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Abstract
Machine learning (ML) methods are implemented to classify rotational absorption spectra for gas-phase compounds in 
the THz region, specifically 220–330 GHz where experimental data is available. Eight ML methods were trained in both 
standard and one-versus-rest (OVR) implementations using simulated absorption spectra for 12 volatile organic compounds 
and halogenated hydrocarbons of interest in industrial and environmental gas sensing applications. The performance of the 
resulting ML classifiers was compared against simulated training spectra in both a 70–30 training–testing split and in tenfold 
cross-validation studies, with the classifiers exhibiting accuracies in the range of 88–99% for simulated spectra. The clas-
sifiers were then tested for their ability to classify noisy experimental rotational spectra for methanol, ethanol, formic acid, 
acetaldehyde, acetonitrile, and chloromethane. The OVR implementations of the support vector machine (SVM) classifier 
with both linear and radial basis function kernels and the multi-layer perceptron (MLP) classifier achieved average classifica-
tion accuracies of 87–94% for the experimental dataset. The study shows that THz spectra in the present frequency region 
provide a sufficient spectral fingerprint for ML classifiers to learn and predict speciation, allowing automated gas sensing. 
The present methods can be extrapolated to different frequency ranges and compounds and conditions.

1  Introduction

Absorption spectroscopy is commonly applied for the non-
intrusive identification of gas-phase species and quantitative 
determination of their concentrations in industrial, environ-
mental, and research settings [1]. Absorption measurements 
in unknown single- or multi-component gases are often com-
plicated by the vast number of spectral features (transitions) 
present within an experimental frequency range, depending 
on the complexity of the molecules electronic (ultraviolet 
to visible), vibrational (infrared), or rotational (terahertz to 
microwave) energy level structure. In fact, the complexity of 
molecular vibrational and rotational spectroscopy is so great, 
that measurement of these features often provides a distinct 
“fingerprint” for a probed species. However, like human 
fingerprints, identification of the species responsible for a 
measured spectrum is usually not trivial. Significant effort 
can be required to assign experimentally observed features, 

using databases of spectroscopic transitions based on theory 
and experiments, to determine speciation. Further, spectral 
fitting or modeling is usually required to make quantitative 
measurements of gas-phase concentrations [2].

Absorption spectroscopy is well established in the litera-
ture [2–6]. In the terahertz (THz) wave region (0.1–10 THz), 
where our group has been recently developing gas-phase 
absorption sensors [7], molecules absorb radiation due to 
changes in their quantized rotational energy levels. The THz 
wave region can have several advantages over the commonly 
employed infrared region for absorption spectroscopy gas 
sensing. Polar gas molecules offer strong and distinct spectra 
in the THz wave region, often allowing greater sensitivity 
and selectivity than other frequency bands. THz waves are 
also not as susceptible to scattering or extinction from par-
ticles, as is infrared radiation, and large regions of the THz 
exist with no interfering absorption from water vapor. Addi-
tionally, THz waves can be generated using microelectronic 
sources [8, 9] and, hence, robust, miniature, and inexpensive 
gas sensors can be developed in this frequency range [10].

The determination of speciation from a measured absorp-
tion spectrum is a classification problem, suitable for super-
vised machine learning (ML) approaches. Supervised ML 
methods learn rules or functions from training observations 
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(e.g., spectra) and, when they encounter a new observation, 
assign the new observation to a particular category or class 
based on the learned rules or functions. Furthermore, ML 
algorithms are capable of recognizing complex patterns in 
high-dimensional data, ideal for recognizing features in 
complex rotational or vibrational fingerprint spectra.

ML methods have been widely used for various problems 
involving materials classification from experimental charac-
terization data, including, the classification of solid samples 
such as coal from proximate analysis data [11], wood from 
laser-induced breakdown spectra [12], and heavy minerals 
from scanning electron microscopy images [13]. Laser-
induced breakdown spectroscopy measurements have been 
used to train ML models to classify olive oils [14, 15] and 
Biodiesels [16] have also been classified using measured 
near-infrared spectra with ML methods. However, studies 
related to the identification of gas-phase species from non-
intrusive absorption spectroscopy using ML classifiers are 
few in the literature, although ML has been used in address-
ing a variety of problems relevant to spectroscopy and envi-
ronmental monitoring [17–24].

For gas classification, in recent years, deep neural net-
works (DNN) have been leveraged [25]. DNNs offer poten-
tially high classification accuracy via in-built feature learn-
ing, at the cost of optimizing millions of parameters which 
requires a large amount of training data. Furthermore, when 
compared to conventional ML algorithms, DNNs require 
long training times [25]. While training a DNN algorithm 
can be accomplished offline, the cost of retraining, to update 
an existing gas sensing model, and the lack of interpret-
ability of DNNs are two of the method’s biggest drawbacks. 
Small and fully connected neural networks, known as multi-
layer perceptrons (MLPs), require fewer parameters and less 
training time than DNNs and offer reduced model complex-
ity while handling nonlinearity and high-dimensionality in 
training data, and acceptable classification accuracy [26]. 
MLPs have been integrated with gas sensor array outputs to 
recognize a variety of simple gases species [25, 26].

Support vector machines (SVM) are popular ML classi-
fiers due to their optimal decision boundary identification 
capabilities [27, 28] and have been used for gas classifica-
tion [29, 30] and determination of gas concentrations for 
mixture components [31]. SVMs are developed using sta-
tistical learning theory and use training samples closest to 
the boundary, known as support vectors, to find optimum 
hyperplanes for the construction of decision boundaries. 
SVM performance can be improved using kernel func-
tions [23] and using a penalizing hyperparameter to solve 
soft-margin classification problems, where classes are 
inherently not separable, with reduced error [28]. Other 
mature algorithms such as k-nearest neighbors (k-NN) 
[32], decision trees (DT) [33], random forest (RF) [34], 
and boosting methods [35, 36] have also been employed 

in gas classification problems involving gas sensor or elec-
tronic nose data. However, tree-based methods often suf-
fer from “overfitting” which can drastically reduce their 
performance [37].

The shape of an absorption spectra for a given chemical 
species originating within a frequency band is mostly unique 
[37, 38]. The unique spectral shape for many polar mol-
ecules in the THz region [39] can form the basis of learning 
for ML classifiers. While the spectral fingerprint in any fre-
quency domain will vary depending on the thermodynamic 
conditions, absorption path length, the concentration of the 
absorbing molecule, and composition of the bath gas, the 
frequencies of transitions and overall shape of the spectral 
fingerprint for a particular compound will remain gener-
ally intact, or self-similar, and ML methods can be trained 
to identify spectral fingerprints, and provide an automated 
identification of species. Motivated by the pattern recogni-
tion and high-dimensional data capabilities of ML classi-
fiers, combined with superior selectivity [7, 40, 41] due to 
unique fingerprint available in the 220–330 GHz frequency 
range (7.33–11 cm−1) which greatly reduces human efforts 
in identifying features and matching patterns in spectral data 
for speciation, we demonstrate here that ML classifiers can 
be used to develop a fast spectra recognition tool to comple-
ment available spectroscopic tools.

In the present work, we investigate the potential for eight 
different supervised ML classification algorithms for the 
identification of gas-phase species based on absorption spec-
tra in the 220–330 GHz region, where prior experimental 
studies have been carried out. A number of supervised ML 
classifiers were trained to identify spectra, namely, k-near-
est neighbors, decision trees, random forest, support vec-
tor machine (with linear and radial basis function kernels), 
multi-layer perceptron, and decision trees and random forest 
with adaptive boosting. These classifiers were trained using 
two different strategies. First, in the regular implementa-
tion strategy, the classifiers were fit across all the classes/
compounds. Second, the One-Vs-Rest (OVR) strategy was 
implemented, where a single classifier is fitted per class/
label/compound.

In total, 16 different ML classifiers were trained on 
absorbance spectra of 12 compounds in the 220–330 GHz 
range. Absorption spectra were simulated for the 12 com-
pounds using fundamental spectroscopic parameters. ML 
classifiers were trained and optimized using 70% of 1968 
simulated spectra and then tested using the remaining 30% 
of simulated spectra. Tenfold stratified cross-validation on 
the training dataset was performed to interrogate the per-
formance baseline and any potential weaknesses of classi-
fiers. Laboratory measurements of absorption within the 
220–330 GHz frequency range were used to further test, 
validate, and determine the most suitable ML classifiers for 
the accurate and automated identification of species.
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2 � Methodology

2.1 � Experimental data for testing and validation

Spectral absorption measurements from prior studies carried 
out at Rensselaer are used to test and validate ML classifier 
performance. See Rice et al. [7] for details of the experi-
mental methods. Absorption spectra in these studies were 
characterized for 220–330 GHz for pure volatile organic 
compounds (VOCs) and simple pure halogenated hydrocar-
bons at pressures of 0.5–16 Torr and at room temperature 
(297 K). Here, measurements for methanol, ethanol, formic 
acid, acetaldehyde, acetonitrile, and chloromethane are used 
for testing and validation.

In the prior work of Rice et al. [7], THz wave radiation 
was generated via a microelectronic-based system, which 
multiplies the output of a radio frequency (RF) synthesizer. 
The THz wave radiation was passed through a gas cell, con-
taining the chemical species of interest, and focused onto a 
Schottky diode detector. See Fig. 1 for a schematic of the 
experimental setup and Fig. 2 for example measured spec-
tra for three different compounds. To increase the signal-to-
noise of the measurements, the RF source was amplitude 
modulated at high frequency and the detector signal was 
demodulated in a lock-in amplifier to extract the transmitted 
signal. Simultaneously, the RF signal was slowly swept in 
frequency space to measure absorption spectra over a range 
of 220–330 GHz. The Beer-Lambert law was used to deter-
mine the absorbance, based on the transmitted THz signal 
( I ) and the reference signal ( I0):

where A is the absorbance of the gas sample, � is the absorp-
tion coefficient, c is the molar concentration of the gas sam-
ple, and L is the optical path length. The absorption coef-
ficient depends on frequency, thermodynamic conditions 

−ln

(
I

I0

)

= �cL = A,

(pressure and temperature), and gas sample concentrations 
(through collisional line broadening contributions).

2.2 � Simulated training spectra

Supervised ML classifiers were exclusively trained using 
simulated absorption spectra for twelve compounds in the 
220–330 GHz frequency range calculated based on funda-
mental spectroscopic parameters (line center frequencies, 
line intensities, lower state energies, broadening parameters) 
taken from either the HITRAN and JPL molecular spectros-
copy databases as listed in Table 1. The compounds were 
chosen based on the availability of spectroscopic parameters, 
availability of absorption spectra measured in our labora-
tory in the frequency range of interest (220–330 GHz), and 
to include situations offering the potential for false-positive 
identification by ML classifiers, to test their relative per-
formance. No experimental data was used in the training 
dataset.

Absorption spectra simulations were carried out for 
pure components over a frequency range of 220–330 GHz 
(7.33–11 cm−1) at room temperature (297 K) and for a range 
of pressures from 0.3 to 16.5 Torr. The HITRAN Applica-
tion Programming Interface (HAPI) [44] was used to carry 
out the spectral simulations within a Python code [45]. The 
HAPI code simulates absorption spectra based upon an input 
database of line positions, line strengths, lower state ener-
gies, line broadening parameters, and degeneracies using a 
Voigt profile for line shapes. The HITRAN database served 
as the primary source for the fundamental spectroscopic 
inputs for the generation of the simulated training data, as 
summarized in Table 1. However, in the case of formic acid, 
acetonitrile, ethanol, and acetaldehyde, compounds not cata-
loged in HITRAN within the present frequency space, spec-
troscopic parameters from the JPL molecular spectroscopy 
database [43] were used.

Simulated absorption spectra for the twelve compounds 
considered in the present study are shown in Fig.  3 at 

Fig. 1   Schematic of the THz absorbance spectrometer
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16.5 Torr and 297 K. In the frequency range of interest 
(220–330 GHz, 7.33–11 cm−1), the twelve spectra are dis-
tinguished by the location and number of spectral features 
(lines or blended combinations of lines) and the relative 
absorbance for spectral features, characteristics which a ML 
classifier can learn to identify. While locations of spectral 
features for two or more compounds sometimes overlap, 
provided sufficient frequency range of data, there are many 
fingerprints for each molecule within the spectra, such that 
ML classifiers can learn both differences and similarities in 
the spectral fingerprints and their variation with pressure.

The resolution of the absorbance spectra used to train 
ML classifiers is important, as it provides an upper limit 
to the number of features available to a classifier. In build-
ing a ML classifier, all available features are never cho-
sen to avoid overfitting. If a classifier is trained with all 
available simulated spectral features, the classifier will, of 
course, perform extremely well on the testing data. How-
ever, when presented with experimental data containing 
noise, the classifier may attempt to fit the noise (overfit-
ting), leading to misclassification, or be unable to recognize 

Fig. 2   Measured spectra for 
ethanol (upper panel), methanol 
(middle panel), and acetalde-
hyde (lower panel) at 297 K and 
at different pressures

Table 1   Summary of simulated training data and the source of the 
spectroscopic parameters used to generate the simulations

Label indicates an integer value used as an identification index within 
the Python code implementation. For further information on spectro-
scopic parameters, see primary sources reported in [42, 43] for each 
compound

Label Compound Formula Source of 
spectroscopic 
data

Experiment

0 Chloromethane CH3Cl HITRAN [42] [7]
1 Methanol CH3OH HITRAN [7]
2 Formic acid HCOOH JPL [43] [7]
3 Formaldehyde H2CO HITRAN
4 Hydrogen sulfide H2S HITRAN
5 Sulfur dioxide SO2 HITRAN
6 Carbonyl sulfide OCS HITRAN
7 Hydrogen cyanide HCN HITRAN
8 Acetonitrile CH3CN JPL [7]
9 Nitric acid HNO3 HITRAN
10 Ethanol C2H5OH JPL [7]
11 Acetaldehyde CH3CHO JPL [7]
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an experimental spectrum where some weak features are 
overcome by noise. To reduce the likelihood of overfitting, 
it is necessary to reduce the amount of spectral information 
used to train the ML classifiers, seeking to include only the 
data/information that provides the distinct fingerprint for 
each compound. In the present study, the training spectra 
were simulated at a spectral resolution of 0.016 cm−1 and 
more highly resolved training spectra were found to gener-
ally produce the worst preforming ML classifiers. Training 
spectra were simulated at 297 K for pressures from 0.3 to 
16.5 Torr (0.000396–0.021749 atm) at a constant increment 
of 0.1 Torr (0.000131 atm), resulting 164 spectra at different 
pressures for each compound. Temperature was not varied 
in the present study, only pure single-component spectral 
simulations were considered, and the optical path length of 
21.59 cm was used throughout the study, the experimental 
path length for the experimental testing data [7]; however, 
the path length is of no consequence to the ML classification 
problem, as it is a scaler multiplier within the absorbance. 
The entire set of training data is comprised of 1968 train-
ing spectra (twelve compounds at 164 spectra/compound) 
containing 229 data points/spectra (absorbance at 229 fre-
quencies). Simulated absorption spectra were compared with 
experiments, where available in the literature, to verify and 
validate the current HAPI-based calculations, with compari-
sons showing good agreement. Those comparisons can be 
found in the appended supplementary material.

ML classifiers benefit from training data containing 
unique and separable features. From Fig. 3, we observe that 
the twelve target compounds have unique, although com-
plicated, fingerprints; however, two compounds at the same 
or different conditions may have some overlapping spectral 

features. Hence, the uniqueness of the training data for all 
twelve compounds (1968 spectra) needs to be taken into 
account. One way to parameterize the uniqueness of the 
training data would be to plot pairs of features against each 
other, where each feature is the value of absorbance at a 
particular frequency. However, since the spectra contain 
229 data points, it is not easy to visualize these compari-
sons. Hence, t-distributed stochastic neighbor embedding 
(t-SNE) has been used to reduce the dimensionality for 
visualization [46, 47]. In t-SNE, data points belonging to a 
class are assigned a location in a lower-dimensional space, 
such as a two- or three-dimensional space, while conserv-
ing their local structure and original clustering. A Gaussian 
probability distribution is constructed over pairs of spectra 
by the t-SNE algorithm such that similar high-dimensional 
spectra receive a high-probability value and dissimilar spec-
tra receive a low-probability value. Afterwards, the t-SNE 
algorithm minimizes a cost function, here Kullback–Leibler 
divergence, using a similarity metric and by constructing a 
t-distribution in a lower-dimensional space for each mapped 
spectrum. The ingenuity of the stochastic neighbor embed-
ding method, originally conceived by Hinton and Roweis 
[46], is that a high-dimensional object, in our case a spec-
trum, is represented in the lower-dimensional space by a 
point and the magnitude of the spacing between two points 
represents the relative uniqueness of those two spectra. For 
example, spectra of a single compound at two slightly dif-
ferent pressures will be very similar and will result in points 
on the t-SNE graph that are close to one another. Conversely, 
points for two vastly different spectra will be widely spaced. 
The t-distribution helps spread the mapped points in the 
lower-dimensional space. The t-SNE visualization reveals a 

Fig. 3   Computed spectra for the 12 pure compounds that comprise the training set. Conditions: 16.5 Torr and 297 K. Absorbance value is nor-
malized by maximum absorbance so that spectra can be visually compared
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complex and overlapping structures in data while preserving 
the original clustering.

t-SNE has been implemented on the present training data-
set with the results shown in Fig. 4. The implementation 
details of t-SNE can be found in the work of Maaten and 
Hinton [47]. The separation of points in Fig. 4 shows that the 
spectra for nearly all compounds at all pressure conditions 
are generally well separated, with the most similar spectra 
being those for ethanol (C2H5OH), formic acid (HCOOH), 
hydrogen sulfide (H2S), hydrogen cyanide (HCN) and car-
bonyl sulfide (OCS) corresponding to five mapped points 
near a location of (5,0) in Fig. 4, all corresponding to spectra 
calculated at very low pressures. Although these points do 
not exactly overlap, indicating a degree of separability in the 
spectra, their similarity suggests the potential for misclas-
sification of these spectra, particularly at very low pressures. 
The rest of the training data are very well spaced, which 
should allow ML-based classification.

2.3 � ML classifiers

ML approaches to classification can be most simply be rep-
resented by a black box as shown in Fig. 5a. Often, data is 
available from prior experiments or computations. These 
data can be used as training examples in the supervised ML 
approaches, in which classifiers learn from labeled training 
data. If the data is not labeled, an unsupervised ML method 
can be used to organize similar data into groups [29, 48]. For 
predicting the compound responsible for an unknown spec-
trum, ML classifiers needed to be trained with a sufficient 
number of labeled training spectra. A general supervised 
ML method is shown in Fig. 5b. The training spectra con-
tain information about the true target function, f  . The train-
ing spectra contains features that are arranged in a feature 
vector, X . It is also known which features belong to each 

compound and compound labels are then represented using a 
label index. These integer values are arranged in a target vec-
tor, y . The target function, f  , represents the true relation that 
maps X to y . A ML classifier uses a learning algorithm, A , 
and suitable hypothesis set, H , to approximate a function, g , 
that approximately captures the target function, f  . Features 
of the training spectra are used as examples to determine 
model parameters and allow the development of a classifier. 
The performance of a classifier can be adjusted or controlled 
using hyperparameters, parameters that are unique to each 
classifier type and influence classifier performance but are 
not determined from the training data [49]. Once a clas-
sifier makes sufficiently accurate predictions on “unseen” 
spectra, the hypothesis is called a final hypothesis,g . This 
final hypothesis is then used as black box function to predict 
compound labels from unlabeled measured spectra as shown 
in Fig. 5a.

In this work, a total of 16 different supervised ML classi-
fiers were built using Scikit-learn machine learning library 
for Python [50]. The classifiers were developed using two 
different implementations of eight ML methods. In the regu-
lar classification strategy, a single classifier trains from the 
labeled training spectra for all twelve compounds. In the 
one-vs-rest (OVR) strategy, a classifier is constructed using 
multiple internal classifiers where each internal classifier 
trains for a single compound. All 16 classifiers were then 
compared for the identification of spectra in the parameter 
space described above. Classifiers are trained twice, in a 
70–30 training–testing split and then again in tenfold cross-
validation described in Sects. 2.4.1 and 2.4.2. The classifiers 
are briefly described below. The hyperparameters discussed 
in this section are decided in the 70–30 training–testing split 
and the tenfold cross-validation tests were performed using 
those same hyperparameters to show how the classifiers per-
form across the range of pressures.

Fig. 4   t-Stochastic neighbor 
embedding (t-SNE) of the spec-
tra for the twelve compounds 
considered. Arrows indicate the 
direction of decreasing pressure, 
where the 16.5 label represents 
the highest pressure data at 
16.5 Torr.
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K-nearest neighbors (k-NN) k-NN is an instance-based 
learning algorithm, known for its simplicity, ease of imple-
mentation, and low computational expense [51–57]. Within 
the current work, the k-NN algorithm compares an unknown 
spectrum to stored training spectra to find the most repre-
sentative classification. The classification of an unlabeled 
spectrum is then decided upon based on its similarity with 
k nearest neighbors, where k is a positive integer and the 
nearest neighbors are the training spectra which are most 
similar to the unknown spectrum. The unknown spectrum 
is classified based on a vote of the k most similar training 
spectra. To make the k-NN algorithm work, a suitable dis-
tance metric with an optimal number of nearest neighbors is 
required. There are several distance metrics available for use 
[58] but the optimal distance metric and nearest neighbors 
are usually found by trial and error [59].

In the present study, a number of nearest neighbors, k was 
set to three and all neighbors were given uniform weight in 
voting. The nearest neighbors (most similar training spectra) 
were chosen using the Euclidean distance metric, given by 
D(x, y) =

p

√
|
||
xi − x

�

�

|
||

p

 , where x is a feature vector in the train-
ing data, x′ is a target vector, and, here, p is chosen to be 2. 

Implementation details of the classifier can be found in the 
Scikit-learn machine learning library documentation [50].

Decision tree (DT) Over the years, several DT algorithms 
[60–63] have been developed to solve several real-world 
problems, such as credit approval, disease diagnosis, and 
image classification. DT can be an effective tool, particularly 
when the trees are small; however, DTs have a disadvantage 
that results in overfitting and often requires “pruning” meth-
ods [37]. The growth of a tree is stopped when the training 
data is sufficiently divided using a stopping criterion or by 
replacing every subtree with a leaf node when the error rate 
of the leaf node is lower than the sub-tree. Popular DT algo-
rithms are CART, ID3, C4.5, and C5.0. The Scikit-learn 
library contains a modified version of the CART algorithm 
[61, 64] which is used in this work.

The DT algorithm classifies unlabeled data by learning 
simple decision rules from the training data. These rules are 
represented in a flow chart or tree structure, where the deci-
sion path starts at a root node and proceeds through several 
branches (internal nodes) to the terminal leaf node which 
provides the classification. The mathematical formulation 
of the DT algorithm can be found in Scikit-learn documen-
tation [64]. Briefly, the DT algorithm organizes data by 

Fig. 5   a Generic ML classifier 
as a black box for predicting the 
compound responsible for an 
unknown spectrum, b generic 
ML approach to the prediction 
of compound labels. (figure 
adapted from [48])
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grouping together similar data and dividing the input space 
of training data. How a tree grows is dictated by the depth 
of the tree. The depth of the tree refers to the maximum 
distance between the root node and the farthest leaf node. 
To group similar data and divide the input space, an impu-
rity metric is used to judge if a leaf node is “impure” and 
whether it should be further divided. Impure leaf nodes are 
unable to classify data with 100% classification accuracy. In 
the present study, the maximum depth of the tree was set to 
50 and the ‘entropy’ impurity function, H , was implemented 
[49, 64]:

where Xm is the training data at node m , b is usually 2, and 
pmk is the proportion of data at node m with label k . All 
229 data points within each spectrum were considered when 
building a DT classifier based on resampled training spectra 
and all compounds (classes) were given equal weight.

Random Forests (RF) The RF algorithm fits multiple 
decision trees to subsets of training data and prevents overfit-
ting by averaging the results of DTs [65, 66]. Each DT is cre-
ated independently to its full depth and each DT has an equal 
vote in making the final classification decision, regardless of 
depth. From the given training data, a number of samples are 
randomly chosen in a process known as bootstrapping. DTs 
are created based on the selection of an optimal number of 
features from the bootstrapped datasets. All the DTs in the 
forest then make a classification decision, a step known as 
bagging. The absent training data in the bootstrapped dataset 
is called the out-of-bag dataset. The out-of-bag samples are 
used for testing the random forest classifier. The fraction of 
the out-of-bag data that are incorrectly classified is called the 
out-of-bag error (OOBE). Based on the OOBE, an optimal 
number of DTs is chosen for RF classification performance. 
In the present study, we used five DTs to build the forest, 
with a maximum depth of five-leaf nodes in each tree. The 
entropy function was used as a measure of impurity at leaf 
nodes.

Support Vector Machine (SVM) Support vector machines 
use a hyperplane to construct a decision surface and per-
forms spatial separation of data to achieve the widest pos-
sible gaps between different classes [67] and, hence, the 
optimal decision surface. The hyperplane is determined 
from some of the training data points, the support vectors, 
providing margin or distance between the hyperplane and 
those support vectors. If the data is not linearly separable, a 
SVM classifier will allow some misclassifications. For such 
linearly non-separable cases, the margin is called a “soft 
margin” and the classifier is a “soft margin” classifier [28]. 
SVM was originally conceived as a binary classifier and 
performed exceptionally well in classifying text and images. 
However, SVM can also handle multiclass classification [68] 

H
(
Xm

)
= −

∑

k
pmklogb

(
pmk

)
,

and regression [69] problems and is more immune to overfit-
ting compared to other ML methods [70].

SVM classifiers can perform exceptionally well on lin-
early non-separable data using the kernel trick [71]. Using 
a kernel function, the classifier can transform the linearly 
non-separable data to a higher dimensional space where 
a hyperplane will be able to separate the data. However, 
to make the computations faster, SVM simply calculates 
the relationship between pairs of data points if they were 
transformed to a higher dimensional space. This process of 
computing the relationship between the training data points 
without actually transforming them is known as the kernel 
trick [23]. For the implementation details of a SVM classi-
fier, see [11, 49, 50].

In the present work, two different SVM classifiers were 
constructed. One with a linear kernel function (SVM-lin-
ear) and the other with a radial basis function kernel (SVM-
RBF). We used LIBSVM library for support vector classifi-
cation in Scikit-learn library to construct the classifiers [50]. 
The RBF kernel is generally advantageous because training 
spectra are mapped nonlinearly to an infinite-dimensional 
space to allow SVMs to tackle nonlinear relations between 
features and compound label index. Choosing between 
the linear and RBF kernel is a challenging task and can be 
achieved by cross-validation. To make the choice, it is rec-
ommended to completely search the critical hyperparameter 
space of both kernels. The RBF kernel-based SVM has two 
hyperparameters, namely, the soft margin constant (C value) 
and the kernel coefficient (gamma value). However, the lin-
ear kernel-based SVM does not require any kernel coeffi-
cients and can be constructed using only the soft margin 
constant value. For training spectra with a large number of 
features, mapping to a higher dimension may not be required 
since it may not result in any performance improvement and 
a linear kernel-based SVM may be a simpler and a better 
choice [72]. Furthermore, the linear kernel has been shown 
to be a special case of RBF kernel [73].

The value of the soft margin constant (C value) was set 
to 100 and the kernel coefficient (gamma value) was set to 
0.125 for SVM-RBF classifier and its OVR implementation. 
The SVM-linear classifier used C = 260 and the OVR(SVM-
linear) classifier was constructed with C = 1.

Multi-layer Perceptron (MLP) A multi-layer perceptron 
(MLP) is a special class of feedforward artificial neural net-
works with a backpropagation algorithm. MLP is composed 
of a number of nodes arranged in at least three layers. In 
general, there are one or more hidden layers sandwiched 
between an input layer and an output layer. A layer consists 
of computation nodes, which are called neurons. Each neu-
ron can be activated or “fired” using an activation function 
[74] which is differentiable and non-decreasing [75].

The artificial neurons mimic neurons in the brain and pro-
cess signals and communicate with each other. However, 
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instead of using electrical and chemical processes like in 
human neurons, the artificial neurons use weighted and 
biased combinations of inputs and outputs for communica-
tion. The neurons learn complex relations from the training 
data which are given as inputs in the input layer. In super-
vised learning, the output layer consists of a single neuron. 
Each neuron in the input layer then learns from a single 
feature of the training data [29]. The neuron in the output 
layer receives the target for each set of features. The hid-
den layers connect the input and output layers to train the 
network. Typically, there are two phases to train a MLP. In 
the forward phase, the inputs (features), network parameters 
(weights and biases), and the desired output of the model are 
set. The model parameters are initiated randomly. The input 
signal from the input layer of neurons passes through each 
layer and an error signal is computed using an activation 
function. In the backward phase, the error signal proceeds 
from the output layer towards the input layer with appropri-
ate updates made to model parameters using backpropaga-
tion algorithms [29, 74, 76, 77]. For mathematical details 
regarding the implementation of MLP, readers are referred 
to [49, 50].

In the present study, the multi-layer perceptron receives 
training spectra in the form of 229 features; i.e., the input 
layer is comprised of 229 neurons. We used an identity func-
tion as the activation function. There are two hidden layers, 
with five and six neurons in each, as shown in Fig. 6. The 
weights are randomly initialized and are updated to progres-
sively minimize the cross-entropy loss function. In an itera-
tion, first the loss is calculated in the forward phase and then 
a backpropagation with stochastic gradient descent (SGD) is 

performed. The backpropagation starts from the output layer 
and proceeds to previous layers and updates each weight 
parameter, thus decreasing the loss function.

Adaptive Boosting Classifiers The Adaptive Boosting 
algorithm is based on a boosting technique that combines 
the performance of multiple weak learning methods (estima-
tors) to produce a superior method [78–80]. In this work, we 
created two Adaptive Boosted classifiers. One uses DTs as 
estimators and combines their outputs to classify spectra. 
The other one uses RFs as estimators and combines the out-
put of each forest.

Adaptive Boosted Decision Trees (ABDT) ABDT ensem-
bles the outputs of decision trees (DT) to boost their perfor-
mance. Therefore, this classifier uses decision trees as weak 
learners. Decision trees are created sequentially as a forest 
of trees. Initially, weights are applied to each spectrum in 
the training data. The first tree is trained on the entire train-
ing spectra and makes classifications. The next tree corrects 
for the misclassifications of the first tree by adjusting the 
weights. This process is carried out by all successive trees 
to build the classifier. This process is fundamentally differ-
ent from the majority voting by independent decision trees 
inside a conventional random forest algorithm. Furthermore, 
ABDT significantly improves the learning performance of a 
single decision tree, since the successive trees purposefully 
improve the misclassifications. In our construction of the 
ABDT classifier, we used ten decision trees, each with the 
same hyperparameters as the regular DT classifier.

Adaptive Boosted Random Forest (ABRF) In this instance 
of a boosted classifier, we use random forests as weak learn-
ers to construct the classifier. Therefore, these weak learners 
(RFs) are built sequentially [80], with each newly built forest 
attempting to improve the performance of the previously 
built forest by adjusting the weights applied to each spec-
trum in the training data. This learning process is different 
from a single random forest, where the bagging technique is 
employed. In the bagging technique, the learners (decision 
trees inside a single forest) are built-in parallel and inde-
pendent of each other [78] and the final output of the classi-
fier is based on majority voting by the decision trees inside 
the forest. We employed 20 random forests to construct the 
ABRF classifier. Each random forest consisted of ten deci-
sion trees with a maximum depth of five leaf nodes.

One-Vs-Rest (OVR) implementation of the above eight 
classifiers The OVR method is a binary classification strat-
egy in which a single classifier is trained to recognize each 
class or compound [81]. In this implementation strategy, the 
goal of the classifier is to take a base classifier and fit one 
classifier per class. For example, an OVR(SVM-linear) clas-
sifier uses a base SVM-linear classifier and creates twelve 
different incarnations of binary SVM-linear classifiers to 
individually train on each class/compound. Each incarnation 
of the base classifier trains for a single compound against 

Fig. 6   Multi-layer Perceptron (MLP) with two hidden layers. x refers 
to individual features and y refers to label integer index value
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the eleven other compounds treated as one compound. For 
example, if the base classifier is trained for chloromethane, 
it simply treats all training spectra from the other 11 com-
pounds as “not-chloromethane” and learns how to identify 
chloromethane apart from the other compounds. Thus, the 
method simply consists of fitting one base classifier per 
compound. When OVR(SVM-linear) is called upon, each 
internal incarnation of the SVM-linear classifier then evalu-
ates the unknown spectrum and tries to match it with its 
compound class label. The hyperparameters used for OVR 
implementation of each classifier are not necessarily same as 
that of the regular implementations of the classifier.

2.4 � ML implementation

The sixteen ML classifiers are tested for their ability to 
identify a pure component spectrum in the 220–330 GHz 
region. The classifiers are those described above (k-NN, 
DT, RF, SVM-linear, SVM-RBF, MLP, ABDT, and ABRF, 

and OVR implementation of those eight ML methods). A 
Python 3 computer program supported by the Scikit-learn 
machine learning library [50] was written to implement 
all the classifiers. The program was executed on a Core 
i7 laptop with a CPU clock speed of 1.8 GHz and having 
16 gigabytes of random access memory. The training data 
required 36 megabytes of disk space.

The absorption spectrum classification program was 
implemented according to the flowchart structure given 
in Figs. 7 and 8. The program is initiated by passing input 
variables: pressure and pressure increment, temperature, 
frequency and frequency increment, optical path length, 
and the database of spectroscopic parameters for the chem-
ical compounds of interest. These inputs are passed to a 
modified HAPI interface where spectral simulations are 
carried out. The number of compounds and the number 
of training spectra per compound must also be specified 
to generate a training dataset of simulated spectra. In the 

Fig. 7   ML classifier data generation and training procedure. For cross-validation, the procedure is stopped after step 10 and repeated ten times 
for ten different folds. Steps 1–5 illustrate the generation and assembly of simulated spectra and not actually part of the training procedure

Fig. 8   ML classifier testing and validation procedure. If a simulated spectrum is tested, step 2 is skipped, since the spectrum does not need resa-
mpling
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present study, twelve compounds and 164 computed spec-
tra per compound were chosen for the training dataset.

The calculated absorption spectra are assembled into two 
numpy arrays. One array, X, consists of an index and the 
features of each spectrum (absorbance value for each wave-
number sample). Another array, denoted by y, consists of 
the labels/classification for each spectrum and is called the 
target array. All the simulated absorption spectra can be used 
as training examples; however, we randomly remove some of 
the spectra to form a testing data set. During the formation 
of the training dataset and the testing dataset, spectra are 
selected equally for each compound to maintain stratifica-
tion of the training set. In this study, classifiers are trained 
twice, in a 70–30 training–testing split and a tenfold cross-
validation, as described below.

2.4.1 � 70–30 training–testing split

As the first training step, 70% of the computed absorption 
spectra are randomly selected as the training dataset and the 
remaining 30% is held for testing and optimizing the perfor-
mance of the trained classifiers. Training and testing spectra 
are selected by stratification of the classes, therefore, each 
compound has approximately the same number of training 
and testing spectra. To assess performance, classifiers fit 
1357 training spectra to learn features of the data.

Once trained, the ML classifiers are tested for their classi-
fication accuracy against the 611 testing spectra. The testing 
process is shown in Fig. 8. Each testing spectra is treated 
as an unknown spectrum. Since the testing spectra are also 
simulated and have the same number of features as the train-
ing spectra, no resampling is required. The trained classifier 
receives each testing spectrum and outputs an integer label 
index ranging from 0 to 11, revealing the compound associ-
ated with the spectrum. Afterwards, classification accuracy 
and other metrics are computed from the confusion matrices 
of each classifier. We set an accuracy threshold (th) of 99%. 
If classification accuracy is greater than 99%, performance 
is deemed satisfactory for the prediction of simulated spec-
tra. Accuracy is further interrogated by inspecting the con-
fusion matrices of the classifiers and examining different 
classification metrics (the F1 score, precision, and recall). 
If the classification accuracy for the testing data is below 
99%, the hyperparameters of the ML classifier are adjusted 
and the classifier is retrained. Once all the classifiers meet 
the 99% threshold, we proceed to use these classifiers for 
a stratified tenfold cross-validation to further analyze the 
performance of the classifiers across the training examples 
and to determine if the size and quality of training examples 
are sufficient. The performance of the 70–30 split trained 
classifiers are averaged over three iterations, to account for 
randomness, and are given in Table 2. As shown in Table 2, 
all classifiers met the accuracy threshold of 99% and most 

classifiers require less than 1 s of computer clock time to 
train. SVM-linear classifier is the best performing classifier 
on the simulated spectra.

2.4.2 � Stratified tenfold cross‑validation

We performed a tenfold cross-validation, as illustrated in 
Fig. 9, to assess the performance and stability of classifiers, 
the quality of the training examples, and if the number of 
the training examples is sufficient. Ten-fold cross-validation 
is equivalent to separating the training examples according 
to a 90–10% training–testing split. The training dataset is 
divided into ten separate folds according to their pressure. 
Nine folds are used for training and one of the folds is used 
for testing. Each class of compound is equally represented 
in each fold; hence, our implementation of the process is 
known as stratified tenfold cross-validation.

To perform the tenfold cross-validation, we train classi-
fiers ten times over ten different iterations. We used the same 
hyperparameters that resulted from the 70 to 30 optimiza-
tion of the classifiers. In each iteration, a different fold was 
used for testing and the other nine folds for training. From 
Fig. 9, we observe that in the first iteration we use spectra 
belonging to folds 2 through 10 for training, which were 
simulated for pressures from 2.0 to 16.5 Torr. Spectra in 
fold 1 are used for testing, which were simulated at pres-
sures of 0.3–1.9 Torr. As we progress through the iteration, 
a complete sweep over the entire training space is made, and 
classification performance across different pressure ranges 

Table 2   Performance of ML classifiers in the 70–30 training–testing 
split studies (1357 training and 611 testing spectra)

Values are averaged over three random trials where training–testing 
spectra were selected using Python random number generator seeds

Classifier Runtime [ms] Accuracy [%]

k-NN 195 ± 38 99.89 ± 0.09
DT 389 ± 27 99.29 ± 0.34
RF 130 ± 2 99.02 ± 0.17
SVM-linear 255 ± 17 100.0 ± 0.00
SVM-RBF 462 ± 52 99.46 ± 0.41
MLP 257 ± 32 99.89 ± 0.09
ABDT 3191 ± 430 99.95 ± 0.09
ABRF 2194 ± 68 99.84 ± 0.28
OVR(k-NN) 784 ± 105 99.89 ± 0.09
OVR(DT) 1011 ± 106 99.40 ± 0.25
OVR(RF) 278 ± 49 99.29 ± 0.25
OVR(SVM-linear) 568 ± 135 99.95 ± 0.09
OVR(SVM-RBF) 462 ± 40 99.95 ± 0.09
OVR(MLP) 456 ± 123 99.95 ± 0.09
OVR(ABDT) 1016 ± 145 99.45 ± 0.25
OVR(ABRF) 893 ± 112 99.67 ± 0.00
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is evaluated. Cross-validation also provides information as 
to whether the training data is of sufficient size and if there 
are any potential weakness within the training set [82] and 
reveals how sensitive classifiers are to particular parameters. 
For example, we can observe that if we only use classifiers 
trained at higher pressures, they fail to correctly identify 
spectra at lower pressures. On the other hand, if we train 
classifiers at lower pressures they can recognize higher pres-
sure spectra, as illustrated in cross-validation results.

Stratified tenfold cross-validation showed that all classifi-
ers trained via the 70–30 training–testing split were satisfac-
tory; hence, we tested these classifiers against experimental 
spectra. The classifiers trained using the 70–30 training–test-
ing split were used, instead of those that resulted follow-
ing tenfold cross-validation (90–10 training–testing split), 
because it has been shown that ML classifiers that have been 
suboptimally trained on simulated data can perform better 
than those that have been over-trained [83].

All 16 classifiers were tested against experimental meas-
urements using the procedure shown in Fig. 8. The measure-
ments [7] were made at much higher spectral resolution than 
the ML classifiers were trained on; therefore, all experimen-
tal spectra were first resampled using a Fast Fourier Trans-
form to generate spectra with resolution matching the simu-
lations (0.016 cm−1). A resampled unknown experimental 
spectrum is received by the trained ML classifier function as 
an input. The trained classifier then processes the spectrum 
and produces a label ranging from 0 to 11 corresponding 
with the assigned chemical compound for that spectrum.

3 � Results and discussion

3.1 � Tenfold cross‑validation

The performance of ML classifiers for classifying unknown 
spectra was first assessed here by confusion matrices. Con-
fusion matrices present the number of instances each com-
pound is correctly and incorrectly identified and enable easy 
determination of classification performance metrics. Perfor-
mance of the ML classifiers is better understood in terms of 
four statistical parameters:

a.	 Classification accuracy (CA): The percentage of cor-
rectly classified spectra of all tested spectra.

b.	 Precision (P): Precision is defined as the ratio of true 
positives (TP, correctly predicts the positive class/com-
pound) over the sum of true positives and false positives 
(FP, incorrectly predicts the positive class). It is a meas-
ure of a ML classifier’s ability to not misidentify a given 
spectrum and answers the question of what fraction of 
spectra identified as positives were truly positive.

c	 Recall (R): Recall is the ability of a ML classifier to 
find all positive samples of a given compound and is 
defined as the ratio of true positives over the sum of true 
positives and false negatives (FN, incorrect predictions 

P =
TP

TP + FP

.

Fig. 9   Schematic representation of tenfold cross-validation. The pres-
sure range refers to the pressures of the spectra belonging in each 
fold. In each iteration, classifier accuracy, precision, recall, and F1 

scores are determined. Folds 1–4 contains 204 spectra each and folds 
5–10 contains 192 spectra each
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of the negative class). Recall indicates the fraction of 
actual spectra for a particular compound that are cor-
rectly predicted.

d.	 Score (F1): Score or F1 score is the harmonic mean of 
precision and recall.

Figure 10 illustrates the confusion matrices for tenfold 
cross-validation for four classifiers for three different itera-
tions of the tenfold cross-validation: iteration 1, containing 
testing spectra at the lowest pressures of 0.3–1.9 Torr and 
training spectra at pressures of 2.0–16.5 Torr; an inner itera-
tion falling between iterations 2–9; and iteration 10, contain-
ing testing spectra at the pressure of 15.0–16.5 Torr and 
training spectra at pressures of 0.3–14.9 Torr. For all confu-
sion matrices (all compounds, all classifiers, all iterations), 
please see the appended supplementary material.

The confusion matrices illustrate the predictions of vari-
ous ML classifiers for testing spectra, where each row shows 
the molecule for the known testing spectra and each column 
shows the molecule predicted by the classifier. In each itera-
tion, either 16 or 17 testing spectra were considered for each 
molecule. The numbers along the diagonal of the confusion 
matrices indicate correct predictions by the classifiers and 
off-diagonal numbers indicate incorrect predictions. The 
color scheme simply distinguishes between the ML methods 
used to construct the classifiers.

From Fig. 10 it is observed that the classifiers perform 
relatively worse on iteration 1 (lowest pressures), indicating 
that when ML classifiers are trained on higher pressure spec-
tra, they are prone to misclassify when asked to extrapolate 
to lower pressure, where spectral features are much weaker 
and difficult to distinguish. Fortunately, in most cases at 
these low pressures, the features that are so weak that they 
are not experimentally resolvable, making this poorer per-
formance an often unimportant result.

For iterations, 2–9, all ML classifiers, except DT, 
OVR(DT), and OVR(ABDT), have a performance which can 
be characterized as producing negligible misclassifications. 
This is expected because for the inner folds the classifiers are 
trained on both lower pressure and higher pressure spectra 
and hence the classifiers are not asked to extrapolate beyond 
the training dataset. Decision trees are generally more prone 
to “overfitting”. Overfitting refers to memorization of pecu-
liarities of training data instead of learning predictive rules 
[83]. A consequence of overfitting is that a classifier may 
perform very well in the prediction from training data but 

R =
TP

TP + FN

.

F1 = 2 ×
P × R

P + R
.

will fit noise in any new data, leading to misclassification. 
Decision tree methods misclassify spectra throughout all the 
iterations, both in regular and OVR implementations. There-
fore, it is likely that DTs are alone insufficient for finding 
general classification rules. This observation is further sup-
ported by the fact that the RF classifier and boosted decision 
trees (ABDT) classifier both generally perform better than 
the DT classifier.

For the 10th iteration, some misclassifications are also 
observed, in this case for both the DT and RF-based clas-
sifiers: DT, OVR(DT), OVR(ABDT), RF, OVR(RF), and 
OVR(ABRF). All other ML classifiers do very well on the 
10th iteration and for iterations 2–9, in terms of classifying 
all twelve compounds. The misclassifications, again, likely 
arise from extrapolation; i.e., training on low-pressure spec-
tra and testing on a high-pressure spectrum. With increasing 
pressure, relatively weaker peaks become more prominent; 
hence, if ML classifiers are trained on low-pressure spectra, 
they do not learn as much from these weak peaks that then 
appear more prominently in the high-pressure testing data. 
The compounds for which the classification performance are 
worst are those that contain the weakest peaks and include 
formic acid, formaldehyde, and sulfur dioxide. Another 
important observation is while at iteration 1, all ML classi-
fiers misclassify, however, at iteration 10, only the tree-based 
methods misclassify. This indicates that tree-based methods 
are highly likely to overfit the training spectra generated at 
lower pressures.

Table 3 presents a comparison of the combined computer 
clock time for training and testing of each ML classifier in 
tenfold cross-validation. It is observed that the OVR imple-
mentations are generally faster in training and testing. An 
exception is the OVR(DT) classifier, which took longer to 
train compared to the DT classifier. The slowest training 
times are generally observed for adaptive boosted tree-based 
classifiers, namely ABDT and ABRF classifiers and their 
OVR counterparts, due to the sequential nature of the boost-
ing method.

Table 3 also presents a comparison of average values 
and standard deviations of accuracy, precision, recall, and 
F1 score for the classifiers in tenfold cross-validation. The 
tree-based methods (DT and RF, both in regular, boosted, 
and OVR implementation) have the worst performance, 
in terms of all classification metrics, a result in keeping 
with the confusion matrices. All other classifiers have 
an accuracy of greater than 95% with the OVR(SVM-
linear) and OVR(SVM-RBF) classifiers at greater than 
98% accuracy and with the smallest standard deviations 
in accuracy. The k-NN and MLP classifiers perform 
similarly to the SVM classifiers; however, the perfor-
mance improvement of OVR(k-NN) and OVR(MLP) in 
comparison to k-NN and MLP is negligible, while the 
OVR(SVM) classifiers perform better than the standard 
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SVM classifiers for the classification of simulated data. 
Overall, the best performing methods are SVM-linear, 
SVM-RBF, MLP, and k-NN in both regular and OVR 
implementations, with average classification accuracy 
above 96% overall ten folds. Precision for these highest-
performing classifiers is 97–99%, indicating they are very 
unlikely to yield false positives. Recall and F1 scores also 

show strong performance at greater than 97% for these 
methods (SVM-linear, SVM-RBF, MLP, and k-NN in 
both regular and OVR implementation).

Fig. 10   Confusion matrices, represented as heat maps, for cross-validation results of DT, MLP, OVR(SVM-RBF), and OVR(SVM-linear) classi-
fiers
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3.2 � Performance against experimental spectra 
(classifier validation)

The performance of the ML classifiers was tested in the clas-
sification of 36 experimental spectra, measured in our labo-
ratory. Since we randomly trained and tested ML classifiers 
with a 70–30 training–testing split three different times, we 
have three different confusion matrices for validation of the 
ML classifiers with experimental spectra. One of the confu-
sion matrices from these three random trials is presented 
in Table 4, the rest are given in supplementary material. 
The first column in Table 4 lists the names of the com-
pounds associated with each experimental spectra, where 
the hyphenated number refers to experimental pressure in 
Torr. The experimental data set contains both filtered and 
unfiltered measurement to test the extent of overfitting of the 
classifiers. With the exception of acetonitrile (CH3CN), all 
compounds have at least one repeated measurement included 
in the validation set, allowing a test of the robustness of 
the classifiers to slight variations in experimental spectra. 
From Table 4, it is evident the MLP, OVR(SVM-RBF), and 
OVR(SVM-linear) classifiers outperform the rest of the clas-
sifiers in terms of recognition of the experimental spectra. 
Interestingly, the OVR(MLP) and SVM-RBF and SVM-
linear classifiers do not perform nearly as well.

As expected, based on the cross-validation results, DT 
and RF classifiers perform very poorly on experimental data, 
irrespective of regular or OVR implementation. Performance 
improvement due to boosting is also evident, where ABRF 
and ABDT classifiers perform better than DT and RF clas-
sifiers. When implemented in OVR strategy, ABRF and 
ABDT performance is improved further. So boosting and 

OVR combined can be a good approach to implement tree-
based ensemble methods to recognize spectra; although the 
training time for these classifiers may be longer than non-
tree-based classifiers. However, it should be noted that clas-
sifier performance is governed by the ML method itself but 
also by the limitations of the training dataset.

Average performance metrics for the classifiers against 
experiments are given in Table 5. It is clear that for the 
classification of these 36 experimental spectra, the MLP, 
OVR(SVM-RBF), and OVR(SVM-linear) classifiers per-
formed best, with greater than 85% average classification 
accuracy. Average classification accuracy of k-NN, ABDT, 
and ABRF and their OVR counterparts lies between 75 and 
81% and these classifiers can be deemed as good perform-
ers. In terms of standard deviation in classification accu-
racy, precision, recall and F1 score, OVR(SVM-linear) 
outperforms all the other classifiers. A comparison of the 
classifiers indicates that the MLP and OVR(MLP) classi-
fier struggles slightly with the identification of methanol, 
acetaldehyde, and formic acid, which have somewhat similar 
spectra. OVR(SVM-linear) has difficulty with acetonitrile. 
The average F1 score for OVR(SVM-linear) is comfortably 
greater than that for MLP. Therefore, OVR(SVM-linear) 
may be a better practical choice for the classification of 
experimental spectra, even with its slightly lower average 
recall value for some compounds. Also of note, while the 
regular implementations of the SVM-linear and SVM-RBF 
classifier have a quite good F1 score for some compounds, 
both have very poor classification accuracy. Furthermore, 
the MLP method misclassified three spectra for three dif-
ferent compounds (ethanol, formic acid, and acetaldehyde), 
while the OVR(SVM-linear) method misclassified three 

Table 3   Performance for ML 
classifiers in tenfold cross-
validation studies on simulated 
spectra. Values reported here 
are averaged over the 10 
iterations

The fractions of training spectra and testing spectra in each iteration were not necessarily same

Classifier Runtime [ms] Accuracy [%] Precision Recall F1 Score

k-NN 931 ± 123 97.0 ± 9.5 0.99 ± 0.04 0.97 ± 0.1 0.97 ± 0.1
DT 1181 ± 127 88.3 ± 24.3 0.90 ± 0.2 0.88 ± 0.2 0.87 ± 0.3
RF 886 ± 115 92.4 ± 19.2 0.95 ± 0.1 0.92 ± 0.2 0.93 ± 0.2
SVM-linear 235 ± 52 97.2 ± 8.84 0.99 ± 0.04 0.97 ± 0.1 0.97 ± 0.1
SVM-RBF 667 ± 75 97.1 ± 9.3 0.99 ± 0.04 0.97 ± 0.1 0.97 ± 0.1
MLP 1025 ± 99 97.3 ± 8.7 0.98 ± 0.1 0.97 ± 0.1 0.97 ± 0.1
ABDT 4025 ± 1119 93.0 ± 22.2 0.95 ± 0.2 0.93 ± 0.2 0.93 ± 0.2
ABRF 2484 ± 1207 93.9 ± 19.4 0.97 ± 0.1 0.94 ± 0.2 0.94 ± 0.2
OVR(k-NN) 599 ± 192 97.0 ± 9.5 0.99 ± 0.04 0.97 ± 0.1 0.97 ± 0.1
OVR(DT) 1323 ± 178 88.7 ± 23.0 0.91 ± 0.2 0.89 ± 0.2 0.88 ± 0.2
OVR(RF) 289 ± 23.0 89.7 ± 23.9 0.92 ± 0.2 0.90 ± 0.2 0.89 ± 0.3
OVR(SVM-linear) 628 ± 69 98.9 ± 3.6 1.0 ± 0.02 0.99 ± 0.03 0.99 ± 0.03
OVR(SVM-RBF) 605 ± 117 98.3 ± 5.3 0.99 ± 0.02 0.98 ± 0.1 0.99 ± 0.1
OVR(MLP) 560 ± 145 96.5 ± 11.0 0.99 ± 0.02 0.97 ± 0.1 0.97 ± 0.1
OVR(ABRF) 995 ± 197 92.2 ± 21.9 0.95 ± 0.1 0.92 ± 0.2 0.92 ± 0.2
OVR(ABDT) 1202 ± 2 87.4 ± 22.9 0.87 ± 0.2 0.87 ± 0.2 0.86 ± 0.2
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different spectra for two compounds (ethanol and acetoni-
trile). Interestingly, OVR(SVM-RBF) misclassified four 
spectra for five different compounds (nitric acid, ethanol, 
chloromethane, acetonitrile and acetaldehyde).

3.3 � Misclassifications

Misclassifications of experimental spectra appear to occur 
for two reasons. The first being deficiencies in the simulated 
training data set used to train the classifiers. The ML classi-
fiers are highly sensitive to the frequency location of spec-
tral features (absorption peaks) and the relative strength of 
spectral features. If experimental measurements are slightly 
shifted in frequency space, relative to simulated training 
spectra, or contain features that can be confused with non-
corresponding simulated training spectra due to slight mis-
matches in frequencies of peaks or the relative absorption of 
peaks, they are more likely to be misclassified. This sensitiv-
ity, in part, motivates the lower frequency resolution used to 
develop the spectral simulation database, as described above. 
However, even with the lower frequency resolution of the 
simulated spectral training data set, misclassifications can 
occur due to differences between simulated training spectra 
and experimental measurements. It is important to note, that 
the simulated training spectra are generated from param-
eters in spectroscopy databases that are not fully validated 
by experiments, especially in the present frequency range. 
In several cases, the experimental data used in this study is O
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Table 5   Overall average and standard deviation values for classifi-
cation accuracy, precision, recall, and F1 score for 36 experimental 
spectra

Values are averaged over 3 random trials

Methods Accuracy [%] Precision Recall F1 score

k-NN 80.56 ± 2.78 0.91 ± 0.14 0.81 ± 0.14 0.84 ± 0.08
DT 50.93 ± 11.23 0.60 ± 0.14 0.51 ± 0.23 0.49 ± 0.19
RF 51.85 ± 1.61 0.67 ± 0.37 0.52 ± 0.33 0.55 ± 0.30
SVM-linear 66.67 ± 4.81 0.74 ± 0.42 0.67 ± 0.35 0.67 ± 0.34
SVM-RBF 76.85 ± 3.21 0.92 ± 0.17 0.77 ± 0.18 0.80 ± 0.12
MLP 87.04 ± 6.99 0.86 ± 0.18 0.87 ± 0.15 0.80 ± 0.24
ABDT 75.00 ± 4.82 0.85 ± 0.11 0.75 ± 0.16 0.78 ± 0.10
ABRF 73.15 ± 8.49 0.89 ± 0.18 0.73 ± 0.24 0.76 ± 0.14
OVR(k-NN) 78.71 ± 1.61 0.91 ± 0.14 0.79 ± 0.13 0.83 ± 0.07
OVR(DT) 42.59 ± 5.78 0.57 ± 0.40 0.43 ± 0.35 0.39 ± 0.24
OVR(RF) 57.41 ± 5.78 0.76 ± 0.18 0.58 ± 0.33 0.59 ± 0.25
OVR(SVM-

linear)
93.52 ± 1.60 0.96 ± 0.10 0.94 ± 0.13 0.94 ± 0.09

OVR(SVM-
RBF)

87.04 ± 3.21 0.94 ± 0.17 0.87 ± 0.13 0.89 ± 0.09

OVR(MLP) 75.93 ± 4.25 0.70 ± 0.41 0.76 ± 0.38 0.72 ± 0.38
OVR(ABDT) 75.92 ± 6.41 0.92 ± 0.07 0.76 ± 0.23 0.80 ± 0.14
OVR(ABRF) 75.92 ± 6.41 0.92 ± 0.07 0.76 ± 0.23 0.80 ± 0.14
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the first of its kind. The second reason for misclassifications 
is experimental noise. Depending on the relative strength 
of measured spectral features to the underling absorption 
noise, classifiers will sometimes attempt to “fit” the noise 
and “see” noise features as spectral features, causing a mis-
classification, a phenomena known as “overfitting” in ML 
terminology.

Figure 11 illustrates an experimental spectrum for formic 
acid at 1 Torr that is misclassified by the MLP classifier 
as methanol. The classifiers are designed to only predict 
labels (compounds) and not pressure but for comparison 
we have plotted the simulated spectra for both formic acid 
and methanol at 1 Torr against the experiment. The experi-
mental measurement for this weak absorption case shows 
four main absorption features with relatively poor signal-to-
noise. A comparison of the formic acid simulation with the 
experimental spectra shows that there are slight differences 
between the two. The relative magnitude of the four strong-
est absorption features in the simulation are not in agreement 
with the experiment and there are some slight differences in 
the frequencies of the peaks. The simulated spectra for meth-
anol have 5–6 spectral features that match local absorbance 
peaks in the experimental spectra, although not all of the 

strongest four features. It is likely that because the methanol 
training simulation matches a greater number of local peaks, 
even though they are generally weaker spectral features in 
the experiment, the classifier incorrectly finds methanol to 
be a better match. The poor signal-to-noise magnifies this 
problem causing the classifier to have difficulty identify-
ing the important fingerprint features of the experimental 
spectrum. From the tenfold cross-validation results shown 
in Fig. 10, we also observe that classification accuracy is 
lower at pressures below 1 Torr where the signal-to-noise is 
reduced due to weak absorption signals.

4 � Conclusions

The present work demonstrates the classification of pure 
component absorption spectra in the THz spectral region 
using machine learning (ML) methods and evaluates the 
relative performance of a variety of ML classifiers for the 
classification of simulated and experimental spectra. ML 
classifiers were trained using simulated spectra for twelve 
pure compounds in the 220–330 GHz range generated using 
fundamental spectroscopic parameters. The spectra present 

Fig. 11   Spectral demonstra-
tion of the misclassification of 
formic acid at 1 Torr by MLP 
classifier
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complex fingerprints based on the rotational energy level 
structure for each polar compound considered. Classifier 
performance was first evaluated against simulated spectra, 
in both a 70–30% training–testing split and in tenfold cross-
validation studies, and then against 36 measured spectra for 
six compounds in the same 220–330 GHz range. The ML 
classifiers considered include k-nearest neighbors, decision 
trees, random forest, support vector machines (with linear 
and radial basis function kernels), multi-layer perceptron, 
adaptive boosted decision trees and random forest, and one-
vs-rest implementation of the aforementioned ML methods. 
Compounds considered include polar compounds of indus-
trial and environmental importance for which gas sensing 
may be desired: chloromethane, methanol, formic acid, 
formaldehyde, hydrogen sulfide, sulfur dioxide, carbonyl 
sulfide, hydrogen cyanide, acetonitrile, nitric acid, ethanol, 
and acetaldehyde.

All classifiers perform extremely well in identifying sim-
ulated spectra (accuracy > 99%); however, when presented 
with experimental data containing noise, the multi-layer per-
ceptron (MLP) and the one-vs-rest implementation of the 
support vector machine with both linear kernel and radial 
basis kernel function (OVR(SVM-linear) and OVR(SVM-
RBF)) classifiers achieved an average classification accu-
racy of greater than 85% on a set of experimental absorption 
spectra for six compounds and high recall (87% for MLP 
and OVR(SVM-RBF) and 94% for OVR(SVM-linear). 
Misclassifications generally occur for situations involv-
ing weak spectral features, where noise compromises the 
classification.

The novelty of the present work is the demonstration of 
automated ML-based spectral fingerprinting within a nar-
row frequency range in the THz region for noisy experimen-
tal data and with relatively high accuracy and fast training 
times, that are suitable for real-time gas sensing and con-
tinuous training of classifiers. The methods demonstrated 
here can be directly extended to different spectral frequency 
domains, larger and/or different databases of compounds, 
and a wide variety of conditions (pressure and tempera-
tures). Extending the present ML classification methods for 
the identification of multi-component mixture spectra will 
require future work but is possible.

Supplementary Information  The online version contains supplemen-
tary material available at https​://doi.org/10.1007/s0034​0-021-07582​-0.
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