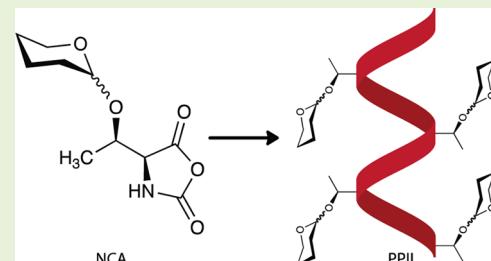


Biomimetic Glycosylated Polythreonines by *N*-Carboxyanhydride Polymerization

Anna C. Deleray and Jessica R. Kramer*

Cite This: <https://doi.org/10.1021/acs.biomac.2c00020>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Glycosylated threonine (Thr) is a structural motif found in seemingly disparate natural proteins from deep-sea collagen to mucins. Synthetic mimics of these important proteins are of great interest in biomedicine. Such materials also provide ready access to probe the contributions of individual amino acids to protein structure in a controlled and tunable manner. *N*-Carboxyanhydride (NCA) polymerization is one major route to such biomimetic polypeptides. However, challenges in the preparation and polymerization of Thr NCAs have impeded obtaining such structures. Here, we present optimized routes to several glycosylated and acetylated Thr NCAs of high analytical purity. Transition metal catalysis produced tunable homo-, statistical, and block-polypeptides with predictable chain lengths and low dispersities. We conducted structural work to examine their aqueous conformations and found that a high content of free OH Thr induces the formation of water-insoluble β -sheets. However, glycosylation appears to induce a polyproline II-type helical conformation, which sheds light on the role of glyco-Thr in rigid proteins such as mucins and collagen.

INTRODUCTION

Polymerization of α -amino acid *N*-carboxyanhydrides (NCAs) is a technique widely used to obtain polypeptides and polypeptide hybrid materials. NCA-derived polypeptides are widely used as commodity chemicals¹ and as biomaterials for applications from tissue engineering and drug delivery to biominerization and nanoelectronics.² In our own work, NCA chemistry has been used to prepare synthetic mimics of the natural glycoproteins mucins.^{3–5} Mucins are the primary protein component of mucus and are involved in epithelial hydration, lubrication, and defense.⁶

All mucins are characterized by high-molecular-weight regions rich in proline (Pro) and *O*-glycosylated threonine (Thr) and serine (Ser).⁷ Glycosylation initiates with α -linked *N*-acetylgalactosamine (α GalNAc). Mucin peptide backbones are thought to be highly rigid and extended due to the Pro content, which induces a polyPro (PP) II helical structure that is proposed to be further stabilized by a peptide- α GalNAcSer/Thr H-bond.^{4,8–10} β -linked glycans are not observed on Ser/Thr in native mucins, and peptides with this glycan linkage take on an entirely different conformation.¹¹ Similarly, galactose (Gal)-Thr replaces Pro residues in the collagen of deep-sea hydrothermal vent worms and stabilizes the essential PPII helical structure.^{12–14} In these studies, the anomeric linkage was not determined. Despite these interesting structural properties and biological significance, glycosylated-Thr-containing polypeptides by NCA polymerization are relatively unexplored. This is partly due to general challenges in synthesis, purification, and polymerization of Thr NCAs. Here, we report efficient methods for synthesis and polymer-

ization of several glycosylated and acetylated (Ac) Thr NCAs and structural characterization of the resulting polypeptides.

Thr NCA was presumably first prepared in 1963 as its OAc derivative.¹⁵ Treatment of the amino acid with phosgene in dioxane was reported to generate the NCA; however, the product was only characterized by elemental analysis and was not polymerized. Similarly, in 1964, Saito reported that free β -OH Thr NCA could be formed but polymerization attempts led to rearrangement to the 2-oxazolidinone derivative rather than the polypeptide.¹⁶ Recent work on free β -OH Thr NCA has also shown that epimerization of the α -carbon leads to diastereomers.¹⁷ Therefore, NCA studies have used various β -OH-protected Thrs including trimethylsilyl (TMS),^{18,19} *tert*-butyl,²⁰ benzyl (Bn),²¹ and diphenylphosphate²² as protecting or functional groups.

Early work attempting NCA preparation under standard conditions of phosgene in dioxane or ethyl acetate was met with limited success. Thr monomers were typically only incorporated into polypeptide copolymers at low monomer feed ratios (i.e., <10%).²¹ NCA yields were often not reported, and characterization was limited to elemental analysis, Fourier transform infrared spectroscopy (FTIR), melting/decomposition point, or CO_2 evolution.^{19–21} One study noted that the

Received: January 5, 2022

Revised: January 18, 2022

NCA gave only 49% of the expected CO_2 evolution upon H_2SO_4 treatment.¹⁵ In another study, it was observed that even at an NCA feed ratio of 50%, amino acid analysis indicated that Thr composed only 13% of the resulting polypeptide.²⁰ Such reports imply that NCA was of low purity.

In 1992, cyclization of *N*-*tert*-butoxycarbonyl (Boc) BnO -Thr to the NCA was reported in 66% yield by treatment with triphosgene followed by triethylamine (TEA), as evidenced by NMR.²³ It was noted that even after crystallization, traces of TEA hydrochloride could be observed by ^1H nuclear magnetic resonance (NMR). Attempts to purify Thr NCAs include passage through celite²⁴ and *N*-methyl morpholine as an acid scavenger in combination with complex microflow devices for washing at various pHs.²⁵ In these cases, no polymerization data were reported and therefore quality of the monomer cannot be judged.

The triphosgene/TEA method was later used by Gibson and Cameron to prepare BnO -Thr NCA. They added cold aqueous workup and crystallizations to further purify the NCA which was obtained in 68% yield.^{26,27} Related work by Heise et al. reported similar synthesis of the NCA from BnO -Thr via treatment with phosgene and acid scavenger α -pinene followed by recrystallization to give the NCA in 60% yield.²⁸ In these cases, polymerization was initiated with primary amines and chain lengths of up to ca. 150 residues were achieved in tetrahydrofuran (THF). Chain extension experiments failed in this solvent but could be accomplished in dimethylacetamide. Side reactions were identified and included the formation of cyclic compounds, water- and dimethylamine-initiated polymers, and formamide-terminated chains. Protecting groups were never removed in these materials and they were noted to gel in dichloromethane. Follow-up work by Jan and co-workers utilized deprotected Thr-containing hydrogels but noted that the benzyl-protecting groups could not be fully removed as evidenced by NMR.^{29–32}

Preparation of glycosylated Thr NCAs has been reported in one prior publication.³³ Peracetylated GalOAc_4 Thr and glucose- OAc_4 Thr NCA were prepared from the Boc AAs in ca. 50% yield. These monomers could not be polymerized due to insufficient monomer purity. Presumably, the material was also a mixture of α - and β -anomers. GalOAc_4 Thr NCA was also mentioned in a conference proceeding but this lacked complete characterization data or polymerization data.³⁴ Our data reported here represent the first polymerization of glycosylated Thr (glycoThr) NCAs to give well-defined homo- and block-co-polypeptides.

EXPERIMENTAL SECTION

Materials and Instrumentation. Reactions were conducted under an inert atmosphere of N_2 and with oven-dried glassware and anhydrous solvents unless otherwise stated. Deionized water (18 $\text{M}\Omega$ cm) was obtained by passing in-house deionized water through a Thermo Scientific MicroPure UV/UF purification unit. Infrared spectra were recorded on a Bruker Alpha attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrophotometer. Tandem size exclusion chromatography/refractive index (SEC/MALS/RI) was performed on an Agilent 1260 Infinity liquid chromatograph pump equipped with Wyatt DAWN HELEOS-II light scattering (LS) and Wyatt Optilab T-rEX refractive index (RI) detectors. Separations were achieved using 10^5 , 10^4 , and 10^3 \AA Phenomenex Phenogel 5 μm columns using 0.10 M LiBr in dimethylformamide (DMF) as the eluent at 60 $^\circ\text{C}$. All GPC/LS samples were prepared at concentrations of 3 mg/mL. dn/dc values were calculated by batch injection of a series of polymer concentrations or determining the degree of

polymerization by ^1H NMR of polyethyleneglycol endcapped polymers and fitting to the observed RI data. The applied dn/dc for $\text{Pa}/\beta\text{GalOAc}_4$ Thr was 0.0295 and that for PaGalNAcOAc_3 Thr was 0.042. dn/dc values for copolymers were calculated using the weighted average of the homopolymers with the dn/dc for PZLys being 0.123 and the dn/dc for PBnGlu being 0.104. CD measurements of the polypeptide solutions were recorded in quartz cells with a path length of 0.1 cm, on a JASCO J-1500 CD spectrophotometer. ^1H and ^{13}C NMR spectra were recorded on a Varian Mercury spectrometer (400 MHz) or an Agilent DirectDrive spectrometer (500 MHz) and are reported relative to deuterated solvent.

O-Acetyl-L-threonine NCA, AcOThr NCA. H-AcOThr-OH (1.287 g, 1 equiv) was suspended in dry THF (79.8 mL, 0.1 M) under N_2 . Phosgene (15 wt % in toluene, 11.39 mL, 2 equiv) was added to the suspension. The reaction mixture was cooled to 0 $^\circ\text{C}$ and distilled TEA (1.22 mL, 1.1 equiv) was added dropwise. The reaction mixture was stirred for 3 h and reaction progress was monitored by ATR-FTIR. After 3 h, the reaction mixture was filtered through cotton to remove TEA-HCl salts. The reaction solution was evaporated under reduced pressure. The evaporate was sequestered in a tandem solvent trap system cooled by liquid N_2 . The traps were immediately quenched with ammonium hydroxide. The crude product (yellow oil) was purified using anhydrous silica chromatography³⁵ with 5% THF in DCM. The collected fractions were analyzed by ATR-FTIR. NCA-containing fractions were combined resulting in 1.05 g of white solid (70.5% yield).

O-((2,3,4,6-Tetra-O-acetyl)- β -D-galactopyranose)-L-threonine-N-carboxyanhydride, βGalOAc_4 Thr NCA. The Boc- βGalOAc_4 Thr (0.1555 g, 1 equiv) was dissolved in anhydrous THF (2.916 mL, 0.1 M). Triphosgene (0.034 g, 0.4 equiv) was added and the solution was cooled to 0 $^\circ\text{C}$. Distilled TEA (0.0445 mL, 1.1 equiv) was added dropwise. The reaction mixture was stirred for 2.5 h and reaction progress was monitored by ATR-FTIR. After 2.5 h, the reaction mixture was filtered through cotton to remove TEA-HCl salts. The reaction solution was evaporated under reduced pressure. The evaporate was sequestered in a tandem solvent trap system cooled by liquid N_2 . The traps were immediately quenched with ammonium hydroxide. The crude product was purified using anhydrous silica chromatography³⁵ with 5 to 10 to 15% THF in DCM. The collected fractions were analyzed by ATR-FTIR. NCA-containing fractions were combined resulting in 0.0992 g of white solid (74% yield).

O-((2,3,4,6-Tetra-O-acetyl)- α -D-galactopyranose)-L-threonine-N-carboxyanhydride, αGalOAc_4 Thr NCA. The NCA was synthesized and purified following the same conditions as described for βGalOAc_4 Thr NCA,

O-(2-Acetamido-2-deoxy-3,4,6-tetra-O-acetyl- α -D-galactopyranosyl)-L-threonine-N-carboxyanhydride, $\alpha\text{GalNAc(OAc}_3$ Thr NCA. The NCA was synthesized and purified following the same conditions as described for βGalOAc_4 Thr NCA. The crude product was purified using anhydrous silica chromatography³⁵ with 10 to 30% THF in DCM.

General Method for Polymerization of NCAs. All polymerizations were prepared in a N_2 -filled glovebox. NCAs were dissolved in anhydrous THF at 50 mg/mL in a vial or bomb tube. To the NCA solution, a 30 mg/mL solution of $(\text{PMe}_3)_4\text{Co}$ in THF was added and the tube was sealed. The NCA/ $(\text{PMe}_3)_4\text{Co}$ ratio ranged from 10:1 to 50:1, yielding different length polypeptides. The vials were left in the glovebox at RT, and the bomb tubes were removed from the glovebox and heated at 50 $^\circ\text{C}$ for 5–72 h. The reaction progress was monitored by ATR-FTIR. Upon completion, the polypeptides were analyzed with SEC/MALS/RI.

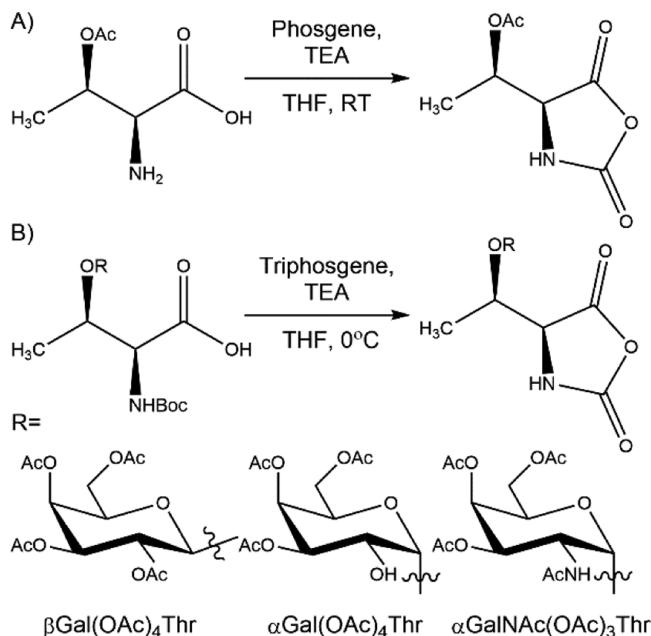
General Method for Polymerization of Statistical Copolymers. Copolymers were prepared in a N_2 -filled glovebox in a manner similar to homopolymers. The NCAs were dissolved in THF at 50 mg/mL and mixed at a variety of NCA molar ratios. The $(\text{PMe}_3)_4\text{Co}$ catalyst in THF (30 mg/mL) was added to the combined NCA solutions and the reaction progressed at RT and was monitored by ATR-FTIR. Polypeptides that remained soluble were analyzed using SEC/MALS/RI.

Table 1. Representative Polymerization Data for Tunable polyThrs

entry	name ^a	block 1			block 2		
		[M]/[I] ^b	M_n^c	D^d	[M]/[I] ^b	M_n^d	D^d
1	P β GalOAc ₄ Thr ₄₇	10	20 060	1.46			
2	P β GalOAc ₄ Thr ₈₀	25	34 390	1.13			
3	P β GalOAc ₄ Thr ₁₅₄	50	66 430	1.17			
4	PAcOThr ₁₅₀	50	21 450	n.d. ^g			
5	(PAcOThr _{0.75} -s-PZlys _{0.25}) ₁₅₀	50	25 912	n.d. ^g			
6	(PAcOThr _{0.5} -s-PZLys _{0.5}) ₂₀₈ ^e	50	42 150	1.37			
7	(PAcOThr _{0.25} -s-PZLys _{0.75}) ₁₇₃ ^e	50	40 190	1.44			
8	(P β GalOAc ₄ Thr _{0.5} -s-PZlys _{0.5}) ₁₀₃ ^e	50	35 570	1.19			
9	(entry 8)-b-PZlys ₆₂₂ ^f				90	198 700	1.20
10	P β GalOAc ₄ Thr ₈₀ -b-PBnGlu ₂₃₇ ^f	25	34 390	1.13	50	96 990	1.51

^aSample name and observed polypeptide DP. ^bMolar ratio of NCA to (PMe₃)₄Co in THF. ^c M_n as determined by GPC/MALS/RI and ¹H NMR end-group analysis. ^d D as determined by GPC/MALS/RI. ^eThe two NCA monomers were mixed before polymerization. ^fNCA 2 was added sequentially after consumption of NCA 1. ^gSample could not be analyzed by GPC/MALS/RI or ¹H NMR due to poor solubility in organic and aqueous solvents, M_n is theoretical based on the M/I ratio.

General Method for Polymerization of Block Copolymers. A total of 3.8 mg of β GalOAc₄Thr NCA was dissolved in anhydrous THF inside a N₂-filled glovebox to form a 50 mg/mL solution. A total of 3.87 μ L of 30 mg/mL (PMe₃)₄Co in anhydrous THF was added to the NCA solution resulting in a 25:1 NCA/catalyst solution. The polymerization reaction was monitored by ATR-FTIR. After the reaction was complete (24 h), 4.21 mg of BnGlu NCA in THF (50 mg/mL) was added to the polypeptide solution. The polymerization progress was monitored by ATR-FTIR. SEC/MALS/RI analysis was conducted for the P β GalOAc₄Thr block 1 and the diblock polypeptide. A similar method was utilized to prepare the statistical block 1 polymer shown in Table 1 entry 8, 9 except that for block 1 β GalOAc₄Thr NCA and Z-Lys NCA were mixed prior in an equimolar ratio prior to the addition of the catalyst.


General Method for Deacetylation of PAcOThr, AcO-Containing Copolymers, and PglycoThrs. The polymer was suspended in 1 M K₂CO₃ in 1:1 MeOH/H₂O for AcOThr or 0.25 M K₂CO₃ in 1:1 MeOH/H₂O for PglycoThrs and stirred overnight. The solution was transferred to a 1 kDa spin filter and concentrated at 4000g for 20 min. The concentrate was diluted three times with Milli-Q and spin-filtered at 4000g for 20 min each time. The concentrate was recovered, frozen, and lyophilized. Samples can also be dialyzed against Milli-Q water in 2000 MWCO dialysis tubing.

RESULTS AND DISCUSSION

We synthesized several glycoThrs as shown in Scheme 1. We selected α GalOAc₄, β GalOAc₄, and α GalNAc(OAc)₃ Thr as these are the structures found in natural mucins and collagen and are of interest in biomimetic materials. α/β GalOAc₄Thr was formed in 63% yield by coupling GalOAc₄-SPh with N-carbobenzyloxy (Z) ThrOBn using N-iodosuccinimide and TMS triflate (see the Supporting Information).³⁶ The observed α/β ratio was 1:4.7 and these could be separated by chromatography. Absolute stereochemistry at the anomeric center was determined by 2-D NMR experiments (see the Supporting Information). An alternative coupling method using Gal(OAc)₅, Z-Thr-OBn, and BF₃-EtO₂ was also explored but resulted in a lower yield (42%). α GalNAc(OAc)₃Thr was formed via coupling of the azido phenylselenide sugar with Z-Thr-OBn using published procedures (see the Supporting Information).³⁶ Protecting groups were readily removed by hydrogenolysis on palladium over carbon.

We first explored cyclization of AcOThr, which is commercially available. We selected the Ac group since it is readily removed by treatment with a mild base, as compared to the previously used benzyl group which required harsh TMS

Scheme 1. Synthesis of Acetylated and Glycosylated Thr NCAs

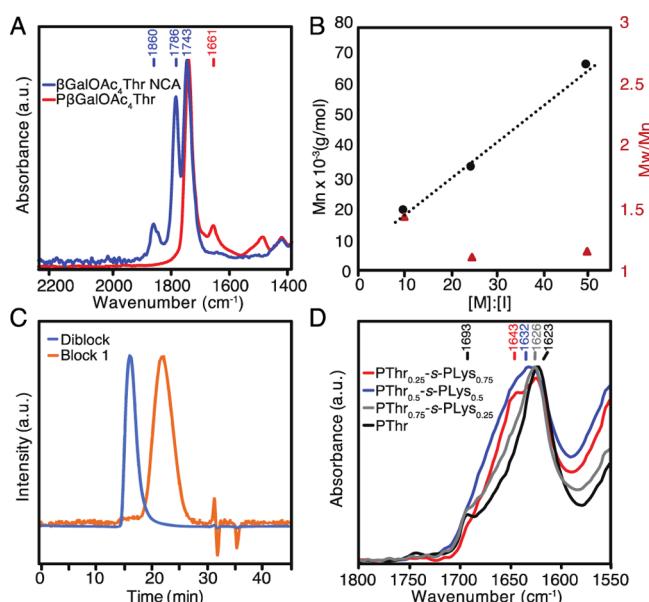
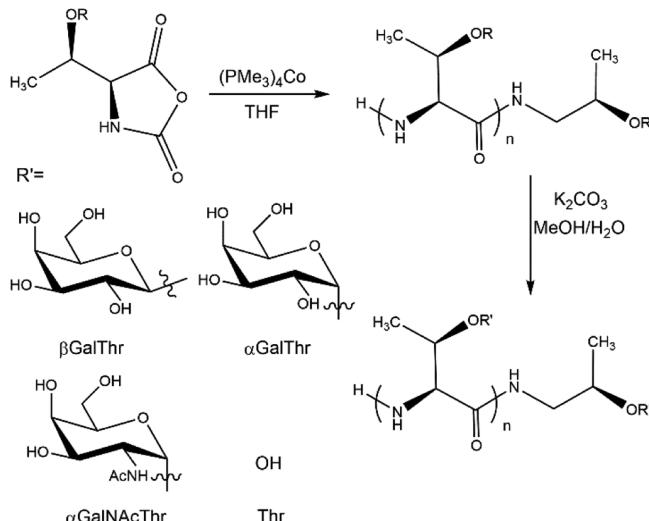
iodide and did not result in quantitative removal. Typical NCA formation conditions are treatment of the amino acid with phosgene in THF for ca. 3 h. These conditions resulted in little formation of AcOThr NCA. We used the ratio of the ATR-FTIR AcO carbonyl stretch at 1741 cm⁻¹ versus the NCA carbonyl stretch at 1787 cm⁻¹ to judge reaction progress in this case and all others (see Figure S1). However, we found that the NCA was readily formed by treatment with 2 equiv phosgene and 1.1 equiv TEA in THF (Scheme 1A). The crude product was purified by anhydrous silica chromatography³⁵ to give the NCA as an analytically pure white solid in 71% yield. Treatment with triphosgene and TEA resulted in the formation of the NCA with a 37% yield. We also compared cyclization of Boc-AcOThr using triphosgene and TEA but found that the yield was reduced to 36%.

Next, we attempted cyclization of β Gal(OAc)₄Thr using the same phosgene/TEA method that had resulted in good yield for AcOThr. However, ATR-FTIR did not show NCA formation after extended reaction times. Next, we attempted

cyclization of Boc- β Gal(OAc)₄Thr using the previously reported method with triphosgene/TEA in THF (Scheme 1B). NCA formation was observed within 3 h via ATR-FTIR. However, the Boc group was still visible by in the FTIR spectra (see Figure S2). Neither extended reaction times nor additional triphosgene/TEA drove the reaction further. After filtration of the TEA salts and anhydrous flash column chromatography, the NCA was isolated in 74% yield and with high analytical purity. α Gal(OAc)₄Thr could be prepared by the same method.

Kramer et al. previously reported the synthesis of α GalNAC(OAc)₃Ser NCA in 73% yield by treatment of the free amino acid with phosgene and acid scavenger α -pinene.¹¹ We attempted cyclization of α GalNAC(OAc)₃Thr under these same conditions. However, after chromatographic purification, the yield was only 21%. We presume that this is due to steric hindrance by the Thr methyl group as compared to the Ser proton. Next, we Boc-protected the amino acid and used identical conditions as those for β Gal(OAc)₄Thr. Gratifyingly, α GalNAC(OAc)₃Thr NCA formed in 70% yield and was obtained in high purity after chromatographic purification.

In related work in our lab cyclizing sterically hindered AAs to NCAs, we found that crude reaction materials contain significant contamination by unreacted amino acid salts, uncyclized *N*-carbamoyl chloride, and TEA salts.³⁷ Precipitation and repeated crystallization did not remove these materials in our hands. Other reported NCA impurities are diketopiperidine, isocyanate, and HCl.^{38,39} Additional impurities can result from the reaction of THF and HCl.⁴⁰ All of these impurities are known inhibitors of polymerization or could lead to competing mechanisms.



We postulate that in prior studies, such impurities were the main culprit of lower-than-expected Thr content in the polypeptides and the inability to polymerize the NCAs. Key to our work was the application of the anhydrous chromatography method which effectively removes the scope of impurities present in the NCAs.³⁵ The method utilizes heat-treated silica and anhydrous solvents and can be performed in the fume hood analogously to traditional chromatography.

With highly pure NCAs in hand, we explored polymerization using transition metal catalysts reported by Deming (Scheme 2).⁴¹ Previous polymerizations of Thr NCAs were all conducted with amine or alkoxide initiators which are known to possess competing mechanistic pathways that result in poorly controlled polymerizations, low chain lengths, high dispersities, and the inability to perform chain extensions to prepare diblock polymers.² Transition metal catalysts typically result in controlled and living NCA polymerization and have been previously applied to a wide variety of glycosylated NCAs.^{42–45}

We were pleased to observe that treatment of all the Thr NCAs with (PMe₃)₄Co in THF at 25 or 50 °C (heat was applied for reactions of [M]/[I] > 50:1) resulted in complete conversion to poly(glycoThrs) (PglicoThrs) within 2–48 h, depending on monomer to initiator ratio ([M]/[I]). Complete monomer consumption was evidenced by ATR-FTIR via disappearance of the NCA carbonyl stretches at ca. 1850 and 1790 cm⁻¹ and appearance of peptide carbonyl stretch at ca. 1660 cm⁻¹ (Figure 1A).

We performed polymerization experiments to check for chain-breaking side reactions and to verify living chain ends. Control over PglicoThr molecular weight was demonstrated by variation of [M]/[I] ratio and subsequent analysis of the

Scheme 2. Transition Metal-Catalyzed Polymerization of Glycosylated and Acetylated Thr NCAs and Deprotection of Acetate Groups to Give Biomimetic Polypeptides

Figure 1. Polymerization data for functionalized THR NCAs. (A) ATR-FTIR spectra indicating the formation of P β Gal(OAc)₄Thr from β Gal(OAc)₄Thr NCA; (B) polymerization data for P β Gal(OAc)₄Thr indicating controlled polymerization and predictable M_n , $R^2 = 0.9946$; (C) GPC/MALS traces indicating complete conversion from (P β GalOAc₄Thr_{0.5}-s-PZLys_{0.5})₁₀₃ copolymer to (P β GalOAc₄Thr_{0.5}-s-PZLys_{0.5})₁₀₃-b-PZLys₆₂₂ diblock copolymer, peaks at ca. 30 and 35 min are solvents; and (D) ATR-FTIR spectra of PThr homo- and copolypeptides indicating varied sheet-forming propensity that increases with Thr content.

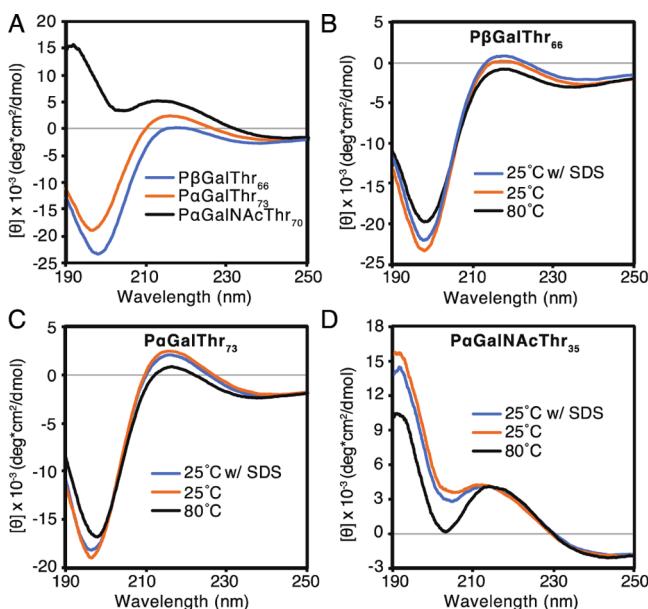
chain lengths by a combination of ¹H NMR end-group analysis and gel permeation chromatography coupled with tandem 18-angle LS and RI analysis (GPC/MALS/RI). Increasing [M]/[I] ratios gave rise to PglicoThrs whose lengths increased linearly with stoichiometry. Data for poly β Gal(OAc)₄Thr (P β Gal(OAc)₄Thr) are shown in Figure 1B and Table 1 entries 1–3. Similar results were obtained for the other glycosylated monomers (see the Supporting Information). Chain lengths up to ca. 150 residues were observed and they

possessed narrow distributions (M_w/M_n). We observed a higher M_w/M_n for the lowest M_n sample and for an AcOThr copolymer (*vide infra*, Table 1 entries 1 and 7) likely due to broad elution as the GPC columns are not as efficient at separating low-molecular-weight materials and the copolymer has limited solubility in the GPC solvent. As expected, polymers had higher than theoretical molecular weights due to the known efficiency of $(\text{PMe}_3)_4\text{Co}$ initiation in THF.⁴⁶

To check that the polymerization is indeed living, we performed chain extension experiments. $\beta\text{Gal}(\text{OAc})_4\text{Thr}$ and $N\text{-}\epsilon\text{-Z-L-Lys}$ (ZLys) NCAs were mixed at a 1:1 ratio and treated with $(\text{PMe}_3)_4\text{Co}$ at an $[\text{M}]/[\text{I}]$ of 50:1. After complete consumption of the NCAs by ATR-FTIR, a sample was removed for analysis and a 1.9 molar equivalent solution of ZLys NCA was added to the remainder. Again, all monomer was consumed. GPC/MALS/RI analysis of the $(\text{P}\beta\text{GalIOAc}_4\text{Thr}_{0.5\text{-s}}\text{-PZLys}_{0.5})_{103}$ block 1 versus the diblock copolyptide showed a complete shift with no evidence of unreacted block 1 (Figure 1C, Table 1 entries 8 and 9). We also conducted a chain extension experiment in the same manner with the homopolymer $\text{P}\beta\text{GalOAc}_4\text{Thr}_{80}$ and the addition of γ -benzyl-L-glutamate (BnGlu) NCA to form the second block. Again, the monomer was completely consumed and an M_n shift was observed by GPC/MALS/RI (Table 1 entry 10, Figure S7).

We also explored polymerization of AcOThr NCA. Similar to the glycoThr NCAs, AcOThr NCA was readily polymerized with $(\text{PMe}_3)_4\text{Co}$ in THF at 25 °C as evidenced by ATR-IR (Table 1 entry 4, see the Supporting Information). However, upon treatment with the initiator, AcOThr NCA solutions immediately become opaque and the poly(AcOThr) (PAcOThr) eventually precipitated (Figure S1). The homopolyptide is not soluble in common organic solvents, including our GPC solvent of 0.1 M LiBr in DMF. This is due to the formation of β -sheet structures (*vida infra*). Therefore, we explored statistical copolymers comprising AcOThr and ZLys.

AcOThr NCA was copolymerized with ZLys NCA at 25, 50, and 75% ratios (Table 1 entries 5–7). Statistical copolymers with 25 and 50% AcOThr were fully soluble in THF and DMF. However, polypeptides with 75% AcOThr were poorly soluble (see Figure S3). The 25 and 50% AcOThr copolymers were analyzed by GPC/MALS/RI and M_n values were as expected (Table 1 entries 4 and 5). Dispersities were slightly higher than those of the PglycoThrs, which we presume is due to aggregation of minor equilibrium structures with sheet-like conformations (*vide infra*). Table 1 entries 4 and 5 are expected molecular weights as predicted by the M/I ratios used in their preparation since the sample could not be dissolved for GPC or NMR analysis.

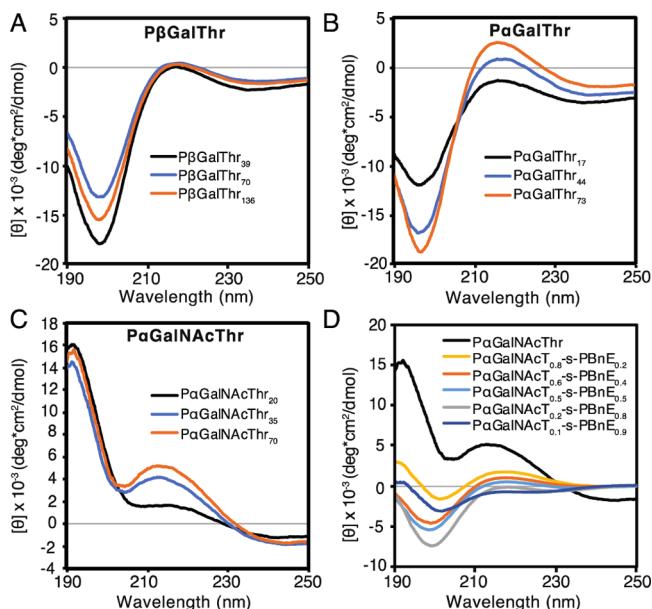

PAcOThr₁₅₀ was deacetylated by treatment with K_2CO_3 in methanol/water overnight at room temperature. Complete removal of the protecting groups was evidenced by ATR-FTIR (see the Supporting Information). Co-polypeptides (PThr_{0.75-s}-PZLys_{0.25})₁₅₀, (PThr_{0.5-s}-PZLys_{0.5})₂₀₈, and (PAcOThr_{0.25-s}-PZLys_{0.75})₁₇₃ were first Z-deprotected by treatment with HBr in acetic acid and then subjected to the same K_2CO_3 and methanol/water conditions.⁴⁷ All of the resulting polypeptides were insoluble in water and organic solvents. In an effort to rationalize the poor solubility of polypeptides that would seemingly be water-soluble, we used ATR-FTIR to analyze their secondary structures. Peptide amides absorb infrared light via strong C=O stretching (amide I) and more minor N–H

bending (amide II). Hydrogen bonds involved in the formation of secondary structures via these chemical motifs will affect the wavelength of light absorbed by these bonds. Prior work indicated that peptide bonds in β -sheet conformations have strong amide I absorbances from 1623 to 1641 and 1674 to 1695 cm^{-1} , while peptide bonds in disordered structures have shifted absorbances from 1642 to 1657 cm^{-1} .^{48,49}

Analysis of the polypeptide carbonyl absorbances in the ATR-FTIR spectra revealed that the co-polypeptide secondary structures take on increasing β -sheet content with increasing Thr ratios, which explains the poor solubility. PThr had a strong absorbance at 1623 cm^{-1} and a minor peak at 1693 cm^{-1} , indicating very high β -sheet content (Figure 1D). Spacing of the Thr residues with 25% Lys only slightly shifted these absorbances (strong 1626 and 1693 cm^{-1} shoulder). PLys is completely disordered when charged but can take on helix and sheet conformations with changes in pH and temperature.^{50,51} Increasing the Lys content to 50% shifted the amide I to a broader absorbance at 1632 cm^{-1} . This indicates a mixture of sheet and disordered conformations, but sheets still dominate. Finally, increasing the Lys content to 75% revealed a structure with amide I absorbances at both 1643 cm^{-1} , characteristic of disordered peptides, and 1625 cm^{-1} , characteristic of sheets, indicating that both structures are present. These data indicate that Thr is a remarkably strong sheet-inducing amino acid.

PglycoThrs were quantitatively deprotected by treatment with K_2CO_3 in methanol/water and then were purified by dialysis or spin-filtering (Scheme 2). All of the PglycoThrs were fully water-soluble. We used ATR-FTIR and circular dichroism (CD) to investigate their aqueous conformations. All ATR-FTIR spectra revealed amide I absorbances from 1648 to 1658 cm^{-1} (see the Supporting Information). α helices and PPII helices absorb at longer wavelengths from 1648 to 1657 cm^{-1} as compared to sheets and disordered structures.^{48,49} Absorbances in this range could indicate ordered, helical structures. Clearly, the presence of the sugars disrupts the sheet formation that was so strongly induced by free-OH Thr.

CD spectroscopy was utilized to further characterize PglycoThr conformations. We observed interesting non-canonical spectra for all three glyco-polypeptide variants (Figure 2A). βGalThr had a minimum at 198 nm and a positive maximum at 218 nm. There was a very slight shift in the observed dichroisms for $\text{P}\alpha\text{GalThr}$ with a minimum at 196 nm and a maximum at 217 nm. $\text{P}\alpha\text{GalNAcThr}$ had a strong positive maximum at 192 and a positive maximum at 213 nm. We attribute the shift from 217 to 218 nm for PGalThrs to 213 for $\text{P}\alpha\text{GalNAcThr}$ to be due to the αGalNAc amides, which are thought to be involved in hydrogen-bonding to the peptide backbone.⁸ Such a hydrogen bond could affect the energetics of the $\eta \rightarrow \pi^*$ transition. We attributed the differing absorption in the 190–200 nm range to be due to absorption by the GalNAc amide itself. We obtained a CD spectrum of free GalNAc monosaccharide for comparison and observed a strong positive absorption between 190 and 200, similar to that of the $\text{P}\alpha\text{GalNAcThr}$ spectra (see Figure S8). Details of CD sample preparation and concentrations can be found in the Supporting Information and Table S2. All data are reported in molar ellipticity, which normalizes for samples of differing concentrations.


Figure 2. Conformational analysis of PglycoThrs by CD spectroscopy in water and under denaturing conditions. (A) Overlaid spectra of P β GalThr₆₆, P α GalThr₇₃, and P α GalNAcThr₇₀ at 25 °C in Milli-Q water; spectra of (B) P β GalThr₆₆, (C) P α GalThr₇₃, and (D) P α GalNAcThr₃₅ in Milli-Q water at 25, 80 °C, or in SDS solution. All spectra are reported in molar ellipticity.

β -sheets typically have negative bands at 218 nm and positive bands at 195 nm, while disordered proteins have a very minor, negative ellipticity above 210 nm and a negative band around 195 nm.⁵² α helices have negative minima at 208 and 222 nm and a positive maximum near 195 nm. PglycoThrs do not fit these patterns. Considering the high content of glycosylated Thr in mucins and specialized forms of collagen that take on PPII conformations, we wondered about the contributions of Thr to this structure and if those conformations might be present in these structures. Distinct CD signatures have been shown for PPII vs unordered secondary structures. Collagen is a particularly useful example. Ordered PPII collagen has a large negative minimum at 197 and a small positive maximum at \sim 220.⁵³ However, denatured collagen has a negative minimum at 200 nm and no positive maxima fitting the canonical disordered pattern. The positive maxima between 213 and 218 nm of the glycoThrs fit most closely with PPII-type structures. It is worth noting that despite equivalent phi and psi angles, the absorbances of pure polyPro in the PPII form are red-shifted 8–10 nm as compared to ordered collagen since Pro imino groups alter the energetics of the $\eta \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ transitions.⁵⁴

To further probe the notion of order vs disorder in these structures, we investigated their CD conformations under denaturing conditions. Ellipticities that increase or decrease in magnitude with changes in temperature or denaturant are uncharacteristic of disordered peptides. We examined the CD of the PglycoThrs with high heat and sodium dodecyl sulfate (SDS). For P α GalThr, P β GalThr, and P α GalNAcThr, the dichroism strength was reduced in terms of the positive maxima between 213 and 218 nm and the absorbance at 192 and 198 nm (Figure 2C,D). This was true for both heat and SDS, indicating that the peptide backbone is ordered and that the order can be disrupted, likely due to breaking hydrogen bonds. We noted that after heating to 80 °C, the original

conformation was restored upon return to 25 °C (see Figure S9).

Considering the dominating, sheet-inducing effects of free-OH Thr that we observed with copolymers containing only 25% PThr, we wondered about the induction of PPII-type structures by glycosylated Thr. To explore this, we prepared a panel of statistical copolymers composed of glutamic acid (Glu) and α GalNAcThr, with α GalNAcThr content ranging from 10 to 80%. PolyGlu is a disordered coil when charged and α helical when neutral.⁵⁵ CD of these co-polypeptides revealed that the α GalNAcThr-induced PPII-like structure dominates the conformation but that spacing of these residues relaxes the structure (Figure 3D). The $\eta \rightarrow \pi^*$ transition for 100%

Figure 3. Conformational analysis of glyco-PThr homo- and co-polypeptides by CD spectroscopy in water. Varied molecular weights of (A) P β GalThr; (B) P α GalThr; (C) P α GalNAcThr; (D) P α GalNAcThr-s-PGlu co-polypeptides. All spectra were obtained at 25 °C in Milli-Q water and reported in molar ellipticity.

α GalNAcThr occurred at 213 nm and was of higher magnitude than that of 80% α GalNAcThr, whose transition shifted to 217 nm. Further spacing of the residues in 50 and 60% α GalNAcThr continued this trend. Polypeptides with 20% α GalNAcThr have an $\eta \rightarrow \pi^*$ at 218 but the ellipticity remained negative. Finally, at only 10% α GalNAcThr and 90% Glu, a disordered structure was observed. Similar to free-OH Thr, α GalNAcThr is a strong secondary structure inducer.

Prior experimental and theoretical work has shown that the dichroism per residue the greater, the longer the structure and that the absorbances of rigid molecules are typically more intense than those of flexible molecules.^{56,57} This rationalizes the decreasing intensity of the 213–218 nm absorbance in the Glu/ α GalNAcThr co-polypeptides. To further probe this effect, we examined PglycoThrs of varied molecular weights. This study revealed that absorbance strength increased with increasing chain length but the magnitude of the effect varied depending on anomeric linkage (Figure 3A–C). Interestingly, structures in α -glycan-linked PThrs appear to be more strongly affected by chain length as compared to the β -linked. It is interesting to speculate upon the undetermined anomeric linkage in thermally stable deep-sea collagen. We hypothesize

that the α -linkage may be predominant. In sum, our data indicate that glycosylated Thrs may play a role in stabilizing the biologically essential PPII-type structure found in mucins, collagen, and other structural proteins.

CONCLUSIONS

We have demonstrated optimized routes for preparation and polymerization of acetylated and glycosylated Thr NCAs. Glycosylated Thr is a conserved structure found in mucins and in heat-stable collagen. We prepared glycoconjugate amino acids featuring these native linkages. We explored various NCA cyclization substrates and conditions, which yielded NCAs of high analytical purity. Polymerization using transition metal catalysts produced tunable homo-, statistical, and block-polypeptides with predictable chain lengths and low dispersities. We found that polypeptides with high content of free-OH Thr form water-insoluble β -sheets. Glycosylated PThrs, however, are water-soluble and appear to take on a PPII-type conformation, providing insights into the evolutionary advantage of these molecular motifs in rigid proteins such as mucins and collagen.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.biomac.2c00020>.

Detailed information about experimental procedures, NMR, FTIR, CD, and related data ([PDF](#))

AUTHOR INFORMATION

Corresponding Author

Jessica R. Kramer — *Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States; orcid.org/0000-0002-4268-0126; Email: jessica.kramer@utah.edu*

Author

Anna C. Deleray — *Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States*

Complete contact information is available at: <https://pubs.acs.org/10.1021/acs.biomac.2c00020>

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding

Kramer acknowledges financial support from the USA National Science Foundation via DMR-1848054 and CHE-1807651.

Notes

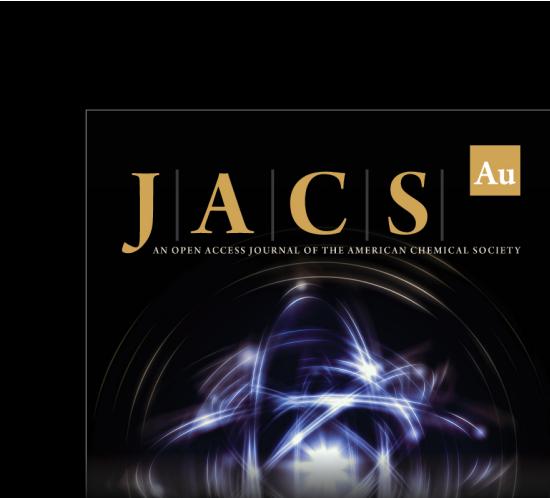
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the lab of Prof. Michael Yu for allowing us to use their CD spectrometer.

ABBREVIATIONS

THF, tetrahydrofuran; ATR-FTIR, attenuated total reflectance-Fourier transform infrared; GPC MALS/RI, gel permeation chromatography, 18-angle light scattering/refrac-


tive index; NMR, nuclear magnetic resonance; CD, circular dichroism; SDS, sodium dodecyl sulfate

REFERENCES

- (1) Sigma, M. PolyAmino Acids: Production Methods FAQ. <https://www.sigmapelab.com/US/en/technical-documents/technical-article/materials-science-and-engineering/drug-delivery/poly-amino-acid-block-copolymers> (accessed Jan 18, 2022).
- (2) Deming, T. J. Synthetic Polypeptides for Biomedical Applications. *Prog. Polym. Sci.* **2007**, *32*, 858–875.
- (3) Clauss, Z. S.; Wardzala, C. L.; Schlif, A. E.; Wright, N. S.; Saini, S. S.; Onoa, B.; Bustamante, C.; Kramer, J. R. Tunable, Biodegradable Grafting-from Glycopolypeptide Bottlebrush Polymers. *Nat. Commun.* **2021**, *12*, 6472.
- (4) Kramer, J. R.; Onoa, B.; Bustamante, C.; Bertozi, C. R. Chemically Tunable Mucin Chimeras Assembled on Living Cells. *Proc. Natl. Acad. Sci. U.S.A.* **2015**, *112*, 12574–12579.
- (5) Malaker, S. A.; Pedram, K.; Ferracane, M. J.; Bensing, B. A.; Krishnan, V.; Pett, C.; Yu, J.; Woods, E. C.; Kramer, J. R.; Westerlind, U.; et al. The Mucin-Selective Protease StcE Enables Molecular and Functional Analysis of Human Cancer-Associated Mucins. *Proc. Natl. Acad. Sci. U.S.A.* **2019**, *116*, 7278–7287.
- (6) Bansil, R.; Turner, B. S. Mucin Structure, Aggregation, Physiological Functions and Biomedical Applications. *Curr. Opin. Colloid Interface Sci.* **2006**, *11*, 164–170.
- (7) Wagner, C. E.; Wheeler, K. M.; Ribbeck, K. Mucins and Their Role in Shaping the Functions of Mucus Barriers. *Annu. Rev. Cell Dev. Biol.* **2018**, *6*, 189–215.
- (8) Colart, D. M.; Royyuru, A. K.; Williams, L. J.; Glunz, P. W.; Sames, D.; Kuduk, S. D.; Schwarz, J. B.; Chen, X.-T.; Danishefsky, S. J.; Live, D. H. Principles of Mucin Architecture: Structural Studies on Synthetic Glycopeptides Bearing Clustered Mono-, Di-, Tri-, and Hexasaccharide Glycodomains. *J. Am. Chem. Soc.* **2002**, *124*, 9833–9844.
- (9) Spencer, D. I. R.; Missailidis, S.; Denton, G.; Murray, A.; Brady, K.; Matteis, C. I. D.; Searle, M. S.; Tendler, S. J. B.; Price, M. R. Structure/Activity Studies of the Anti-MUC1 Monoclonal Antibody CS95 and Synthetic MUC1 Mucin-Core-Related Peptides and Glycopeptides. *Biospectroscopy* **1999**, *5*, 79–91.
- (10) Gururaja, T. L.; Ramasubbu, N.; Venugopalan, P.; Reddy, M. S.; Ramalingam, K.; Levine, M. J. Structural Features of the Human Salivary Mucin, MUC7. *Glycoconjugate J.* **1998**, *15*, 457–467.
- (11) Kramer, J. R.; Onoa, B.; Bustamante, C.; Bertozi, C. R. Chemically Tunable Mucin Chimeras Assembled on Living Cells. *Proc. Natl. Acad. Sci. U.S.A.* **2015**, *112*, 12574–12579.
- (12) Bann, J. G.; Bächinger, H. P. Glycosylation/Hydroxylation-Induced Stabilization of the Collagen Triple Helix. 4-Trans-Hydroxyproline in the Xaa Position Can Stabilize the Triple Helix. *J. Biol. Chem.* **2000**, *275*, 24466–24469.
- (13) Bann, J. G.; Peyton, D. H.; Bächinger, H. P. Sweet Is Stable: Glycosylation Stabilizes Collagen. *FEBS Lett.* **2000**, *473*, 237–240.
- (14) Mann, K.; Mechling, D. E.; Bächinger, H. P.; Eckerskorn, C.; Gaill, F.; Timpl, R. Glycosylated Threonine but Not 4-Hydroxyproline Dominates the Triple Helix Stabilizing Positions in the Sequence of a Hydrothermal Vent Worm Cuticle Collagen. *J. Mol. Biol.* **1996**, *261*, 255–266.
- (15) Wilchek, M.; Patchornik, A. The Synthesis of O-Acetylhydroxy- α -Amino Acids. *J. Org. Chem.* **1964**, *29*, 1629–1630.
- (16) Saito, T. A New Rearrangement Reaction of β -Hydroxy- α -Amino Acid N-Carboxy Anhydrides to 2-Oxazolidone Derivatives. *Bull. Chem. Soc. Jpn.* **1964**, *37*, 624.
- (17) Tian, Z.-Y.; Zhang, Z.; Wang, S.; Lu, H. A moisture-tolerant route to unprotected α / β -amino acid N-carboxyanhydrides and facile synthesis of hyperbranched polypeptides. *Nat. Commun.* **2021**, *12*, 5810.
- (18) Hirschmann, R.; Schwam, H.; Strachan, R. G.; Schoenewaldt, E. F.; Barkemeyer, H.; Miller, S. M.; et al. The Controlled Synthesis of Peptides in Aqueous Medium. VIII. The Preparation and Use of

- Novel a-Amino Acid N-Carboxyanhydrides. *J. Org. Chem.* **1971**, *93*, 2746–2754.
- (19) Hecht, M. H.; Zweifel, B. O.; Scheraga, H. A. Helix-Coil Stability Constants for the Naturally Occurring Amino Acids in Water. 17. Threonine Parameters from Random Poly-(Hydroxybutylglutamine-Co-L-Threonine). *Macromolecules* **1978**, *11*, 545–551.
- (20) Kubota, S.; Fasman, G. D. The β Conformation of Polypeptides of Valine, Isoleucine, and Threonine in Solution and Solid-state: Optical and Infrared Studies. *Biopolymers* **1975**, *14*, 605–631.
- (21) Yamamoto, H.; Nagai, A.; Okada, T.; Nishida, A. Synthesis and Adhesive Studies of Barnacle Model Proteins. *Mar. Chem.* **1989**, *26*, 331–338.
- (22) Hayashi, S.; Ohkawa, K.; Yamamoto, H. Random and Sequential Copolypeptides Containing O-Phospho-L-Threonine and L-Aspartic Acid; Roles in CaCO_3 Biomineralization. *Macromol. Biosci.* **2006**, *6*, 228–240.
- (23) Wilder, R.; Mobashery, S. The Use of Triphosgene in Preparation of N-Carboxy α -Amino Acid Anhydrides. *J. Org. Chem.* **1992**, *57*, 2755–2756.
- (24) Semple, J. E.; Sullivan, B.; Sill, K. N. Large-Scale Synthesis of α -Amino Acid-N-Carboxyanhydrides. *Synth. Commun.* **2017**, *47*, 53–61.
- (25) Otake, Y.; Nakamura, H.; Fuse, S. Rapid and Mild Synthesis of Amino Acid N-Carboxy Anhydrides: Basic-to-Acidic Flash Switching in a Microflow Reactor. *Angew. Chem., Int. Ed.* **2018**, *57*, 11389–11393.
- (26) Gibson, M. I.; Cameron, N. R. Experimentally Facile Controlled Polymerization of N-Carboxyanhydrides (NCAs), Including O-Benzyl-L-Threonine NCA. *J. Polym. Sci., Part A: Polym. Chem.* **2009**, *47*, 2882–2891.
- (27) Gibson, M. I.; Cameron, N. R. Organogelation of Sheet-Helix Diblock Copolypeptides. *Angew. Chem., Int. Ed.* **2008**, *47*, 5160–5162.
- (28) Habraken, G. J. M.; Wilsens, K. H. R. M.; Koning, C. E.; Heise, A. Optimization of N-Carboxyanhydride (NCA) Polymerization by Variation of Reaction Temperature and Pressure. *Polym. Chem.* **2011**, *2*, 1322–1330.
- (29) Hou, S.-S.; Fan, N.-S.; Tseng, Y.-C.; Jan, J.-S. Self-Assembly and Hydrogelation of Coil-Sheet Poly(L-Lysine)-Block-Poly(L-Threonine) Block Copolypeptides. *Macromolecules* **2018**, *51*, 8054–8063.
- (30) Chen, Y.-F.; Chen, G.-Y.; Chang, C.-H.; Su, Y.-C.; Chen, Y.-C.; Jiang, Y.-s.; Jan, J.-S. TRAIL Encapsulated to Polypeptide-Crosslinked Nanogel Exhibits Increased Anti-Inflammatory Activities in Klebsiella Pneumoniae-Induced Sepsis Treatment. *Mater. Sci. Eng., C* **2019**, *102*, 85–95.
- (31) Hou, S.-S.; Hsu, Y.-Y.; Lin, J.-H.; Jan, J.-S. Alkyl-Poly(L-Threonine)/Cyclodextrin Supramolecular Hydrogels with Different Molecular Assemblies and Gel Properties. *ACS Macro Lett.* **2016**, *5*, 1201–1205.
- (32) Lu, D.; Zhang, Y.; Li, Y.; Luo, C.; Wang, X.; Guan, X.; Ma, H.; Zhao, X.; Wei, Q.; Lei, Z. Preparation and Properties of Reversible Hydrogels Based on Triblock Poly(Amino Acid)s with Tunable PH-Responsivity across a Broad Range. *J. Polym. Sci., Part A: Polym. Chem.* **2017**, *55*, 207–212.
- (33) Gibson, M. I.; Hunt, G. J.; Cameron, N. R. Improved Synthesis of O-Linked, and First Synthesis of S-Linked, Carbohydrate Functionalised N-Carboxyanhydrides (GlycoNCAs). *Org. Biomol. Chem.* **2007**, *5*, 2756–2757.
- (34) Biondi, L.; Filira, F.; Gobbo, M.; Polese, A. N-Carboxyanhydrides (NCAs) of Glycosylated α -Amino Acids: Synthesis and Polymerization. *Pept. 1994 Proc. Twenty-Third Eur. Pept. Symp.*, 1994; pp 198–202.
- (35) Kramer, J. R.; Deming, T. J. General Method for Purification of α -Amino Acid-N-Carboxyanhydrides Using Flash Chromatography. *Biomacromolecules* **2010**, *11*, 3668–3672.
- (36) Tseng, P.-H.; Jiaang, W.-T.; Chang, M.-Y.; Chen, S.-T. Facile Solid-Phase Synthesis of an Antifreeze Glycoprotein. *Chem.—Eur. J.* **2001**, *7*, 585–590.
- (37) Detwiler, R. E.; Schlirf, A. E.; Kramer, J. R. Rethinking Transition Metal Catalyzed N-Carboxyanhydride Polymerization: Polymerization of Pro and AcOPro N-Carboxyanhydrides. *J. Am. Chem. Soc.* **2021**, *143*, 11482–11489.
- (38) Gkikas, M.; Iatrou, H.; Thomaidis, N. S.; Alexandridis, P.; Hadjichristidis, N. Well-Defined Homopolypeptides, Copolypeptides, and Hybrids of Poly(L-Proline). *Biomacromolecules* **2011**, *12*, 2396–2406.
- (39) Gulín, O. P.; Rabanal, F.; Giralt, E. Efficient Preparation of Proline N-Carboxyanhydride Using Polymer-Supported Bases. *Org. Lett.* **2006**, *8*, 5385–5388.
- (40) Smeets, N. M. B.; Van Der Weide, P. L. J.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A. A Scalable Synthesis of L-Leucine-N-Carboxyanhydride. *Org. Process Res. Dev.* **2005**, *9*, 757–763.
- (41) Deming, T. J. Living Polymerization of α -Amino Acid-N-Carboxyanhydrides. *J. Polym. Sci., Part A: Polym. Chem.* **2000**, *38*, 3011–3018.
- (42) Kramer, J. R.; Deming, T. J. Glycopolypeptides via Living Polymerization of Glycosylated L-Lysine N-Carboxyanhydrides. *J. Am. Chem. Soc.* **2010**, *132*, 15068–15071.
- (43) Kramer, J. R.; Deming, T. J. Glycopolypeptides with a Redox-Triggered Helix-to-Coil Transition. *J. Am. Chem. Soc.* **2012**, *134*, 4112–4115.
- (44) Clauss, Z. S.; Kramer, J. R. Design, Synthesis and Biological Applications of Glycopolypeptides. *Adv. Drug Delivery Rev.* **2021**, *169*, 152–167.
- (45) Zhou, M. N.; Delaveris, C. S.; Kramer, J. R.; Kenkel, J. A.; Engleman, E. G.; Bertozzi, C. R. N-Carboxyanhydride Polymerization of Glycopolypeptides That Activate Antigen-Presenting Cells through Dectin-1 and Dectin-2. *Angew. Chem., Int. Ed.* **2018**, *57*, 3137–3142.
- (46) Deming, T. J.; Curtin, S. A. Chain Initiation Efficiency in Cobalt- and Nickel-Mediated Polypeptide Synthesis. *J. Am. Chem. Soc.* **2000**, *122*, 5710–5717.
- (47) Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.; Deming, T. J. Rapidly Recovering Hydrogel Scaffolds from Self-Assembling Diblock Copolypeptide Amphiphiles. *Nature* **2002**, *417*, 424–428.
- (48) Byler, D. M.; Susi, H. Examination of the Secondary Structure of Proteins by Deconvoluted FTIR Spectra. *Biopolymers* **1986**, *25*, 469–487.
- (49) Jackson, M.; Mantsch, H. H. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. *Crit. Rev. Biochem. Mol. Biol.* **1995**, *30*, 95–120.
- (50) Chiou, J.-S.; Tataro, T.; Sawamura, S.; Kaminoh, Y.; Kamaya, H.; Shibata, A.; Ueda, I. The α -Helix to β -Sheet Transition in Poly(L-Lysine): Effects of Anesthetics and High Pressure. *Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol.* **1992**, *1119*, 211–217.
- (51) Higuchi, M.; Miyoshi, H.; Inoue, T.; Kawaguchi, M. PH-Induced Reversible Conformational and Morphological Transition of a Polyleucine Grafted Polyallylamine Assembly. *Polym. Preprint. Jpn.* **2005**, *54*, 4883–4884.
- (52) Greenfield, N. J. Using Circular Dichroism Spectra to Estimate Protein Secondary Structure. *Nat. Protoc.* **2007**, *1*, 2876–2890.
- (53) Lopes, J. L. S.; Miles, A. J.; Whitmore, L.; Wallace, B. A. Distinct Circular Dichroism Spectroscopic Signatures of Polyproline II and Unordered Secondary Structures: Applications in Secondary Structure Analyses. *Protein Sci.* **2014**, *23*, 1765–1772.
- (54) Tiffany, M. L.; Krimm, S. Effect of Temperature on the Circular Dichroism Spectra of Polypeptides in the Extended State. *Biopolymers* **1972**, *11*, 2309–2316.
- (55) Tiffany, M. L.; Krimm, S. New Chain Conformations of Poly(Glutamic Acid) and Polylysine. *Biopolymers* **1968**, *6*, 1379–1382.
- (56) Goodman, M.; Toniolo, C.; Falcetta, J. Conformational Aspects of Polypeptide Structure. XXX. Rotatory Properties of Cyclic and Bicyclic Amides. Restricted and Rigid Model Compounds for Peptide Chromophores. *J. Am. Chem. Soc.* **1969**, *91*, 1816.

(57) Woody, R. W.; Tinoco, I. Optical Rotation of Oriented Helices. III. Calculation of the Rotatory Dispersion and Circular Dichroism of the Alpha- and 310-Helix. *J. Chem. Phys.* 1967, 46, 4927–4945.

The image shows the cover of the journal **JACS Au**. The cover is black with the journal title "JACS Au" in large, gold-colored letters. Below the title, it says "AN OPEN ACCESS JOURNAL OF THE AMERICAN CHEMICAL SOCIETY". The background features a dynamic, abstract graphic of blue and white light streaks forming a circular pattern, resembling a molecular structure or a celestial body.

 Editor-in-Chief
Prof. Christopher W. Jones
Georgia Institute of Technology, USA

Open for Submissions

pubs.acs.org/jacsau ACS Publications
Most Trusted. Most Cited. Most Read.