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Abstract

Machine learning (ML) methods are implemented to classify rotational absorption spectra for gas-phase compounds in
the THz region, specifically 220-330 GHz where experimental data is available. Eight ML methods were trained in both
standard and one-versus-rest (OVR) implementations using simulated absorption spectra for 12 volatile organic compounds
and halogenated hydrocarbons of interest in industrial and environmental gas sensing applications. The performance of the
resulting ML classifiers was compared against simulated training spectra in both a 70-30 training—testing split and in tenfold
cross-validation studies, with the classifiers exhibiting accuracies in the range of 88-99% for simulated spectra. The clas-
sifiers were then tested for their ability to classify noisy experimental rotational spectra for methanol, ethanol, formic acid,
acetaldehyde, acetonitrile, and chloromethane. The OVR implementations of the support vector machine (SVM) classifier
with both linear and radial basis function kernels and the multi-layer perceptron (MLP) classifier achieved average classifica-
tion accuracies of 87-94% for the experimental dataset. The study shows that THz spectra in the present frequency region
provide a sufficient spectral fingerprint for ML classifiers to learn and predict speciation, allowing automated gas sensing.

The present methods can be extrapolated to different frequency ranges and compounds and conditions.

1 Introduction

Absorption spectroscopy is commonly applied for the non-
intrusive identification of gas-phase species and quantitative
determination of their concentrations in industrial, environ-
mental, and research settings [1]. Absorption measurements
in unknown single- or multi-component gases are often com-
plicated by the vast number of spectral features (transitions)
present within an experimental frequency range, depending
on the complexity of the molecules electronic (ultraviolet
to visible), vibrational (infrared), or rotational (terahertz to
microwave) energy level structure. In fact, the complexity of
molecular vibrational and rotational spectroscopy is so great,
that measurement of these features often provides a distinct
“fingerprint” for a probed species. However, like human
fingerprints, identification of the species responsible for a
measured spectrum is usually not trivial. Significant effort
can be required to assign experimentally observed features,
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using databases of spectroscopic transitions based on theory
and experiments, to determine speciation. Further, spectral
fitting or modeling is usually required to make quantitative
measurements of gas-phase concentrations [2].

Absorption spectroscopy is well established in the litera-
ture [2—6]. In the terahertz (THz) wave region (0.1-10 THz),
where our group has been recently developing gas-phase
absorption sensors [7], molecules absorb radiation due to
changes in their quantized rotational energy levels. The THz
wave region can have several advantages over the commonly
employed infrared region for absorption spectroscopy gas
sensing. Polar gas molecules offer strong and distinct spectra
in the THz wave region, often allowing greater sensitivity
and selectivity than other frequency bands. THz waves are
also not as susceptible to scattering or extinction from par-
ticles, as is infrared radiation, and large regions of the THz
exist with no interfering absorption from water vapor. Addi-
tionally, THz waves can be generated using microelectronic
sources [8, 9] and, hence, robust, miniature, and inexpensive
gas sensors can be developed in this frequency range [10].

The determination of speciation from a measured absorp-
tion spectrum is a classification problem, suitable for super-
vised machine learning (ML) approaches. Supervised ML
methods learn rules or functions from training observations
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(e.g., spectra) and, when they encounter a new observation,
assign the new observation to a particular category or class
based on the learned rules or functions. Furthermore, ML
algorithms are capable of recognizing complex patterns in
high-dimensional data, ideal for recognizing features in
complex rotational or vibrational fingerprint spectra.

ML methods have been widely used for various problems
involving materials classification from experimental charac-
terization data, including, the classification of solid samples
such as coal from proximate analysis data [11], wood from
laser-induced breakdown spectra [12], and heavy minerals
from scanning electron microscopy images [13]. Laser-
induced breakdown spectroscopy measurements have been
used to train ML models to classify olive oils [14, 15] and
Biodiesels [16] have also been classified using measured
near-infrared spectra with ML methods. However, studies
related to the identification of gas-phase species from non-
intrusive absorption spectroscopy using ML classifiers are
few in the literature, although ML has been used in address-
ing a variety of problems relevant to spectroscopy and envi-
ronmental monitoring [17-24].

For gas classification, in recent years, deep neural net-
works (DNN) have been leveraged [25]. DNNs offer poten-
tially high classification accuracy via in-built feature learn-
ing, at the cost of optimizing millions of parameters which
requires a large amount of training data. Furthermore, when
compared to conventional ML algorithms, DNNs require
long training times [25]. While training a DNN algorithm
can be accomplished offline, the cost of retraining, to update
an existing gas sensing model, and the lack of interpret-
ability of DNNs are two of the method’s biggest drawbacks.
Small and fully connected neural networks, known as multi-
layer perceptrons (MLPs), require fewer parameters and less
training time than DNNs and offer reduced model complex-
ity while handling nonlinearity and high-dimensionality in
training data, and acceptable classification accuracy [26].
MLPs have been integrated with gas sensor array outputs to
recognize a variety of simple gases species [25, 26].

Support vector machines (SVM) are popular ML classi-
fiers due to their optimal decision boundary identification
capabilities [27, 28] and have been used for gas classifica-
tion [29, 30] and determination of gas concentrations for
mixture components [31]. SVMs are developed using sta-
tistical learning theory and use training samples closest to
the boundary, known as support vectors, to find optimum
hyperplanes for the construction of decision boundaries.
SVM performance can be improved using kernel func-
tions [23] and using a penalizing hyperparameter to solve
soft-margin classification problems, where classes are
inherently not separable, with reduced error [28]. Other
mature algorithms such as k-nearest neighbors (k-NN)
[32], decision trees (DT) [33], random forest (RF) [34],
and boosting methods [35, 36] have also been employed
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in gas classification problems involving gas sensor or elec-
tronic nose data. However, tree-based methods often suf-
fer from “overfitting” which can drastically reduce their
performance [37].

The shape of an absorption spectra for a given chemical
species originating within a frequency band is mostly unique
[37, 38]. The unique spectral shape for many polar mol-
ecules in the THz region [39] can form the basis of learning
for ML classifiers. While the spectral fingerprint in any fre-
quency domain will vary depending on the thermodynamic
conditions, absorption path length, the concentration of the
absorbing molecule, and composition of the bath gas, the
frequencies of transitions and overall shape of the spectral
fingerprint for a particular compound will remain gener-
ally intact, or self-similar, and ML methods can be trained
to identify spectral fingerprints, and provide an automated
identification of species. Motivated by the pattern recogni-
tion and high-dimensional data capabilities of ML classi-
fiers, combined with superior selectivity [7, 40, 41] due to
unique fingerprint available in the 220-330 GHz frequency
range (7.33-11 cm™!) which greatly reduces human efforts
in identifying features and matching patterns in spectral data
for speciation, we demonstrate here that ML classifiers can
be used to develop a fast spectra recognition tool to comple-
ment available spectroscopic tools.

In the present work, we investigate the potential for eight
different supervised ML classification algorithms for the
identification of gas-phase species based on absorption spec-
tra in the 220-330 GHz region, where prior experimental
studies have been carried out. A number of supervised ML
classifiers were trained to identify spectra, namely, k-near-
est neighbors, decision trees, random forest, support vec-
tor machine (with linear and radial basis function kernels),
multi-layer perceptron, and decision trees and random forest
with adaptive boosting. These classifiers were trained using
two different strategies. First, in the regular implementa-
tion strategy, the classifiers were fit across all the classes/
compounds. Second, the One-Vs-Rest (OVR) strategy was
implemented, where a single classifier is fitted per class/
label/compound.

In total, 16 different ML classifiers were trained on
absorbance spectra of 12 compounds in the 220-330 GHz
range. Absorption spectra were simulated for the 12 com-
pounds using fundamental spectroscopic parameters. ML
classifiers were trained and optimized using 70% of 1968
simulated spectra and then tested using the remaining 30%
of simulated spectra. Tenfold stratified cross-validation on
the training dataset was performed to interrogate the per-
formance baseline and any potential weaknesses of classi-
fiers. Laboratory measurements of absorption within the
220-330 GHz frequency range were used to further test,
validate, and determine the most suitable ML classifiers for
the accurate and automated identification of species.
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2 Methodology
2.1 Experimental data for testing and validation

Spectral absorption measurements from prior studies carried
out at Rensselaer are used to test and validate ML classifier
performance. See Rice et al. [7] for details of the experi-
mental methods. Absorption spectra in these studies were
characterized for 220-330 GHz for pure volatile organic
compounds (VOCs) and simple pure halogenated hydrocar-
bons at pressures of 0.5-16 Torr and at room temperature
(297 K). Here, measurements for methanol, ethanol, formic
acid, acetaldehyde, acetonitrile, and chloromethane are used
for testing and validation.

In the prior work of Rice et al. [7], THz wave radiation
was generated via a microelectronic-based system, which
multiplies the output of a radio frequency (RF) synthesizer.
The THz wave radiation was passed through a gas cell, con-
taining the chemical species of interest, and focused onto a
Schottky diode detector. See Fig. 1 for a schematic of the
experimental setup and Fig. 2 for example measured spec-
tra for three different compounds. To increase the signal-to-
noise of the measurements, the RF source was amplitude
modulated at high frequency and the detector signal was
demodulated in a lock-in amplifier to extract the transmitted
signal. Simultaneously, the RF signal was slowly swept in
frequency space to measure absorption spectra over a range
of 220-330 GHz. The Beer-Lambert law was used to deter-
mine the absorbance, based on the transmitted THz signal
(1) and the reference signal (/,)):

—1n<i) =ecL =A,
Iy

where A is the absorbance of the gas sample, ¢ is the absorp-
tion coefficient, c is the molar concentration of the gas sam-
ple, and L is the optical path length. The absorption coef-
ficient depends on frequency, thermodynamic conditions
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Fig. 1 Schematic of the THz absorbance spectrometer

(pressure and temperature), and gas sample concentrations
(through collisional line broadening contributions).

2.2 Simulated training spectra

Supervised ML classifiers were exclusively trained using
simulated absorption spectra for twelve compounds in the
220-330 GHz frequency range calculated based on funda-
mental spectroscopic parameters (line center frequencies,
line intensities, lower state energies, broadening parameters)
taken from either the HITRAN and JPL molecular spectros-
copy databases as listed in Table 1. The compounds were
chosen based on the availability of spectroscopic parameters,
availability of absorption spectra measured in our labora-
tory in the frequency range of interest (220-330 GHz), and
to include situations offering the potential for false-positive
identification by ML classifiers, to test their relative per-
formance. No experimental data was used in the training
dataset.

Absorption spectra simulations were carried out for
pure components over a frequency range of 220-330 GHz
(7.33-11 cm™") at room temperature (297 K) and for a range
of pressures from 0.3 to 16.5 Torr. The HITRAN Applica-
tion Programming Interface (HAPI) [44] was used to carry
out the spectral simulations within a Python code [45]. The
HAPI code simulates absorption spectra based upon an input
database of line positions, line strengths, lower state ener-
gies, line broadening parameters, and degeneracies using a
Voigt profile for line shapes. The HITRAN database served
as the primary source for the fundamental spectroscopic
inputs for the generation of the simulated training data, as
summarized in Table 1. However, in the case of formic acid,
acetonitrile, ethanol, and acetaldehyde, compounds not cata-
loged in HITRAN within the present frequency space, spec-
troscopic parameters from the JPL molecular spectroscopy
database [43] were used.

Simulated absorption spectra for the twelve compounds
considered in the present study are shown in Fig. 3 at
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Fig.2 Measured spectra for
ethanol (upper panel), methanol
(middle panel), and acetalde-
hyde (lower panel) at 297 K and
at different pressures
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Table 1 Summary of simulated training data and the source of the
spectroscopic parameters used to generate the simulations

Label Compound Formula  Source of Experiment
spectroscopic
data
0 Chloromethane CH;C1 HITRAN [42] [7]
1 Methanol CH;OH  HITRAN [7]
2 Formic acid HCOOH JPL [43] [7]
3 Formaldehyde H,CO HITRAN
4 Hydrogen sulfide  H,S HITRAN
5 Sulfur dioxide SO, HITRAN
6 Carbonyl sulfide =~ OCS HITRAN
7 Hydrogen cyanide HCN HITRAN
8 Acetonitrile CH,;CN JPL [7]
9 Nitric acid HNO, HITRAN
10 Ethanol C,H;OH JPL [71
11 Acetaldehyde CH;CHO JPL [7]

Label indicates an integer value used as an identification index within
the Python code implementation. For further information on spectro-
scopic parameters, see primary sources reported in [42, 43] for each
compound
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16.5 Torr and 297 K. In the frequency range of interest
(220-330 GHz, 7.33-11 cm‘l), the twelve spectra are dis-
tinguished by the location and number of spectral features
(lines or blended combinations of lines) and the relative
absorbance for spectral features, characteristics which a ML
classifier can learn to identify. While locations of spectral
features for two or more compounds sometimes overlap,
provided sufficient frequency range of data, there are many
fingerprints for each molecule within the spectra, such that
ML classifiers can learn both differences and similarities in
the spectral fingerprints and their variation with pressure.
The resolution of the absorbance spectra used to train
ML classifiers is important, as it provides an upper limit
to the number of features available to a classifier. In build-
ing a ML classifier, all available features are never cho-
sen to avoid overfitting. If a classifier is trained with all
available simulated spectral features, the classifier will, of
course, perform extremely well on the testing data. How-
ever, when presented with experimental data containing
noise, the classifier may attempt to fit the noise (overfit-
ting), leading to misclassification, or be unable to recognize
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Fig.3 Computed spectra for the 12 pure compounds that comprise the training set. Conditions: 16.5 Torr and 297 K. Absorbance value is nor-

malized by maximum absorbance so that spectra can be visually compared

an experimental spectrum where some weak features are
overcome by noise. To reduce the likelihood of overfitting,
it is necessary to reduce the amount of spectral information
used to train the ML classifiers, seeking to include only the
data/information that provides the distinct fingerprint for
each compound. In the present study, the training spectra
were simulated at a spectral resolution of 0.016 cm™~! and
more highly resolved training spectra were found to gener-
ally produce the worst preforming ML classifiers. Training
spectra were simulated at 297 K for pressures from 0.3 to
16.5 Torr (0.000396-0.021749 atm) at a constant increment
of 0.1 Torr (0.000131 atm), resulting 164 spectra at different
pressures for each compound. Temperature was not varied
in the present study, only pure single-component spectral
simulations were considered, and the optical path length of
21.59 cm was used throughout the study, the experimental
path length for the experimental testing data [7]; however,
the path length is of no consequence to the ML classification
problem, as it is a scaler multiplier within the absorbance.
The entire set of training data is comprised of 1968 train-
ing spectra (twelve compounds at 164 spectra/compound)
containing 229 data points/spectra (absorbance at 229 fre-
quencies). Simulated absorption spectra were compared with
experiments, where available in the literature, to verify and
validate the current HAPI-based calculations, with compari-
sons showing good agreement. Those comparisons can be
found in the appended supplementary material.

ML classifiers benefit from training data containing
unique and separable features. From Fig. 3, we observe that
the twelve target compounds have unique, although com-
plicated, fingerprints; however, two compounds at the same
or different conditions may have some overlapping spectral

features. Hence, the uniqueness of the training data for all
twelve compounds (1968 spectra) needs to be taken into
account. One way to parameterize the uniqueness of the
training data would be to plot pairs of features against each
other, where each feature is the value of absorbance at a
particular frequency. However, since the spectra contain
229 data points, it is not easy to visualize these compari-
sons. Hence, t-distributed stochastic neighbor embedding
(+-SNE) has been used to reduce the dimensionality for
visualization [46, 47]. In -SNE, data points belonging to a
class are assigned a location in a lower-dimensional space,
such as a two- or three-dimensional space, while conserv-
ing their local structure and original clustering. A Gaussian
probability distribution is constructed over pairs of spectra
by the +-SNE algorithm such that similar high-dimensional
spectra receive a high-probability value and dissimilar spec-
tra receive a low-probability value. Afterwards, the --SNE
algorithm minimizes a cost function, here Kullback—Leibler
divergence, using a similarity metric and by constructing a
t-distribution in a lower-dimensional space for each mapped
spectrum. The ingenuity of the stochastic neighbor embed-
ding method, originally conceived by Hinton and Roweis
[46], is that a high-dimensional object, in our case a spec-
trum, is represented in the lower-dimensional space by a
point and the magnitude of the spacing between two points
represents the relative uniqueness of those two spectra. For
example, spectra of a single compound at two slightly dif-
ferent pressures will be very similar and will result in points
on the -SNE graph that are close to one another. Conversely,
points for two vastly different spectra will be widely spaced.
The r-distribution helps spread the mapped points in the
lower-dimensional space. The ~-SNE visualization reveals a
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complex and overlapping structures in data while preserving
the original clustering.

t-SNE has been implemented on the present training data-
set with the results shown in Fig. 4. The implementation
details of -SNE can be found in the work of Maaten and
Hinton [47]. The separation of points in Fig. 4 shows that the
spectra for nearly all compounds at all pressure conditions
are generally well separated, with the most similar spectra
being those for ethanol (C,Hs;OH), formic acid (HCOOH),
hydrogen sulfide (H,S), hydrogen cyanide (HCN) and car-
bonyl sulfide (OCS) corresponding to five mapped points
near a location of (5,0) in Fig. 4, all corresponding to spectra
calculated at very low pressures. Although these points do
not exactly overlap, indicating a degree of separability in the
spectra, their similarity suggests the potential for misclas-
sification of these spectra, particularly at very low pressures.
The rest of the training data are very well spaced, which
should allow ML-based classification.

2.3 ML classifiers

ML approaches to classification can be most simply be rep-
resented by a black box as shown in Fig. 5a. Often, data is
available from prior experiments or computations. These
data can be used as training examples in the supervised ML
approaches, in which classifiers learn from labeled training
data. If the data is not labeled, an unsupervised ML method
can be used to organize similar data into groups [29, 48]. For
predicting the compound responsible for an unknown spec-
trum, ML classifiers needed to be trained with a sufficient
number of labeled training spectra. A general supervised
ML method is shown in Fig. 5b. The training spectra con-
tain information about the true target function, f. The train-
ing spectra contains features that are arranged in a feature
vector, X. It is also known which features belong to each

compound and compound labels are then represented using a
label index. These integer values are arranged in a target vec-
tor, y. The target function, f, represents the true relation that
maps X to y. A ML classifier uses a learning algorithm, A,
and suitable hypothesis set, H, to approximate a function, g,
that approximately captures the target function, f. Features
of the training spectra are used as examples to determine
model parameters and allow the development of a classifier.
The performance of a classifier can be adjusted or controlled
using hyperparameters, parameters that are unique to each
classifier type and influence classifier performance but are
not determined from the training data [49]. Once a clas-
sifier makes sufficiently accurate predictions on “unseen”
spectra, the hypothesis is called a final hypothesis,g. This
final hypothesis is then used as black box function to predict
compound labels from unlabeled measured spectra as shown
in Fig. 5a.

In this work, a total of 16 different supervised ML classi-
fiers were built using Scikit-learn machine learning library
for Python [50]. The classifiers were developed using two
different implementations of eight ML methods. In the regu-
lar classification strategy, a single classifier trains from the
labeled training spectra for all twelve compounds. In the
one-vs-rest (OVR) strategy, a classifier is constructed using
multiple internal classifiers where each internal classifier
trains for a single compound. All 16 classifiers were then
compared for the identification of spectra in the parameter
space described above. Classifiers are trained twice, in a
70-30 training—testing split and then again in tenfold cross-
validation described in Sects. 2.4.1 and 2.4.2. The classifiers
are briefly described below. The hyperparameters discussed
in this section are decided in the 70-30 training—testing split
and the tenfold cross-validation tests were performed using
those same hyperparameters to show how the classifiers per-
form across the range of pressures.

Fig. 4 t-Stochastic neighbor 80 - T
embedding (-SNE) of the spec- a g:gC'H
tra for the twelve compounds 60 : HCO?)H
considered. Arrows indicate the | v :ggo
direction of decreasing pressure, ‘ < SO2
where the 16.5 label represents 40 1 : 32:
the highest pressure data at N % CH3CN
1 | @ uno3
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Fig.5 a Generic ML classifier
as a black box for predicting the
compound responsible for an
unknown spectrum, b generic
ML approach to the prediction
of compound labels. (figure
adapted from [48])
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K-nearest neighbors (k-NN) k-NN is an instance-based
learning algorithm, known for its simplicity, ease of imple-
mentation, and low computational expense [51-57]. Within
the current work, the k-NN algorithm compares an unknown
spectrum to stored training spectra to find the most repre-
sentative classification. The classification of an unlabeled
spectrum is then decided upon based on its similarity with
k nearest neighbors, where k is a positive integer and the
nearest neighbors are the training spectra which are most
similar to the unknown spectrum. The unknown spectrum
is classified based on a vote of the k most similar training
spectra. To make the k-NN algorithm work, a suitable dis-
tance metric with an optimal number of nearest neighbors is
required. There are several distance metrics available for use
[58] but the optimal distance metric and nearest neighbors
are usually found by trial and error [59].

In the present study, a number of nearest neighbors, k was
set to three and all neighbors were given uniform weight in
voting. The nearest neighbors (most similar training spectra)

were chosen using the Euclidean distance metric, given by
P . . .
D(x,y) = </ |x,- - X, | , where x is a feature vector in the train-

ing data, x’ is a target vector, and, here, p is chosen to be 2.

(b)

Implementation details of the classifier can be found in the
Scikit-learn machine learning library documentation [50].

Decision tree (DT) Over the years, several DT algorithms
[60-63] have been developed to solve several real-world
problems, such as credit approval, disease diagnosis, and
image classification. DT can be an effective tool, particularly
when the trees are small; however, DTs have a disadvantage
that results in overfitting and often requires “pruning” meth-
ods [37]. The growth of a tree is stopped when the training
data is sufficiently divided using a stopping criterion or by
replacing every subtree with a leaf node when the error rate
of the leaf node is lower than the sub-tree. Popular DT algo-
rithms are CART, ID3, C4.5, and C5.0. The Scikit-learn
library contains a modified version of the CART algorithm
[61, 64] which is used in this work.

The DT algorithm classifies unlabeled data by learning
simple decision rules from the training data. These rules are
represented in a flow chart or tree structure, where the deci-
sion path starts at a root node and proceeds through several
branches (internal nodes) to the terminal leaf node which
provides the classification. The mathematical formulation
of the DT algorithm can be found in Scikit-learn documen-
tation [64]. Briefly, the DT algorithm organizes data by
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grouping together similar data and dividing the input space
of training data. How a tree grows is dictated by the depth
of the tree. The depth of the tree refers to the maximum
distance between the root node and the farthest leaf node.
To group similar data and divide the input space, an impu-
rity metric is used to judge if a leaf node is “impure” and
whether it should be further divided. Impure leaf nodes are
unable to classify data with 100% classification accuracy. In
the present study, the maximum depth of the tree was set to
50 and the ‘entropy’ impurity function, H, was implemented
[49, 64]:

H(X,) ==Y Pulog, (o),

where X, is the training data at node m, b is usually 2, and
P 18 the proportion of data at node m with label k. All
229 data points within each spectrum were considered when
building a DT classifier based on resampled training spectra
and all compounds (classes) were given equal weight.

Random Forests (RF) The RF algorithm fits multiple
decision trees to subsets of training data and prevents overfit-
ting by averaging the results of DTs [65, 66]. Each DT is cre-
ated independently to its full depth and each DT has an equal
vote in making the final classification decision, regardless of
depth. From the given training data, a number of samples are
randomly chosen in a process known as bootstrapping. DTs
are created based on the selection of an optimal number of
features from the bootstrapped datasets. All the DTs in the
forest then make a classification decision, a step known as
bagging. The absent training data in the bootstrapped dataset
is called the out-of-bag dataset. The out-of-bag samples are
used for testing the random forest classifier. The fraction of
the out-of-bag data that are incorrectly classified is called the
out-of-bag error (OOBE). Based on the OOBE, an optimal
number of DTs is chosen for RF classification performance.
In the present study, we used five DTs to build the forest,
with a maximum depth of five-leaf nodes in each tree. The
entropy function was used as a measure of impurity at leaf
nodes.

Support Vector Machine (SVM) Support vector machines
use a hyperplane to construct a decision surface and per-
forms spatial separation of data to achieve the widest pos-
sible gaps between different classes [67] and, hence, the
optimal decision surface. The hyperplane is determined
from some of the training data points, the support vectors,
providing margin or distance between the hyperplane and
those support vectors. If the data is not linearly separable, a
SVM classifier will allow some misclassifications. For such
linearly non-separable cases, the margin is called a “soft
margin” and the classifier is a “soft margin” classifier [28].
SVM was originally conceived as a binary classifier and
performed exceptionally well in classifying text and images.
However, SVM can also handle multiclass classification [68]
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and regression [69] problems and is more immune to overfit-
ting compared to other ML methods [70].

SVM classifiers can perform exceptionally well on lin-
early non-separable data using the kernel trick [71]. Using
a kernel function, the classifier can transform the linearly
non-separable data to a higher dimensional space where
a hyperplane will be able to separate the data. However,
to make the computations faster, SVM simply calculates
the relationship between pairs of data points if they were
transformed to a higher dimensional space. This process of
computing the relationship between the training data points
without actually transforming them is known as the kernel
trick [23]. For the implementation details of a SVM classi-
fier, see [11, 49, 50].

In the present work, two different SVM classifiers were
constructed. One with a linear kernel function (SVM-lin-
ear) and the other with a radial basis function kernel (SVM-
RBF). We used LIBSVM library for support vector classifi-
cation in Scikit-learn library to construct the classifiers [50].
The RBF kernel is generally advantageous because training
spectra are mapped nonlinearly to an infinite-dimensional
space to allow SVMs to tackle nonlinear relations between
features and compound label index. Choosing between
the linear and RBF kernel is a challenging task and can be
achieved by cross-validation. To make the choice, it is rec-
ommended to completely search the critical hyperparameter
space of both kernels. The RBF kernel-based SVM has two
hyperparameters, namely, the soft margin constant (C value)
and the kernel coefficient (gamma value). However, the lin-
ear kernel-based SVM does not require any kernel coeffi-
cients and can be constructed using only the soft margin
constant value. For training spectra with a large number of
features, mapping to a higher dimension may not be required
since it may not result in any performance improvement and
a linear kernel-based SVM may be a simpler and a better
choice [72]. Furthermore, the linear kernel has been shown
to be a special case of RBF kernel [73].

The value of the soft margin constant (C value) was set
to 100 and the kernel coefficient (gamma value) was set to
0.125 for SVM-RBF classifier and its OVR implementation.
The SVM-linear classifier used C =260 and the OVR(SVM-
linear) classifier was constructed with C=1.

Multi-layer Perceptron (MLP) A multi-layer perceptron
(MLP) is a special class of feedforward artificial neural net-
works with a backpropagation algorithm. MLP is composed
of a number of nodes arranged in at least three layers. In
general, there are one or more hidden layers sandwiched
between an input layer and an output layer. A layer consists
of computation nodes, which are called neurons. Each neu-
ron can be activated or “fired” using an activation function
[74] which is differentiable and non-decreasing [75].

The artificial neurons mimic neurons in the brain and pro-
cess signals and communicate with each other. However,
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instead of using electrical and chemical processes like in
human neurons, the artificial neurons use weighted and
biased combinations of inputs and outputs for communica-
tion. The neurons learn complex relations from the training
data which are given as inputs in the input layer. In super-
vised learning, the output layer consists of a single neuron.
Each neuron in the input layer then learns from a single
feature of the training data [29]. The neuron in the output
layer receives the target for each set of features. The hid-
den layers connect the input and output layers to train the
network. Typically, there are two phases to train a MLP. In
the forward phase, the inputs (features), network parameters
(weights and biases), and the desired output of the model are
set. The model parameters are initiated randomly. The input
signal from the input layer of neurons passes through each
layer and an error signal is computed using an activation
function. In the backward phase, the error signal proceeds
from the output layer towards the input layer with appropri-
ate updates made to model parameters using backpropaga-
tion algorithms [29, 74, 76, 77]. For mathematical details
regarding the implementation of MLP, readers are referred
to [49, 50].

In the present study, the multi-layer perceptron receives
training spectra in the form of 229 features; i.e., the input
layer is comprised of 229 neurons. We used an identity func-
tion as the activation function. There are two hidden layers,
with five and six neurons in each, as shown in Fig. 6. The
weights are randomly initialized and are updated to progres-
sively minimize the cross-entropy loss function. In an itera-
tion, first the loss is calculated in the forward phase and then
a backpropagation with stochastic gradient descent (SGD) is

Input Hidden
- b 4 P 5
layer € R**  layer 1 € R®

Hidden Output
layer 2 € IR® layer € R!

Ty

Fig. 6 Multi-layer Perceptron (MLP) with two hidden layers. x refers
to individual features and y refers to label integer index value

performed. The backpropagation starts from the output layer
and proceeds to previous layers and updates each weight
parameter, thus decreasing the loss function.

Adaptive Boosting Classifiers The Adaptive Boosting
algorithm is based on a boosting technique that combines
the performance of multiple weak learning methods (estima-
tors) to produce a superior method [78—80]. In this work, we
created two Adaptive Boosted classifiers. One uses DTs as
estimators and combines their outputs to classify spectra.
The other one uses RFs as estimators and combines the out-
put of each forest.

Adaptive Boosted Decision Trees (ABDT) ABDT ensem-
bles the outputs of decision trees (DT) to boost their perfor-
mance. Therefore, this classifier uses decision trees as weak
learners. Decision trees are created sequentially as a forest
of trees. Initially, weights are applied to each spectrum in
the training data. The first tree is trained on the entire train-
ing spectra and makes classifications. The next tree corrects
for the misclassifications of the first tree by adjusting the
weights. This process is carried out by all successive trees
to build the classifier. This process is fundamentally differ-
ent from the majority voting by independent decision trees
inside a conventional random forest algorithm. Furthermore,
ABDT significantly improves the learning performance of a
single decision tree, since the successive trees purposefully
improve the misclassifications. In our construction of the
ABDT classifier, we used ten decision trees, each with the
same hyperparameters as the regular DT classifier.

Adaptive Boosted Random Forest (ABRF') In this instance
of a boosted classifier, we use random forests as weak learn-
ers to construct the classifier. Therefore, these weak learners
(RFs) are built sequentially [80], with each newly built forest
attempting to improve the performance of the previously
built forest by adjusting the weights applied to each spec-
trum in the training data. This learning process is different
from a single random forest, where the bagging technique is
employed. In the bagging technique, the learners (decision
trees inside a single forest) are built-in parallel and inde-
pendent of each other [78] and the final output of the classi-
fier is based on majority voting by the decision trees inside
the forest. We employed 20 random forests to construct the
ABREF classifier. Each random forest consisted of ten deci-
sion trees with a maximum depth of five leaf nodes.

One-Vs-Rest (OVR) implementation of the above eight
classifiers The OVR method is a binary classification strat-
egy in which a single classifier is trained to recognize each
class or compound [81]. In this implementation strategy, the
goal of the classifier is to take a base classifier and fit one
classifier per class. For example, an OVR(SVM-linear) clas-
sifier uses a base SVM-linear classifier and creates twelve
different incarnations of binary SVM-linear classifiers to
individually train on each class/compound. Each incarnation
of the base classifier trains for a single compound against
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the eleven other compounds treated as one compound. For
example, if the base classifier is trained for chloromethane,
it simply treats all training spectra from the other 11 com-
pounds as “not-chloromethane” and learns how to identify
chloromethane apart from the other compounds. Thus, the
method simply consists of fitting one base classifier per
compound. When OVR(SVM-linear) is called upon, each
internal incarnation of the SVM-linear classifier then evalu-
ates the unknown spectrum and tries to match it with its
compound class label. The hyperparameters used for OVR
implementation of each classifier are not necessarily same as
that of the regular implementations of the classifier.

2.4 ML implementation

The sixteen ML classifiers are tested for their ability to
identify a pure component spectrum in the 220-330 GHz
region. The classifiers are those described above (k-NN,
DT, RF, SVM-linear, SVM-RBF, MLP, ABDT, and ABRF,
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and OVR implementation of those eight ML methods). A
Python 3 computer program supported by the Scikit-learn
machine learning library [50] was written to implement
all the classifiers. The program was executed on a Core
i7 laptop with a CPU clock speed of 1.8 GHz and having
16 gigabytes of random access memory. The training data
required 36 megabytes of disk space.

The absorption spectrum classification program was
implemented according to the flowchart structure given
in Figs. 7 and 8. The program is initiated by passing input
variables: pressure and pressure increment, temperature,
frequency and frequency increment, optical path length,
and the database of spectroscopic parameters for the chem-
ical compounds of interest. These inputs are passed to a
modified HAPI interface where spectral simulations are
carried out. The number of compounds and the number
of training spectra per compound must also be specified
to generate a training dataset of simulated spectra. In the

9.Classifier
Fit & Predict

10.Confusion
Matrix

11. Training
Accuracy
>t ?

no p=luis
12.0ptimize

Trained 14.Stop

13.
Classifier

Fig.7 ML classifier data generation and training procedure. For cross-validation, the procedure is stopped after step 10 and repeated ten times
for ten different folds. Steps 1-5 illustrate the generation and assembly of simulated spectra and not actually part of the training procedure

1. Unknown

3.Trained

e 2.Resample

Classifier

4.Integer
value

5.Postprocess

6.Spectrum
Label

Fig.8 ML classifier testing and validation procedure. If a simulated spectrum is tested, step 2 is skipped, since the spectrum does not need resa-

mpling
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present study, twelve compounds and 164 computed spec-
tra per compound were chosen for the training dataset.

The calculated absorption spectra are assembled into two
numpy arrays. One array, X, consists of an index and the
features of each spectrum (absorbance value for each wave-
number sample). Another array, denoted by y, consists of
the labels/classification for each spectrum and is called the
target array. All the simulated absorption spectra can be used
as training examples; however, we randomly remove some of
the spectra to form a testing data set. During the formation
of the training dataset and the testing dataset, spectra are
selected equally for each compound to maintain stratifica-
tion of the training set. In this study, classifiers are trained
twice, in a 70-30 training—testing split and a tenfold cross-
validation, as described below.

2.4.1 70-30 training-testing split

As the first training step, 70% of the computed absorption
spectra are randomly selected as the training dataset and the
remaining 30% is held for testing and optimizing the perfor-
mance of the trained classifiers. Training and testing spectra
are selected by stratification of the classes, therefore, each
compound has approximately the same number of training
and testing spectra. To assess performance, classifiers fit
1357 training spectra to learn features of the data.

Once trained, the ML classifiers are tested for their classi-
fication accuracy against the 611 testing spectra. The testing
process is shown in Fig. 8. Each testing spectra is treated
as an unknown spectrum. Since the testing spectra are also
simulated and have the same number of features as the train-
ing spectra, no resampling is required. The trained classifier
receives each testing spectrum and outputs an integer label
index ranging from O to 11, revealing the compound associ-
ated with the spectrum. Afterwards, classification accuracy
and other metrics are computed from the confusion matrices
of each classifier. We set an accuracy threshold (#,) of 99%.
If classification accuracy is greater than 99%, performance
is deemed satisfactory for the prediction of simulated spec-
tra. Accuracy is further interrogated by inspecting the con-
fusion matrices of the classifiers and examining different
classification metrics (the F1 score, precision, and recall).
If the classification accuracy for the testing data is below
99%, the hyperparameters of the ML classifier are adjusted
and the classifier is retrained. Once all the classifiers meet
the 99% threshold, we proceed to use these classifiers for
a stratified tenfold cross-validation to further analyze the
performance of the classifiers across the training examples
and to determine if the size and quality of training examples
are sufficient. The performance of the 70-30 split trained
classifiers are averaged over three iterations, to account for
randomness, and are given in Table 2. As shown in Table 2,
all classifiers met the accuracy threshold of 99% and most

Table 2 Performance of ML classifiers in the 70-30 training—testing
split studies (1357 training and 611 testing spectra)

Classifier Runtime [ms] Accuracy [%]
k-NN 195+38 99.89+0.09
DT 389+27 99.29+0.34
RF 130+2 99.02+0.17
SVM-linear 255+17 100.0+0.00

SVM-RBF 462 +52 99.46+0.41
MLP 257+32 99.89+0.09
ABDT 3191+430 99.95+0.09
ABRF 2194 +68 99.84+0.28
OVR(k-NN) 784 +105 99.89+0.09
OVR(DT) 1011+106 99.40+0.25
OVR(RF) 278+49 99.29+0.25
OVR(SVM-linear) 568 +135 99.95+0.09
OVR(SVM-RBF) 462 +40 99.95+0.09
OVR(MLP) 456+123 99.95+0.09
OVR(ABDT) 1016+ 145 99.45+0.25
OVR(ABRF) 893+ 112 99.67+0.00

Values are averaged over three random trials where training—testing
spectra were selected using Python random number generator seeds

classifiers require less than 1 s of computer clock time to
train. SVM-linear classifier is the best performing classifier
on the simulated spectra.

2.4.2 Stratified tenfold cross-validation

We performed a tenfold cross-validation, as illustrated in
Fig. 9, to assess the performance and stability of classifiers,
the quality of the training examples, and if the number of
the training examples is sufficient. Ten-fold cross-validation
is equivalent to separating the training examples according
to a 90-10% training—testing split. The training dataset is
divided into ten separate folds according to their pressure.
Nine folds are used for training and one of the folds is used
for testing. Each class of compound is equally represented
in each fold; hence, our implementation of the process is
known as stratified tenfold cross-validation.

To perform the tenfold cross-validation, we train classi-
fiers ten times over ten different iterations. We used the same
hyperparameters that resulted from the 70 to 30 optimiza-
tion of the classifiers. In each iteration, a different fold was
used for testing and the other nine folds for training. From
Fig. 9, we observe that in the first iteration we use spectra
belonging to folds 2 through 10 for training, which were
simulated for pressures from 2.0 to 16.5 Torr. Spectra in
fold 1 are used for testing, which were simulated at pres-
sures of 0.3—1.9 Torr. As we progress through the iteration,
a complete sweep over the entire training space is made, and
classification performance across different pressure ranges
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Pressure 0.3- 2.0- 3.7- 5.4- 7.1- 8.7- 10.3- 11.9- 13.4- 15.0-
Range (Torr) | 1.9 3.6 5.3 7.0 8.6 10.2 11.8 13.3 14.9 16.5
Fold#— 1 2 3 4 5 6 7 8 9 10
#Spectra— 204 204 204 204 192 192 192 192 192 192
Tteration#!
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Fig.9 Schematic representation of tenfold cross-validation. The pres-
sure range refers to the pressures of the spectra belonging in each
fold. In each iteration, classifier accuracy, precision, recall, and F1

is evaluated. Cross-validation also provides information as
to whether the training data is of sufficient size and if there
are any potential weakness within the training set [82] and
reveals how sensitive classifiers are to particular parameters.
For example, we can observe that if we only use classifiers
trained at higher pressures, they fail to correctly identify
spectra at lower pressures. On the other hand, if we train
classifiers at lower pressures they can recognize higher pres-
sure spectra, as illustrated in cross-validation results.

Stratified tenfold cross-validation showed that all classifi-
ers trained via the 70-30 training—testing split were satisfac-
tory; hence, we tested these classifiers against experimental
spectra. The classifiers trained using the 70-30 training—test-
ing split were used, instead of those that resulted follow-
ing tenfold cross-validation (90-10 training—testing split),
because it has been shown that ML classifiers that have been
suboptimally trained on simulated data can perform better
than those that have been over-trained [83].

All 16 classifiers were tested against experimental meas-
urements using the procedure shown in Fig. 8. The measure-
ments [7] were made at much higher spectral resolution than
the ML classifiers were trained on; therefore, all experimen-
tal spectra were first resampled using a Fast Fourier Trans-
form to generate spectra with resolution matching the simu-
lations (0.016 cm™"). A resampled unknown experimental
spectrum is received by the trained ML classifier function as
an input. The trained classifier then processes the spectrum
and produces a label ranging from O to 11 corresponding
with the assigned chemical compound for that spectrum.

@ Springer
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scores are determined. Folds 1—4 contains 204 spectra each and folds
5-10 contains 192 spectra each

3 Results and discussion
3.1 Tenfold cross-validation

The performance of ML classifiers for classifying unknown
spectra was first assessed here by confusion matrices. Con-
fusion matrices present the number of instances each com-
pound is correctly and incorrectly identified and enable easy
determination of classification performance metrics. Perfor-
mance of the ML classifiers is better understood in terms of
four statistical parameters:

a. Classification accuracy (CA): The percentage of cor-
rectly classified spectra of all tested spectra.

b. Precision (P): Precision is defined as the ratio of true
positives (Tp, correctly predicts the positive class/com-
pound) over the sum of true positives and false positives
(Fp, incorrectly predicts the positive class). It is a meas-
ure of a ML classifier’s ability to not misidentify a given
spectrum and answers the question of what fraction of
spectra identified as positives were truly positive.

T,
p=—F_
Tp+Fp

¢ Recall (R): Recall is the ability of a ML classifier to
find all positive samples of a given compound and is
defined as the ratio of true positives over the sum of true
positives and false negatives (Fy, incorrect predictions
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of the negative class). Recall indicates the fraction of
actual spectra for a particular compound that are cor-
rectly predicted.

T,
R=—%—.
Tp+Fy
d. Score (F1): Score or F1 score is the harmonic mean of

precision and recall.

PXxXR
P+R’

Fl1=2x

Figure 10 illustrates the confusion matrices for tenfold
cross-validation for four classifiers for three different itera-
tions of the tenfold cross-validation: iteration 1, containing
testing spectra at the lowest pressures of 0.3—1.9 Torr and
training spectra at pressures of 2.0-16.5 Torr; an inner itera-
tion falling between iterations 2-9; and iteration 10, contain-
ing testing spectra at the pressure of 15.0-16.5 Torr and
training spectra at pressures of 0.3—14.9 Torr. For all confu-
sion matrices (all compounds, all classifiers, all iterations),
please see the appended supplementary material.

The confusion matrices illustrate the predictions of vari-
ous ML classifiers for testing spectra, where each row shows
the molecule for the known testing spectra and each column
shows the molecule predicted by the classifier. In each itera-
tion, either 16 or 17 testing spectra were considered for each
molecule. The numbers along the diagonal of the confusion
matrices indicate correct predictions by the classifiers and
off-diagonal numbers indicate incorrect predictions. The
color scheme simply distinguishes between the ML methods
used to construct the classifiers.

From Fig. 10 it is observed that the classifiers perform
relatively worse on iteration 1 (lowest pressures), indicating
that when ML classifiers are trained on higher pressure spec-
tra, they are prone to misclassify when asked to extrapolate
to lower pressure, where spectral features are much weaker
and difficult to distinguish. Fortunately, in most cases at
these low pressures, the features that are so weak that they
are not experimentally resolvable, making this poorer per-
formance an often unimportant result.

For iterations, 2-9, all ML classifiers, except DT,
OVR(DT), and OVR(ABDT), have a performance which can
be characterized as producing negligible misclassifications.
This is expected because for the inner folds the classifiers are
trained on both lower pressure and higher pressure spectra
and hence the classifiers are not asked to extrapolate beyond
the training dataset. Decision trees are generally more prone
to “overfitting”. Overfitting refers to memorization of pecu-
liarities of training data instead of learning predictive rules
[83]. A consequence of overfitting is that a classifier may
perform very well in the prediction from training data but

will fit noise in any new data, leading to misclassification.
Decision tree methods misclassify spectra throughout all the
iterations, both in regular and OVR implementations. There-
fore, it is likely that DTs are alone insufficient for finding
general classification rules. This observation is further sup-
ported by the fact that the RF classifier and boosted decision
trees (ABDT) classifier both generally perform better than
the DT classifier.

For the 10th iteration, some misclassifications are also
observed, in this case for both the DT and RF-based clas-
sifiers: DT, OVR(DT), OVR(ABDT), RF, OVR(RF), and
OVR(ABREF). All other ML classifiers do very well on the
10th iteration and for iterations 2-9, in terms of classifying
all twelve compounds. The misclassifications, again, likely
arise from extrapolation; i.e., training on low-pressure spec-
tra and testing on a high-pressure spectrum. With increasing
pressure, relatively weaker peaks become more prominent;
hence, if ML classifiers are trained on low-pressure spectra,
they do not learn as much from these weak peaks that then
appear more prominently in the high-pressure testing data.
The compounds for which the classification performance are
worst are those that contain the weakest peaks and include
formic acid, formaldehyde, and sulfur dioxide. Another
important observation is while at iteration 1, all ML classi-
fiers misclassify, however, at iteration 10, only the tree-based
methods misclassify. This indicates that tree-based methods
are highly likely to overfit the training spectra generated at
lower pressures.

Table 3 presents a comparison of the combined computer
clock time for training and testing of each ML classifier in
tenfold cross-validation. It is observed that the OVR imple-
mentations are generally faster in training and testing. An
exception is the OVR(DT) classifier, which took longer to
train compared to the DT classifier. The slowest training
times are generally observed for adaptive boosted tree-based
classifiers, namely ABDT and ABREF classifiers and their
OVR counterparts, due to the sequential nature of the boost-
ing method.

Table 3 also presents a comparison of average values
and standard deviations of accuracy, precision, recall, and
F1 score for the classifiers in tenfold cross-validation. The
tree-based methods (DT and RF, both in regular, boosted,
and OVR implementation) have the worst performance,
in terms of all classification metrics, a result in keeping
with the confusion matrices. All other classifiers have
an accuracy of greater than 95% with the OVR(SVM-
linear) and OVR(SVM-RBF) classifiers at greater than
98% accuracy and with the smallest standard deviations
in accuracy. The k-NN and MLP classifiers perform
similarly to the SVM classifiers; however, the perfor-
mance improvement of OVR(k-NN) and OVR(MLP) in
comparison to k-NN and MLP is negligible, while the
OVR(SVM) classifiers perform better than the standard
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Fig. 10 Confusion matrices, represented as heat maps, for cross-validation results of DT, MLP, OVR(SVM-RBF), and OVR(SVM-linear) classi-
fiers

SVM classifiers for the classification of simulated data. show strong performance at greater than 97% for these
Overall, the best performing methods are SVM-linear, methods (SVM-linear, SVM-RBF, MLP, and k-NN in
SVM-RBF, MLP, and k-NN in both regular and OVR  both regular and OVR implementation).
implementations, with average classification accuracy

above 96% overall ten folds. Precision for these highest-

performing classifiers is 97-99%, indicating they are very

unlikely to yield false positives. Recall and F1 scores also
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Table 3 Performance for ML

- - Classifier Runtime [ms] Accuracy [%] Precision Recall F1 Score

classifiers in tenfold cross-

validation studies on simulated k-NN 931123 97.0£9.5 099+£0.04  0.97+0.1 0.97+0.1

spectra. Values reported here DT 1181+127 8834243 090402  088+02 087403

are averaged over the 10

iterations RF 886+ 115 92.4+19.2 0.95+0.1 0.92+0.2 0.93+0.2
SVM-linear 235+52 97.2+8.84 0.99+0.04 0.97+0.1 0.97+0.1
SVM-RBF 667 +75 97.1+£9.3 0.99+0.04 0.97+0.1 0.97+0.1
MLP 1025+99 97.3+8.7 0.98+0.1 0.97+0.1 0.97+0.1
ABDT 4025+ 1119 93.0+22.2 0.95+0.2 0.93+0.2 0.93+0.2
ABRF 2484+ 1207 93.9+19.4 0.97+0.1 0.94+0.2 0.94+0.2
OVR(k-NN) 599+192 97.0+9.5 0.99+0.04 0.97+0.1 0.97+0.1
OVR(DT) 1323+178 88.7+23.0 0.91+0.2 0.89+0.2 0.88+0.2
OVR(RF) 289+23.0 89.7+23.9 0.92+0.2 0.90+0.2 0.89+0.3
OVR(SVM-linear) 628 +69 98.9+3.6 1.0+0.02 0.99+0.03 0.99+0.03
OVR(SVM-RBF) 605+117 98.3+5.3 0.99+0.02 0.98+0.1 0.99+0.1
OVR(MLP) 560+ 145 96.5+11.0 0.99+0.02 0.97+0.1 0.97+0.1
OVR(ABRF) 995+197 92.2+21.9 0.95+0.1 0.92+0.2 0.92+0.2
OVR(ABDT) 1202 +2 87.4+22.9 0.87+0.2 0.87+0.2 0.86+0.2

The fractions of training spectra and testing spectra in each iteration were not necessarily same

3.2 Performance against experimental spectra
(classifier validation)

The performance of the ML classifiers was tested in the clas-
sification of 36 experimental spectra, measured in our labo-
ratory. Since we randomly trained and tested ML classifiers
with a 70-30 training—testing split three different times, we
have three different confusion matrices for validation of the
ML classifiers with experimental spectra. One of the confu-
sion matrices from these three random trials is presented
in Table 4, the rest are given in supplementary material.
The first column in Table 4 lists the names of the com-
pounds associated with each experimental spectra, where
the hyphenated number refers to experimental pressure in
Torr. The experimental data set contains both filtered and
unfiltered measurement to test the extent of overfitting of the
classifiers. With the exception of acetonitrile (CH;CN), all
compounds have at least one repeated measurement included
in the validation set, allowing a test of the robustness of
the classifiers to slight variations in experimental spectra.
From Table 4, it is evident the MLP, OVR(SVM-RBF), and
OVR(SVM-linear) classifiers outperform the rest of the clas-
sifiers in terms of recognition of the experimental spectra.
Interestingly, the OVR(MLP) and SVM-RBF and SVM-
linear classifiers do not perform nearly as well.

As expected, based on the cross-validation results, DT
and RF classifiers perform very poorly on experimental data,
irrespective of regular or OVR implementation. Performance
improvement due to boosting is also evident, where ABRF
and ABDT classifiers perform better than DT and RF clas-
sifiers. When implemented in OVR strategy, ABRF and
ABDT performance is improved further. So boosting and

OVR combined can be a good approach to implement tree-
based ensemble methods to recognize spectra; although the
training time for these classifiers may be longer than non-
tree-based classifiers. However, it should be noted that clas-
sifier performance is governed by the ML method itself but
also by the limitations of the training dataset.

Average performance metrics for the classifiers against
experiments are given in Table 5. It is clear that for the
classification of these 36 experimental spectra, the MLP,
OVR(SVM-RBF), and OVR(SVM-linear) classifiers per-
formed best, with greater than 85% average classification
accuracy. Average classification accuracy of k-NN, ABDT,
and ABRF and their OVR counterparts lies between 75 and
81% and these classifiers can be deemed as good perform-
ers. In terms of standard deviation in classification accu-
racy, precision, recall and F1 score, OVR(SVM-linear)
outperforms all the other classifiers. A comparison of the
classifiers indicates that the MLP and OVR(MLP) classi-
fier struggles slightly with the identification of methanol,
acetaldehyde, and formic acid, which have somewhat similar
spectra. OVR(SVM-linear) has difficulty with acetonitrile.
The average F1 score for OVR(SVM-linear) is comfortably
greater than that for MLP. Therefore, OVR(SVM-linear)
may be a better practical choice for the classification of
experimental spectra, even with its slightly lower average
recall value for some compounds. Also of note, while the
regular implementations of the SVM-linear and SVM-RBF
classifier have a quite good F1 score for some compounds,
both have very poor classification accuracy. Furthermore,
the MLP method misclassified three spectra for three dif-
ferent compounds (ethanol, formic acid, and acetaldehyde),
while the OVR(SVM-linear) method misclassified three
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Table 4 (continued)

One-vs-Rest (OVR) classifiers

Regular classifiers

Classifier type

RF SVM SVM MLP ABDT ABRF  k-NN DT RF SVM SVM MLP ABDT ABRF

DT

k-NN

Experimental
spectrum

-RBF

-linear

-RBF

-linear

CH,CHO-2

CH,CHO-8

Accuracy

94.44 88.89 75.00 83.33 83.33

55.56

52.78 63.89 75.00 9444 7778 75.00 77.78 36.11

38.89

80.56

One random trial is shown here. See supplementary material for the other two cases. A check mark (v') indicates correct classification and a chemical compound indicates incorrect classifica-

tion, where the listed compound is the classifier’s incorrect prediction. A hyphenated number appearing after the chemical formula indicates pressure in Torr

Table5 Overall average and standard deviation values for classifi-
cation accuracy, precision, recall, and F1 score for 36 experimental
spectra

Methods Accuracy [%] Precision  Recall F1 score

k-NN 80.56+2.78 091+0.14 0.81+0.14 0.84+0.08
DT 50.93+11.23 0.60+0.14 0.51+0.23 0.49+0.19
RF 51.85+1.61 0.67+0.37 0.52+0.33 0.55+0.30
SVM-linear 66.67+4.81 0.74+0.42 0.67+0.35 0.67+0.34
SVM-RBF 76.85+3.21 0.92+0.17 0.77+0.18 0.80+0.12
MLP 87.04+6.99 0.86+0.18 0.87+0.15 0.80+0.24
ABDT 75.00+4.82 0.85+0.11 0.75+0.16 0.78+0.10
ABRF 73.15+849 0.89+0.18 0.73+£0.24 0.76+0.14

OVR(k-NN)  78.71x1.61 091+0.14 0.79+0.13 0.83+0.07

OVR(DT) 42.59+5.78 0.57+0.40 043+0.35 0.39+0.24

OVR(RF) 5741+5.78 0.76+0.18 0.58+0.33 0.59+0.25

OVR(SVM- 93.52+1.60 0.96+0.10 0.94+0.13 0.94+0.09
linear)

OVR(SVM- 87.04+3.21 0.94+0.17 0.87+0.13 0.89+0.09
RBF)

OVR(MLP) 7593+4.25 0.70+0.41 0.76+0.38 0.72+0.38

OVR(ABDT) 7592+6.41 092+0.07 0.76+0.23 0.80+0.14
OVR(ABRF) 7592+6.41 0.92+0.07 0.76+0.23 0.80+0.14

Values are averaged over 3 random trials

different spectra for two compounds (ethanol and acetoni-
trile). Interestingly, OVR(SVM-RBF) misclassified four
spectra for five different compounds (nitric acid, ethanol,
chloromethane, acetonitrile and acetaldehyde).

3.3 Misclassifications

Misclassifications of experimental spectra appear to occur
for two reasons. The first being deficiencies in the simulated
training data set used to train the classifiers. The ML classi-
fiers are highly sensitive to the frequency location of spec-
tral features (absorption peaks) and the relative strength of
spectral features. If experimental measurements are slightly
shifted in frequency space, relative to simulated training
spectra, or contain features that can be confused with non-
corresponding simulated training spectra due to slight mis-
matches in frequencies of peaks or the relative absorption of
peaks, they are more likely to be misclassified. This sensitiv-
ity, in part, motivates the lower frequency resolution used to
develop the spectral simulation database, as described above.
However, even with the lower frequency resolution of the
simulated spectral training data set, misclassifications can
occur due to differences between simulated training spectra
and experimental measurements. It is important to note, that
the simulated training spectra are generated from param-
eters in spectroscopy databases that are not fully validated
by experiments, especially in the present frequency range.
In several cases, the experimental data used in this study is
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the first of its kind. The second reason for misclassifications
is experimental noise. Depending on the relative strength
of measured spectral features to the underling absorption
noise, classifiers will sometimes attempt to “fit” the noise
and “see” noise features as spectral features, causing a mis-
classification, a phenomena known as “overfitting” in ML
terminology.

Figure 11 illustrates an experimental spectrum for formic
acid at 1 Torr that is misclassified by the MLP classifier
as methanol. The classifiers are designed to only predict
labels (compounds) and not pressure but for comparison
we have plotted the simulated spectra for both formic acid
and methanol at 1 Torr against the experiment. The experi-
mental measurement for this weak absorption case shows
four main absorption features with relatively poor signal-to-
noise. A comparison of the formic acid simulation with the
experimental spectra shows that there are slight differences
between the two. The relative magnitude of the four strong-
est absorption features in the simulation are not in agreement
with the experiment and there are some slight differences in
the frequencies of the peaks. The simulated spectra for meth-
anol have 5-6 spectral features that match local absorbance
peaks in the experimental spectra, although not all of the

Fig. 11 Spectral demonstra-
tion of the misclassification of
formic acid at 1 Torr by MLP
classifier

0.03

0.02 +

0.01 +

Absorbance

0.00

strongest four features. It is likely that because the methanol
training simulation matches a greater number of local peaks,
even though they are generally weaker spectral features in
the experiment, the classifier incorrectly finds methanol to
be a better match. The poor signal-to-noise magnifies this
problem causing the classifier to have difficulty identify-
ing the important fingerprint features of the experimental
spectrum. From the tenfold cross-validation results shown
in Fig. 10, we also observe that classification accuracy is
lower at pressures below 1 Torr where the signal-to-noise is
reduced due to weak absorption signals.

4 Conclusions

The present work demonstrates the classification of pure
component absorption spectra in the THz spectral region
using machine learning (ML) methods and evaluates the
relative performance of a variety of ML classifiers for the
classification of simulated and experimental spectra. ML
classifiers were trained using simulated spectra for twelve
pure compounds in the 220-330 GHz range generated using
fundamental spectroscopic parameters. The spectra present

Experimental Spectrum - 1 torr HCOOH
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complex fingerprints based on the rotational energy level
structure for each polar compound considered. Classifier
performance was first evaluated against simulated spectra,
in both a 70-30% training—testing split and in tenfold cross-
validation studies, and then against 36 measured spectra for
six compounds in the same 220-330 GHz range. The ML
classifiers considered include k-nearest neighbors, decision
trees, random forest, support vector machines (with linear
and radial basis function kernels), multi-layer perceptron,
adaptive boosted decision trees and random forest, and one-
vs-rest implementation of the aforementioned ML methods.
Compounds considered include polar compounds of indus-
trial and environmental importance for which gas sensing
may be desired: chloromethane, methanol, formic acid,
formaldehyde, hydrogen sulfide, sulfur dioxide, carbonyl
sulfide, hydrogen cyanide, acetonitrile, nitric acid, ethanol,
and acetaldehyde.

All classifiers perform extremely well in identifying sim-
ulated spectra (accuracy >99%); however, when presented
with experimental data containing noise, the multi-layer per-
ceptron (MLP) and the one-vs-rest implementation of the
support vector machine with both linear kernel and radial
basis kernel function (OVR(SVM-linear) and OVR(SVM-
RBF)) classifiers achieved an average classification accu-
racy of greater than 85% on a set of experimental absorption
spectra for six compounds and high recall (87% for MLP
and OVR(SVM-RBF) and 94% for OVR(SVM-linear).
Misclassifications generally occur for situations involv-
ing weak spectral features, where noise compromises the
classification.

The novelty of the present work is the demonstration of
automated ML-based spectral fingerprinting within a nar-
row frequency range in the THz region for noisy experimen-
tal data and with relatively high accuracy and fast training
times, that are suitable for real-time gas sensing and con-
tinuous training of classifiers. The methods demonstrated
here can be directly extended to different spectral frequency
domains, larger and/or different databases of compounds,
and a wide variety of conditions (pressure and tempera-
tures). Extending the present ML classification methods for
the identification of multi-component mixture spectra will
require future work but is possible.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00340-021-07582-0.
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