
Modular Network Stacks in the Real-Time

Executive for Multiprocessor Systems

Vijay Banerjee, Sena Hounsinou, Harrison Gerber, Gedare Bloom

Department of Computer Science

University of Colorado Colorado Springs

Colorado Springs, Colorado, USA

(vbanerje, shoueto, hgerber, gbloom)@uccs.edu

Abstract—Real-Time Executive for Multiprocessor Systems
(RTEMS) is a real-time operating system used by the Exper-
imental Physics and Industrial Control System (EPICS) open-
source software for high-precision scientific instruments such
as particle accelerators and telescopes. EPICS relies on the
networking capabilities of RTEMS for microcontrollers that
need to meet real-time constraints. However, the networking
available in RTEMS either lacks the necessary drivers to be
fully operational or lacks security features required in modern
networks. In this paper, we introduce a modular networking
architecture for RTEMS by separating the network software
implementation and device drivers from the RTEMS kernel to
provide them as a static library for applications to use. This
networking-as-a-library concept provides application developers
with better capabilities to select the network features needed for
their target application and to keep their networking software
updated and secure.

Index Terms—RTEMS, EPICS, TCP/IP, Networking, lwIP,
Modular Networking Stack, FreeBSD, libBSD

I. INTRODUCTION

The US Department of Homeland Security (DHS) Cyber-

security and Infrastructure Security Agency (CISA) defines

over a dozen Critical Infrastructure sectors. Each sector re-

groups a set of systems and assets that support communities.

For instance, the Information Technology (IT) sector com-

prises systems that support information-based society. This

sector also supports other critical infrastructure sectors because

it encompasses the industrial control systems (ICSs) that

monitor processes across cyber-physical infrastructures. As

such, ICSs play a vital role across domains like healthcare,

manufacturing, production, and research and development.

These systems rely on the security of the networks that connect

their components, which sometimes are located in different

geographic areas. Recent events such as the Colonial Pipeline

cyberattack [1] have shown that a single security breach can

impact an entire region of the United States.

The Experimental Physics and Industrial Control System

(EPICS) is an open-source scientific cyberinfrastructure that

is used in particle physics research and development. Speci-

fically, EPICS enables creating distributed real-time control

systems for scientific instruments such as particle accelera-

tors, telescopes, and other large scientific experiments. As in

other ICSs, secure communication between different nodes is

This work is supported by NSF OAC-2001789 and CO State Bill 18-086.

important to EPICS overall security posture. EPICS depends

on the networking implementations provided by the OS. One

of the OSs used by EPICS is the Real-Time Executive for

Multiprocessor Systems (RTEMS) [2].

As a POSIX-compliant real-time OS (RTOS), RTEMS can

support multiple network stacks. A network stack is the

implementation of the set of networking protocols that handle

the transfer of data across connected devices. The network

stack, sometimes called the TCP/IP stack, follows a four-layer

model [3] where the application is at the top layer and the

device specific network drivers are at the bottom layer, which

interfaces the hardware, network protocols such as the Internet

Protocol (IP), and the OS.

Traditionally, the network stack implementation is a part of

an OS that handles the networking tasks and the respective

drivers for a network interface controller (NIC). The TCP/IP

stack implementation of RTEMS historically also resided in

the kernel along with the user-level application programming

interface (API) declarations that RTEMS provides through the

Newlib C library.

Prior to our work, the RTEMS networking stack imple-

mentation, which we now call the legacy stack, faced the

following challenges: first, the legacy stack lacked several

features that have become fundamental in modern networks.

For example, the legacy stack is based on an earlier, less

secure version of the Internet Protocol (IPv4), which is no

longer suitable for many systems supported by RTEMS. This

is particularly important for US federal agencies and research

centers (including national laboratories using EPICS), which

have been mandated to transition to a more secure network

by 2023 [4]. However, it is challenging to update the legacy

stack because it is integrated in the RTEMS kernel source

code. Therefore, updating the network stack requires updating

the entire RTEMS kernel. Although a newer FreeBSD-based

stack known as the libBSD stack is equipped with more

features (including security-related ones), it lacks drivers for

commonly used EPICS microcontrollers. Moreover, the size of

the applications linked to the libBSD stack is unsuitable for

some memory-constrained hardware supported by RTEMS.

In this work, we separate the legacy stack in its own module

outside RTEMS to facilitate switching the network stack

without requiring heavy changes to user applications or the

RTEMS kernel. This modularization uses extant Newlib header





and physical layers of the OSI model) is the lowest layer

of the network stack. It handles the physical hardware and

protocols that are required to deliver the data across a physical

network. This handling is done through the device drivers in

RTEMS, which are responsible for initializing and operating

the embedded hardware’s NIC.

A network application uses the networking APIs, like the

socket API, to make system calls with the appropriate protocol

headers, which triggers the network drivers to send physical

signals to the hardware to carry out the requested action.

Traditionally, the networking implementation is a part of

an OS that handles the networking tasks and the respective

drivers for a NIC. The implementation also provides user-

level header files that contain the declarations for the user

APIs.In RTEMS the POSIX networking API signatures are

provided to the applications through the Newlib C library, and

the implementation of the TCP/IP stack along with the NIC

drivers, were a part of the RTEMS legacy stack.Although the

RTEMS legacy stack has been used by multiple targets for

a long time, it did not evolve at par with the developments

in the FreeBSD stack due to the following reasons: first,

making changes inside the kernel requires significant time

and expertise. Next, making any change to the legacy network

stack was essentially a change to the RTEMS kernel, which

involves a lot of regression testing.

In addition to Newlib, RTEMS also makes use of

FreeBSD’s code base, similar to several other well-known

OSs. FreeBSD [9] is also another open source OS, known for

its high performance in modern systems. A RTEMS repository

named rtems-libbsd, or the libBSD module was built by

RTEMS developers to port the required codes from FreeBSD,

which also includes the API implementation for the Newlib

header files. The libBSD module uses a git submodule to

track the upstream FreeBSD source code. LibBSD uses Python

scripts to port specific files from this FreeBSD submodule as

follows: first, a block of FreeBSD source code is imported

from the submodule. Then, the necessary files are copied

locally to the RTEMS-libBSD repository, and adapted to work

with RTEMS through the scripts which not only imports the

code, but also adds RTEMS specific header files to them, in

order to properly connect the FreeBSD drivers to the RTEMS

kernel. (We refer to this approach as the libBSD framework

in the remainder of the paper.)

In recent years, the RTEMS developers have used the

libBSD framework to import the FreeBSD’s TCP/IP stack,

providing the users with an option to use a modern and

secure FreeBSD network stack with their RTEMS applications.

The LibBSD, which uses the FreeBSD network stack, has a

complete IPv6 support along with robust security features [10].

The modern features present the libBSD stack as a great

upgrade option to a more modern stack. One caveat to having

libBSD as the only alternative to the legacy stack is that some

targets have very limited available memory and are not capable

of running the libBSD stack. Thus, we prepared an adapter

version of the lwIP [11] stack as an alternative to the libBSD.

lwIP is an independent project targeted towards embedded

systems with strict memory constraints. The features of lwIP

stack are comparable to that of libBSD but size and memory

requirements are much smaller than that of an application

linked with libBSD. Some of the important highlights of

the lwIP stack are the much required IPv6 support and the

support for IPSEC, which has been studied and added by other

independent projects [12].

In the following section, we present a modular network

stack approach that decreases the reliance on the legacy stack

and provides additional network stack options. This approach

also gives RTEMS users the ability to develop more suitable

network stacks without the need to modify the entire RTEMS

kernel.

III. MODULAR NETWORK STACKS

As stated in Section I, RTEMS users currently face the

following challenges related to the implementation of the

network stacks: (1) difficulty upgrading the legacy stack, (2)

inability to fully utilize each of the existing network stacks

(legacy and libBSD) because of a lack of appropriate drivers,

(3) lack of security support in the legacy stack. To address

the first challenge, we separated the components of the legacy

stack from the current RTEMS kernel into its own standalone

repository (see Section III-A).

To resolve (2), we have also separated the drivers from the

RTEMS kernel and added them as a part of the networking

module. In addition, we created a standalone submodule called

rtems-net-services, that can be added to any RTEMS network

stack to use networking services like the File Transfer Protocol

(FTP) and the Trivial FTP (TFTP). These services are available

for use by any network stack module (see Section III-D).

Moreover, as a part of our ongoing effort to expand support

for all the network stacks, we have streamlined the workflow

for adding support for a particular hardware platform. We

demonstrated the workflow and experiments on an uCdimm

ColdFire 5282 Microcontroller Unit (uC5282) which is widely

used by EPICS for RTEMS-based projects.

To address the third challenge, we look to use a network

stack implementation that provides modern security features

such as IPv6. The lwIP network stack implementation [11]

matches such a requirement. In addition to IPv6, lwIP can

also be combined with other independent protocol imple-

mentations like embedded IPSec [13]. lwIP in combination

with embedded IPSec has been evaluated with microkernel

OS [12], showing that lwIP can be robust and versatile in

adding security updates. Moreover, the lwIP network stack

is targeted towards embedded systems with strict memory

constraints. As such, we broadened the existing network stack

options by fully integrating a third network stack module

based on lwIP. The lwIP based networking stack, called, rtems-

lwip, will enable the users to choose the network stack that

provides the necessary security required for the application

(see Section III-C).

As a result, a new architecture is obtained for the network

stack library, as shown in Figure 2. In the following subsec-

tions, we describe how the stacks and the net-services module







Fig. 5. Round trip time comparison of the RTEMS network stacks

B. Size Comparison of Binary Images

To compare the sizes of the binary images of the three

network stacks, we used the same RTT application that we

built in the experiment in IV-A. We used the GNU objcpy

and size tools from the GNU toolchain for the m68k target,

to get the binary images of the executable linked to different

stacks, along with the size of text, data, and bss segments to

understand the memory usage of the apps in each network

stack.

Table II shows the results from the comparison of the size

of the generated binary images. The size difference between

the libbsd stack and other two stacks is significant. However,

the size difference between the lwIP stack and legacy stack

is much lower. The sizes of the .text segment (which in all

three cases represents the largest portion of the executable)

show that the libBSD brings in a much larger code, making

the executable much larger compared to the other two. The

.data segment shows a similar pattern where, interestingly, the

lwIP stack has the lowest value. This low value is due to the

optimized memory design of the lwIP stack which enables

it to run on targets as low as 512kB of memory. The .bss

segment in the lwIP stack can be reduced by allocating even

lower memory to the lwIP configuration, which can be done in

the rtems-lwIP repository through the lwipopts.h header. This

similarity in the size of the lwIP and legacy stack shows that

rtems-lwip can be a suitable alternative to the legacy stack for

memory-constrained targets.

TABLE II
SIZE COMPARISON OF BINARY IMAGES (ALL VALUES IN KB)

Network stack .text .data .bss Total Size

rtems-libbsd 1273 58.4 24 1,332

rtems-net-legacy 244.4 6 44 250.5

rtems-lwip 293 1.7 59 294

C. Round Trip Time Analysis

The RTT analysis shows the latency of the network, which

gives an idea about how much time it takes for a packet to

be transferred. A comparison of the RTT over the loopback

device shows the latency from the network stacks only, without

other factors that can affect the latency, like the wiring and

routing overhead due to the connection between devices.

To eliminate any performance difference due to different

hardware NIC speeds, we executed our application on the same

uC5282 hardware with each network stack. Since the uC5282

lacked a driver for rtems-libbsd, we added this support by

porting the legacy networking driver to the libbsd stack, which

we will contribute to the upstream rtems-libbsd repository.

To compare the RTT, we created a lightweight application

that sends a constant size packet over Internet Control Message

Protocol (ICMP) using raw sockets. The ICMP header size is

28B and we added a padding buffer of 56B to send a total of

84B. From the recorded data over 10 runs (see Figure 5), we

noted that the LibBSD stack has a latency overhead which can

be approximately double the average latency from the legacy

stack. This observation gives an interesting insight that switch-

ing an application to the FreeBSD-based libbsd stack will

have a performance overhead that can accumulate every time a

packet is sent or received. This overhead might become critical

in high precision industrial controllers where the latency of

the network can impact the validity of observed values. The

latency analysis reinforces the need for a lightweight network

stack alternative, which will be available to the user through

the rtems-lwip module.

V. RELATED WORK

A modular network stack approach has been previously

attempted on microkernel OSs like HelenOS [21] where each

part of the network stack works as a server module for the

microkernel proof-of-concept implementation. In contrast, our

work is based on a Monolithic Real-Time kernel, where we

have implemented the whole network stack as a separate

library module that gets linked into one whole executable

binary which is run on the target hardware.

NetBSD also uses a modular TCP/IP stack implementation

through a rump Kernel TCP/IP [22] that virtualizes kernel

functional units into clients. The clients can be one of three

types: local, microkernel or remote. The local client type

approach uses rump kernel as a library with rump API calls.

Instead of adding a new API layer, our approach provides

support for the common API calls for multiple stacks and an

application does not require any change in terms of includes

and API calls for working with an RTEMS networking library.

We have extended our unique approach to add a totally

independent networking stack lwIP, which has been used in

RTOSs before [23], [24], but our work differs in two ways.

First, the independent networking implementation has not

been integrated into the kernel in contrast with the FreeRTOS

TCP/IP implementation which is part of the kernel. Second,

the networking module provides a framework for adding and

modifying any layer of the network stack without affecting the

main kernel, which will pave the way for support on a wider

range of architectures and NICs.

VI. CONCLUSION AND FUTURE WORK

We have separated the legacy network stack from RTEMS

and created a standalone modular network stack as a separate



library that can be linked to user applications directly. We

have also created a networking library module for the lwIP

stack, which allows a platform to integrate independent lwIP

drivers for use with an RTEMS-based application. The new

modular networking architecture will facilitate switching from

one network stack to another and provides an easier route

to develop and use custom network stacks. Such stacks can

seamlessly fit as modules on top of RTEMS without changing

the kernel.

Our analysis of the three network stacks (legacy, libBSD,

and lwIP) provides insights on their features and performance.

The features of the libBSD and lwIP stacks are comparable

and much ahead of the RTEMS legacy stack. However, the

legacy stack shows lower latency when compared to the

libBSD stack. The analysis of memory requirements show that

for memory-constrained platforms the lwIP stack is a better

alternative to the legacy stack than the libBSD stack. Future

work can improve our benchmarking analysis by considering

the throughput from each stack along with evaluating dynamic

memory allocation for size-based comparisons among the

network stacks.

To further facilitate the development of multiple network

stacks without losing support for the common network ser-

vices, we have created a networking submodule that contains

popular network services including TFTP and telnetd. We have

thoroughly tested these services with RTEMS. This submodule

can be added to any networking stack thus providing a

common framework of services and testing. Future work can

add sample applications to the rtems-net-services submodule

that can be used by any network stack.

With our ongoing efforts, we intend to add more device

drivers to the lwIP stack to support a wider range of ar-

chitectures, and seek to understand how best to integrate it

with multicore targets [25]. We plan to utilize this modular

architecture to extend support for secure network services like

the Secure Shell Protocol (SSH), which is an important tool for

securing communications especially in industrial Internet-of-

Things (IIoT) [26] control systems. In addition, to facilitate the

development and adaptation of a network stack over a wider

range of targets, we plan to develop a library for networking

driver modules.

REFERENCES

[1] A. Hobbs, “The colonial pipeline hack: Exposing vulnerabilities in us
cybersecurity,” 2021.

[2] G. Bloom, J. Sherrill, T. Hu, and I. C. Bertolotti, Real-Time Systems

Development with RTEMS and Multicore Processors. CRC Press,
Nov. 2020. [Online]. Available: https://www.taylorfrancis.com/books/
9781351255790

[3] B. Beranek, “A history of the arpanet: the first decade,” Technical report,
1983.

[4] “Executive order on improving the nation’s
cybersecurity,” 2021. [Online]. Available: https:
//www.whitehouse.gov/briefing-room/presidential-actions/2021/05/
12/executive-order-on-improving-the-nations-cybersecurity/

[5] G. Bloom and J. Sherrill, “Scheduling and Thread Management with
RTEMS,” SIGBED Rev., vol. 11, no. 1, pp. 20–25, Feb. 2014. [Online].
Available: http://doi.acm.org/10.1145/2597457.2597459

[6] C. Vinschen and J. Johnston, “The newlib homepage,” 2018. [Online].
Available: http://sourceware.org/newlib

[7] W. Gatliff, “Porting and using newlib in embedded systems.”
[8] C. Johns, J. Sherrill, B. Gras, S. Huber, and G. Bloom, “FreeBSD

and RTEMS, UNIX in a Real-time Operating System,” FreeBSD

Journal, 2016. [Online]. Available: http://issue.freebsdfoundation.org/
publication/?i=330348&article id=2557258&view=articleBrowser

[9] M. K. McKusick, G. V. Neville-Neil, and R. N. Watson, The design and

implementation of the FreeBSD operating system. Pearson Education,
2014.

[10] “Freebsd security.” [Online]. Available: https://docs.freebsd.org/en/
books/handbook/security/

[11] A. Dunkels, “Design and implementation of the lwip tcp/ip stack,”
Swedish Institute of Computer Science, vol. 2, no. 77, 2001.

[12] M. Hamad and V. Prevelakis, “Implementation and performance evalu-
ation of embedded ipsec in microkernel os,” in 2015 World Symposium

on Computer Networks and Information Security (WSCNIS). IEEE,
2015, pp. 1–7.

[13] N. Schild and C. Scheuer, “Embedded ipsec, light weight ipsec imple-
mentation,” Diplome Thesis, Berne Univ, Switzerland, 2003.

[14] “Rtems net-legacy.” [Online]. Available: https://git.rtems.org/
rtems-net-legacy/

[15] [Online]. Available: https://waf.io/book/
[16] [Online]. Available: https://docs.freebsd.org/doc/6.0-RELEASE/usr/

share/doc/handbook/network-ipv6.html
[17] [Online]. Available: https://sourceforge.net/p/ulan/lwip-omk/ci/master/

tree/
[18] “Rtems net-legacy.” [Online]. Available: https://git.rtems.org/vijay/

rtems-lwip.git
[19] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceed-

ings of the Annual Conference on USENIX Annual Technical Conference,
ser. ATEC ’05. USA: USENIX Association, 2005, p. 41.

[20] T. Straumann, “qemu + uc5282,” 2009. [Online]. Available: https:
//lists.rtems.org/pipermail/users/2009-September/021089.html

[21] L. Mejdrech, “Networking and tcp/ip stack for helenos system,” 2010.
[22] A. Kantee, “The design and implementation of the anykernel and rump

kernels,” Aalto university, 2016.
[23] “Porting lwIP - FreeRTOS.” [Online]. Available: https://docs.aws.

amazon.com/freertos/latest/portingguide/porting-lwip.html
[24] G. Bloom and J. Sherrill, “Harmonizing ARINC 653 and Realtime

POSIX for Conformance to the FACE Technical Standard,” in 2020

IEEE 23rd International Symposium on Real-Time Distributed Comput-

ing (ISORC), May 2020, pp. 98–105, iSSN: 2375-5261.
[25] D. Cederman, D. Hellström, J. Sherrill, G. Bloom, M. Patte, and M. Zu-

lianello, “RTEMS SMP for LEON3/LEON4 Multi-Processor Devices,”
in Data Systems In Aerospace, Warsaw, Poland, Jun. 2014.

[26] G. Bloom, B. Alsulami, E. Nwafor, and I. C. Bertolotti, “Design patterns
for the industrial Internet of Things,” in 2018 14th IEEE International

Workshop on Factory Communication Systems (WFCS), Jun. 2018, pp.
1–10.


