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Because Fermi liquids are inherently non-interacting states of 
matter, all electronic levels below the chemical potential are 
doubly occupied. Consequently, the simplest way of breaking 
the Fermi-liquid theory is to engineer a model in which some 
of those states are singly occupied, keeping time-reversal 
invariance intact. We show that breaking an overlooked1 
local-in-momentum space Z2 symmetry of a Fermi liquid does 
precisely this. As a result, although the Mott transition from 
a Fermi liquid is correctly believed to arise without breaking 
any continuous symmetry, a discrete symmetry is broken. 
This symmetry breaking serves as an organizing principle for 
Mott physics whether it arises from the tractable Hatsugai–
Kohmoto model or the intractable Hubbard model. Through 
a renormalization-group analysis, we establish that both are 
controlled by the same fixed point. An experimental manifes-
tation of this fixed point is the onset of particle–hole asymme-
try, a widely observed2–10 phenomenon in strongly correlated 
systems. Theoretically, the singly occupied region of the spec-
trum gives rise to a surface of zeros of the single-particle Green 
function, denoted as the Luttinger surface. Using K-homology, 
we show that the Bott topological invariant guarantees the sta-
bility of this surface to local perturbations. Our proof demon-
strates that the strongly coupled fixed point only corresponds 
to those Luttinger surfaces with co-dimension p + 1 with odd p. 
We conclude that both Hubbard and Hatsugai–Kohmoto mod-
els lie in the same high-temperature universality class and are 
controlled by a quartic fixed point with broken Z2 symmetry.

Symmetry is a fundamental organizing principle of nature. A 
case in point is the simplest example of symmetry, namely, per-
mutations. This symmetry helps organize identical fundamental 
particles into two groups: fermions (odd under interchange) and 
bosons (even under permutation). Since the permutation group has 
a finite number of elements, namely, ±1, it is an example of discrete 
symmetry. Here we show that a group as simple as the permutation 
group, namely, Z2, controls the transition from a non-interacting 
collection of electrons constituting a Fermi surface to a state that 
strongly violates the traditional theory of metals, namely, the Mott 
paramagnetic state that insulates, although the band is half full. The 
Fermi surface retains the Z2 symmetry but the Mott state does not.

A manifestation of this symmetry breaking is the resultant asym-
metry on particle–hole addition or removal, that is, on doping. In a 
non-interacting electron system, adding or subtracting an electron 
is a symmetrical process. However, cuprate superconductors as var-
ied as underdoped Bi2Sr2CaCu2O8+δ (Bi-2212) and Ca2−xNaxCuO2Cl2 
(Na-CCOC) exhibit scanning tunnelling spectra9–12 with a distinct 
asymmetry in terms of particle addition and removal. The cuprates 
are not alone here as there are numerous electronic systems6–8 that 
exhibit particle–hole asymmetry at low energies on the addition or 

removal of an electron. Although it is now commonplace to attri-
bute particle–hole asymmetry to strong correlations2,3,5, no univer-
sal operative principle has been enunciated, except for the general 
phenomenon of Mottness4. In his parting words in 2016, P. W. 
Anderson13 reproached condensed-matter theorists for not facing 
up to this problem: ‘I remain baffled by the almost universal refusal 
of theorists to confront this evident fact of hole–particle asymmetry 
head on’. We investigate this in this paper. What all cuprates have 
in common is that the parent material cannot be understood with-
out considering the interactions. The minimal model thought to be 
relevant in this context is due to Hubbard in which electrons move 
on a square lattice but pay an energy cost whenever opposite-spin 
electrons reside on the same site. Since this model is unsolvable in 
any dimension other than d = 1, it is difficult to pinpoint a clear 
organizing principle, other than that the interactions are impor-
tant, as the root cause of the asymmetry. An added complication 
is that the Mott insulating state that arises from the local interac-
tions is thought to be featureless above any temperature associ-
ated with ordering, just as is the Fermi liquid, the non-interacting 
limit. Consequently, appealing to some sort of symmetry breaking 
appears to be a non-starter.

We propose here that such an organizing principle can be 
unearthed by focusing on the full symmetry group of a Fermi liquid 
and analysing which symmetries in the Fermi liquid survive the tran-
sition to the paramagnetic Mott insulator14. Although it is common to 
use the Hubbard model to study this transition, our key point here is 
that the essence of the Mott transition is captured by a simpler model 
that breaks the fundamental local-in-momentum space Z2 symme-
try (non-local in real space) of the Fermi-liquid state. This Z2 sym-
metry breaking serves as an organizing principle for Mott physics. 
We find that both local on-site Hubbard and local-in-momentum (as 
in the exactly solvable Hatsugai–Kohmoto (HK) model15–17) interac-
tions fall into the same universality class as they both break Z2 sym-
metry. We then use K-theory to show that the surface of zeros that 
characterizes the Mott phase is stable to perturbations, thereby estab-
lishing the existence of a fixed point. Our work here is analogous to 
that of another study18 on the stability of a Fermi surface.

Relevance of the HK interaction
Part of the motivation for this work is that there seem to be two 
disparate ways of generating a Mott transition with no apparent 
relationship between them. These constitute the HK15 and Hubbard 
models. Although both models contain the standard kinetic term, 
the HK model contains a non-standard local-in-momentum space 
interaction, namely,

HHK
int = U

∑

k
nk↑nk↓, (1)
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and the Hubbard model contains the standard real-space interac-
tion, namely,

HHubb
int = U

∑
i
ni↑ni↓

= U
∑
k,p,q

c†
(k−q)↑ck↑c

†
(p+q)↓cp↓

, (2)

where Fourier transform shows the explicit non-local momentum 
structure. Here U is the strength of the repulsion and c†pσ creates 
a particle in a state with momentum p and spin σ and cpσ annihi-
lates it. Even with the kinetic energy, the former model is solvable 
exactly15,16, yielding an insulating state with a hard gap for U > W, 
where W is the bandwidth. The explicit energy cost for doubly 
occupying the same k-state is the explicit mechanism for the Mott 
physics in the HK model as it leads to singly occupied states below 
the chemical potential. Ultimately, the same must also be true for 
the Hubbard model, but here only numerics14 support a gap indica-
tive of Mott physics. Hence, it is worth comparing both models. 
Note that the q = 0, k = p part of the Hubbard interaction is of the 
same form as the HK interaction. As will become evident from our 
analysis, it is this term that is the leading relevant interaction that 
drives Mott physics. The spectral functions for both models are 
roughly identical (Fig. 1). Both describe a gapped state in which 
the spectral weight lies at high and low energies above the gap. It is 
the presence of such spectral weight at high and low energies that 
generates the surface of zeros of the real part of the single-particle 
Green function, denoted as the Luttinger surface19,20. The surface of 
zeros only appears at momenta that are singly occupied15,16,20. There 
is no difference between the models in the top three panels (Fig. 1a). 
Differences only emerge at high energies but with reduced spectral 
weight. Nonetheless, the capability of the HK model to capture Mott 
physics is not widely appreciated. Unearthing why these two fairly 

apparently different models yield the same physics is the primary 
goal of this paper.

The first thing that must be established with the HK model is 
why does the interaction HHK

int  destroy the Fermi-liquid behaviour. 
Two distinct arguments will be adopted here. First, we appeal to the 
renormalization principle21,22 for fermions and show that HHK

int  is a 
relevant perturbation. The correct starting point for the renormal-
ization of fermions is to demand that the kinetic term in the action

S0 =
∫

dtddpψ
†
σ(p)(i∂t − (ϵp − ϵF))ψσ(p) (3)

has a zero scaling dimension under the distortion p = k + sℓ, where 
k is along the Fermi surface, ℓ is perpendicular to it and s is the scal-
ing parameter (which will be set to 0 to preserve the Fermi surface). 
Here ψσ

σ(p) creates a particle with momentum σ and momentum 
p, t is time, ∂t is the derivative with respect to time, dd represents 
a d-dimensional integration, ϵp is the particle energy and ϵF the 
Fermi energy. Expanding the dispersion relationship of an electron 
around the Fermi surface, namely,

ϵ(p) = ϵF + ℓ
∂ϵ

∂p + O(ℓ2), (4)

we find that demanding [S0] = 0 requires that ψσ(p) → s−1/2ψσ(p), 
where the symbol in the last term, O, represents the order of magni-
tude. The irrelevance of a generic interaction, V, term

Sint =
∫

dt
4∏

i=1
dd−1kidℓiV(k1, · · · , k4)ψ†

σ(p1)ψσ(p3)ψ
†
σ′(p2)

ψσ′(p4)δd(p1 + p2 − p3 − p4)
(5)
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Fig. 1 | Comparison of Hubbard and HK Models. a, Spectral function of HK and Hubbard models from exact diagonalization with parameters shown. At 
half-filling, there is little difference between the models, showing that the HK interaction accurately models the U-scale physics of Hubbard. b, Density of 
states of the HK model at filling 〈n〉 = 0.8, showing a strong particle–hole asymmetry at the Fermi energy.
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follows because [Sint] = 1 (arising from s4 due to the four factors of 
dℓ, s−1 from dτ and s−4/2 from the four fermion fields) and hence 
vanishes in the s → 0 limit. This conclusion holds even if loop cor-
rections with L loops are included as they scale as sL, thereby van-
ishing for a generic interaction. Note an interaction of the form 
Unkσnk′σ has a tree-level scaling dimension of −1 and hence con-
tributes the same order as the chemical potential. That is, it leads 
to the mass renormalization of Fermi-liquid theory. Loop correc-
tions of this term once again contribute sL and hence generate no 
self-energy corrections. Within this scheme, the only exception 
arises when electrons scatter with momenta on opposite sides of the 
Fermi surface. In this case, the δ function factorizes and the interac-
tion is marginal and leads to an instability for V < 0. Note that the 
form of the kinetic-energy term is irrelevant to this argument. All 
that is necessary is the expansion in equation (4).

In contrast, the local-in-momentum space interaction

˜Sint = U
∫

dtdℓdd−1kψ
†
↑(k)ψ↑(k)ψ

†
↓(k)ψ↓(k) (6)

differs from the generic interaction in Sint in that it contains only a 
single integration over momentum. This interaction can be derived 
from a non-local-in real space interaction that preserves the centre 
of mass of the interacting pairs of electrons15. Because of the single 
integration over momentum in equation (6), the tree-level scaling 
of ˜Sint takes the form s−2 and the interaction term is, in fact, relevant 
even if the electrons do not lie on the Fermi surface. Once again, 
loop corrections are irrelevant to this term following the argument 
elsewhere22,23. The key conclusion here is that the interaction in 
the HK model provides a relevant deformation of the Fermi-liquid 
theory. No contradiction arises from the traditional renormaliza-
tion principle for fermions21–24 as the HK interaction arises from 
non-local real-space interactions.

Z2 symmetry breaking in Mott physics
The HK interaction provides the general mechanism for the break-
ing of long-range real-space entanglement of a Fermi liquid, thereby 
providing a proxy for the Hubbard model; therefore, we investigate 
a little-known observation in another study1 regarding the full sym-
metry group of a Fermi liquid. Their key point is that because Fermi 
liquids possess separately conserved currents for up and down 
spins, the full symmetry group for each point on the Fermi surface 
is O(4), the real group of rotations in 4-space. The determinant of 
an O(4) matrix is either +1 or −1, thus exhibiting the disconnected 
nature of this Lie group. Namely, the proper group SO(4) where 
the determinant is +1 cannot be continuously deformed into those 
whose determinant is −1. To understand what remains, we consider 
the quotient O(4)/SO(4), which is isomorphic to Z2. Z2 arises sim-
ply because there are two connected components of O(4). That is, 
π0(O(4)) ≃ Z2 (here πp(G) is the group of homotopy classes of maps 
of the p-dimensional sphere to G), which is equal to the group con-
sisting of the identity I and reflection R. A reflection R through a 
hyperplane is represented by Rij = δij − ninj if (n0,…, n3) is the ortho-
normal vector to the hyperplane. There is, of course, a fairly distinct 
Z2 that lurks because π1(SO(4)) ≃ Z2, which tells us that there is a 
simply connected double cover of SO(4) called Spin(4) (the spin 
group) that is isomorphic to SU(2) × SU(2), one SU(2) for spin and 
the other for charge pseudospin. This gives rise to an equivalence 
between the spin and charge degrees of freedom in a Fermi liquid. 
As a result, in terms of the particle–hole spinor, ψ†

p = (c†p↑, c−p↓), 
we can write the Hamiltonian for a Fermi liquid as

HFL =

∑

p
ψ
†
p(ϵp − ϵF)τ3ψp + · · · (7)

which explains the inherent SU(2) invariance of the charge sec-
tor (as proposed initially by Anderson25 and Nambu26) and the 

existence of an infinite number of conserved currents, npσ. Here τ3 
is the z component of traditional Pauli matrices. The ellipses stand 
for any interaction term that renormalizes to zero or terms that 
contribute at the same level as the chemical potential that lead to 
mass renormalization of the Fermi liquid21–24. The extra Z2 sym-
metry is evident only for the electrons precisely at the Fermi sur-
face. In fact, although electrons at the Fermi surface have an SU(2) 
symmetry, those away just have a U(1). As the kinetic energy van-
ishes for such electrons, extra symmetries emerge. The relevant 
symmetry that emerges within O(4) is that the sign of only one of 
the spin currents can be changed without any consequence to the 
underlying theory. That is, at the Fermi surface, a particle–hole 
transformation on one species cp↑ → c†p↑ or np↑ → 1− np↑ but 
preserving np↓ → np↓ can be made with impunity. The remain-
ing electrons do not enjoy this symmetry. In this sense, the Z2 
symmetry is emergent in a Fermi liquid as it is exact only at the 
Fermi surface. In the presence of generic short-range interac-
tions, the precise manifestation of this symmetry is detailed in the 
Supplementary Information. It is this discrete Z2 symmetry that 
a Fermi surface possesses that ultimately accounts for the inher-
ent particle–hole symmetry at low energies. Once this symmetry 
is lost, the symmetry between particle and addition around the 
chemical potential is also lost.

There is a subtlety here that points to more than O(4) defining 
the group structure of Fermi liquids. To establish this, we note that 
from the Z2 symmetry (of order 1N ; Supplementary Information), 
we can view the O(4) action as giving an O(4)-bundle structure 
to the fermions on the Fermi surface. The Z2 symmetry in this 
context is related to orientability (a consistent orthonormal frame 
that remains invariant on parallel transport through a loop (Fig. 
2)) of the bundle. The first step27 is to realize that a Fermi liquid 
augmented by a number of trivial bands (explained below) has the 
same properties as the original system. We consider general free 
Hamiltonians as

H =

∑

σ,σ′

ψ
†
σ(p)Aσσ′(p)ψσ′(p). (8)

We can think of Aσσ′ as a map from the Fermi surface (since we 
are interested in the Z2 symmetry described thus far) to a matrix 
group and we impose two such A values, namely, A1 and A2, to be 
equivalent when

A1 ∼ A2 ifA1 ⊕ Atrivial∼homA2 ⊕ Atrivial, (9)

where Atrivial represents the trivial system

Fig. 2 | Möbius bundles. Parallel transport of the normal vector in the 
Möbius bundle along the yellow curve (Fermi surface) reveals that going 
around once leads to a reflection. A double traversal brings back the 
original vector, thus revealing the underlying Z2 symmetry. Note that this 
symmetry is only maintained at the point from which the parallel transport 
was initiated.
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Atrivial =




I 0

0 I



 |p|2, (10)

and ~hom means homotopically equivalent. The homotopy equiva-
lence is reflected in being able to continuously deform the eigenval-
ues without changing the determinant. This equivalence class gives 
rise to the set of maps from the Fermi surface (which we assume to 
be homotopic to a sphere) to a classifying space Cq or Rq (complex or 
real, respectively). The only classifying spaces for which π0(G) ≃ Z2 
corresponds to either G = O(n) or G = O(2n)/U(n) (Supplementary 
Information). This means that the additional group O(4)/U(2), 
which describes spin-polarized electrons, for example, is a possible 
candidate to describe Fermi liquids. However, such a group would 
not allow a description in terms of HFL. The types of Fermi liquid 
described by O(4)/U(2) is beyond the scope of this paper.

From the analysis above, it is clear that any interaction of the 
form np↑np↓ (the interaction in ˜Sint) maximally breaks the momen-
tum space Z2 symmetry (np↑ → (1 − np↑), np↓ → np↓) of a Fermi sur-
face as it transforms to (1 − np↑)np↓ and hence the 2-body term 
changes sign. Since this term is a relevant perturbation of a Fermi 
liquid, it is not a surprise that it breaks the Z2 invariance of the 
would-be Fermi surface. Guided by the Z2 symmetry and the prin-
ciple of relevance, we can analyse the Hubbard interaction as well. 
Explicitly, equation (2) tells us that we can organize the Fourier 
transform as SHubb

int = S3 + S2 + S1(˜Sint/N), where Sn has n indepen-
dent momenta. S1 corresponds to the q = 0, p = k term, for example, 
which is just ˜Sint/N  (N is the system size) and hence has a scaling 
dimension of −2. As each integration over momentum carries with 
it a power of the scaling parameter s, S3 and S2 are subdominant, 
that is, [S3] = 0 and [S2] = −1, contributing the same order as the 
chemical potential relative to S1 and the HK term (which has a scal-
ing dimension of −2). Because s cannot vanish faster than 1/N, the 
HK term and S1 have identical scaling and hence both are relevant 
contributions to the Hubbard model. As shown by the similarity 
of the gaps in Fig. 1, we infer that both models are in the same 
high-temperature universality class. This does not mean that extra 
physics cannot be encoded in the Hubbard model. As in a Fermi 
liquid, the Landau interaction parameters can modify the suscep-

tibilities and density of states and even make the spin and charge 
sectors differ in two dimensions1. The key point is that even in the 
presence of such interactions, the excitations are still governed by 
the full O(4) symmetry of a Fermi liquid. Likewise, in both HK 
and Hubbard models, the reduced symmetry as a result of the 
breaking of Z2 governs the nature of excitations and not the form 
of density of states. That is, the breaking of Z2 symmetry by ˜Sint 
creates a new quartic fixed point (Fig. 3). The presence of a charge 
gap but gapless spin degrees of freedom in the half-filled state are 
manifestations of the breaking of the discrete Z2 symmetry as the 
spin and charge currents can no longer be freely rotated. In the 
doped state, it is well known2–5 that the density of states of a doped 
Mott insulator (Fig. 3) lacks particle–hole symmetry as must be the 
case if Z2 symmetry in momentum space is absent. Consequently, 
both Mott insulating (gapped charge but gapless-charge degrees of 
freedom) and doped (absence of particle–hole symmetry) systems 
are affected by the breaking of Z2 symmetry. We see then that Z2 
symmetry is a powerful organizing principle of strongly correlated 
Mott physics. This conclusion lends credence to the perturbative 
result that the gap in Weyl Mott insulator metals with HK interac-
tions is not affected to the second order once Hubbard interactions 
are introduced28. As a result, we conclude that generically, the HK 
term controls the flow of a Fermi liquid to the paramagnetic Mott 
insulating state (Fig. 3). Hence, both HK and Hubbard interactions 
break the Z2 symmetry of a Fermi surface; as a result, the transi-
tion from a Fermi liquid to a Mott insulator involves the breaking 
of a discrete Z2 symmetry.

In the spirit of naturalness, it makes sense to scale towards the 
interactions and not the Fermi surface and hence away from the 
phase that preserves the Z2 symmetry. This causes a major concep-
tual leap as we can no longer rely on a Fermi surface. In the presence 
of strong interactions, it is sensible to instead choose the surface 
of zeros of the single-particle Green function, that is, the Luttinger 
surface—the locus of points in momentum space along which the 
single-particle Green function vanishes20. Such a surface demarcates 
the paramagnetic Mott gap in a single-band system as numerical 
simulations explain the two-dimensional Hubbard model29,30. As 
shown previously31,32, such a surface has nothing to do with the par-
ticle density unlike the Fermi surface but rather sets the conditions 
for spectral weight transfer on the Mott scale20. Because such spec-
tral weight transfer4,14 is the defining feature of the paramagnetic 
Mott insulator, we are interested in a stability analysis of this surface 
in terms of which perturbations destroy it. As with the Fermi sur-
face, the Luttinger surface can only be destroyed by perturbations 
in the perpendicular direction. For instance, in the HK model, the 
analogue of the expansion in equation (4) for the Luttinger surface 
is

ε(k) = U
2 + ε(kL) + ℓ

∂ε

∂p + O(ℓ2), (11)

where, once again, the only degree of freedom is a distortion per-
pendicular to the surface. Here kL is the position of the surface of 
zeros. Hence, for the location of the Luttinger surface, U is fixed. 
Scaling towards the Luttinger surface is now given by equation (11). 
If no relevant interactions are found, then this will effectively define 
a strongly coupled fixed point. The requirement of [˜Sint] = 0 fixes 
the scaling dimension of the fermion field to be [ψσ(p)] = 0 for the 
HK interaction. Under this scaling scheme, [S0] = 1, implying that 
the kinetic term is perturbatively irrelevant in the Mott insulating 
state. This reinforces the naturalness of our scheme. Recall that the 
metallic phase exists only for W > U and hence cannot be perturba-
tively reached from the strongly coupled fixed point. Likewise, the 
generic four-fermion interaction in equation (5) is also irrelevant 
as it scales as s3, which vanishes when s → 0. Hence, even Hubbard 
physics (a general 4-momenta term) cannot flow away from the 

V (p1, p2, p3, p4)

Mott insulating

FL

Unk↑nk↓
Z2

Z2

Fig. 3 | Hubbard–HK comparison. Flow diagram if the interaction in the HK 
model is made to have zero scaling dimension. The general 4-momentum 
interaction has a scaling dimension of 3 and hence is irrelevant. FL denotes 
the Fermi liquid that arises strictly along the x axis, which preserves a 
discrete momentum space Z2 symmetry. Any non-zero value of S̃int 
destroys the Fermi liquid and consequently the Z2 symmetry. This scaling 
analysis is also supported by the exact solution of the HK model. Note that 
the Mott insulating behaviour persists even when the generic 4-fermion 
interaction Vint is turned on, implying that the Mott insulator generated 
from S̃int is a stable fixed point.
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Mott insulating point. Consequently, we argue (Fig. 1a) that ˜Sint 
constitutes a natural fixed point for Mott physics. Further, we can 
assess the role of pairing by considering the term

Hp =
1
Ld∆

†
∆, (12)

where Δ = ∑kbk = ∑kc−k↓ck↑. Since this term has two momenta, the 
action for this term, Sp, has a scaling dimension of either 2 (HK 
interaction) or 1 (for the generalized HK interaction), also implying 
that the Mott insulator is not perturbatively destroyed by pairing, 
consistent with our recent analysis16 that shows that superconduc-
tivity can be obtained only in the metallic phase.

HK as a fixed point
In this section, we explain how the renormalization-group flow 
works for non-local theories and propose a K-theory stability analy-
sis for the underlying fixed point. The notion of renormalizabilty 
is, in general, ill-posed as normally stated, as one generally neglects 
to mention the space of operators within which a theory is renor-
malizable. More explicitly, consider a certain theory described by a 
classically local action S(ϕi) of some (not necessarily scalar) fields 
ϕ1,…, ϕn. One fixes a certain energy scale Λ and integrates fields 
whose energy is higher than Λ so that the effective action SΛ can 
be obtained. This is done by integrating the fields whose frequency 
ω > Λ, thus splitting the fields into high (ϕH) and low (ϕL) frequen-
cies ϕ = ϕL + ϕH and then integrating

∫
DϕeiS(ϕ)

=

∫
DϕLeiSΛ(ϕL), (13)

where SΛ(ϕL) = −i log
(∫

DϕHeiS(ϕL ,ϕH)
)
. If S∗ is a fixed point, one 

can write

SΛ = S∗ +

∫
ddx

∑

i
giOi (14)

for some local operators Oi (they are local, despite the integration of 
high-frequency fields, because we focus on fields with ω < Λ). The 
core of renormalization is in the observation that there is a dimen-
sion (of operators) D = D(d, H0) (where H0 is the Hamiltonian of free 
energy), above which the operators are irrelevant, and the number 
of local operators Oi whose dimension is less than (or equal) to D 
is finite (this is because classically, local operators are polynomials 
in the fields ϕ and their derivative ∂

Iϕ
∂xI , having used the multi-index 

notation). Since there are finitely many of these, one can make sense 
of such theories. The point we want to make is that this makes sense 
only because we restrict ourselves to a class of operators allowed (in 
this case, the classically local operators Oi). But this argument can 
be generalized to a non-local theory in real space whose Fourier 
transform is, of course, local. Hence, non-locality in real space 
poses no real hurdle to the renormalization program. Here locality 
in momentum space is the standard notion of locality in which posi-
tion is replaced by momentum.

For the sake of simplicity, we explain this procedure for the case in 
which the Hamiltonian is H = H0 + H1, where H0 arises from a classi-
cally local operator (such as kinetic energy) and H1 is non-local in 
real space, but its Fourier transform is local as in the example of ˜Sint 
in the HK model. We now simply allow operators Oi whose Fourier 
transform is local and can be written as a combination of funda-
mental operators; that is, operators that are either classically local in 
position space or that are polynomials in the operator components 
of H1. Since the degree of these polynomials has to be bounded for 
the dimension of the operators to be bounded, there are only finitely 
many of this latter type as well.

Stability of the Mott fixed point is tantamount to showing 
that the defining feature of Mott physics20—the Luttinger surface 
(defined in equation (11)) although not necessarily related to the 
particle density31,32—is stable to perturbations, for example, the 
non-HK terms in the Hubbard model. Recall the surface of zeros 
is possible as long as the spectral weight bifurcates (Fig. 1). To this 
end, we show that the Luttinger surface, which can be exactly estab-
lished for the HK model16, under perturbations of the Hamiltonian 
is determined by Bott periodicity33,34 and ultimately K-theory, simi-
lar to a Fermi surface, as shown elsewhere18. For our purposes, the 
importance of the renormalization group, besides the existence of 
the fixed point, is that for small values of parameters gi, the Green 
function continuously changes by applying perturbation theory 
to Z(gi) =

∫
DϕLeiSΛ(ϕL)

=

∫
DϕLei(S∗+

∫
ddx

∑
igiOi). Consider the 

Green function

G(k,ω) = ⟨ψ(0, 0)ψ†
(k,ω)⟩ =

1
ω − ε(k) +Σ(k,ω)

(15)

for some Hamiltonian that vanishes along a surface of zeros—the 
Luttinger surface. In a d+1-dimensional (k, ω) space, we will regard 
the Luttinger surface Ω to have dimension d − p and hence its 
co-dimension is p + 1. Here Σ is the exact self-energy. The precise 
equation denoting the zero surface (equation (11)) is determined 
by the locus of (kL, ω = 0) points at which Σ diverges. We assume 
the fields ψ(k, ω) represent complex fermions consisting of N com-
ponents. We consider a point kL in momentum space that is an ele-
ment of the Luttinger locus, that is, Ω ≔ {detG = 0} and consider a 
p-sphere of radius ϵ centred at point k⊥ in the normal direction (that 
is, k⊥ is in the normal bundle νΩ to Ω and we take a fibre of the 
ϵ-tubular neighbourhood of Ω identified via the exponential map 
with the ϵ-sphere bundle SΩ(ϵ) = {(kL, k⊥) ∈ νΩ: ∣kL − k⊥∣ = ϵ}). A per-
turbation that preserves the Luttinger surface moves the zero of G 
along k⊥. If not, it moves it elsewhere in which case the Luttinger 
surface is destroyed. We investigate the topology to show that the 
latter cannot be obtained. At points in SΩ(ϵ), the complex N × N 
matrix G is non-degenerate since, by definition, the locus of points 
in the momentum space on which it is degenerate is Ω. Therefore, 
we obtain a continuous analytic map

Ωϵ : SΩ(ϵ) → GL(N,C). (16)

Here GL(N,C) is the group of invertible complex matrices 
with N × N entries. Fixing a point kL ∈ Ω, the relevant set is then 
SΩ(ϵ)kL = {k⊥ |kL − k⊥| = ϵ} (which, in the language of fibre 
bundles, is the fibre of SΩ(ϵ) at ΩL) and this set SΩ(ϵ)kL is an Sp 
sphere and the map Ω at fixed kL is

Ω
′
ϵ : Sp → GL(N,C). (17)

Any deformation HM + gH2 of the Hamiltonian HM (here we think of 
this as the Hamiltonian of the fixed point that exhibits a Mott insu-
lating nature) will deform this map Ω continuously, thus preserving 
its homotopy class. Now, the main observation is that if the homo-
topy class of Ω′

ϵ in the pth fundamental group πp (GL(N,C)) is 
non-zero, the Luttinger surface Ω must be stable under small defor-
mations. In fact, if the image of Sp via Ω′

ϵ was the trivial class, then 
the map would be homotopic (continuously deformable) to a con-
stant map (that is, mapping the whole of Sp to a constant invertible 
matrix). But this would mean that the map Ω′

ϵ could be extended to 
a map from the solid ball Bϵ(kL) = {(kL, k⊥) ∈ νΩ: ∣kL − k⊥∣ = ϵ} centred 
at kL and of radius ϵ to GL(N,C). This is impossible because G is 
degenerate at kL as per the definition of a Luttinger surface. As a 
result, stability follows. Higher fundamental groups are notoriously 
complicated to calculate; fortunately, for classical groups, via the use 
of Morse theory, Bott33 was able to prove that they are periodic (and 
the period depends on the group)
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πk

(
lim
−→

GL(N,C)
)
= πk+2

(
lim
−→

GL(N,C)
)
; (18)

particularly in the so-called stable regime or when N is sufficiently 
large compared with p (N > p

2 suffices),

πk

(
lim
−→

GL(N,C)
)
=

{
0 if k is even
Z if k is odd

. (19)

We have thus established the fact that Luttinger surfaces of 
co-dimension p + 1 in momentum–energy space are stable for odd 
p and unstable for even p, similar to the case of the Fermi surface.

Our work shows that models exhibiting a Luttinger surface, 
that is, a surface of zeros, ultimately have a rigorous stability con-
dition based in K-theory. It would be erroneous to associate the 
winding number πk(lim

−→

GL(N,C)) with the charge density because 
for the Fermi surface, the winding number counts the multiplic-
ity of poles; because each pole has a quasiparticle interpretation, 
the winding is equivalent to knowing the charge. For the zero sur-
face31,32, no quasiparticle interpretation of zeros is obtained. Hence, 
their multiplicity as indicated by the non-trivial winding number 
πk(lim

−→

GL(N,C)) has no physical significance. This ultimately sheds 
light on why deviations from the Luttinger count35 with the charge 
density have been so numerous31,32. The existence of our stability 
condition implies that the details of the underlying Hamiltonian 
are irrelevant. The only quantity of relevance is the Luttinger sur-
face. Consequently, our analysis puts all the models with Luttinger 
surfaces under the same umbrella as they are controlled by a fixed 
point whose stability is ultimately controlled by K-theory and lack 
the Z2 symmetry of a Fermi surface. The superconducting transi-
tion found earlier16 should then be a generic feature of this fixed 
point. It is from the breaking of the discrete Z2 symmetry that the 
particle–hole asymmetry (Fig. 3) naturally arises, thereby leading to 
a direct response to Anderson’s reproach.

Online content
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