Session 7C: Database and Privacy

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Compressed Oblivious Encoding for Homomorphically
Encrypted Search

Seung Geol Choi
United States Naval Academy
choi@usna.edu

Linsheng Liu
George Washington University
lls@gwu.edu

ABSTRACT

Fully homomorphic encryption (FHE) enables a simple, attractive
framework for secure search. Compared to other secure search
systems, no costly setup procedure is necessary; it is sufficient for
the client merely to upload the encrypted database to the server.
Confidentiality is provided because the server works only on the
encrypted query and records. While the search functionality is
enabled by the full homomorphism of the encryption scheme.

For this reason, researchers have been paying increasing atten-
tion to this problem. Since Akavia et al. (CCS 2018) presented a
framework for secure search on FHE encrypted data and gave a
working implementation called SPiRiT, several more efficient real-
izations have been proposed.

In this paper, we identify the main bottlenecks of this framework
and show how to significantly improve the performance of FHE-
base secure search. In particular,

o To retrieve £ matching items, the existing framework needs
to repeat the protocol ¢ times sequentially. In our new frame-
work, all matching items are retrieved in parallel in a single
protocol execution.

The most recent work by Wren et al. (CCS 2020) requires
O(n) multiplications to compute the first matching index.
Our solution requires no homomorphic multiplication, instead
using only additions and scalar multiplications to encode all
matching indices.

Our implementation and experiments show that to fetch 16
matching records, our system gives an 1800X speed-up over
the state of the art in fetching the query results resulting in
a 26X speed-up for the full search functionality.

CCS CONCEPTS

« Theory of computation — Cryptographic protocols; - Secu-
rity and privacy — Management and querying of encrypted
data; Cryptography.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11...$15.00
https://doi.org/10.1145/3460120.3484792

Dana Dachman-Soled
University of Maryland
danadach@ece.umd.edu

2277

S. Dov Gordon
George Mason University
gordon.dov@gmail.com

Arkady Yerukhimovich
George Washington University
arkady@gwu.edu

KEYWORDS

secure search; encrypted database; fully homomorphic encryption

ACM Reference Format:

Seung Geol Choi, Dana Dachman-Soled, S. Dov Gordon, Linsheng Liu,
and Arkady Yerukhimovich. 2021. Compressed Oblivious Encoding for
Homomorphically Encrypted Search. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS °21), November
15-19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3460120.3484792

1 INTRODUCTION

As computing paradigms are shifting to cloud-centric technologies,
users of these technologies are increasingly concerned with the
privacy and confidentiality of the data they upload to the cloud.
Specifically, a client uploads data to the server and expects the
following guarantees:

(1) The uploaded data should remain private, even from the
server itself;

(2) The server should be able to perform computations on the
uploaded data in response to client queries;

(3) The client should be able to efficiently recover the results of
the server’s computation with minimal post-processing.

In this work, we will focus on the computational task of secure
search. In this application, the client uploads a set of records to the
server, and later posts queries to the server. Computation proceeds
in two steps called matching and fetching. In the matching step, the
server compares the encrypted search query from the client with
all encrypted records in the database, and computes an encrypted
0/1 vector, with 1 indicating that the corresponding record satisfies
the query. The fetching step returns all the 1-valued indexes and
the corresponding records, to the client for decryption.

While seemingly conflicting goals, the guarantees of (1), (2), (3)
can be simultaneously achieved for the secure search setting via
techniques such as secure multiparty computation and searchable
encryption. Recently, a line of works has focused on Fully Homo-
morphic Encryption (FHE)-based secure search, which we describe
next.

FHE-based secure search. The simplicity of the framework of
secure search on FHE encrypted data is attractive. Compared to other
secure search systems, no costly setup procedure is necessarys; it is
sufficient for the client merely to upload the encrypted database
to the server. Confidentiality is provided because the server works

https://doi.org/10.1145/3460120.3484792
https://doi.org/10.1145/3460120.3484792

Session 7C: Database and Privacy

@ Send encrypted query [g]

query ¢

@ Homomorphically evaluate

la] on []

® Return index [¢*] and data [z+]

@ Decrypt 7" and @~

Client Server

In the above, [-] denotes an FHE-encrypted ciphertext.

Figure 1: The secure search framework in [1]

only on the encrypted query and records. The server can still per-
form the search correctly due to the powerful property of the full
homomorphism of the underlying encryption scheme.

For this reason, researchers have been paying increasing atten-
tion to this problem. In particular, Akavia et al. [1] introduce a
framework of performing secure search on FHE-encrypted data
(see Figure 1).

Informally, a secure, homomorphic encrypted search scheme has
the following Setup:

(1) (Setup) The client encrypts and uploads nitems x = (x1,...,xn)

to the server. Let [x] = ([x1],...,[xn]). denote the en-
crypted data stored in the server.

Throughout the paper, we let [- | denote an FHE-encrypted
ciphertext. After the encrypted records have been uploaded, the
client can perform a secure search using three algorithms, (Query,
Match, Fetch).

(2) (Query) The client sends an encrypted query [g] to the
server.

(3) (Match) The server homomorphically evaluates the query [¢]
on each record [x;] to obtain the encrypted matching results
[6] = ([B1], - - -, [bn])- That s, b; is 1 if item x; satisfies the
given query g; otherwise, b; is 0.

(4) (Fetch) Given [b], the server homomorphically computes
[i*], where i* = min{i € [n] : b; = 1} which corresponds to
the first matching record index. It fetches [x;+] (obliviously)
and sends ([[i*], [x;+]) to the client for decryption.

Multiplications in the fetching step. Akavia et al. also provide
a construction that performs the fetching step in O(n log? n) homo-
morphic multiplications. Subsequently, more efficient algorithms
have been presented with O(nlog n) multiplications [2] and O(n)
multiplications [45].

1.1 Motivation

Bottleneck: fetching records sequentially. Suppose a client wants
to fetch all matching items. Under the above framework, the client
would first obtain the first matching index i* and its corresponding
item x;+. To fetch the second matching item, the framework sug-
gests that the client should slightly change the original query g to

a new query q;. as follows:

. q;*(i, x;) return true if q(i, x;) is true and i > i*.

Then, by executing a new instance of the protocol with the
encrypted query [q;.], the client will obtain the second matching

2278

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

item. By repeating this procedure, the client will ultimately obtain
all the matching records.

Note that the query g}. embeds i* in itself as a constant, which
implies that there is no way for the client to construct this query g;.
without obtaining i* first. In other words, the client can construct
the query for the second matching item, only after fetching the first
matching item. In this sense, the framework inherently limits the
client to fetch only a single matching record at a time in a sequential
manner.

If there are £ matching records, the client and server have to ex-
ecute ¢ instances of the Query, Match, and Fetch algorithms. Since
each Match and Search step requires costly homomorphic multi-
plications, the limitation of sequential protocol execution creates a
serious bottleneck with respect to the running time. This leads us
to ask the following natural question:

Is there a different secure search framework that allows the
client to fetch all the matching records by executing a smaller
number of protocol executions, possibly avoiding sequential
record fetching?

Reducing homomorphic multiplications. All previous schemes
have to perform Q(n) homomorphic multiplications in the fetching
step. Since homomorphic multiplications are costly operations, it
is desirable to reduce such computations, which begs the natural
following question:

Can you reduce the number of homomorphic multiplications
in the fetching step?

In this paper, we answer both of the above questions affirmatively.

1.2 Our Work

Parallelizing the Fetch procedure. To address the issues, we in-
troduce a new secure search framework where the matching items
are retrieved in parallel in a constant number of rounds. Our Setup,
Query and Match algorithms are the same as in prior work. How-
ever, we modify the Fetch procedure, dividing into two steps: En-
code and Decode. In the Encode step, the server homomorphically
inserts the matching items into a data structure - the particular
structure depends on the construction, as we provide 3 different
constructions, each using a different encoding. After receiving the
encrypted encoding, the client decrypts the encoding and runs the
Decode step to recover the items.

Compressed oblivious encoding. The encoding is computed ho-
momorphically, and, most importantly, allows to encode the full
result set, rather than just a single item. In particular, we introduce
a notion of Compressed Oblivious Encoding (COE). A compressed
oblivious encoding takes as input a large, but sparse, vector and
compresses it to a much smaller encoding from which the non-zero
entries of the original vector can be recovered. What makes this
encoding oblivious is that the encoding procedure is performed on
encrypted data. In certain constructions, the encoding includes the
data values (CODE, compressed oblivious data encoding), and in
others it only includes the indices (COIE, compressed oblivious
index encoding). In the latter case, the Decode procedure is interac-
tive, and allows the client to recover the values from the decoded
set of indices.

Session 7C: Database and Privacy

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

rounds #Match hmult hadd smult communication plaintext modulus
LEAF [45] s s O(ns) O(nslogn) 0 O(s -logn - |C|) 2
Protocol w/ BF-COIE 3 1 0 O(nlog %) 0 O(s'*€ log 2 - |C| + pir(s)) prime
Protocol w/ PS-COIE 3 1 0 n-s n-s O(s - |C| + pir(s)) prime
Protocol w/ BFS-CODE 2 1 n O(An) 0 O(sA - |C)) prime

A: statistical security parameter.
n: number of uploaded encrypted records.
s: number of matching records.
€: protocol parameter such that 0 < € < 1.

|C|: length of an FHE ciphertext.

#Match: number of times the matching algorithm is executed.
hmult: number of homomorphic multiplication operations used in the overall fetching step.
hadd: number of homomorphic addition operations used in the overall fetching step.
smult: number of scalar (plain) multiplication operations used in the overall fetching step.

pir(s): communication complexity required to retrieve s records via a PIR protocol.

Figure 2: Performance Comparisons when s records are fetched

For simplicity, when describing the generic syntax of secure
search scheme, we denote the Encode procedure as taking both the
indices and the values as input, and we suppress the fact that when
the values are not used during Encoding, the Decoding step must
be interactive. Recall, we use [b] = ([b1], - . ., [bn]) to denote the
encrypted bit vector that results from the Match step.

(4) (Encode) Let S ={i € [n]:b; =1}.LetV = {v; :i € S}. The
server homomorphically evaluates an [encoding(S, V)] and
send it to the client.

(5) (Decode) The client decrypts [encoding(S)] and runs the
decoding procedure to recover (S, V).

We assume that the results set |S| is small (i.e., sublinear in n).
We would like the size of the compressed encoding to be sublinear
in n to maintain meaningful communication cost.

No multiplications in the Encode step. To ensure minimal com-
putational cost for encoding the results, we also wish to minimize
the number of homomorphic multiplications. Recall, the best prior
work requires O(n) multiplications by the server. Somewhat sur-
prisingly, we demonstrate three encoding algorithms that can be
evaluated without any homomorphic multiplications!

Using PIR (Private Information Retrieval). The asymptotic
complexities and trade-offs of the search protocols are presented in
Figure 2.

In some of our protocols (i.e., the search protocols with BF-COIE
and PS-COIE; see Sections 4 and 6.3 for more detail), the indices and
actual records are fetched in separate steps. This allows us to focus
on optimizing the retrieval of the indices after which the values
can be fetched using an efficient (setup-free) PIR protocol resulting
in overall savings.

However, if reliance on PIR is undesirable, we also offer a variant
that fetches the values directly (i.e., the protocol w/ BFS-CODE in
Figure 2; see Sections 5 and 6.4 for more detail), as in prior work.

Implementation. We implement all of our proposed schemes and
compare their performance with that of prior work. Our experi-
ments show that our schemes outperform the fetching procedure

2279

of prior work by a factor of 1800X when fetching 16 records, which
results in a 26X speedup for the full search functionality.

2 PRELIMINARIES

Let A be the security parameter. For a vector a, let nzx(a) denote
the set of all the positions i such that a; is non-zero, i.e.,

nzx(a) := {i : a; # 0}.

Chernoff bound. We will use the following version of Chernoff
bound.

THEOREM 2.1. Let X1, ..., Xy be independent random variables
taking values in {0, 1} such thatPr[X; = 1] = p. Let i := Exp[) X;]
np. Then for any & > 0, it holds

9 a
<|l—/— .
1+)17

FHE. We use a standard CPA-secure (leveled) fully homomorphic
encryption scheme (Gen, Enc, Dec). We refer readers to [2, 45] for
a formal definition. We use [x] to denote an encryption of x.

We also use + (resp. -) to denote homomorphic addition (resp.,
multiplication). For example, [c] := [a] + [#] means that homomor-
phic addition of two FHE-ciphertexts [a] and [b] has been applied,
which results in [c].

n
Pr ZX,- >(1+ &)

i=1

PIR. A PIR protocol allows the client to choose the index i and
retrieve the ith record from one (or more) untrusted server(s) while
hiding the index value i [18].

Assume that each of the k server has n records D = (dy,...,dn)
where all items d; have equal length. A single-round k-server PIR
protocol consists of the following algorithms:

e The query algorithms Q;(i,r) — g; for each server j € [k],
which are executed by the client with input index i and
randomness r.

o The answer algorithms A;(D, gj) — a; for each server j €
[k], which is executed by the jth server.

e The reconstruction algorithm R(i, r, (a1, . . ., ag)) — d;.

Session 7C: Database and Privacy

The communication complexity of a PIR protocol is defined by the
sum of the all query lengths and answer lengths, i.e.,

> lajl +lagl.
Jjelk]

A PIR protocol is correct if for any D = (dj, . .
-+ = |dp|, and for any i € [n], it holds that

.,dn) with |d| =

Pr [R(i, r{A/(D, Qi) = di] =1

A PIR protocol is private if for any j € [k], for any iy, i1 € [n]
with iy # i1, the following distributions are computationally (or
statistically) indistinguishable:

{Qj(io, N}r = {Qj(i1, 7)}r.
2.1 Bloom Filter

A Bloom filter [9] is a well-known space-efficient data structure
that allows a user to insert arbitrary keywords and later to check
whether a certain keyword in the filter.

BF.Init(). The filter B is essentially an ¢-bit vector, where ¢ is a
parameter, which is initialized with all zeros. The filter is also
associated with a set of n different hash functions

H = {hg (0,1} > [},

BF.Insert(B, @). To insert a keyword «, the hash results are added
to the filter. In particular,
e For g € [5] do the following:
Compute j = hq(a) and set B; := 1. Here B; is the jth bit
of B.

BF.Check(B, f). To check whether a keyword § has been inserted
to a BF filter B, one can just check the filter with all hash results. In
particular,

e For g € [n] do the following:

Compute j = hq(f) and check if Bj is set.
o If all checks pass output "yes". Otherwise, output "no".
The main advantage of the filter is that it guarantees there will

be no false negatives and allows a tunable rate of false positives:

-3 = -7

where s is the number of keywords in a Bloom filter.

Random oracle model for hash functions. We show our anal-
ysis in the random oracle model. That is, the hash functions are
modelled as random functions.

2.2 Algebraic Bloom Filter

In this work, we leverage a variant of the Bloom filter where, when
inserting an item, the bit-wise OR operation is replaced by addition.
There have been works using a similar idea of having each cell hold
an integer instead of holding a bit [21, 34].

Moreover, we consider a limited scenario where the upperbound
on the number of keywords to be inserted is known beforehand. In
particular, let s denote such an upperbound.

As before, the filter is also associated with a set of n different
hash functions H = {hq : {0,1}" — [f]}gzl. However, now the

2280

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

filter B is not an £-bit vector but a vector where each element is in
[sn] (i.e., B € [sn]%) 1. Therefore, the number of bits to encode B is
now blown up by a multiplicative factor [lg sy].

The BF operations are described below where differences are
marked by framed boxes.

BF.Insert(B, a). To insert a keyword a, the hash results are added
to the filter. In particular,

e For g € [5] do the following:

Compute j = hg(a) and set .

BF.Check(B, f). To check whether a keyword f has been inserted
to a BF filter B, one can just check the filter with all hash results. In
particular,

e For g € [5] do the following:

Compute j = hy(f) and check if B;j is .

o If all checks pass output "yes". Otherwise, output "no".

It is easy to see that this variant construction enjoys the same
properties as the original BF construction.

3 COMPRESSED OBLIVIOUS ENCODING

As our main building block, we introduce a new tool we call Com-
pressed Oblivious Encoding. A compressed oblivious encoding
takes as input a large, but sparse, vector and compresses it to a
much smaller encoding from which the non-zero entries of the orig-
inal vector can be recovered. What makes this encoding oblivious
is that the encoding procedure is oblivious to the original data; in
fact, in our constructions the original data will all be encrypted. An
efficient encoding must satisfy the following two performance re-
quirements: 1) The size of the encoding must be sublinear in the size
of the original array, and 2) constructing the encoding should be
computationally cheap. Our constructions only use (homomorphic)
addition and multiplication by constant (i.e. plaintext values).

A related notion is that of compaction over encrypted data [5, 8]
which aims to put all non-zero entries of a vector to the front
of the encoding. Our encoding can be viewed as a form of noisy
compaction where, in addition to keeping all the non-zero entries,
it allows a small number zero entries to be mixed in with the result.
Thus, a compressed encoding trades some inaccuracy in the output
for much cheaper construction costs.

We define two variants of compressed oblivious encodings, one
that encodes the indices of non-zero entries and one that encodes
the actual entries themselves.

3.1 Compressed Oblivious Index Encoding

A compressed oblivious index encoding (COIE) encodes the indices
or locations of all the non-zero entries in the input array. We begin
by defining the parameters and syntax for a COIE scheme.

Parameters. A COIE scheme is parametrized as follows.

o n: Input size — The dimension of the input vector v.
e s: Sparsity — Bound on the number on non-zero entries in v.
e c: Compactness — The dimension of the output encoding.

'We can reduce sn further to (1 - (s/€) - log(s/€)) using a Chernoff bound to bound
the number of collisions contributing to the sum, but we will use s# for the sake of
simplicity of presentation.

Session 7C: Database and Privacy

e fp: False positives — The upperbound on the number of false
positives returned by the decoding algorithm.

Syntax. A (n,s, ¢, fp)-COIE scheme has the following syntax:

o [yi,---,[yc] « Encode([v1], ..., [vn]). The Encode al-
gorithm takes as input a vector of ciphertexts with v; €
{0,1} for all i € [n]. It outputs an encrypted encoding
- [rel.

e | «— Decode(y,...,yc). The Decode algorithm takes the
encoding (yi, . . ., Y¢), in decrypted form, and outputs a set
IC[n]

Correctness. Let (y1, ..., yc) < Dec([y1]s- - -, [yc]) denote a cor-
rect decryption of the encoding.

Definition 3.1. A (n,s,c, fp)—COIE scheme is correct, if the follow-
ing conditions are satisfied:
o (No false negatives) For all v € {0, 1}" with at most s non-
zero positions, and for all i € nzx(v), it should hold

i € Decode(Dec(Encode([v1], - . ., [vn])))

with probability at least 1 — negl(1) where the random coins
are taken from Encode.

o (Few false positives) For all v € D" with at most s non-zero
positions, consider the set of false positives

E={i€[n]:v;=0,butiel},

where I = Decode(Dec(Encode([[v1], . . ., [vn]))).
We require that |E| < f;, with the overwhelming probability
over the randomness of Encode.

Efficiency. For efficiency, we look at the following three parameters
of a COIE:

e The type and number of operations used by the Encode

algorithm.
o The size of the encoding.
o The computation cost of the Decode algorithm.
For an efficient construction, we require that the latter two of

these are sublinear in the size of the input vector.

3.2 Compressed Oblivious Data Encoding

A Compressed Oblivious Data Encoding (CODE) scheme is very sim-
ilar to COIE except, rather than encoding the locations of non-zero
entries, it encodes the values of these entries. We give a definition
of CODE below where differences are marked by framed boxes.

Parameters. A CODE scheme is parametrized by the same four
parameters (n, s, c, fp) as a COIE.

Syntax. A (n, s, c, fp)—CODE scheme over has the fol-

lowing syntax:
e [yi]s---, [yc] < Encode([v1],. .., [vn])- The Encode algo-
rithm takes as input a vector of ciphertexts with v; €
all i € [n]. It outputs an encrypted encoding [[y1], . . ., [yc]-

. « Decode(y1, . . ., yc). The Decode algorithm takes the
encoding (y1, . . ., Yc), in decrypted form, and outputs a set

for

Correctness.

2281

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

Definition 3.2. A (n,s,c, fp)—CODE scheme over domain D is
correct, if the following conditions are satisfied:

o (No false negatives) For all v € {0, 1}" with at most s non-
zero positions, and for all i € nzx(v), it should hold

v; € Decode(Dec(Encode([v1], . .., [vn]))) ‘

with probability 1 — negl(1) where the random coins are
taken from Encode.

o (Few false positives) For all v € D" with at most s non-zero
positions, consider the set of false-positive values

‘Ez{zeV:ziv,-foranyienzx(v)}‘,

where V = Decode(Dec(Encode([v1], . . ., [vn])))-
We require |E| < f, with the overwhelming probability over
the randomness of Encode.

4 COIE SCHEMES

We assume the input index vector v € {0, 1}" is sparse. In particular,
throughout the paper, we assume s = o(n).

4.1 A Warm-up construction

Using an algebraic BF, we can create an (n, s, c, fp)—COIE scheme
(the parameters ¢ and f, will be worked out after the description
of the scheme).

Encode([v1], . .., [vn]). The encoding algorithm works as follows:

(1) Initialize a BF [B] := ([B1],..., [B¢]) with B; = 0 for all

j-Let H = {hg : {0,1}" — [c]}Z:1 be the associated hash
functions.

(2) Fori=1,...,m

(a) Forg=1,...,n, do the following: Compute j = hq(i) and
set [[Bjﬂ = [[Bj]] + IIU[]].

Note that at step 2.a in the above, if v; = 0, then B; stays the
same. On the other hand, if v; = 1, then B; will be increased by 1.
This implies that B will exactly store the results of the operations
{BF.Insert(B, i) : i € nzx(v)}.

Decode(By, . .., Bc). Given the algebraic BF B, we can recover the
indices for the nonzero elements as follows:

o Initialize I to be the empty set.
e For i € [n]: if BF.Check(B, i) = “yes",add i to I.
e return .

Parameters c and ﬁ, Since this is a warm-up construction, we
perform only a rough estimation on the false positive parameter
and the compactness parameter.

For reasons that will become clear later, we wish to keep the
upper bound on the number of false positives (fp) small. In par-
ticular, we use a BF with false-positive rate 1/n. Since there are
n operations of BF.Check, the expected number of false positives
is 1, and from the Chernoff bound, the number of false positives
is bounded by Q(log A) with overwhelming probability in A. This
implies that we have f, = Q(log A).

The dimension c of the Bloom filter B can be computed using
the following equation of BF false positive ratio:

Session 7C: Database and Privacy

1

Setting ¢ = ns - n” will satisfy the equation. This can be verified
by using an equality 1 — e < x for x € [0, 1]; that is, 1 — e <
? =1/nt/n.

Efficiency.

o The encoding algorithm uses ny homomorphic addition op-
erations, and nn hash functions.

1

e The dimension ¢ of the encoding is s - n7. Usually, 7 is set
to between 2 and 32.

o The decoding algorithm uses n operations of BF.Check.

In summary, we have reduced the encoding size ¢ to be sub-
linear in n as desired. However, we still need to reduce the number
BF.Check operations in Decode to be sub-linear in n. We show how
to achieve that in our next construction.

4.2 BF-COIE

We now show how to improve the above construction to achieve
decoding in time o(n). The main idea of this improvement is to use
Bloom filters to represent a binary search tree, one BF per level
of the tree. We can then guide the decoding algorithm to avoid
decoding branches that do not contain non-zero entries. As most
branches can be truncated well before reaching the leaf-level Bloom
filter, this results in sublinear total cost.

Example. Before presenting the formal protocol for this construc-
tion we convey our idea through an example. Let n = 32, and
suppose we wish to encode the indices I = {1, 15, 16}. Denote

k_ [,
I _{bc].zel}.
Intuitively, an element i in I* can be thought of a range of length
2k covering [(i — 1) - 2k + 1,1 - 2%]. We have:

o I* = {1}.

o I°={1,2}.

o I? ={1,4}.

o ' ={1,8}.

o 1°={1,15,16}.

Now, assume we insert each set I¥ into its own BF. We can
traverse these BF’s to decode the set I as follows:

(1) Check I* for all possible indices. The only possible indices at
this level are 1 and 2, since n = 32 and I* divides the original
indices by 2% = 16.

In the above example, When we query the BF for I4, it only
contains the index 1, which means that no values greater
than 16 are contained in I. We can thus avoid checking any
such indices at the lower levels.

Now consider the BF at the next level (i.e., the BF for I®).
The only possible values at this level are 1,2,3,4, but since
we already know that there are no values greater than 16 in
I, we only need to check for values 1, 2 (since 3 - 8 > 16).
Check I? for indices 1, 2. The BF will show that indices 1
and 2 are both present, which means that we need to check
indices 1,2 and 3, 4 in I2.

Check I for indices 1, 2, 3, 4. The BF will show that indices 1
and 4 are present, which means that we only need to check
indices 1, 2 and 7, 8 in I', all other indices can be skipped.

@

®)

2282

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

(4) Check I for indices 1, 2, 7, 8. The BF will show that indices
1 and 8 are present, which means that we need to check
indices 1, 2 and 15, 16.

(5) Check 19 for indices 1, 2, 15, 16, and output the final present
indices 1, 15, 16.

Assuming, for now, that there are no false positives, observe
that this approach checks at most 2 - |I| values at each level, and
there are 1g n levels. Therefore, the decoding algorithm will check
O(|I] - Ig n) indices, which is sub-linear in n.

BF-COIE. We now describe our BF-COIE construction. As before,
we will work out the parameters after describing our construction.
The encoding algorithm is described in Algorithm 1.

Algorithm 1 BF-COIE.Encode([[v1], . . ., [on])

For simplicity, n and s are assumed to be powers of 2.

(1) t:=1g 2
(2) Fork=0,...,t:
(a) Initialize [B¥] = ([BF]... .. [BE]) := (nil,....nil).

(b) Choose Hk = {h’; :{0,1}* — [f]}gzl at random.
(c) Fori € [n] and for q € [7]:
i" = [1/2K7, j = BE (@),
If [[Bjkﬂ is nil, then [[Bjk]] = [oi]
Otherwise, [[Bf]] = [B;‘]] + [vi]
(3) Output [B°], ..., [B].

Note that in steps (a) to (c) above, the warm-up construction is
used to construct BF BX for indices I*.

In order to reduce the size of the output encoding, we set ¢t to
be Ig 7 instead of Ig n as described previously. Note that when ¢ is
set in this way, I’ contains at most n/2! = 2s possible values thus
maintaining our invariant.

The decoding algorithm is described in Algorithm 2.

Algorithm 2 BF-COIE.Decode(B, . . ., BY)

(1) Initialize ,1,..., I "1 := 0
(2) Initialize I* := {1,...,n/2!} = [2s]
(3) Fork =t,t—1,...,1, and for i’ e 1%
If BF.Check(Bk, i’) is “yes", add 2i’ — 1, 2i" in k-1
(4) Fori e IY:
If BF.Check(B, i) is “yes", add i to I
(5) Output I

Useful lemma. The following lemma will be useful to analyze the
parameters ¢ and fj,.

LEMMA 4.1. Consider a Bloom filter with false positive rate #
where m is an arbitrary positive integer. Suppose at most m BF.Check
operations are performed in the BF. Then, for any § > 0, we have:

el
<

iti —_—.
Pr[# false positives > 1+ §] < (1781

Session 7C: Database and Privacy

The proof, by an application of the Chernoff bound, can be found
in Appendix A.
Regarding the above Lemma, we remark that setting § = Q(log 1),

we have
m
in >1+06
i=1

Parameters c and fj,. We set the false positive upperbound f}, :=
Q(log 4) for the BF-COIE scheme. In our experiments, we set f, =
16.

Now, let m = max(2s, s + 2fp), we set the BF false positive rate
to 1/m. Recall that in the BF-COIE construction, the topmost BF
B! performs the BF.Check operation with 2s times; see line (2) in
Algorithm 2. Using the above Lemma, the number of false positives
in the top level BF Bf is at most fp with all but negligible probability
in A. Furthermore, the index i in B? is expanded into two indices
2i — 1 and 2i in B*~!. This means that the number of false indices
to be checked in B~! due to the false positives in Bf is at most 2fp.

Now consider an index i that belongs to BY. Algorithm 2 will
run BF.Check on the values 2i — 1 and 2i in B'~!. Since at least one
of these values must actually belong to B*~1, this leads to at most
one false index being checked. Thus, the maximum number of false
indices that would be checked in B{~! is at most s + 2]?, (ie., 2fp
from false positives of B and s from true positives of BY).

The above argument applies inductively all the way to the bottom
most level, which means that the maximum number of false indices
that would be checked in each level BF B! will be at most s + 2 fp-In
the end, the bottom BF will have at most ﬁ, false positives, and the
overall BF-COIE scheme will have at most f, false positives with
all but negligible probability in A.

For the compactness parameter ¢, we must determine the dimen-
sion ¢ of each BF. Recall that we set the BF false positive rate to
1/m for m = max(2s,s + 2fp):

_nus
(1—e 4

Setting £ =n-s- m% would satisfy the above condition, which can
be verified using an inequality 1 — e™* < x for x € [0, 1]; that is,
1-e 7 < = @/mytn,

Since the encoding has ¢ + 1 BFs, the overall compactness pa-
rameter is as follows:

= = s et
c=(+1) K_O(n s lgs).

Pr = negl(A).

n 1
yel
m

Efficiency.

e The size ¢ of encoding is O (n . sl+% -lg %) In our experi-
ment, we choose 1 = 2.

e The encoding algorithm uses O(7 - n - g &) homomorphic
addition operations and hash functions.

e The decoding algorithm uses BF.Check operations for O(s g)

times.

In summary, assuming s = o(n), we reduced the encoding size
¢ to be sub-linear in n. Moreover, we also reduced the number
BF.Check operations to be sub-linear in n.

Remark. Although this scheme has multiple BFs, the size of encod-
ing c is smaller than that of the warm-up scheme! This is because

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

with multiple levels of BFs, we can relax the false positive ratio
for each BF. The encoding computation time was increased by a
multiplicative factor of Ig 2.

4.3 COIE Scheme Based on Power Sums

Removing false positives using power sums. We offer another
encoding scheme using quite different techniques that can eliminate
the false positives of the prior construction. To achieve this, we
abandon Bloom filters, and instead use a power sum encoding, as
has been done in several works using DC-Nets for anonymous
broadcast [33, 39].

PS-COIE. We describe a COIE scheme based on power sums, which
we call PS-COIE. As before, we will work out the parameters after
describing our construction. The encoding algorithm is shown
below.

Algorithm 3 PS-COIE.Encode([v1], . . ., [vn])
(1) Forj=1,...,s: ‘
Compute [w;] = X7, ¥ - [oi]
(2) Output [wq], ..., [ws].

Note that the values of i/ (modulo the underlying plaintext mod-
ulus) are publicly computable, so computing i/ - [v;] only requires
scalar multiplication and no homomorphic multiplication.

Recall that v; € {0,1}. If we let I = {i : v; = 1} denote the
indices of the nonzero elements, then note that

n
wj =Zij~’ui =Zij.
i=1 iel
Therefore, this w; is the jth power sum of the indices. Using the
power sums, we present the decoding algorithm in Algorithm 4.

Algorithm 4 PS-COIE.Decode([w1], .. ., [ws])

(1) Recall that we have wj = X\, ¢r x, forj=1,...,s,and we
would like to reconstruct all x’s in I.

(2) Let f(x) = asx® + as—1x5~1 + -+ + a;x + ao denote the
polynomial whose roots are the indices in I.

(3) Use Newton’s identities to compute the coefficients of this

polynomial f(x):
as =1
as—1 = wi
as—2 = (as—1wi —wz)/2

as-3 = (as—2w1 — ds—1w2 + w3)/3

ag = (ayw1 — agwa + - - - ws)/s

(4) Extract and output the roots of the polynomial f(x).

Parameters c and f},. This COIE scheme has no false positives;
that is, f, = 0. The compactness parameter c is equal to s.

Efficiency.

2283

Session 7C: Database and Privacy

e The encoding algorithm uses s - n homomorphic addition
operations and scalar multiplications?.

e The encoding consists of s ciphertexts.

e The decoding algorithm computes coefficients in time O(s?).
Roots of degree-s polynomial can be found in time O(s* log p),
where p is the plaintext modulus of the underlying FHE, by
using the Cantor-Zassenhaus algorithm [13].

5 CODE SCHEME

In the previous section, we showed two constructions of COIE
schemes for encoding a vector of indices using sublinear storage.
We now turn to the construction of CODE schemes, which, instead
of encoding the indices of non-zero entries, encode the actual data
values.

Simplified key-value store. To construct our CODE scheme, we
first construct an auxiliary data structure that supports the follow-
ing operations:
e |nit(). Initialize the data structure.
e Insert(key, value). This operation allows the user to insert
an item based on its key and value.
e Values(). Returns all values that have been inserted thus far.

This data structure is simpler than a typical key-value store since
it doesn’t need to find an individual item by key. Note, however,
that this is still sufficient to serve our purpose of constructing a
CODE scheme.

5.1 BF Set

We now show how to instantiate a simplified key-value store using
a data structure we call a Bloom filter set (BFS) that is in turn based
on the algebraic Bloom filter presented in Section 2.2. To insert a
pair (key, value), the Bloom filter set stores the actual value rather
than an indicator bit. Items are inserted similar to before, by adding
their value to the locations indicated by the hashes of the key.

Input data format. For our construction we make an assumption
on the format of the inserted data. Specifically, we assume that all
inserted values contain a unique checksum (e.g., a cryptographic
hash of the value). We assume that this checksum is sufficiently long
that a random sum of checksums does not give a valid checksum
except with negligible probability (as a function of 1).

Construction. We first describe the construction of the data struc-
ture. We show below how to choose parameters in such a way that
the client can extract all the matched items from this Bloom filter,
with overwhelming probability.

e BFS.Init() — (B, H). Create an {-dimensional vector B where
each element can store any possible value in the domain
D. Choose a set of 5 different hash functions H = {hg :
{0,1}* - [f]}gzl. Initialize B; := 0 for i € [£].

e BFS.Insert(B, H, key, @). To add (key, @), we add « to the
values stored at the locations indicated by the hashes of key.
Specifically,

- Forq € [n]:
Compute j = hg(key) and set Bj := B; + a.

2We do not count the public multiplications to produce powers of i

2284

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

e BFS.Values(B). Initialize a set V to be the empty set. For
Jj € [£], if Bj has a valid checksum, add B;j to V. Finally,
output V.

We note that, as previously proposed by Goodrich [25], it is
possible to avoid the checksum by maintaining a counter of the
number of values inserted for each location. Then, BFS.Values only
returns values at locations with a counter of 1.

Parameters. We show how to set the Bloom filter parameters to
guarantee that all values can be recovered with all but negligible
probability. We assume that we know the upper bound s on the
number of inserted values. We prove the following lemma.

LEMMA 5.1. If at most s values have been inserted in the BFS data
structure, then by setting n and { such that

> 2(sp—1),
we can recover all s values with probability at least 1 — s - (1/2)".

Proor. Consider a (key, value) pair (k;, @;). We say that this
pair has a total collision if every hash position for the pair is also
occupied by another inserted key, value pair. In this case, @; cannot
be recovered. On the other hand, if at least one hash position has
no collisions, then we can recover the value. Note that the collision
depends on the key k; but not the value a;.

For a given key k;, we define the event TCOL(k;):

TCOL(k;) = 1if Vg € [n], (K", ¢') # (ki, q) : hg(ki) = hy (K').

Here, k’ can be the key of any item that has been inserted in the set.
Since the set contains at most s items, there are at most s possible
keys for k’. Recall also that n hash functions are applied for each
item.

Since for each k;j, there are at most ns — 1 pairs of (k’, ¢")s that
are different from (k;, g), we can bound the collision probability as
follows:

—-1\"
PHTCOL(k)] < (—('73 -))
Thus, if we choose n and ¢ such that £ > 2(sp — 1), we have
Pr[TCOL(k;)] < (1/2)"
Taking a union bound over all s inserted values, we have

Pr[3k; : TCOL(k;)] < s-(1/2)"

5.2 CODE Scheme Based on BF Set

In this section, we construct a CODE scheme. Recall that unlike
encoding the indices through a COIE scheme, a CODE scheme
encodes data in a compressed manner. The main idea of our con-
struction is simulating the operations of BFS; we call our scheme
BFS-CODE.

Pre-processing the input data. As mentioned in the description
of the BF Set construction, we need to pre-process the input data
so that each item is attached with its checksum. Although a data
item v is represented as a single number, it is assumed that v can
be parsed as v.val for its actual value and v.tag for its checksum.
Moreover, we assume that the checksum is long enough, such that
a random linear combination of checksums is only negligibly likely
to produce a valid checksum (i.e., |checksum| = w(A)).

Session 7C: Database and Privacy

We stress that when our CODE scheme is used for secure search,
this pre-processing can be performed locally by the client prior to
encrypting his data. Moreover, computing checksum adds only a
tiny amount of overhead.

BFS-CODE. We now describe our (n, s, c,]?,)-BFS-CODE construc-
tion over domain D. As before, we will work out the parameters
after describing our construction. The encoding algorithm is shown
below.

Algorithm 5 BFS-CODE.Encode([v1], . - -, [vn])
1) p=A+1gs;€=2(nps—1)
(2) Initialize [B] = ([B1], - - ., [Be]) := ([O]. - - .. [0]).
(3) Choose H = {hq : {0,1}* — [f]}Z:1 at random.
(4) For i € [n] and for q € [n]:
J = hq(D); [Bj] = [Bj] + [oi]
(5) Output [B].

Note that at step 4 in the above, if v; is 0, then B; stays the
same. On the other hand, if v; is not 0, B; will be increased by
v;. This implies that B will exactly hold the result of operations
{BFS.Insert(B, H, i,v;) : i € nzx(v)}.

The decoding algorithm is simple, and it’s described in Algo-
rithm 6.

Algorithm 6 BFS-CODE.Decode(B)
(1) Output BFS.Values(B)

Correctness. This is immediate from the additive homomorphism
of the underlying encryption scheme and the parameters for the
BFS. In particular, we set 7 = A + lgs so that the probability of
recovery error is at most 22,

Parameters c and f;,. The checksums attached to the data items
ensure that we have no false positives with overwhelming probabil-
ity, that is, f, = 0. The compactness parameter c is the dimension
¢ of the BF, which is O(zs).

Efficiency.

e The encoding algorithm uses £ = O(#s) encryption opera-
tions, 7 - n. addition operations, and nn hash functions.

o The encoding consists of ¢ ciphertexts.

e The decoding algorithm uses ¢ decryption operations.

Since by Lemma 5.1, the size ¢ of the Bloom filter only depends
on the number of matches s and the number of hash function 7,
we get that the communication complexity of the above protocol is
independent of the database size n.

6 SECURE SEARCH PROTOCOLS

We implement secure search protocols by using compressed oblivi-
ous encoding schemes. We begin by defining a relaxed notion of
correctness that allows for false positives, as is needed in some of
our constructions. we then define security of secure search.

2285

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

6.1 ((, f,)-Relaxed Secure Search

We relax the correctness guarantee to allow the Client to retrieve
a superset of the matching records. Specifically, if S is the set of
indexes matching a Client’s query g, then at the end of the protocol,
we require the Client to obtain a set S’ such that:

e With all but negligible probability, S € S’

e With all but negligible probability, |S” \ S| < fj.

We parameterize a secure search scheme by (¢, fp), where £ is

the amortized communication complexity per matching record, and
fp is the number of “false positives,” as defined above.

6.2 Security of Setup-free Secure Search

To define security of our secure search schemes, we use a game-
based security definition similar to that of Akavia et al. [2]. The
game is between a challenger and an adversary A with regard to a
setup-free search scheme, sec-search, and an FHE scheme, FHE.

GamesFelj;:search(ﬂ):

(1) The challenger runs a key generation algorithm (with com-
putational security parameter k) and sends the evaluation
key to A so that A can perform homomorphic additions
and multiplications.

(2) A chooses either:

e Two databases x° = (x?, .. .,xg) and x! = (x%, .. .,x}l) of
the same length, and a query g, or

o A single database x = (x1, ..., x,) and two queries qo, q1
of the same circuit size.

In both cases, we require that the sizes of the two result sets

(denoted by s) are equal.

(3) The challenger samples b «<— {0, 1}. Then, either
e Runs Setup on input xb

sec-search on input g, or

e Runs Setup on input x, and the search protocol from

sec-search on input g”.
(4) A outputs a bit b’
(5) We say that A has advantage

AdvEsseareh () = | Pr[b = b'] - 1/2].

and the search protocol from

Definition 6.1. A setup-free (¢, fp)-secure search scheme sec-search
is fully secure if every PPT adversary A controlling the server has
a negligible advantage AdeFT_fésearCh(ﬂ) < negl(x) in the game
above.

6.3 From COIE to Secure Search

We next present our framework for obtaining Secure Search from
COIE. The intuition is likely already clear from the previous descrip-
tions: the encrypted client query is applied to the dataset, returning
an encrypted bit vector indicating where index matches lie. The
server homomorphically computes the hamming weight of this
vector, and sends it to the client for decryption. This provides the
result set size to the Server, allowing it to encode the result vector
in the COIE.? The encoding is sent to the client for decryption and
decoding.

3We note if we don’t wish to reveal this to the server, we can use a fixed, global upper
bound, or, if it is appropriate to the application, the client can add noise to provide
differential privacy. It is also worth pointing out that prior work leaks the result set
size as well.

Session 7C: Database and Privacy

Because the COIE only encodes the indices, and not the data
values, we then add a PIR step to fetch the corresponding data. Note
that if the COIE scheme admits false positives, it is possible that the
number of false positives, and therefore the number of PIR queries,
depends on the data, leaking something to the Server. To fix this
problem, the client pads the number of PIR queries as follows. It
fixes a bound fp on the number of false positives, and aborts if
the actual number of false positives exceeds this bound. Otherwise,
the client uses enough dummy queries to pad the number of PIR
queries to s + fp.

Algorithm 7 Secure search with a (n, s, ¢, fp)-COIE scheme.

(1) Client runs the FHE key generation algorithm and encrypts data-
base x = (x1,...,xp) with x; € {0,1}". It then sends [x] =
([x1]s - - - » [xn]) and the evaluation key to Server.

(2) Client sends an encrypted query [g].

(3) Server homomorphically evaluates the encrypted query [q] on each
encrypted record. In particular, let [b] = ([b1], - - -, [bn]) where
[6i] = [q(x:)]- Note that g(x;) = 1 if record i is a match and is
equal to 0 otherwise.

(4) Server homomorphically computes [s] = X7, [b;], and sends to
Client for decryption.

(5) Client decrypts [s] to obtain s, and sends s to Server.

(6) Server calls COIE.Encode([[b]) with sparsity parameter s, to obtain
an encrypted encoding [C]. It sends [C] to Client.

(7) Client decrypts [C] into C and calls COIE.Decode(C) to obtain a
set 8’ of size s + e indexes. If e > fp, Client aborts. Otherwise,
Client adds f;, — e number of dummy indexes to S’

(8) Client runs a PIR protocol with the Server to obtain the records
corresponding to the indexes in S’

THEOREM 6.2. Given an FHE scheme, a (n, s, ¢, f)-COIE scheme
in the random oracle model, and a PIR scheme in the random oracle
model with communication complexity £, for records in {0,1}™, the
construction in Algorithm 7 yields a (¢, fp)-secure search scheme for

records in {0, 1} in the Random Oracle Model, where € = 5
L. is the length of an FHE ciphertext, and s is the number of matching
records.

Proor. We begin by proving that the adversary cannot dis-
tinguish between two different queries. The adversary chooses
a database x and two queries q° and ¢!, with the promise that
s = Z?:l qo(xi) = er'l:1 ql(xi)~

The entire view of the adversary during the experiment can
be reconstructed efficiently given (1) the encrypted database [x]
(2) the encrypted query [q], (3) s + fp iterations of the PIR proto-
col, requesting indexes in S/, where s is the number of matching
records.

Since the value of s is the same for ¢° and ¢!, the two things that
change in the view of the adversary when switching from b = 0
to b = 1 are (1) the encrypted query [¢?] (2) the set of indexes S,
(but not the number) requested during the PIR step.

We also note that the experiment only aborts when the number
of received false positives e is greater than the bound f,, which
only happened with probability negl(1) for a statistical security
parameter A. Thus, we ignore this possibility in the following.

We can now proceed via a standard hybrid argument:

c-le+(s+fp)€p

2286

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

o We first consider the real experiment with b = 0.

e We then switch the encrypted query from ¢° to ¢!, but leave
the set of indexes in the PIR step as S;. Indistinguishability
of the adversary’s view follows from the IND-CPA security
of the FHE scheme.

o Next, we switch the set of indexes in the PIR step from 86 to
Sl' . Indistinguishability of the adversary’s view now follows
from the security of the PIR scheme. This is now identical to
the real experiment with b = 1.

We conclude that the probability the adversary outputs 0 or 1
differs by a negligible amount when b = 0 versus b = 1. Therefore,
the advantage of the adversary in guessing b is negligible.

The proof that the adversary cannot distinguish between the
same query applied to two different databases follows nearly iden-
tically. O

6.4 From CODE to Secure Search

We next present our framework for obtaining Secure Search from
CODE.

Algorithm 8 Secure search with a (n, s, ¢, fp)-CODE scheme.

(1) Client runs the FHE key generation algorithm and encrypts data-
base x (x1,...,xp) with x; € D. It then sends [x] =
([x1], - - - » [xn]) and the evaluation key to Server.

(2) Client sends an encrypted query [q].

(3) Server homomorphically evaluates the encrypted query [g] on each
encrypted record. In particular, let [b] = ([b:], - - ., [bn]) where
[6i] = [gq(x:)]. Note that g(x;) = 1 if record i is a match and is
equal to 0 otherwise.

(4) Server homomorphically computes [s] = 3
to Client.

(5) Client decrypts [s] to obtain s and sends it back to the Server.

(6) Server computes [d;]] = [b;] - [x;] for i € [n]. Then, it applies
CODE.Encode([d1]}, . - . [dy]) with sparsity parameter s, to obtain
an encrypted encoding [C]. It sends [C] to Client.

(7) Client decrypts [C] to C and decodes C to obtain a set S of size s
matching records.

n
i=1

[b:] and sends [s]

THEOREM 6.3. Given an FHE scheme, and a (n,s,c, f)-CODE
scheme over domain D in the random oracle model, the construction
in Algorithm 8 yields a (, fp)-secure search scheme for records in

domain D in the random oracle model, where { = ds% {c is the
length of an FHE ciphertext with plaintext space D, and s is the number
of matching records.

The proof is similar to the COIE-based scheme and can be found
in Appendix B.

On the use of homomorphic multiplication. As described, our
CODE-based search scheme uses n homomorphic multiplications
to create the vector [d]. However, it may be the case that this
vector is already produced as part of the match step, for example
for arithmetic queries. In this case, our CODE scheme requires no
further homomorphic multiplications.

On volume attacks. In our secure search schemes, the client sends
the number s of matching records to the server so that the server
can create an oblivious compress encoding. One recent line of works

Session 7C: Database and Privacy

has developed attacks using volume leakage (e.g., [7, 28, 31]), and
these types of attacks can be applied to our scheme in theory.

In our scheme, the volume attacks can be mitigated by hiding s
in a differentially private manner. In particular, the client can add a
small amount of noise to s before sending it to the server. A similar
approach was used in previous work e.g., [37].

7 EVALUATION

7.1 Fetch time

We implemented our search protocols based on BF-COIE, PS-COIE,
and BFS-CODE schemes. All protocols were implemented using
PySEAL [43], which is a Python wrapper of the Microsoft research

SEAL library (version 3.6) [40] using the BFV encryption scheme [20].

We instantiated a single-server PIR protocol in our construction us-
ing SealPIR [4]. For the root finding step of the decoding procedure
in PS-COIE, we use an implementation based on SageMath 9.2 [42].

Measuring the Fetch step. Our search framework improves the
overall search time by executing the Match step only once, while
the LEAF protocol must execute the Match step s times. However,
since we do not optimize the Match step itself over prior work, we
focus on measuring the cost of the Fetch procedure. That is, our ex-
periments measure the time from when the server holds encrypted
query results, i.e., ([b1], ..., [bn]) with b; € {0, 1}, to when the
client recovers all s records matching the query. Specifically, we
measure the cost of steps 4 and up in Algorithms 7 and 8. Similarly,
for LEAF+, we only measure the cost of the Fetch step.

Database. To measure the performance of our protocols, we run
experiments with database size n ranging from 1000 to 100,000 data
items and the result set size s set to between 8 and 128. As in the
LEAF+ experiments [45], all data items are 16-bit integers.

BF-COIE parameters. For the BF-COIE secure search, we set the
parameters as indicated in Section 4.2.

e We set the false positive upperbound f, = 16. Recall that
the client aborts (without executing the PIR) if the actual
number of false positives exceeds this, but this only happens
with probability negligible in the security parameter, which
we set A = 40.

e We set the number of hash function 1 = 2 for each Bloom
filter, so each BF has size £ = 2s - V2s. (If2s < s + 2fp, we

set £ = 25 - /s + 2fp).

BFS-CODE parameters. For BES-CODE secure search, with A =
40, the number of hash functions 7 is set to A + lg s, and the Bloom
filter size is set to 2(ns — 1). Additionally, each data item is attached
with a 40-bit checksum to guarantee a 274 probability of collision.
We used SHA2 to compute a checksum.

Implementing LEAF+. For a comparison we also implemented
the fetch step of the LEAF+ protocol [45], since their implementa-
tion is not publicly available.

Their protocol has O(loglog n) depth of multiplications. There-
fore, they have to use bootstrapping techniques to reduce the ac-
cumulated noise. However, SEAL doesn’t provide a method for
bootstrapping, and we suspect that they added a customized imple-
mentation of bootstrapping on top of SEAL. Unfortunately, their
implementation is not available.

2287

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

—+— BFS-CODE

1750- BF-COIE

wn —4— PS-COIE
e —— LEAF+
S 1500-
|9)
(7]
¥ 1250-
g
£ 1000-
2
£ 750-
5
& 500-
©
S 250-
'_

o-

0 20000 40000 60000 80000 100000

Database Size: n

For LEAF+, we plot the time for fetching only a single record, since
fetching s records takes too long.

Figure 3: Fetch time vs. Database size with s = 16.

We address this issue by choosing to ignore the time for boot-
strapping when we measure the running time of our implementa-
tion of LEAF+. Of course, our implementation doesn’t output the
correct results, but the measured running time will be shorter than
the actual running time. Therefore, we believe that this measured
time serves as a good baseline.

Experiment environments. All our experiments were performed
on an Intel®Core 9900k @4.7GHz with 64GB of memory. For fair
comparison, the test was performed on a single thread with no
batching optimizations for computation. Networking protocol be-
tween server and clients is a 1Gbps LAN.

Results: Fetch time vs. database size. Figure 3 shows the per-
formance of our protocols as a function of database size, while the
result set size s is fixed to 16. However, for LEAF+, we plot the time
for fetching only a single record, since fetching s records takes
too long. In our implementation of LEAF+, fetching even a single
record when n = 10, 000 requires 1872 seconds. We note that the
authors of LEAF+ report about 60 seconds for a single fetch [45].
We conjecture that they parallelize the scheme with 32 threads.
Here, we only use a single thread.

All three of our protocols greatly outperform LEAF+. Looking
at BF-COIE in particular:

e In BF-COIE search, fetching 16 records with n = 10,000
takes 16.7 seconds, compared to 1872 seconds for a single
record fetch in LEAF+. We believe that the speed up is due
to the fact that LEAF+ (with a single-record fetching) needs
O(nlog n) homomorphic additions and O(n) homomorphic
multiplications, while BF-COIE search needs only O(nlog %)
homomorphic additions with no homomorphic multiplica-
tions. In addition, as Figure 4 shows, the overhead of the PIR
step to retrieve the actual data is small.

Due to the sequential limitation in LEAF+, fetching 16 records
with LEAF+ is extrapolated to take about 16 - 1872 = 29952
seconds. Overall, BF-COIE search is about 1800 times faster
than LEAF+.

Session 7C: Database and Privacy

—
N
o

Server

Client
Communication
Retrieval

-
N
o

|
|
-
|

=
o
S

BF-COIE
BFS-CODE
i PS-COIE

Running Time: Seconds
D @
o o

N
=)

N
o

8 16

32
Result set size: s

64 128

Figure 4: Fetch time vs. Result set size with n = 10, 000.

The time for all three of our protocols is dominated by the
server’s computation during encode, which grows linearly with the
DB size.

Since the number of hash functions 7 is larger in the BFS-CODE
protocol than in BF-COIE protocol, the encoding step of this proto-
col takes longer.

Results: fetch time vs. the result set size. Figure 4 shows the
performance of our protocols as a function of the result set size s
while n is fixed to 10, 000. Here, again the performance is dominated
by the encoding step, but the relative costs have changed. Due to the
need to compute more power sums, the PS-COIE protocol performs
worse than BS-COIE and BFS-CODE when s becomes moderately
large.

The time used for transmitting the data over network (green in
Figure 4) increases for larger s. However, it still remains small for all
three schemes. In the scenario of having lower network bandwidth,
batching is recommended to pack a vector of ciphertexts into a
single ciphertext with relatively low computation overhead. We
discuss communication costs further in Section 7.3.

7.2 Overall Running Time

Although we do not optimize the Match step itself over prior work,
we provide an estimated comparison of the running time for the
end-to-end flow.

Our search framework improves the overall search time by ex-
ecuting the Match step only once, while the LEAF protocol must
execute the Match step s times. Based on this, we can extrapolate
the running time as follows:

o The overall running time for LEAF:
Time(LEAF) = s - MT(LEAF) + s - FT(LEAF).

Here, MT and FT denote the match time and fetch time
respectively.
e The overall running time for the BF-COIE scheme:

Time(BF-COIE) = MT(BF-COIE) + FT(BF-COIE)

Although the implementation (nor the algorithm) of the match-
ing step of LEAF protocol is not available in [45], we expect that
it holds MT(LEAF) ~ MT(BF-COIE). In the experiment performed

in LEAF (see Figure 9 in [45]), we have m = % ~ 1.5. For

2288

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

s = 16, setting FT(LEAF) = 1800 - FT(BF-COIE) based on the above
discussion, we can estimate the speed-up as follows:
Time(LEAF) s-(m+1)
Time(BF-COIE) ~ m +1/1800°
Thus, with s 16, we estimate that our BF-COIE scheme has
roughly 26X end-to-end speed-up.

7.3 Communication

We now look at the communication required by each of our schemes
and by LEAF+. Figure 5 shows the network cost of the protocols
when the result set size s is 16 and the size of the database is
n = 10, 000. In our implementations, the length of an FHE cipher-
text is approximately 103KB and the communication cost of PIR is
approximately 369KB.

LEAF+ BF-COIE PS-COIE BFS-CODE
#ct’s 704 1323 17 1321
#PIR 0 32 16 0
#ct’s (w/ batching) 32 2 2 2

Figure 5: The communication costs (n = 10,000 and s = 16).

To explain this table, we first need to explain how we determined
the costs of LEAF+ and PIR.

e LEAF+. Since LEAF+ fetches each data item and the corre-
sponding index one by one, LEAF+ needs to 16 rounds of
communication to retrieve 16 data items. Worse yet, LEAF+
requires the client to send the index of the previous match
(requiring lg n bits) in his next query to ensure correctness.
Finally, LEAF+ uses bitwise encryption requiring a cipher-
text for each bit of the encrypted communication. Thus, in a
single round, the client must send lg n = 14 ciphertexts and
the server returns 16 + lg n = 30 ciphertexts — 16 ciphertexts
for returning the matching data item, and 1g n ciphertexts to
return its index. This amounts to 704 ciphertexts for fetching
16 items (excluding the query).

PIR costs. We reduce the cost of PIR for the COIE-based
schemes by making a slight modification. In addition to stor-
ing the FHE-encrypted database, the server also stores a copy
of each record encrypted using a symmetric-key encryption
scheme (resulting in much shorter ciphertexts). Then, in
the PIR step, the client fetches this symmetrically encrypted
ciphertext instead of the FHE-encrypted one.

We use SealPIR for our PIR protocol, which requires 368.6
KB per request. We remark that a very recently introduced
SealPIR+ takes 80KB per request (see Table 1 in [3]), using
which we can reduce the communication further.

We can now compare the communication costs based on rows
1 and 2 of Figure 5. We see that the communication of BF-COIE
and BFS-CODE are roughly twice that of LEAF+, while PS-COIE
requires almost 10X less communication. The extra communication
needed by BF-COIE and BFS-CODE can likely be offset by the much
lower round complexity required by our protocol since the latency
costs are likely higher than the cost for the extra bandwidth.

Reducing communication using ciphertext batching. We now
describe an optimization to significantly reduce the communication

Session 7C: Database and Privacy

of our protocols at the cost of slightly increased server computation.
SEAL allows thousands of encrypted values to be packed together
into a single ciphertext. This allows us to pack the ciphertexts in
all of our protocols into just one a single ciphertext to be sent from
the server to the client. However, this does require the server to
do some additional computation to pack the ciphertexts prior to
sending them. We experimentally measured this packing, and it
requires approximately 3 seconds on a single threaded machine.

LEAF+ can also take advantage of packing to reduce the com-
munication of their protocols. However, since the results must be
returned one at a time, the best LEAF+ can do is to pack all ci-
phertexts that are sent in each round, resulting in a total of 32
ciphertexts.

We note that the cost of PIR is unchanged by this modification.
Thus, with the packing optimization, the communication of BFS-
CODE is roughly 1/16 of the communication needed by LEAF+,
but BF-COIE and PS-COIE require approximately 4X and 2X more
communication than LEAF+ respectively when SealPIR is used;
however, when SealPIR+ is used, both schemes have slightly less
communication than LEAF+.

8 RELATED WORK

8.1 Techniques for Secure Search

Secure pattern matching (SPM) on FHE-encrypted data. In
SPM, given an encrypted query [¢] and n FHE-encrypted data items
([x1], - - - » [xn]), it returns a vector of n ciphertexts [b1], . . ., [bn],
where b; indicates whether the ith data element is a match [16,
17, 32, 47]. Their works focus on optimizing the search circuits to
determine whether a data item matches the query, and therefore
the communication complexity and client’s running time are pro-
portional to the number of data items. Our work focuses on the
orthogonal problem of optimizing the retrieval of the matched data
items with sublinear communication and client computation.

Searchable encryption (SE). Searchable encryption [12, 41] al-
lows highly efficient search (usually in o(n) time) over encrypted
data. Efficient SE schemes have been proposed for a wide variety of
queries including equality queries [15, 19], range queries [29, 38],
and conjunctive queries [14, 36]. However, to achieve sublinear
query performance, SE schemes require significant preprocessing
and relax security, allowing some partial information about the
queries and data (e.g. access patterns) to leak to the server. For a
recent survey on SE constructions and security, see Fuller et al. [22].
In contrast, our work focuses on achieving preprocessing-free se-
cure constructions, leaking nothing about the queries or results
other than their sizes.

Property Preserving Encryption (PPE). As a different approach,

property-preserving encryption [35] produces ciphertexts that main-
tain certain relationships (e.g., equality, and order) of the underlying

plaintexts. This allows queries to be performed over ciphertexts in

the same way that they can be carried out over plaintexts. Exam-
ples of PPE include deterministic encryption [6] allowing equality

queries, and order-preserving encryption [10, 11] allowing range

queries. However, it has been shown [26, 27, 30] that such property-
preserving ciphertexts leak a lot of information about the underly-
ing plaintexts. See [22] for a survey of constructions and attacks.

2289

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

8.2 General Techniques

Private information retrieval (PIR). PIR allows the client to
choose the index i and retrieve the ith record from an untrusted
server while hiding the index i [18]. However, this protocol by itself
provides only a limited search functionality requiring the client
to know the index of the data to retrieve. In this work, we aim at
protocols supporting any arbitrary search functionality.

Secure multi-party computation (MPC). Secure two-party com-
putation [23, 46] allows players to compute any function of their
private inputs without compromising privacy of their inputs. For
example, the client and the server can run a protocol for secure two-
party computation to solve the secure search problem. While there
has been much progress in improving efficiency of MPC protocols,
such protocols still require Q(n) communication and Q(n) client
computation per query. In this work, we aim to achieve protocols
with sublinear communication and client work.

Oblivious RAM (ORAM) and Oblivious data structure (ODS).
ORAM [24] is a protocol which allows a client to store an array of
n items on an untrusted server and to access an item obliviously,
that is, hiding contents and which item is accessed (i.e., the access
pattern). Likewise, ODS [44] allows the client to store and use a
data structure obliviously. One could implement secure search by
utilizing an ODS for a search tree. However, ODS constructions
typically need Q(log? n) rounds for each operation. In this work,
we aim at achieving a constant round protocol.

9 CONCLUSION

We have presented several new constructions of secure search based
on fully homomorphic encryption. Prior constructions were inher-
ently sequential, returning only a single record from the result set,
and requiring a new query from the client that depended on the
index of the previous match. We have demonstrated several new
methods for encoding the entire result set at one time, removing
the added rounds, and allowing the server work to be parallelized.
Additionally, we have shown that this can be done without ho-
momorphic multiplication, ensuring low computational cost at the
server. Finally, we have implemented our constructions, and demon-
strated up to three orders of magnitude speed-up over prior work.
Additionally, we introduced the notion of compressed oblivious
encoding which may be of independent interest.

ACKNOWLEDGEMENTS

Dana Dachman-Soled is supported in part by NSF grants CNS-
1933033, CNS-1453045(CAREER), and by financial assistance awards
70NANB15H328 and 70NANB19H126 from the U.S. Department
of Commerce, National Institute of Standards and Technology; Se-
ung Geol Choi is supported by ONR N0014-20-1-2745 and NSF
grant CNS-1955319; S. Dov Gordon is supported by the NSF Grants
CNS-1942575 and CNS-1955264, by the Defense Advanced Research
Projects Agency (DARPA) and Space and Naval Warfare Systems
Center, Pacific (SSC Pacific) under Contract No. N66001-15-C-4070,
by the Blavatnik Interdisciplinary Cyber Research Center at Tel-
Aviv University and Israel National Cyber Directorate (INCD), and
by a Google faculty award; Arkady Yerukhimovich is supported by
NSF grant CNS-1955620, and by a Facebook Research Award.

Session 7C: Database and Privacy

REFERENCES

(1]

[11]

[12]

[13]

[14]

[15

[16]

[17]

(18]

[19]

[20]

Adi Akavia, Dan Feldman, and Hayim Shaul. 2018. Secure Search on Encrypted
Data via Multi-Ring Sketch. In ACM CCS 2018, David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada,
985-1001. https://doi.org/10.1145/3243734.3243810

Adi Akavia, Craig Gentry, Shai Halevi, and Max Leibovich. 2019. Setup-Free
Secure Search on Encrypted Data: Faster and Post-Processing Free. Proc. Priv.
Enhancing Technol. 2019, 3 (2019), 87-107. https://doi.org/10.2478/popets-2019-
0038

Asra Ali, Tancréde Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,
Karn Seth, and Kevin Yeo. 2021. Communication-Computation Trade-offs in PIR.
Usenix Security (To appear). Available at https://ia.cr/2019/1483.

Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with
Compressed Queries and Amortized Query Processing. In 2018 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, San Francisco, CA, USA,
962-979. https://doi.org/10.1109/SP.2018.00062

Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and
Elaine Shi. 2020. OptORAMa: Optimal Oblivious RAM. In EUROCRYPT 2020, Part I
(LNCS, Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg,
Germany, Zagreb, Croatia, 403-432. https://doi.org/10.1007/978-3-030-45724-
2_14

Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. 2007. Deterministic
and Efficiently Searchable Encryption. In CRYPTO 2007 (LNCS, Vol. 4622), Alfred
Menezes (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 535-552.
https://doi.org/10.1007/978-3-540-74143-5_30

Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leakage
Abuse Attacks. In NDSS 2020. The Internet Society, San Diego, CA, USA.
Marina Blanton and Everaldo Aguiar. 2011. Private and Oblivious Set and Multiset
Operations. Cryptology ePrint Archive, Report 2011/464. http://eprint.iacr.org/
2011/464.

Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM 13, 7 (1970), 422-426. https://doi.org/10.1145/362686.362692
Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. 2009.
Order-Preserving Symmetric Encryption. In EUROCRYPT 2009 (LNCS, Vol. 5479),
Antoine Joux (Ed.). Springer, Heidelberg, Germany, Cologne, Germany, 224-241.
https://doi.org/10.1007/978-3-642-01001-9_13

Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-
Preserving Encryption Revisited: Improved Security Analysis and Alternative
Solutions. In CRYPTO 2011 (LNCS, Vol. 6841), Phillip Rogaway (Ed.). Springer, Hei-
delberg, Germany, Santa Barbara, CA, USA, 578-595. https://doi.org/10.1007/978-
3-642-22792-9_33

Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.
2004. Public Key Encryption with Keyword Search. In EUROCRYPT 2004 (LNCS,
Vol. 3027), Christian Cachin and Jan Camenisch (Eds.). Springer, Heidelberg,
Germany, Interlaken, Switzerland, 506-522. https://doi.org/10.1007/978-3-540-
24676-3_30

D. Cantor and H. Zassenhaus. 1981. A new algorithm for factoring polynomials
over finite fields. Math. Comp. 36 (1981), 587-592.

David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-
tion with Support for Boolean Queries. In CRYPTO 2013, Part I (LNCS, Vol. 8042),
Ran Canetti and Juan A. Garay (Eds.). Springer, Heidelberg, Germany, Santa
Barbara, CA, USA, 353-373. https://doi.org/10.1007/978-3-642-40041-4_20
Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled
Disclosure. In ASIACRYPT 2010 (LNCS, Vol. 6477), Masayuki Abe (Ed.). Springer,
Heidelberg, Germany, Singapore, 577-594. https://doi.org/10.1007/978-3-642-
17373-8_33

Jung Hee Cheon, Miran Kim, and Myungsun Kim. 2016. Optimized Search-and-
Compute Circuits and Their Application to Query Evaluation on Encrypted Data.
IEEE Trans. Inf. Forensics Secur. 11, 1 (2016), 188-199. https://doi.org/10.1109/
TIFS.2015.2483486

Jung Hee Cheon, Miran Kim, and Kristin E. Lauter. 2015. Homomorphic Compu-
tation of Edit Distance. In FC 2015 Workshops (LNCS, Vol. 8976), Michael Brenner,
Nicolas Christin, Benjamin Johnson, and Kurt Rohloff (Eds.). Springer, Heidelberg,
Germany, San Juan, Puerto Rico, 194-212. https://doi.org/10.1007/978-3-662-
48051-9_15

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private
Information Retrieval. 7. ACM 45, 6 (1998), 965-981. https://doi.org/10.1145/
293347.293350

Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-
able symmetric encryption: improved definitions and efficient constructions.
In ACM CCS 2006, Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati (Eds.). ACM Press, Alexandria, Virginia, USA, 79-88. https:
//doi.org/10.1145/1180405.1180417

Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-
momorphic Encryption. IACR Cryptol. ePrint Arch. 2012 (2012), 144. http:
//eprint.iacr.org/2012/144

2290

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

[21

[22

[23

™
=)

[25

[26

&
=

[28

[29

(30]

w
—

[32

[33

&
=

[35

[36

[37

[38

[39

Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Broder. 2000. Summary cache:
a scalable wide-area web cache sharing protocol. IEEE/ACM Trans. Netw. 8, 3
(2000), 281-293. https://doi.org/10.1109/90.851975

Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel Ham-
lin, Vijay Gadepally, Richard Shay, John Darby Mitchell, and Robert K. Cunning-
ham. 2017. SoK: Cryptographically Protected Database Search. In 2017 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, San Jose, CA,
USA, 172-191. https://doi.org/10.1109/SP.2017.10

Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC, Alfred Aho (Ed.). ACM Press, New York City, NY, USA, 218-229.
https://doi.org/10.1145/28395.28420

Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. . ACM 43, 3 (1996), 431-473. https://doi.org/10.1145/233551.
233553

Michael T. Goodrich. 2011. Data-oblivious external-memory algorithms for the
compaction, selection, and sorting of outsourced data. In SPAA 2011: Proceedings
of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures,
San Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011). 379-388. https:
//doi.org/10.1145/1989493.1989555

Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart, and
Vitaly Shmatikov. 2016. Breaking Web Applications Built On Top of Encrypted
Data. In ACM CCS 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press, Vienna, Austria,
1353-1364. https://doi.org/10.1145/2976749.2978351

Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and
Thomas Ristenpart. 2017. Leakage-Abuse Attacks against Order-Revealing En-
cryption. In 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, San Jose, CA, USA, 655-672. https://doi.org/10.1109/SP.2017.44

Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted Databases:
New Volume Attacks against Range Queries. In ACM CCS 2019, Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, 361-378.
https://doi.org/10.1145/3319535.3363210

Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2016. Private
Large-Scale Databases with Distributed Searchable Symmetric Encryption. In
CT-RSA 2016 (LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, Germany,
San Francisco, CA, USA, 90-107. https://doi.org/10.1007/978-3-319-29485-8_6
Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern disclosure on Searchable Encryption: Ramification, Attack and Mitigation.
In NDSS 2012. The Internet Society, San Diego, CA, USA.

Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic
Attacks on Secure Outsourced Databases. In ACM CCS 2016, Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi
(Eds.). ACM Press, Vienna, Austria, 1329-1340. https://doi.org/10.1145/2976749.
2978386

Myungsun Kim, Hyung Tae Lee, San Ling, Benjamin Hong Meng Tan, and Huax-
iong Wang. 2019. Private Compound Wildcard Queries Using Fully Homomor-
phic Encryption. IEEE Trans. Dependable Secur. Comput. 16, 5 (2019), 743-756.
https://doi.org/10.1109/TDSC.2017.2763593

Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate,
and Andrew K. Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical
Asynchronous MPC and its Application to Anonymous Communication. In ACM
CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz (Eds.). ACM Press, 887-903. https://doi.org/10.1145/3319535.3354238
Michael Mitzenmacher. 2001. Compressed bloom filters. In 20th ACM PODC,
Ajay D. Kshemkalyani and Nir Shavit (Eds.). ACM, Newport, Rhode Island, USA,
144-150. https://doi.org/10.1145/383962.384004

Omkant Pandey and Yannis Rouselakis. 2012. Property Preserving Symmetric
Encryption. In EUROCRYPT 2012 (LNCS, Vol. 7237), David Pointcheval and Thomas
Johansson (Eds.). Springer, Heidelberg, Germany, Cambridge, UK, 375-391. https:
//doi.org/10.1007/978-3-642-29011-4_23

Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-
ung Geol Choi, Wesley George, Angelos D. Keromytis, and Steve Bellovin.
2014. Blind Seer: A Scalable Private DBMS. In 2014 IEEE Symposium on Se-
curity and Privacy. IEEE Computer Society Press, Berkeley, CA, USA, 359-374.
https://doi.org/10.1109/SP.2014.30

Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating
Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps
via Hashing. In ACM CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz (Eds.). ACM Press, 79-93. https://doi.org/10.1145/
3319535.3354213

Daniel S. Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimovich.
2016. POPE: Partial Order Preserving Encoding. In ACM CCS 2016, Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi (Eds.). ACM Press, Vienna, Austria, 1131-1142. https://doi.org/10.1145/
2976749.2978345

Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. 2017. P2P Mixing and
Unlinkable Bitcoin Transactions. In NDSS 2017. The Internet Society, San Diego,
CA, USA.

https://doi.org/10.1145/3243734.3243810
https://doi.org/10.2478/popets-2019-0038
https://doi.org/10.2478/popets-2019-0038
https://ia.cr/2019/1483
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-540-74143-5_30
http://eprint.iacr.org/2011/464
http://eprint.iacr.org/2011/464
https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1109/TIFS.2015.2483486
https://doi.org/10.1109/TIFS.2015.2483486
https://doi.org/10.1007/978-3-662-48051-9_15
https://doi.org/10.1007/978-3-662-48051-9_15
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/1180405.1180417
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
https://doi.org/10.1109/90.851975
https://doi.org/10.1109/SP.2017.10
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/1989493.1989555
https://doi.org/10.1145/1989493.1989555
https://doi.org/10.1145/2976749.2978351
https://doi.org/10.1109/SP.2017.44
https://doi.org/10.1145/3319535.3363210
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1109/TDSC.2017.2763593
https://doi.org/10.1145/3319535.3354238
https://doi.org/10.1145/383962.384004
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1109/SP.2014.30
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/2976749.2978345
https://doi.org/10.1145/2976749.2978345

Session 7C: Database and Privacy

[40] SEAL 2020. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA.

Dawn Xiaodong Song, David Wagner, and Adrian Perrig. 2000. Practical
Techniques for Searches on Encrypted Data. In 2000 IEEE Symposium on Se-
curity and Privacy. IEEE Computer Society Press, Oakland, CA, USA, 44-55.
https://doi.org/10.1109/SECPRI.2000.848445

W. A. Stein et al. 2020. Sage Mathematics Software (Version 9.2). The Sage
Development Team. http://www.sagemath.org.

Alexander J. Titus, Shashwat Kishore, Todd Stavish, Stephanie M. Rogers, and Karl
Ni. 2018. PySEAL: A Python wrapper implementation of the SEAL homomorphic
encryption library. arXiv:1803.01891 [q-bio.QM]

Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi, Emil
Stefanov, and Yan Huang. 2014. Oblivious Data Structures. In ACM CCS 2014,
Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM Press, Scottsdale, AZ,
USA, 215-226. https://doi.org/10.1145/2660267.2660314

Rui Wen, Yu Yu, Xiang Xie, and Yang Zhang. 2020. LEAF: A Faster Secure Search
Algorithm via Localization, Extraction, and Reconstruction. In ACM CCS 20,
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press,
Virtual Event, USA, 1219-1232. https://doi.org/10.1145/3372297.3417237

[46] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended
Abstract). In 27th FOCS. IEEE Computer Society Press, Toronto, Ontario, Canada,
162-167. https://doi.org/10.1109/SFCS.1986.25

Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. 2013. Secure pattern matching using somewhat homomorphic
encryption. In CCSW’13, Proceedings of the 2013 ACM Cloud Computing Security
Workshop, Co-located with CCS 2013, Berlin, Germany, November 4, 2013, Ari Juels
and Bryan Parno (Eds.). ACM, 65-76. https://doi.org/10.1145/2517488.2517497

[41]

[42]

[43

[44]

[45]

[47]

A PROOF OF LEMMA 4.1
1

Lemma A.1(4.1). Consider a Bloom filter with false positive rate -,
where m is an arbitrary positive integer. Suppose at most m BF.Check
operations are performed in the BF. Then, for any § > 0, we have:

e
< —F.
T (1+6)1+9)

PROOF. Let a; be the ith item that is checked through BF.Check.

That is, we consider a sequence of

BF.Check(ay), ..., BF.Check(am),

Pr[# false positives > 1 +]

where «; is an arbitrary item. Since we wish to upper bound the
false positives (i.e., we don’t care about true positives), it suffices
to consider the case that for every i, «; ¢ BF (i.e, a; has not been
inserted in the BF) as this maximizes the number of possible false
positives.

Let X, ..., X;n be independent Bernoulli random variables with
Pr[X; = 1] = 1/m. Since the BF false positive rate is assumed to be

2291

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

1/m, we have for all i,
Pr[BF.Check(a;) = 1] = Pr[query i is a false positive] < 1/m.
Thus, we can bound the number of false positives by .72, X;.

Now, let i := Exp[>, X;] =m -
bound with y = 1, we have:

L = 1. By applying the Chernoff

m

m 19
e
Pr i=§]XiZl+5 Sm

B PROOF OF THEOREM 6.3

THEOREM B.1(6.3). Given an FHE scheme, and a(n, s, c, fp)—CODE
scheme over domain D in the random oracle model, the construction
in Algorithm 8 yields a (, fp)-secure search scheme for records in
domain D in the random oracle model, where € = #, {c is the
length of an FHE ciphertext with plaintext space D, and sis the number
of matching records.

Proor. We begin by proving that the adversary cannot dis-
tinguish between two different queries. The adversary chooses
a database x and two queries ¢, ¢!, with the promise that s =
Z?:] qo(xi) = Z?:l ql(xi)-

The entire view of the adversary during the experiment can be
reconstructed efficiently given (1) the encrypted database [x], (2)
the encrypted query [g], (3) the decrypted value of s.

We note that the CODE scheme may return either more than s
values to the client (in case of a false positive) or less than s values
(in case decoding fails), but both of these occur with probability at
most negl(A) and thus we can ignore them in the following.

Since the value of s is the same for g and g1, the only thing that
changes in the view of the adversary when switching from b = 0 to
b = 1is the encrypted query ¢j. Therefore, the adversary guesses
b with negligible advantage by the IND-CPA security of the FHE
scheme.

The proof that the adversary cannot distinguish between the
same query applied to two different databases follows nearly iden-
tically.

m}

https://github.com/Microsoft/SEAL
https://doi.org/10.1109/SECPRI.2000.848445
https://arxiv.org/abs/1803.01891
https://doi.org/10.1145/2660267.2660314
https://doi.org/10.1145/3372297.3417237
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1145/2517488.2517497

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our Work

	2 Preliminaries
	2.1 Bloom Filter
	2.2 Algebraic Bloom Filter

	3 Compressed Oblivious Encoding
	3.1 Compressed Oblivious Index Encoding
	3.2 Compressed Oblivious Data Encoding

	4 COIE Schemes
	4.1 A Warm-up construction
	4.2 BF-COIE
	4.3 COIE Scheme Based on Power Sums

	5 CODE Scheme
	5.1 BF Set
	5.2 CODE Scheme Based on BF Set

	6 Secure Search Protocols
	6.1 (, fp)-Relaxed Secure Search
	6.2 Security of Setup-free Secure Search
	6.3 From COIE to Secure Search
	6.4 From CODE to Secure Search

	7 Evaluation
	7.1 Fetch time
	7.2 Overall Running Time
	7.3 Communication

	8 Related Work
	8.1 Techniques for Secure Search
	8.2 General Techniques

	9 Conclusion
	References
	A Proof of Lemma 4.1
	B Proof of Theorem 6.3

