang, L.; He, S. Y.; Rysere, E. T.; Li, H.; Zhang, W. 944 Stomata facilitate foliar sorption of silver nanoparticles by *Arabidopsis* 945 thaliana. Environ. Pollut. **2021**, 292, No. 118448.
- (39) Larue, C.; Castillo-Michel, H.; Sobanska, S.; Cecillon, L.; 947 Bureau, S.; Barthes, V.; Ouerdane, L.; Carriere, M.; Sarret, G. Foliar 948 exposure of the crop Lactuca sativa to silver nanoparticles: evidence 949

- 950 for internalization and changes in Ag speciation. *J. Hazard. Mater.* 951 **2014**, 264, 98–106.
- 952 (40) Xiong, T.; Dumat, C.; Dappe, V.; Vezin, H.; Schreck, E.; 953 Shahid, M.; Pierart, A.; Sobanska, S. Copper Oxide Nanoparticle
- 954 Foliar Uptake, Phytotoxicity, and Consequences for Sustainable 955 Urban Agriculture. *Environ. Sci. Technol.* **2017**, *51*, 5242–5251.
- 956 (41) Zhu, J.; Li, J.; Shen, Y.; Liu, S.; Zeng, N.; Zhan, X.; White, J. C.;
- 957 Gardea-Torresdey, J.; Xing, B. Mechanism of zinc oxide nanoparticle
- 958 entry into wheat seedling leaves. Environ. Sci.: Nano 2020, 7, 3901-959 3913.
- 960 (42) Zhao, J.; Ren, W.; Dai, Y.; Liu, L.; Wang, Z.; Yu, X.; Zhang, J.; 961 Wang, X.; Xing, B. Uptake, distribution, and transformation of CuO
- 962 NPs in a floating plant *Eichhornia crassipes* and related stomatal 963 responses. *Environ. Sci. Technol.* **2017**, 51, 7686–7695.
- 964 (43) Domínguez, E.; Heredia-Guerrero, J. A.; Heredia, A. The 965 biophysical design of plant cuticles: an overview. *New Phytol.* **2011**, 966 189, 938–949.
- 967 (44) Reed, H. S.; Hirano, E. The density of stomata in citrus leaves. 968 *J. Agric. Res.* **1931**, 43, 209–222.
- 969 (45) Jarecki, W.; Buczek, J.; Bobrecka-Jamro, D. Response of spring 970 wheat to different soil and foliar fertilization. *J. Cent. Eur. Agric.* **2017**, 971 18, 460–476.
- 972 (46) Jarecki, W.; Buczek, J.; Bobrecka-Jamro, D. The response of 973 winter oilseed rape to diverse foliar fertilization. *Plant Soil Environ.* 974 **2019**, 65, 125–130.
- 975 (47) Gilbertson, L. M.; Pourzahedi, L.; Laughton, S.; Gao, X.; 976 Zimmerman, J. B.; Theis, T. L.; Westerhoff, P.; Lowry, G. V. Guiding 977 the design space for nanotechnology to advance sustainable crop 978 production. *Nat. Nanotechnol.* **2020**, *15*, 801–810.