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Abstract—Direction of Arrival (DoA) estimation using Sparse
Linear Arrays (SLAs) has recently gained considerable attention
in array processing thanks to their capability to provide enhanced
degrees of freedom in resolving uncorrelated source signals.
Additionally, deployment of one-bit Analog-to-Digital Converters
(ADCs) has emerged as an important topic in array processing,
as it offers both a low-cost and a low-complexity implementation.
In this paper, we study the problem of DoA estimation from
one-bit measurements received by an SLA. Specifically, we first
investigate the identifiability conditions for the DoA estimation
problem from one-bit SLA data and establish an equivalency
with the case when DoAs are estimated from infinite-bit un-
quantized measurements. Towards determining the performance
limits of DoA estimation from one-bit quantized data, we derive
a pessimistic approximation of the corresponding Cramér-Rao
Bound (CRB). This pessimistic CRB is then used as a benchmark
for assessing the performance of one-bit DoA estimators. We
also propose a new algorithm for estimating DoAs from one-
bit quantized data. We investigate the analytical performance of
the proposed method through deriving a closed-form expression
for the covariance matrix of the asymptotic distribution of
the DoA estimation errors and show that it outperforms the
existing algorithms in the literature. Numerical simulations are
provided to validate the analytical derivations and corroborate
the resulting performance improvement.

Index Terms—Sparse linear arrays, direction of arrival (DoA)
estimation, Cramér-Rao bound (CRB), one-bit quantization

I. INTRODUCTION

The problem of Direction of Arrival (DoA) estimation is of
central importance in the field of array processing with many
applications in radar, sonar, and wireless communications [1–
3]. Estimating DoAs using Uniform Linear Arrays (ULAs) is
well-investigated in the literature; a number of algorithms such
as the Maximum Likelihood (ML) estimator, MUSIC, ESPRIT
and subspace fitting were presented and their performance
thoroughly analyzed [4–9]. However, it is widely known that
ULAs are not capable of identifying more sources than the
number of physical elements in the array [2, 7].
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To transcend this limitation, exploitation of Sparse Linear
Arrays (SLAs) with particular geometries, such as Minimum
Redundancy Arrays (MRAs) [10], co-prime arrays [11] and
nested arrays [12] has been proposed. These architectures can
dramatically boost the degrees of freedom of the array for
uncorrelated source signals such that a significantly larger
number of sources than the number of physical elements
in the array can be identified. In addition, the enhanced
degrees of freedom provided by these SLAs can improve the
resolution performance appreciably compared to ULAs [12].
These features have spurred further research on DoA estimation
using SLAs in recent years. A detailed study on DoA estimation
via SLAs through an analysis of the Cramér-Rao Bound (CRB)
was conducted in [13]. Further, a number of approaches to
estimating DoAs from SLA measurements were proposed in
the literature. In general, the proposed approaches can be
classified under two main groups: 1) Sparsity-Based Methods
(SBMs); 2) Augmented Covariance-Based Methods (ACBMs).
SBMs estimate DoAs by imposing sparsity constraints on
source profiles and exploiting the compressive sensing recovery
techniques [14–20]. However, in ACBMs, DoAs are estimated
by applying conventional subspace methods such as MUSIC
and ESPRIT on an Augmented Sample Covariance Matrix
(ASCM) developed from the original sample covariance matrix
by exploiting the difference co-array structure [12, 21, 22]. In
addition, the authors of this paper recently proposed a Weighted
Least Squares (WLS) estimator capable of asymptotically
achieving the corresponding CRB for DoA estimation from
SLA data [23, 24].

The aforementioned techniques for DoA estimation from
SLA data rest on the assumption that the analog array measure-
ments are digitally represented by a significantly large number
of bits per sample such that the resulting quantization errors
can be disregarded. However, the production costs and energy
consumption of Analog-to-Digital Converters (ADCs) escalate
dramatically as the number of quantization bits and sampling
rate increase [25]. In consequence, deployment of high-
resolution ADCs in many modern applications, e.g. cognitive
radio [26], cognitive radars [27], automotive radars [28], radio
astronomy [29] and massive multiple-input multiple-output
(MIMO) systems [30], is not economically viable owing to their
very high bandwidth. In order to reduce energy consumption
and production cost in such applications, researchers and system
designers have recently proposed using low-resolution ADCs.
As an extreme case of low-resolution ADCs, one-bit ADCs,
which convert an analog signal into digital data using a single
bit per sample, has received significant attention in the literature.
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One-bit ADCs offer an extremely high sampling rate at a low
cost and very low energy consumption [25]. Additionally, they
enjoy the benefits of relatively easy implementation due to
their simple architecture [31]. In the past few years, numerous
studies were conducted to investigate the impact of using one-
bit sampling on various applications such as massive MIMO
systems [32–36], dictionary learning [37], radar [38–42], and
array processing [43, 44].

A. Relevant Works
The problem of DoA estimation from one-bit quantized

data has been studied in the literature presuming both the
deterministic signal model [6] and the stochastic signal model
[7]. The studies in [45–49] presuppose the deterministic
signal model. The authors in [45] developed an algorithm
for reconstruction of the unquantized array measurements from
one-bit samples followed by MUSIC to determine DOAs. The
ML estimation was deployed in [46] for finding DoAs from one-
bit data. In [49], the authors utilized a sparse Bayesian learning
algorithm to solve the DoA estimation problem from one-bit
samples. Two sparsity-based approaches were also proposed in
[47, 48]. Further, DoA estimation from one-bit data assuming
the stochastic signal model has been discussed in [43, 44,
50, 51]. In the special case of a two-sensor array, the exact
CRB expression for the DoA estimation problem from one-bit
quantized data was derived in [43]. Moreover, an approach for
estimating DoAs from one-bit ULA samples was proposed in
[43] which is based on reconstruction of the covariance matrix
of unquantized data using the arcsine law [52]. In contrast to
the approach employed in [53] which relies on the covaraince
matrix reconstruction of unquantized data, the DoA estimation
was performed in [51] by directly applying MUSIC on the
sample covariance matrix of one-bit ULA data. The numerical
simulations demonstrated that the approach proposed in [51]
performs similar to the algorithm proposed in [43] in the low
Signal-to-Noise Ratio (SNR) regime. An upper bound on the
CRB of estimating a single source DoA from one-bit ULA
measurements was derived in [44].

The aforementioned research works considered using ULAs
for one-bit DoA estimation. Exploitation of SLAs for one-bit
DoA estimation has been studied in [53–56]. The authors in
[53] deployed the arcsine law [52] to reconstruct the ASCM
from one-bit SLA data. Then, they applied MUSIC on the
reconstructed ASCM to estimate DoAs. It was shown in [53]
that the performance degradation due to one-bit quantization
can, to some extent, be compensated using SLAs. An array
interpolation-based algorithm was employed in [56] to estimate
DoAs from one-bit data received by co-prime arrays. Cross-
dipoles sparse arrays were deployed in [55] to develop a method
for one-bit DoA estimation which is robust against polarization
states. In [54], the authors proposed an approach to jointly
estimate DoAs and array calibration errors from one-bit data.

Nonetheless, the analytical performance of DoA estimation
from one-bit SLA measurements has not yet been studied in
the literature and performance analysis in the literature has
been limited to simulations studies. Therefore, fundamental
performance limitations of DoA estimation form one-bit SLA
measurements have not well understood.

B. Our Contributions

It is of great importance to analytically investigate the per-
formance of DoA estimation from one-bit SLA measurements.
Such a performance analysis not only provides us with valuable
insights into the performance of DoA estimation from one-
bit SLA data but also enables us to compare its performance
with that of DoA estimation using infinite-bit (unquantized)
SLA data. Hence, as one of the contributions of this paper,
we conduct a rigorous study on the performance of estimating
source DoAs from one-bit SLA samples. Furthermore, we
propose a new algorithm for estimating source DoAs from one-
bit SLA measurements and analyze its asymptotic performance.
Specifically, the contributions of this paper are described as
follows:

• Identifiability Analysis: We study the identifiability
conditions for the DoA estimation from one-bit SLA
data. We first show that the identifiability condition for
estimating DoAs from one-bit SLA data is equivalent
to the case when DoAs are estimated from infinite-bit
(unquantized) SLA data. Then, we determine a sufficient
condition for global identifiablity of DoAs from one-bit
data based on the relationship between the number of
source and array elements.

• CRB Derivation and Analysis: We derive a pessimistic
approximation of the CRB of DoA estimation using one-
bit data received by an SLA. This pessimistic CRB approx-
imation provides a benchmark for the performance of DoA
estimation algorithms from one-bit data. Additionally, it
helps us to spell out the condition under which the Fisher
Information Matrix (FIM) of one-bit data is invertible, and
thus, the CRB is a valid bound for one-bit DoA estimators.
Further, we derive the performance limits of one-bit DoA
estimation using SLAs at different conditions.

• Novel One-bit DoA Estimator: We propose a new
MUSIC-based algorithm for estimating DoAs from one-bit
SLA measurements. In this regard, we first construct an
enhanced estimate of the normalized covariance matrix of
infinite-bit (unquantized) data by exploiting the structure
of the normalized covariance matrix efficiently. Then, we
apply MUSIC to an augmented version of the enhanced
normalized covariance matrix estimate to determine the
DoAs.

• Performance Analysis of the Proposed Estimator: We
derive a closed-form expression for the second-order
statistics of the asymptotic distribution (for the large
number of snapshots) of the proposed algorithm. Our
asymptotic performance analysis shows that the proposed
estimator outperform its counterparts in the literature
and that its performance is very close to the proposed
pessimistic approximation of the CRB. Moreover, the
asymptotic performance analysis of the proposed DoA
estimator enables us to provide valuable insights on its
performance. For examples, we observe that the Mean
Square Error (MSE) depends on both the physical array
geometry and the co-array geometry. In addition, we
observe that the MSE does not drop to zero even if the
SNR approaches infinity.
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• Wider Applicability of the derived performance Anal-
ysis: We provide a closed-form expression for the large
sample performance of the one-bit DoA estimator in [53]
as a byproduct of the performance analysis of our proposed
DoA estimator.

Organization: Section II describes the system model. In
Section III, the identifiability condition for DoA estimation
problem from one-bit quantized data is discussed. Section
IV presents the pessimistic approximation of the CRB and
related discussions. In Section V, the proposed algorithm for
DoA estimation from one-bit measurements is given and its
performance is analyzed. The simulation results and related
discussions are included in Section VI. Finally, Section VII
concludes the paper.

Notation: Vectors and matrices are referred to by lower-
and upper-case bold-face, respectively. The superscripts ∗, T ,
H denote the conjugate, transpose and Hermitian (conjugate
transpose) operations, respectively. [A]i,j and [a]i indicate the
(i, j)th and ith entry of A and a, respectively. ‖a‖2 stands
for the `2-norm of a. |A| represents the cardinality of the
set A. |a|, dae and bac represent the absolute value of, the
least integer greater than or equal to and greatest integer
less than or equal to the scalar a, respectively. diag(a) and
diag(A) are diagonal matrices whose diagonal entries are
equal to the elements of a and to the diagonal elements of
A, respectively. The M ×M identity matrix is denoted by
IM . sgn(x) denotes the sign function with sgn(x) = 1 for
x ≥ 0 and sgn(x) = −1 otherwise. The real and image part
of a are denoted by <{a} and ={a}, respectively. E{.} stands
for the statistical expectation. ⊗ and � represent Kronecker
and Khatri-Rao products, respectively. tr(A), det(A) and
rank(A) denote the trace, determinant and rank, respectively.
vec (A) =

[
aT1 aT2 · · · aTn

]T
represents the vectorization

operation and matm,n(.) is its inverse operation. A† and Π⊥A
indicate the pseudoinverse and the projection matrix onto the
null space of the full column rank matrix AH , respectively.
CN (a,A) denote the circular complex Gaussian distribution
with mean a and covariance matrix A.

II. SYSTEM MODEL

We consider an SLA with M elements located at positions
m1

λ
2 ,m2

λ
2 , · · · ,mM

λ
2 with mi ∈M. Here M is a set of inte-

gers with cardinality |M|=M , and λ denotes the wavelength of
the incoming signals. It is assumed that K narrowband signals
with distinct DoAs θ= [θ1, θ2, · · · , θK ]T ∈ [−π/2, π/2]K×1

impinge on the SLA from far field. The signal received at the
array at time instance t can be modeled as

y(t) = A(θ)s(t) + n(t) ∈ CM×1, t = 0, · · · , N − 1, (1)

where s(t) ∈ CK×1 denotes the vector of source sig-
nals, n(t) ∈ CM×1 is additive noise, and A(θ) =
[a (θ1) ,a (θ2) , · · · ,a (θK)] ∈ CM×K represents the SLA
steering matrix with

a(θk)=[ejπ sin θkm1 , ejπ sin θkm2 , · · · , ejπ sin θkmM ]T , (2)

being the SLA manifold vector for the ith signal. Further, the
following assumptions are made on source signals and noise:
A1 n(t) follows a zero-mean circular complex Gaussian distri-

bution with the covariance matrix E{n(t)nH(t)}=σ2IM .

−9 −8 −7 −6 −5 −4 −3 −2 0−1 1 2 3 4 5 6 7 8 9

(a)

(b)

The contiguous ULA segment

λ
2

Figure 1. Array geometry of a co-prime array with M = 6 elements: (a)
physical array with M = {0, 2, 3, 4, 6, 9}; (b) difference co-array with D =
{0, 1, 2, 3, 4, 5, 6, 7, 9} and v = 8.

A2 The source signals are modeled as zero-mean uncor-
related circular complex Gaussian random variables
with covariance matrix E{s(t)sH(t)} = diag(p) where
p = [p1, p2, · · · , pK ]T ∈ RK×1

>0 (i.e., pk > 0, ∀k).
A3 Source and noise vectors are mutually independent.
A4 There is no temporal correlation between the snapshots,

i.e., E{n(t1)nH(t2)}=E{s(t1)sH(t2)}=0 if t1 6= t2.
A5 An exact knowledge of the number of sources is available.

Given A1 - A4, the covariance matrix of y(t) is expressed as

R = A(θ)diag(p)AH(θ) + σ2IM ∈ CM×M . (3)

Vectorizing R leads to [13, 21, 23]

r
.
= vec(R) = (A∗(θ)�A(θ)) p + σ2vec(IM ),

= JAd(θ)p + σ2Je ∈ CM
2×1, (4)

where Ad(θ) ∈ C(2D−1)×K corresponds to the steering matrix
of the difference co-array of the SLA whose elements are
located at (−`D−1

λ
2 , · · · , 0, · · · , `D−1

λ
2 ) with `i ∈ D =

{|mp − mq| : mp,mq ∈ M} and D = |D|. Moreover,
e ∈ {0, 1}(2D−1)×1 is a column vector with [e]i = δ[i −D],
and the selection matrix J ∈ {0, 1}M2×(2D−1) is represented
as follows [13]:

J=
[
vec(LTD−1), · · · , vec(L0), · · · , vec(LD−1)

]
, (5)

where [Ln]p,q =

{
1, if mp −mq = `n,
0, otherwise, with 1 ≤ p, q ≤ M

and 0 ≤ n ≤ D − 1. The steering matrix of the difference
co-array includes a contiguous ULA segment around the origin
with the size of 2v − 1 where v is the largest integer such
that {0, 1, · · · , v − 1} ⊆ D. The size of the contiguous ULA
segment of the difference co-array plays a crucial role in the
number of identifiable sources such that K distinct sources are
identifiable if K ≤ v − 1. Hence, in case the SLA is designed
properly such that v > M , we are able to identify more sources
than the number of physical elements in the SLA; exploiting the
resulting structure of R efficiently [11–13, 23]. An illustrative
example of an SLA, the corresponding difference co-array, and
its contiguous ULA segment is presented in Fig. 1.

Here it is assumed that each array element is connected to
a one-bit ADC which directly converts the received analog
signal into binary data by comparing the real and imaginary
parts of the received signal individually with zero. In such a
case, the one-bit measurements at the mth array element are
given by

[x(t)]m=
1√
2

sgn (<{[y(t)]m})+
j√
2

sgn (={[y(t)]m}) . (6)

The problem under consideration is the estimation of source
DoAs, i.e., θ, from one-bit quantized measurements, i.e., X =[
x(0), x(1), · · · , x(N − 1)

]
, collected by the SLA.
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III. IDENTIFIABILITY CONDITIONS

Note that there is a significant information loss expected
when going from infinite-bit (unquantized) data, i.e., Y =
[y(0),y(1), · · · ,y(M)], to one-bit data, i.e., X. This informa-
tion loss may affect the attractive capability of SLAs to identify
a larger number of uncorrelated sources than the number of
array elements. To address this concern, we will consider the
identifiability conditions for DoA estimation from one-bit SLA
measurements in this section. Before proceeding further, we
first need to give a clear definition of identifiability for this
problem.

Definition 1 (Identifiability). Let f(X | θ,p, σ2) denote the
Probability Density Function (PDF) of X parameterized by θ, p
and σ2. Then, the source DoAs are said to be identifiable from
X at point θ0 ∈ [−π/2, π/2]K×1 if there exist no θ̆ 6= θ0 ∈
[−π/2, π/2]K×1 such that f(X | θ0,p, σ

2) = f(X | θ̆, p̆, σ̆2)
for any arbitrary values of p ∈ RK×1

>0 , p̆ ∈ RK×1
>0 , σ2 and σ̆2

[57, Ch. 1, Definition 5.2] [58, pp. 62].

Remark 1. The above definition can be used for identifiabilty
of θ0 from Y by replacing f(X |θ,p, σ2) with f(Y |θ,p, σ2).

Based on the above definition, the necessary and sufficient
condition for a particular DoA point to be identifiable from
one-bit SLA data is given in the following Theorem.

Theorem 1. The source DoAs are identifiable from X at θ0 ∈
[−π/2, π/2]K×1 if and only if they are identifiable from Y at
θ0.

Proof. See Appendix A.

The above Theorem shows that the identifiability condition
for the DoA estimation problem from one-bit SLA measure-
ments is equivalent to that for the DoA estimation problem
from infinite-bit (unquantized) SLA measurements. Hence,
the information loss arises from one-bit quantization does not
influence the number of identifiable sources. However, Theorem
1 simply spells out the identifiability condition of a single DoA
point. A sufficient condition for global identifiablity of source
DoAs from one-bit data is given in the following theorem.

Definition 2 (Global identifiability). The source DoAs are said
to be globally identifiable from X if there exists no distinct θ ∈
[−π/2, π/2]K×1 and θ̆ ∈ [−π/2, π/2]K×1 such that f(X |
θ,p, σ2) = f(X | θ̆, p̆, σ̆2) for any arbitrary values of p ∈
RK×1
>0 , p̆ ∈ RK×1

>0 , σ2 and σ̆2.

Theorem 2. The sufficient conditions for global indentifiability
and global non-indentifiability of source DoAs from one-bit
SLA data are given as follows:
S1 The source DoAs are globally identifiable (with probability

one) from X for any value of θ ∈ [−π/2, π/2]K×1 if
K ≤ v − 1.

S2 The source DoAs are globally unidentifiable from X for
any value of θ ∈ [−π/2, π/2]K×1 if K ≥ D.

Proof. See Appendix B.

Having revealed that one-bit quantization does not affect the
indentifiability conditions of source DoAs, we will investigate

the performance of DoA estimation from one-bit SLA data
through a CRB analysis in the next section.

IV. CRAMÉR-RAO BOUND ANALYSIS

It is well-known that the CRB offers a lower bound on
the covariance of any unbiased estimator [59]. Hence, it is
considered as a standard metric for evaluating the performance
of estimators. In particular, the CRB can provide valuable
insights into the fundamental limits of estimation for spe-
cific problems as well as the dependence of the estimation
performance on various system parameters. Deriving a closed-
form expression for the CRB requires knowledge of the data
distribution. However, the data distribution may not be known
for some problems. In such cases, the Gaussian assumption is
a natural choice which leads to the largest (most pessimistic)
CRB in a general class of data distributions [60].

In the problem of DoA estimation from one-bit SLA
measurements, the true PDF of one-bit data is obtained from
the orthant probabilities [61] of Gaussian distribution, for
which a closed-form expression is not available in general.
Motivated by this fact, in what follows, we derive a pessimistic
closed-form approximation for the CRB of the DoA estima-
tion problem from one-bit SLA data through considering a
Gaussian distribution for x(t). This pessimistic closed-form
approximation is used for benchmarking the performance
of one-bit DoA estimators as well as for investigating the
performance limits of the DoA estimation problem from one-bit
data. Making use of assumptions A1-A4, it is readily confirmed
that E{x(t)} = 0. Further, the arcsine law [52] establishes the
following relationship between R and Rx:

Rx = E{x(t)xH(t)} =
2

π
arcsine(R), (7)

where [arcsine(R)]m,n = arcsin(<{[R]m,n}) +
j arcsin(={[R]m,n}) and

R=
R

σ2 +
∑K
k=1 pk

=A(θ)diag(p)AH(θ)+(1−
K∑
k=1

pk)IM , (8)

is the normalized covariance matrix of y(t) with p =
[p1, p2, · · · , pK ]T and pk = pk

σ2+
∑K
k=1 pk

. It follows from (7)
and (8) that Rx is a function of the parameters θ and p. Let
% = [θ,p]T denote the vector of unknown parameters. Then,
considering the Gaussian assumption, the worst-case Fisher
Information Matrix (FIM) Iw(%) is given by [59]

[Iw(%)]m,n = Ntr(R−1
x

∂Rx

∂[%]m
R−1

x
∂Rx

∂[%]n
)

= N
∂rHx
∂[%]m

(R−Tx ⊗R−1
x )

∂rx
∂[%]n

, (9)

where rx = vec(Rx) and the last equality is obtained by using
the relation tr(C1C2C3C4) = vecH(CH

2 )(CT
1 ⊗C3)vec(C4).

From (4), (7) and (9), we obtain

rx=
2

π
arcsine(vec(R))=

2

π
Jarcsine

(
Ad(θ)p+(1−

K∑
k=1

pk)e

)
. (10)

Computing the derivative of rx with respect to θk and pk yields

∂rx
∂θk

=jπ cos(θk)pkJdiag(d) (11)

×
[
diag(h)<{ad(θk)}+ jdiag(h)={ad(θk)}

]
,

∂rx
∂pk

=J
[
diag(h)<{ad(θk)}+ jdiag(h)={ad(θk)}

]
, (12)
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h =
[

1√
1−|<{

∑K
k=1

pke
−jπ sin θk`D−1}|2

· · · 0 · · · 1√
1−|<{

∑K
k=1

pke
jπ sin θk`D−1}|2

]T
, (13)

h =
[

1√
1−|={

∑K
k=1

pke
−jπ sin θk`D−1}|2

· · · 0 · · · 1√
1−|={

∑K
k=1

pke
jπ sin θk`D−1}|2

]T
, (14)

where h and h are given in (13) and (14) at the top of the
next page, ad(θk) denotes the kth column of Ad(θ) and d =
[−`D−1, · · · , `0, · · · , `D−1]T . It follows from (9), (11) and
(12) that

Iw(%) = N

[
GH

VH

]
JH(R−Tx ⊗R−1

x )J
[
G V

]
, (15)

where

G =jπdiag(d)
[
diag(h)<{Ad(θ)} (16)

+ jdiag(h)={Ad(θ)}
]
Φ(θ)diag(p),

V =diag(h)<{Ad(θ)}+ jdiag(h)={Ad(θ)}, (17)

with Φ(θ) = diag([cos θ1, cos θ2, · · · , cos θK ]T ). If Iw(%) is
non-singular, a pessimistic approximation for the CRB of
estimating DoAs from one-bit SLA data can be obtained
through inverting Iw(%). Hence, we need to first establish
the non-singularity of Iw(%).

Lemma 1. Define Υ =
[
∆ z

]
∈ C(2D−1)×2K , where

∆ = diag(d)
[
diag(h)<{Ad(θ)}+ jdiag(h)={Ad(θ)}

]
, (18)

z = diag(h)<{Ad(θ)}+ jdiag(h)={Ad(θ)}. (19)

Then, Iw(%) is non-singular if and only if Υ is full-column
rank.

Proof. See Appendix C

Remark 2. Assuming I(%) to be the true FIM, it follows
from I(%) � Iw(%) that Υ being full-column rank is also a
sufficient condition for the non-sigularity of I(%).

Theorem 3. Let CRB(θ) denote the CRB for source DoAs
θ from X. If Iw(%) is non-singular, then a pessimistic
approximation of CRB(θ), denoted by CRBw(θ), is given by

CRB(θ) � CRBw(θ) =
1

4Nπ2
(QHΠ⊥

M
1
2 V

Q)−1, (20)

where Ω = 1
πG,

M = JH
(

arcsine(R
T

)⊗ arcsine(R)
)−1

J, (21)

Q = M
1
2 diag(d)ΩΦ(θ)diag(p), (22)

with G and V being given in (16) and (17), respectively.

Proof. See Appendix D

Remark 3. We note that CRBw(θ) bears a superficial
resemblance to the CRB expression for DoA estimation from
unquantized data, given by [13, Theorem 2]

CRBI(θ) =
1

4Nπ2
(Q̃HΠ⊥

M̃
1
2 Ṽ

Q̃)−1, (23)

where

M̃ = JH
(
R
T ⊗R

)−1

J, (24)

Q̃ = M̃
1
2 diag(d)Ad(θ)Φ(θ)diag(p), (25)

Ṽ =
[
Ad(θ) e

]
. (26)

Theorem 4. Assume all sources have equal power p and
SNR = p/σ2. Then, we have

lim
SNR→∞

CRBw(θ) � 0. (27)

Proof. See Appendix E

Remark 4. Theorem 4 implies that the CRBw(θ) does not
go to zero as the SNR increases. As a consequence, in the
one-bit DoA estimation problem, we may not be able to render
estimation errors arbitrarily small by increasing the SNR.

V. PROPOSED ONE-BIT DOA ESTIMATOR

In this section, we first derive an enhanced estimate of the
normalized covariance matrix of y(t), i.e., R, from one-bit
SLA measurements through exploiting the structure of R. Then,
we obtain DoA estimates by applying Co-Array-Based MUSIC
(CAB-MUSIC) [21, 62] to the enhanced estimate of R. Further,
we investigate the analytical performance of the proposed
method for estimating DoAs from one-bit measurements.

A. Enhanced One-Bit Co-Array-Based MUSIC
It is deduced from the strong law of large numbers [63,

ch. 8] that the sample covariance matrix of one-bit data
provides a consistent estimate of Rx with probability 1, i.e.,
Pr
(

limN→∞ R̂x = Rx

)
= 1, where R̂x = 1

NXXH . In

addition, reformulating (7) gives R based on the covariance
matrix of one-bit data as follows:

R = sine(
π

2
Rx), (28)

where [sine(π2 Rx)]m,n = sin(π2<{[R]m,n}) +
j sin(π2={[R]m,n}). Accordingly, a consistent estimate
of R is obtained as

R̃ = sine(
π

2
R̂x). (29)

Most of the algorithms in the literature employ R̃ for estimating
DoAs from one-bit measurements [43, 53]. However, an
enhanced estimate of R compared to R̃ can be found if the
structure of R is taken into account. This enhanced estimate
could in turn yield a better DoA estimation performance. In
what follows, we introduce such an enhanced estimate of R by
exploiting its structure. Then, we use this enhanced estimate
to improve the DoA estimation performance from one-bit data.

It is readily known from (8) that R has the following
structure

R = IM +

D−1∑
n=1

unLn +

D−1∑
n=1

u∗nLTn , (30)

where un =
∑K
k=1 pke

jπ sin θk`n and Ln is given after
eq. (5) for 1 ≤ n ≤ D − 1. It can be observed from
(30) that the diagonal elements of R are all one while
the off-diagonal elements are parameterized by the vector
u = [u1, · · · , uD−1]T ∈ C(D−1)×1. This means that there exist
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f(˜̈r | φ) =

(
NM2−M

(2π)M2−M det(Σ(φ))

)
exp{−N [arcsine(˜̈r)− JΨ arcsin(φ)]HΣ−1(φ)[arcsine(˜̈r)− JΨ arcsin(φ)]}

ΠD−1
n=1 (1− [φ]2n)νn(1− [φ]2n+D−1)νn

. (33)

L(φ) = ln det(Σ(φ))−
D−1∑
n=1

νn ln(1− [φ]2n)(1− [φ]2n+D−1) +N [arcsine(˜̈r)− JΨ arcsin(φ)]HΣ−1(φ)[arcsine(˜̈r)− JΨ arcsin(φ)].

(35)

only 2D − 2 free real parameters in R. Let r̈ ∈ C(M2−M)×1

be the vector containing the off-diagonal elements of R,
obtained by removing the diagonal elements of R from vec(R).
Evidently, r̈ is given by

r̈ = J
[
u∗ u

]T
= JΨφ, (31)

where φ = [<{u}T ,={u}T ]T ∈ R(2D−1×1),

Ψ =

[
ID−1 −jID−1

ID−1 jID−1

]
. (32)

and J ∈ {0, 1}(M2−M)×(2D−2) is obtained by removing the
D-th column as well as the rows with indices (i− 1)M + 1
for all 1 ≤ i ≤ M from J. It follows from (31) that R
is parameterized by the real-valued vector φ. We wish to
find φ ∈ Eφ = {φ | R(φ) � 0} from R̂x. To this end,
let ̂̈rx ∈ R(M2−M)×1 denote the vector containing the off-
diagonal elements of R̂x, obtained by removing the diagonal
entries of R̂x from vec(R̂x). For large N , it follows from the
Central Limit Theorem (CLT) [63, ch. 8] that the distribution
of ̂̈rx asymptotically approaches a complex proper Gaussian
distribution, i.e., ̂̈rx

D→ CN (r̈x,
4

π2NΣ), where r̈x is the vector
obtained from stacking the off-diagonal elements of Rx and
Σ = π2N

4 E{(̂̈rx− r̈x)(̂̈rx− r̈x)H} ∈ C(M2−M)×(M2−M). The
closed-form expressions for the elements of Σ are provided in
Appendix K (kindly refer to the supplementary document). It
is observed that the elements of Σ are functions of r̈, thereby
parameterized by φ as well. Considering the transformation
(29), the asymptotic distribution of the off-diagonal elements
of R̃, denoted by ˜̈r ∈ C(M2−M)×1, is given by (33) at top of
this page. Hence, the asymptotic ML estimation of φ from ˜̈r
is derived as follows;

φ̂ = argmin
φ∈Eφ

L(φ), (34)

where the cost function L(φ) is given in (35) at the top
of the next page in which νn = ‖vec(Ln)‖2. However, the
minimization of (35) with respect to φ is very complicated
owing to the nonlinearity of the cost function as well as the
constraint φ ∈ Eφ. To make the problem computationally
tractable, we first find an asymptotic equivalent approximation
of L(φ) which is much simpler to minimize. Let γ ∈ Eγ ⊂
R(M2−M)×1 be the (M2 − M) × 1 vector containing the
real and imaginary parts of the elements of R above its main
diagonal elements. Obviously, there is the following relationship
between φ and γ:

γ = FJΨφ, ∀φ ∈ Eφ, (36)

where F = 1
2

[
F̈T jF̃T

]T
∈ {0, 1}(M2−M)×(M2−M) such

that for all 1 ≤ p < q ≤M :
1) the

(
(p− 1)M + q − p(p+1)

2

)
-th rows of

F̈ ∈ {0, 1}
(M2−M)

2 ×(M2−M) is obtained by removing the
elements with indices (i − 1)M + 1 for all 1 ≤ i ≤ M

from eTp ⊗ eTq + eTq ⊗ eTp with [ep]n = δ[p − n] for
1 ≤ n ≤M .

2) the
(

(p− 1)M + q − p(p+1)
2

)
-th rows of

F̃ ∈ {0, 1}
(M2−M)

2 ×(M2−M) is obtained by removing the
elements with indices (i − 1)M + 1 for all 1 ≤ i ≤ M
from eTp ⊗ eTq − eTq ⊗ eTp with [ep]n = δ[p − n] for
1 ≤ n ≤M .

Lemma 2. The matrices F, Ψ and J are full rank.

Proof. See Appendix F.

The mapping from φ ∈ Eφ to γ ∈ Eγ is one-to-one due
to the full rankness of F, Ψ and J. Hence, it is possible to
equivalently reparameterize (35) in terms of γ instead of φ.
This can be done by simply replacing φ with Ψ−1J

†
F−1γ. To

achieve computational simplification, we make use of the fact
that a consistent estimate of γ can be obtained as γ̃ = F˜̈r. We
see that γ̃ ∈ R(M2−M)×1 /∈ Eγ with probability one, since the
Eγ is a zero-measure subset of R(M2−M)×1. Now, considering
the Taylor series expansion of L(γ) around γ̃, we obtain

L(γ) =L(γ̃) + (γ − γ̃)H∇γL(γ̃)

+
1

2
(γ̃−γ)H∇2

γL(γ̃)(γ̃−γ)+· · ·, (37)

where ∇γL(γ̃) and ∇2
γL(γ̃) denote the gradient vector and

the Hessian matrix of L(γ) with respect to γ, computed at γ̃,
respectively. The first term in (37) is constant and, moreover,
the higher other term can be neglected for large N considering
the fact that γ̃ is a consistent estimate of γ. Consequently,
making use of (36) and the fact that γ̃ = F˜̈r, we have

φ̂ ' argmin
φ∈Eφ

(JΨφ− ˜̈r)HFH∇γL(γ̃)

+ (˜̈r− JΨφ)HFH∇2
γL(γ̃)F(˜̈r− JΨφ). (38)

The above quadratic optimization problem is asymptotically
equivalent to (34) but is much more convenient to work with.
Relaxing the constraint φ ∈ Eφ with φ ∈ R2D−2 yields the
following closed-form solution for φ̂

φ̂ 'Ψ−1
(
J
H

FH∇2
γL(γ̃)FJ

)−1

J
H

×
[
FH∇2

γL(γ̃)F˜̈r− FH∇γL(γ̃)
]
. (39)

To derive the final expression for φ̂, we need to calculate
∇γL(γ̃) and ∇2

γL(γ̃). It is straightforward to derive L(γ) by
making use of (36). It follows that

∇γL(γ̃) = g(γ̃), (40)

where [g(γ)]n = 4[γ]n
1−|[γ]n|2 + ∂ ln det(Σ(γ))

∂[γ]n
, for 1 ≤ n ≤M2−

M . Additionally, the Hessian matrix at γ̃ is obtained as

∇2
γL(γ̃) =Ndiag(b̂)F−HΣ̂−1F−1diag(b̂) + E(γ̃), (41)
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where Σ̂ = Σ(γ̃), [b̂]n = 1√
1−|[γ̃]n|2

, for 1 ≤ n ≤M2 −M

and [E(φ)]n,l = 2νn(1+|[φ]n|2)
(1−|[φ]n|2)2 + ∂2 ln det(Σ(γ))

∂[γ]n∂[γ]m
. Inserting (40)

and (41) into (39) leads to

φ̂'Ψ−1

J
H

FHdiag(b̂)F−HΣ̂−1F−1diag(b̂)FJ+

~︷ ︸︸ ︷
E(γ̃)

N


−1

× (42)

J
H
(

FHdiag(b̂)F−HΣ̂−1F−1diag(b̂)F˜̈r+FHE(γ̃)F˜̈r− FHg(γ̃)

N︸ ︷︷ ︸
ℵ

)
.

In the above equation, the terms ~ and ℵ can be neglected for
large N , thus (42) may be simplified as

φ̂ ' Ψ−1
(
J
H

FHdiag(b̂)F−HΣ̂−1F−1diag(b̂)FJ
)−1

× J
H

FHdiag(b̂)F−HΣ̂−1F−1diag(b̂)F˜̈r. (43)

Hence, from (31), an enhanced consistent estimate of r =
vec(R) is derived as follows

r̂ = J

0 ID−1 −jID−1

1 0 0
0 ID−1 jID−1

[1

φ̂

]
. (44)

Remark 5. Considering limN→∞ ˜̈r = r̈, it is readily observed
from (31) and (43) that φ̂ is a consistent estimate of φ. This
in turn implies that r̂ is also a consistent estimate of r.

To estimate DoAs using r̂, we resort to CAB-MUSIC
[53]. Specifically, we first construct the normalized augmented
covariance matrix as

R̂v =
[
TvJ

†r̂ Tv−1J
†r̂ · · · T1J

†r̂
]
∈ Cv×v, (45)

where Ti is a selection matrix, defined as

Ti =
[
0v×(i+D−v−1) Iv 0v×(D−i)

]
∈ {0, 1}v×(2D−1). (46)

It follows from the consistency of r̂ that

lim
N→∞

R̂v =
[
TvJ

†r Tv−1J
†r · · · T1J

†r
]
∈ Cv×v

= Av(θ)diag(p)AH
v (θ) + σ2Iv, (47)

where Av(θ) = [av (θ1) ,av (θ2) , · · · ,av (θK)] ∈ Cv×K

denotes the steering matrix of a contiguous ULA with v
elements located at (0, λ2 , · · · , (v−1)λ2 ). Hence, we can apply

MUSIC to R̂v to estimate the DoAs. We call the proposed
method Enhanced One-bit CAB-MUSIC (EOCAB-MUSIC).
Algorithm 1 summarizes the steps of EOCAB-MUSIC.

Remark 6. The computational complexity of each step of
Algorithm 1 is separately specified in Table I where G(n),
K(n) and Z denote the complexity of the chosen algorithm
for multiplication of two n-digit numbers, the complexity of
integration in (108) and the number of grid point of the MUSIC
algorithm, respectively. Considering that D and v are typically
in the order of M2 and, moreover, n and M are normally very
smaller than Z , it follows from Table I that the complexity of
EOCAB-MUSIC is in the order of O(MN +M2(G(n)(Z +
M4)+K(n)M2)). On the other hand implementation of OCAB-
MUSIC needs only steps 1, 2, 9 and 10 in algorithm 1. Hence,
its complexity is given by O(MN + M2G(n)(Z + M4)).
Typically, we have G(n)(Z + M4) � K(n)M2, implying
that the complexity of EOCAB-MUSIC is almost in the same
order as that of OCAB-MUSIC.

Algorithm 1 EOCAB-MUSIC
Input: SLA one-bit observations, i.e., X.
Output: The estimates of source DoAs.

1: Compute the sample covariance matrix of one-bit data as
R̂x = 1

NXXH .

2: Compute R̃ from (29).
3: Form ˜̈r by removing the diagonal elements of R̃ from

vec(R̃).
4: Compute γ̃ from γ̃ = F˜̈r.
5: Compute b̂ using [b̂]n = 1√

1−|[γ̃]n|2
, for 1 ≤ n ≤M2 −

M .
6: Compute Σ̂ by using (125) and replacing R with R̃ in

(129), (130), (133) - (137), (139)-(148), (150) and (152)-
(161) given in Appendix K.

7: Compute φ̂ from (43).
8: Compute r̂ from (44).
9: Compute R̂v from (45).

10: Apply MUSIC to R̂v to estimate DoAs.

Table I
COMPLEXITY OF THE STEPS OF ALGORITHM 1

Step order Complexity
1 O(MN)
2 O(G(n)

√
nM2)

3 O(M2)
4 O(G(n)M4)
5 O(G(n)M2)
6 O(K(n)M4)
7 O(G(n)(DM4 +M6 +D3))
8 O(G(n)(D2M2)
9 O(G(n)(M2v(2D − 1 + v))

10 O(G(n)(ZM2 +M3))

B. Asymptotic Performance Analysis

In this section, we investigate the asymptotic performance of
the proposed estimator through the derivation of a closed-form
expression for the second-order statistics of the asymptotic
distribution (as N → ∞) of the DoA estimation errors. Our
main results are summarized in Theorem 5, Corollary 1 and
Theorem 6.

Lemma 3. θ̂ obtained by EOCAB-MUSIC is a consistent
estimate of θ if K ≤ v − 1.

Proof. See Appendix G

Theorem 5. The closed-form expression for the covariance of
the asymptotic distribution (as N →∞) of the DoA estimation
errors obtained by EOCAB-MUSIC is given by

Eθk1 ,θk2 = E{(θk1 − θ̂k1)(θk2 − θ̂k2)∗} (48)

=
(σ2 +

∑K
k=1 pk)2

Nπ2pk1pk2qk1qk2 cos θk1 cos θk2

×<{zTk1T(J
H

WJ)−1J
H

WΓWJ(J
H

WJ)−1T
H

z∗k2},

where

zk =βk ⊗αk, (49)

βk =Π⊥Av(θ)diag(v)av(θk), (50)

αk =A†Tv (θ)ık, (51)
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qk =aHv (θk)diag(v)Π⊥Avdiag(v)av(θk), (52)

W =FHdiag(b)F−HΣ−1F−1diag(b)F, (53)

[Γ]p,q =
1

2

(√
1− [<{[r̈]p}]2 ×

√
1− [<{[r̈]q}]2 (54)

+
√

1− [={[r̈]p}]2 ×
√

1− [={[r̈]q}]2
)
<{[Σ]p,q}

+
j

2

(√
1− [={[r̈]p}]2 ×

√
1− [<{[r̈]q}]2

+
√

1− [<{[r̈]p}]2 ×
√

1− [={[r̈]q}]2
)
={[Σ]p,q},

with v = [0, 1, 2, · · · , v−1]T , [b]n = 1√
1−|[γ]n|2

for 1 ≤ n ≤

M2 −M , Σ ∈ C(M2−M)×(M2−M) as given in Appendix K
(kindly refer to the supplementary document), T ∈ Cv2×(2D−2)

as defined in (105) in Appendix H, and ık being the kth column
of IK .

Proof. See Appendix H

Corollary 1. The asymptotic MSE expression (as N → ∞)
for the DoA estimates obtained by EOCAB-MUSIC is given by

Eθk = E{(θk1 − θ̂k)2} =
(σ2 +

∑K
k′=1 pk′)

2

Nπ2p2kq
2
k cos2 θk

(55)

×<{zTkT(J
H

WJ)−1J
H

WΓWJ(J
H

WJ)−1T
H

z∗k}.

Corollary 2. The covariance of the asymptotic distribution
(as N →∞) of the DoA estimation errors and the asymptotic
MSE expression (as N →∞) for the one-bit DoA estimator
given in [53], named as One-bit CAB-MUSIC (OCAB-MUSIC),
is easily obtained by replacing W with IM2−M in (48) and
(55), respectively.

Proof. See Appendix I

Remark 7. It is concluded from Corollary 1 and Corollary
2 that, similar to Infinite-bit Co-Array-Based MUSIC (ICAB-
MUSIC) [21], the MSEs of EOCAB-MUSIC and OCAB-
MUSIC depend on both the physical and the virtual array
geometries through Av(θ) and R, respectively.

Remark 8. Another interesting implication of Corollary 1 is
that the MSEs of EOCAB-MUSIC and OCAB-MUSIC reduce
at the same rate as that of ICAB-MUSIC [21] with respect to
N ; i.e. Eθk ∝ 1

N for both.

Remark 9. It is readily clear from the definition that r is a
function of the SNR, and not p and σ2. This indicates that
W and Γ are also functions of the SNR instead of p and
σ2. Further, multiplying the numerator and denominator of
(σ2+

∑K
k′=1 pk′)

2/p2
k by 1/σ4 reformulates it as a function of

the SNR. These observations imply that the MSEs of EOCAB-
MUSIC and OCAB-MUSIC are functions of the SNR instead
of p and σ2. This fact can also be deduced directly from
system model where we have

[x(t)]m=
1√
2

sgn (<{[y(t)]m})+
j√
2

sgn (={[y(t)]m})

=
1√
2

sgn

(
<{ [y(t)]m

σ
}
)

+
j√
2

sgn

(
={ [y(t)]m

σ
}
)
. (56)

for σ > 0. This implies that, without loss of generality, we
can consider the power of each source equal to the SNR for
that source and the noise variance equal to 1.

Theorem 6. Assume all sources have equal power p and
SNR = p/σ2. Then, for a sufficiently large SNR, the MSE of
EOCAB-MUSIC converges to the following constant value:

lim
SNR→∞

Eθk =
K2

Nπ2q2k cos2 θk
× (57)

<{zTkT(J
H

W∞J)−1J
H

W∞Γ∞W∞J(J
H

W∞J)−1T
H

z∗k}>0,

where W∞ and Γ∞ are obtained by replacing R, r̈ and γ in
the definitions of W and Γ (kindly refer to Theorem 5) with
R∞, γ∞ and r̈∞, respectively, where

R∞ =
1

K
A(θ)AH(θ) + (1− 1

K
)IM , (58)

γ∞ is the (M2 − M) × 1 vector containing the real and
imaginary parts of the elements of R∞ above its main diagonal
elements and r̈∞ = Ψ−1J

†
F−1γ∞.

Proof. See Appendix J.

Remark 10. It follows from Theorem 6 that it is not possible
to make the MSEs of EOCAB-MUSIC and OCAB-MUSIC
arbitrarily small by increasing the SNR.

VI. SIMULATION RESULTS

In this section, we provide some numerical results to
validate the analytical results obtained in previous sections
as well as to assess the performance of the proposed DoA
estimator. Specifically, we will show that the proposed estimator
yields better performance in terms of estimation accuracy and
resolution compared to the approach given in [53]. In the rest
of this section, we will refer to: 1) the CRB for DoA estimation
from infinite-bit measurements as Infinite-bit CRB (I-CRB),
whose expression is given in Remark 3; 2) the pessimistic
approximation of the CRB for DoA estimation from one-bit
measurements as One-bit CRB (O-CRB); 3) CAB-MUSIC
using infinite-bit measurements as Infinite-bit CAB-MUSIC
(ICAB-MUSIC); 4) the DoA estimator given in [53] as one-bit
CAB-MUSIC (OCAB-MUSIC); 5) the proposed estimator in
this paper as Enhanced One-bit CAB-MUSIC (EOCAB-MU-
SIC).

A. General Set-up
In all experiments, each simulated point has been computed

by 5000 Monte Carlo repetitions. Unless the source locations
are specified for a particular result, it is assumed that the K
independent sources are equally spaced in the angular domain
[−60◦, 60◦] such that θ = −60◦ when K = 1. Further, all
sources are assumed to have equal powers, i.e., pk = p for
all k, and the SNR is defined as 10 log p

σ2 . For our numerical
investigation, we use four different types of arrays with M = 10
physical elements and the following geometries:

Mnested : {1, 2, 3, 4, 5, 6, 12, 18, 24, 30} , (59)
Mco-prime : {0, 3, 5, 6, 9, 10, 12, 15, 20, 25} , (60)
MMRA : {0, 1, 3, 6, 13, 20, 27, 31, 35, 36} , (61)
MULA : {0, 1, 2, · · · , 9} . (62)

These arrays generate the difference co-arrays:

Dnested : {0, 1, 2, · · · , 29} , (63)
Dco-prime : {0, 1, 2, · · · , 22, 25} , (64)
DMRA : {0, 1, 2, · · · , 36} , (65)
DULA : {0, 1, 2, · · · , 9} . (66)
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Figure 2. RMSE in degrees for θ2 versus N for a nested array with M = 10 elements and configuration given in (59), SNR = 3 dB, and: (a) K = 5 < M ;
(b) K = 12 > M .
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Figure 3. RMSE in degrees for θ2 versus N for a nested array with M = 10
elements and configuration given in (59) when K = 3, θ1 = 2◦, θ2 = 3◦,
θ3 = 75◦, SNR1 = 20 dB, SNR2 = 8 dB and SNR3 = 22 dB.

Further, we generate the grid from −90◦ to 90◦ with step size
0.001◦ to implement MUSIC. To avoid griding, alternatively,
it is also possible to use root-MUSIC.

B. MSE vs. the Number of Snapshots

Fig. 2 depicts the Root-Mean-Squares-Error (RMSE) for θ2

in degree versus the number of snapshots when the nested array
in (59) is used. The SNR is assumed to be 3 dB. In addition,
noting M = 10, two different scenarios are considered: (a)
K = 5 < M , and (b) K = 12 > M . Fig. 2 illustrates
a close agreement between the numerical simulations and
analytical expression derived for RMSEs of OCAB-MUSIC
and EOCAB-MUSIC when about 200 or more snapshots are
available. Further, a considerable gap is observed between
the performance of OCAB-MUSIC and that of the EOCAB-
MUSIC. For instance, at N = 400, Figs. 2a and 2b show
a performance gain of roughly 3 dB and 1 dB, respectively,
in terms of the RMSE when the EOCAB-MUSIC is used. It
is also observed that EOCAB-MUSIC performs as well as
ICAB-MUSIC when K = 5 < M . Further, it is observed
that the RMSE of EOCAB-MUSIC is very close to O-CRB
when K = 5 < M but we see a gap between them when
K = 12 > M .

Fig. 2 also shows that when a small number of snapshots is
available, e.g. less than 1000, all estimators are confronted with
substantial performance degradation. This performance loss

is justified by the subspace swap arising from the inaccurate
estimate of the normalized covariance matrix of y(t), i.e. R,
in this case. However, it is seen that the proposed estimator
still has superior performance compared to OCAB-MUSIC,
even in the low snapshot paradigm.

Fig. 3 depicts the RMSE θ2 in degree versus the number of
snapshots when K = 3 and the sources powers are unequal.
Specifically, It is assumed that θ1 = 2◦, θ2 = 3◦, θ3 = 75◦,
SNR1 = 20 dB, SNR2 = 8 dB and SNR3 = 22 dB.
Comparing Fig. 2 with Fig. 3 reveals that a high difference
between the SNRs of the closely-spaced source signals do
not have a meaningful impact on the relative asymptotic
performance of ICAB-MUSIC, OCAB-MUSIC and EOCAB-
MUSIC, however, by increasing the difference between SNRs,
OCAB-MUSIC needs more number of snapshots to achieve
its asymptotic performance compared to EOCAB-MUSIC and
ICAB-MUSIC.

C. MSE vs. SNR

Fig. 4 shows the RMSE for θ2 in degrees versus SNR for
the same setup used for Fig. 2. The number of snapshots is
considered to be N = 500. It is seen in Figs. 4a and Fig.
4b that the RMSEs of OCAB-MUSIC and EOCAB-MUSIC
perfectly match with their asymptotic analytical RMSEs given
in Corollary 1 and Corollary 2.

Fig. 4 demonstrates that the I-CRB tends to decay to zero as
the SNR increases when K = 5 < M while it gets saturated as
the SNR increases when K = 12 > M . However, as opposed
to the I-CRB, O-CRB tends to converge to a constant non-zero
value at the high SNR regime for both the cases K = 5 < M
and K = 12 > M . This behavior of O-CRB was already
predicted by Theorem 4. In addition, as shown in Theorem
6, the RMSEs of OCAB-MUSIC and EOCAB-MUSIC also
converge to a constant non-zero value as the SNR increases
for both K = 5 < M and K = 12 > M .

We observe from Fig. 4 that EOCAB-MUSIC preforms
better than OCAB-MUSIC in both scenarios K = 5 < M and
K = 12 > M . For example, at SNR = 5, EOCAB-MUSIC
leads to performance gains of about 3.7 dB and 1.15 dB in
terms of RMSE compared to OCAB-MUSIC. Further, it is
seen that EOCAB-MUSIC even outperforms ICAB-MUSIC
at high SNR regime when K = 5 < M . Another interesting
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Figure 4. RMSE in degrees for θ2 versus SNR wen the source powers are equal for a nested array with M = 10 elements and configuration given in (59),
N = 500, and: (a) K = 5 < M ; (b) K = 12 > M .
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Figure 5. RMSE in degrees for θ2 versus SNR when the source powers are unequal for a nested array with M = 10 elements and configuration given in (59),
N = 500, and: (a) K = 5 < M ; (b) K = 12 > M .

observation is that the RMSE of O-CRB is either better or
equal to that of ICAB-MUSIC.

Fig. 5 shows the RMSE for θ2 in degrees versus SNR when
the sources powers are unequal and DoAs are not exactly
on the grid as opposed to Fig. 4. The number of snapshots
is considered to be N = 500. In case of K = 5 < M , the
sources are located at θ1 = −49.4551◦, θ2 = −30.1443◦, θ3 =
−2.4525◦, θ4 = 26.8293◦ and θ5 = 56.5149◦. Further,
the source SNRs are assumed to be SNR1 = 0.75 ×
SNR2,SNR3 = 1.22 × SNR2,SNR4 = 0.92 × SNR2 and
SNR5 = 0.66 × SNR2 while SNR2 varies from 10 dB
to 20 dB as shown in Fig. 5a. Further, in case of K =
12 > M , the sources are located at θ1 = −56.3351◦, θ2 =
−36.2628◦, θ3 = −19.9004◦, θ4 = −2.4093◦, θ5 =
0.0027◦, θ6 = 13.1840◦, θ7 = 23.8495◦, θ8 = 25.8044◦, θ9 =
29.2889◦, θ10 = 40.9107◦, θ11 = 48.4465◦ and θ12 =
48.5667◦. The source SNRs are assumed to be SNR1 =
1.34 × SNR2,SNR3 = 0.84 × SNR2,SNR4 = 0.83 ×
SNR2,SNR5 = 0.67×SNR2,SNR6 = 0.69×SNR2,SNR7 =
0.95 × SNR2,SNR8 = 0.61 × SNR2,SNR9 = 0.79 ×
SNR2,SNR10 = 0.56 × SNR2,SNR10 = 0.82 × SNR2 and
SNR12 = 0.88× SNR2 while SNR2 varies from 10 dB to 20
dB as shown in Fig. 5b. Comparing Fig. 5 with Fig. 4 reveals
that unequal source powers do not have remarkable impact on
the estimation accuracy particularly in high-SNR regime.

D. CRB vs. the Number of Source Signals
Fig. 6 plots the I-CRB and the O-CRB for θ2 in degree

versus the number of source signals for SNR = 3 dB and
N = 500 and different types of arrays given in (59), (60), (61)
and (62). The values of D and v for the different types of arrays
are as: 1) MRA: D = 37 and v = 37; 2) nested array: D = 30
and v = 30; 3) co-prime array: D = 26 and v = 23; ULA:
D = 10 and v = 10. Fig. 6 indicates that both the I-CRB and
the O-CRB increase as the number of source signals increases.
Moreover, it is observed that the I-CRB and the O-CRB are
quite small for all the SLAs as long as 1 ≤ K ≤ v−1, but they
escalate dramatically when K approaches values that are equal
to or larger than D. This observation is in compliance with
Theorem 2 which indicates that the DoA estimation problem
is globally identifiable when 1 ≤ K ≤ v − 1 and is globally
non-identifiable when K ≥ D.

E. Resolution Probability
Fig. 7 depicts the probability of resolution versus the source

separation for ICAB-MUSIC, EOCAB-MUSIC and OCAB-
MUSIC when the nested array given in (59) is employed.
The number of snapshots and the SNR are considered to be
N = 500 and 0 dB, respectively. In addition, we consider two
sources with equal powers, located at θ1 = 20◦ − ∆θ

2 and
θ2 = 20◦+ ∆θ

2 . We define the two sources as being resolvable
if max

i ∈ {1, 2}
|θ̂i − θi| < ∆θ

2 [64]. According to this definition and
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Figure 7. Probability of resolution versus source separation in degree for a
nested array with M = 10 elements and configuration given in (59), N = 500
and SNR = 0 dB.

making use of two-dimensional Chebychev’s bound [65], the
probability of resolution can be lower bounded as

P(max
i ∈ {1, 2}

|θ̂i − θi| <
∆θ

2
) (67)

= P(|θ̂1 − θ1| <
∆θ

2
, |θ̂2 − θ2| <

∆θ

2
) ≥ 1− 2[E(θ1) + E(θ2)]

∆θ2

+
2
√
E2θ1 + E2θ2 + 2Eθ1Eθ2 − 4E2θ1,θ2

∆θ2
,

where E(θ1), E(θ2) and E(θ1, θ2) are given in (55) and (48).
The analytical expression on the right-hand side of (67) enables
us to predict the minimum source separation required for
achieving a particular probability of resolution. For example,
Fig. 6 shows the predicted values for the minimum source
separation to achieve a probability of resolution greater than
0.9, obtained from (67), for ICAB-MUSIC, OCAB-MUSIC
and EOCAB-MUSIC. It is observed that the predicted values
of the minimum source separation for ICAB-MUSIC, EOCAB-
MUSIC and OCAB-MUSIC, which are respectively ∆θ = 1.2◦,
∆θ = 1.4◦ and ∆θ = 1.5◦, are in a good agreement with
the values obtained from the numerical simulations, which
are respectively ∆θ = 1.1◦, ∆θ = 1.2◦ and ∆θ = 1.3◦.
Additionally, Fig. 7 demonstrates the resolution performance
of EOCAB-MUSIC is superior to that of OCAB-MUSIC while
ICAB-MUSIC outperforms both of them.

VII. CONCLUSION

In this paper, we considered the problem of DoA estima-
tion from one-bit measurements received by an SLA. We

showed that the idetifiability condition for the DoA estimation
problem from one-bit SLA data is equivalent to that for the
case when DoAs are estimated from infinite-bit unquantized
measurements. Then, we derived a pessimistic approximation
of the corresponding CRB. This pessimistic CRB was used as
a benchmark for assessing the performance of one-bit DoA
estimators. Further, it provides us with valuable insights on the
performance limits of DoA estimation from one-bit quantized
data. For example, it was shown that the DoA estimation
errors in one-bit scenario reduces at the same rate as that of
infinite-bit case with respect to the number of samples and,
moreover, that the DoA estimation errors in one-bit scenario
converges to a constant value by increasing the SNR. We also
proposed a new algorithm for estimating DoAs from one-bit
quantized data. We investigated the analytical performance of
the proposed method through deriving a closed-form expression
for the second-order statistics of its asymptotic distribution (for
the large number of snapshots) and show that it outperforms the
existing algorithms in the literature. Numerical simulations were
provided to validate the analytical derivations and corroborate
the improvement in estimation performance.

APPENDIX A
PROOF OF THEOREM 1

We first prove the sufficiency. Assume that θ0 ∈
[−π/2, π/2]K×1 is identifiable from Y. This implies that
f(Y | θ0,p, σ

2) 6= f(Y | θ̆, p̆, σ̆2) for any arbitrary values
of θ̆ 6= θ0 ∈ [−π/2, π/2]K×1, p ∈ RK×1

>0 , p̆ ∈ RK×1
>0 ,

σ2 and σ̆2. Hence, considering y(0),y(1), · · · ,y(N − 1) are
independent and identically distributed with y(t) ∼ CN (0,R),
we have
A(θ0)diag(p)AH(θ0)+σ2IM 6=A(θ̆)diag(p̆)AH(θ̆)+σ̆2IM , (68)

for all θ̆ 6= θ0 ∈ [−π/2, π/2]K×1, p ∈ RK×1
>0 , p̆ ∈ RK×1

>0 ,
σ2 and σ̆2.

In what follows, we employ the method of proof by
contradiction to prove the sufficiency. In particular, we assume
that θ0 ∈ [−π/2, π/2]K×1 is non-identifiable from X. Hence,
there exists a θ̆ 6= θ0 ∈ [−π/2, π/2]K×1 at which f(X |
θ0, p̃, σ̃

2) = f(X | θ̆, ṗ, σ̇2) for some values of p̃ ∈ RK×1
>0 ,

ṗ ∈ RK×1
>0 , σ̃2 and σ̇2. It is readily clear from assumption A4

and (6) that E{x(t1)xH(t2)} = 0 when t1 6= t2. Accordingly,
we have

E
{

XXH |θ0, p̃, σ̃2
}

= E
{

XXH | θ̆, ṗ, σ̇2
}
, (69)

⇒
N−1∑
t=0

E{x(t)xH(t) |θ0, p̃, σ̃2}=

N−1∑
t=0

E{x(t)xH(t) | θ̆, ṗ, σ̇2}.

From (69), (7), (3) and the fact that the arcsine function is
one-to-one when its argument is between −1 and 1, it follows
that

1

σ̃2 +
∑K
k=1 p̃k

[
A(θ0)diag(p̃)AH(θ0)+σ̃2IM

]
=

1

σ̇2 +
∑K
k=1 ṗk

[
A(θ̆)diag(ṗ)AH(θ̆)+σ̇2IM

]
. (70)

Considering p = p̃
σ̃2+

∑K
k=1 p̃k

, σ2 = σ̃2

σ̃2+
∑K
k=1 p̃k

, p̆ =
ṗ

σ̇2+
∑K
k=1 ṗk

and σ̆2 = σ̇2

σ̇2+
∑K
k=1 ṗk

, we obtain

A(θ0)diag(p)AH(θ0) + σ2IM = A(θ̆)diag(p̆)AH(θ̆) + σ̆2IM ,
(71)
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which is in contradiction with (68). Hence, the initial assump-
tion that θ0 ∈ [−π/2, π/2]K×1 is non-identifiable from X
cannot be true. This proves the sufficiency.

To show the necessity, let assume that θ0 ∈ [−π/2, π/2]K×1

is non-identifiable from Y. This implies that there exist some
θ̆ ∈ [−π, π]q×1 6= θ0, p, p̆, σ2 and σ̆2 for which f(Y |
θ0,p, σ

2) = f(Y | θ̆, p̆, σ̆2). Since the true PDF of X is
obtained from the orthant probabilities of Y, it is readily
deduced that f(X | θ0,p, σ

2) = f(X | θ̆, p̆, σ̆2) as well. This
proves that identifiability of θ0 ∈ [−π/2, π/2]K×1 from Y is a
necessary condition for identifiability of θ0 ∈ [−π/2, π/2]K×1

from X.

APPENDIX B
PROOF OF THEOREM 2

We first prove S1. Consider arbitrary θ 6=∈ [−π/2, π/2]K×1

and θ̆ ∈ [−π/2, π/2]K×1 such that θk 6= θ̆. Moreover, let
Av(θ) be the steering matrix of a contiguous ULA with v
elements located at (0, λ2 , · · · , (v− 1)λ2 ). Considering the fact
that Av(θ) is a Vandermonde matrix, if K ≤ v− 1, it follows
from Caratheodory-Fejer-Pisarenko decomposition [66] that

Av(θ)diag(p)AH
v (θ)+σ2Iv 6=Av(θ̆)diag(p̆)AH

v (θ̆)+σ̆2Iv, (72)

for any arbitrary values of p ∈ RK×1
>0 , p̆ ∈ RK×1

>0 , σ2 and σ̆2.
From [23, Eq. (113)], vectorizing both sides of (72) leads to

T′Aϑ(θ)p + σ2T′e′ 6= T′Aϑ(θ̆)p̆ + σ̆2T′e′, (73)

where Aϑ(θ) ∈ C(2v−1)×K denotes the steering matrix
corresponding to the contiguous ULA segment of the difference
co-array, T′ ∈ {0, 1}v2×(2v−1) is a selection matrix defined
in [23, Eq. (114)] and e′ ∈ {0, 1}(2v−1)×1 is a column vector
with [e′]i = δ[i− v]. Considering T′ is full-column rank [23],
multiplying both sides of (73) by T′† and then moving all the
terms to one side of the equation yields

Aϑ(θ)p−Aϑ(θ̆)p̆ + (σ2 − σ̆2)e′ 6= 0. (74)

It follows from θ̆ 6=θ0 that θ̆ could differs from θ0 at q DoAs
for some integer q∈ [1,K]. Noting this fact, (74) is simplified
to

[
Aϑ(θ) Aϑ(θ̈) e′

] p− p̆� ε
−p̈

σ2 − σ̆2

 6= 0, (75)

where θ̈ ∈ [−π, π]q×1 consists of those elements of θ̆ which
do not intersect with those in θ, p̈ ∈ Rq×1

>0 contains those
elements of p̆ corresponding to θ̈ and

[ε]i =

{
1, [θ]i = [θ̆]i,
0, otherwise.

(76)

Considering that
[
Aϑ(θ) Aϑ(θ̆) e

′
]
∈ C(2v−1)×(2K+1) is a

sub-matrix of
[
Ad(θ) Ad(θ̈) e

]
∈ C(2D−1)×(2K+1), obtained

from 2v − 1 rows of
[
Ad(θ) Ad(θ̈) e

]
, it follows from (75)

that

[
Ad(θ) Ad(θ̈) e

] p− p̆� ε
−p̈

σ2 − σ̆2

 6= 0, (77)

⇒Ad(θ)p−Ad(θ̆)p̆ + (σ2 − σ̆2)e 6= 0. (78)

Multiplying (78) by J and exploiting (3) and (4), after some
algebraic manipulations, we obtain

vec(A(θ)diag(p)AH(θ) + σ2IM )

6= vec(A(θ̆)diag(p̆)AH(θ̆) + σ̆2IM ), (79)

which in turn implies that

A(θ)diag(p)AH(θ)+σ2IM 6=A(θ̆)diag(p̆)AH(θ̆)+σ̆2IM , (80)

for all θ 6= θ̆ ∈ [−π/2, π/2]K×1, p ∈ RK×1
>0 , p̆ ∈ RK×1

>0 , σ2

and σ̆2. Considering y(0),y(1), · · · ,y(N−1) are independent
and identically distributed with y(t) ∼ CN (0,R), it follows
from (80) that f(Y | θ0,p, σ

2) 6= f(Y | θ̆, p̆, σ̆2) for any
arbitrary values of θ 6= θ̆ ∈ [−π/2, π/2]K×1, p ∈ RK×1

>0 ,
p̆ ∈ RK×1

>0 , σ2 and σ̆2 if K ≤ v − 1. Now, from Theorem
1, we conclude that f(X | θ0,p, σ

2) 6= f(X | θ̆, p̆, σ̆2). This
completes the proof of S1.

We now prove S2. We know from Lemma 1 that the FIM is
singular for any value of θ ∈ [−π/2, π/2]K×1 if K ≥ D. This
means that the problem is not even locally indentifiable at any
θ [67]. Since the local identifiablity is a necessary condition
for the identifiablity any particular point, the problem is not
identifiable for any θ.

APPENDIX C
PROOF OF LEMMA 1

Let Rr
x and R

r
denote the equivalent real representation for

Rx and R, respectively, given as

Rr
x =

[
<{Rx} −={Rx}
={Rx} <{Rx}

]
, R

r
=

[
<{R} −={R}
={R} <{R}.

]
(81)

Making use of (7) and Taylor expansion of arcsine function,
we have

Rr
x =

2

π
arcsin(R

r
) = R

r
+

1

6
R
r �R

r �R
r

+
3

40
R
r �R

r �R
r �R

r �R
r

+ · · ·

=

∞∑
n=0

(2n)!

(2nn!)2(2n+ 1)
R
r �R

r � · · · �R
r︸ ︷︷ ︸

2n+1 times

. (82)

It is clear from (8) that R is positive definite, and so is
R
r
. Further, it follows from the Schur product theorem [68,

Theorem 3.1], which establishes that the Hadamard product of
two positive-definite matrices is also a positive-definite matrix,
that the 2n + 1 times Hadamard products of R

r
by itself is

also positive definite for any integer n ∈ [0,∞). Hence, it
follows from (82) that Rr

x is obtained from a weighted sum
of positive definite matrices, and thus it is positive definite.
Evidently, Rx is also positive definite. This in turn indicates
non-singularity of (R−Tx ⊗R−1

x ). Hence, since J is also full-
column rank [13], we easily conclude that JH(R−Tx ⊗R−1

x )J
is full rank. This implies that Iw(%) is non-singular if and only
if
[
G V

]
∈ R(2D−1)×2K is full-column rank. In other words,

Iw(%) is non-singular if and only if[
G V

] [c1

c2

]
6= 0, (83)

for any arbitrary non-zero c = [cT1 , c
T
2 ]T ∈ C2K×1. Inserting

(16) and (17) into (83) leads to[
∆ z

] [c̃1

c2

]
6= 0, (84)

where c̃1 =jπΦ(θ)diag(p)c1. This completes the proof.
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APPENDIX D
PROOF OF THEOREM 3

We know from Appendix C that M = JH(R−Tx ⊗R−1
x )J

is positive-definite. Hence, (15) can be rewritten as

Iw(%) = N

[
GHM

1
2

VHM
1
2

] [
M

1
2 G M

1
2 V
]

= N

[
GHMG GHMV
VHMG VHMV

]
. (85)

The CRBw(θ) is then obtained by block-wise inversion as
follows:

CRBw(θ)=
1

N

(
GHMG−GHMV

(
VHMV

)−1

VHMG

)−1

=
1

N

(
GHM

1
2 Π⊥

M
1
2 V

M
1
2 G
)−1

. (86)

The facts that G = jπdiag(d)ΩΦ(θ)diag(p) and Rx =
2
πarcsine(R) will lead to (20). In addition, It follows from
I(%) � Iw(%) that CRB(θ) � CRBw(θ).

APPENDIX E
PROOF OF THEOREM 4

Recalling pk = pk
σ2+

∑K
k=1 pk

and assuming that all sources
have equal power p, we have

lim
SNR→∞

pk = lim
SNR→∞

SNR

K × SNR+ 1
=

1

K
. (87)

Making use of (87), it can be readily shown that

lim
SNR→∞

R =
1

K
A(θ)AH(θ) + (1− 1

K
)IM . (88)

The above equation implies that limSNR→∞R is a positive-
definite matrix independent of the SNR. Further, it follows
from (87) that

lim
SNR→∞

diag(p) =
1

K
IK , (89)

lim
SNR→∞

h =

[
1√

1− |<{
∑K
k=1

e
−jπ sin θk`D−1}|2

K2

, · · · , 0,

· · · , 1√
1− |<{

∑K
k=1

e
jπ sin θk`D−1}|2

K2

]T
, (90)

lim
SNR→∞

h =

[
1√

1− |={
∑K
k=1

e
−jπ sin θk`D−1}|2

K2

, · · · , 0,

· · · , 1√
1− |={

∑K
k=1

e
jπ sin θk`D−1}|2

K2

]T
. (91)

Substituting (89), (90) and (91) back into (16) and (17) indi-
cates that limSNR→∞

[
G V

]
is a full-column rank matrix

independent of the SNR. Hence, recalling (15), we can conclude
that limSNR→∞ Iw(%) is positive-definite and independent of
the SNR. This in turn implies that limSNR→∞ CRBw(θ),
which is Schur complement of limSNR→∞ Iw(%), is also
positive-definite and independent of the SNR. This completes
the proof.

APPENDIX F
PROOF OF LEMMA 2

We start with showing that Ψ is full rank. Making use of

relations det(

[
C1 C2

C3 C4

]
) = det(C1) det(C4 −C3C

−1
1 C2), we

obtain

det(Ψ) = det(ID−1) det(2jID−1) = (2j)D−1 6= 0, (92)

which implies full rankness of Ψ.
Next, we proceed with proving that J is full rank. Let J̈

denote the matrix obtained after removing the D-th column
from J. J̈ is full column rank since its columns are a sub-set of
the columns of the full-column-rank matrix J [13]. Further, for
1 ≤ i ≤M , it is readily confirmed that the ((i− 1)M + 1)-th
row of vec(Ln) as well as vec(LTn ) equals the i-th diagonal
element of Ln, which is obviously zero for n 6= 0 according to
the definition given after (5). Given (5), this in turn implies that
the rows of J̈ with indices (i− 1)M + 1, for all 1 ≤ i ≤M ,
are zero vectors. As a result, the matrix obtained by removing
these rows from J̈, i.e., J, has the same column rank as J̈.
This completes the proof.

Finally, we show that F is full rank. It follows from the fact
that eTp eq = 0 for p 6= q that

(eTi ⊗ eTj ± eTj ⊗ eTi )(ep ⊗ eq ± eq ⊗ ep) = eTi ep ⊗ eTj eq

± eTi eq ⊗ eTj ep ± eTj ep ⊗ eTi eq ± eTj eq ⊗ eTi ep = 0. (93)

for 1 ≤ i < j ≤ M and 1 ≤ p < q ≤ M when either p or q
differs from i and j. In addition, in case i = p and j = q, we
have

(eTi ⊗ eTj + eTj ⊗ eTi )(ei ⊗ ej − ej ⊗ ei) = eTi ei ⊗ eTj ej

− eTi ej ⊗ eTj ei + eTj ei ⊗ eTi ej − eTj ej ⊗ eTi ei = 0. (94)

It is also observed that, for 1 ≤ i ≤M and 1 ≤ p < q ≤M ,
the ((i−1)M+1)-th element of eTp ⊗eTq ±eTp ⊗eTq is equal to
the i-th diagonal element of epe

T
q ± epe

T
q , which is obviously

zero for p 6= q. Consequently, the row vectors obtained by
removing the elements with indices (i − 1)M + 1 for all
1 ≤ i ≤M from eTp ⊗ eTq + eTq ⊗ eTp and eTp ⊗ eTq − eTq ⊗ eTp
will be still orthogonal with each other. Hence, it is deduced
that the square matrix F has orthogonal rows, thereby being
full rank.

APPENDIX G
PROOF OF LEMMA 3

Let define E(θ) = aHv (θ)ÛnÛH
n av(θ) and Ĕ(θ) =

aHv (θ)UnUH
n av(θ) where Ûn and Un consist of, respectively,

the eigenvectors of R̂v and Av(θ)diag(p)AH
v (θ) + σ2Iv

corresponding to their v − K smallest eigenvalues with
K ≤ v − 1. We know that the elements of θ̂ are equal to
the minimizers of E(θ). Defining En = sup

θ
|E(θ)− Ĕ(θ)|, we

have

En = sup
θ

∣∣∣aHv (θ)(ÛnÛH
n −UnUH

n )av(θ)
∣∣∣

= sup
θ

∣∣∣(aTv (θ)⊗ aHv (θ)
)

vec(ÛnÛH
n −UnUH

n )
∣∣∣

≤ ‖aTv (θ)⊗ aHv (θ)‖2‖vec(ÛnÛH
n −UnUH

n )‖2
= v2‖vec(ÛnÛH

n −UnUH
n )‖2. (95)
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It follows from (47) that limN→∞ ÛnÛH
n = UnUH

n . Hence,
En → 0 as N → ∞. This implies that E(θ) converges
uniformly to Ĕ(θ) as N →∞. Thus, the minimizers of E(θ),
i.e., the elements of θ̂, converge to the minimizers of Ĕ(θ),
i.e., θ1, θ2, · · · , θK , as N →∞. This completes the proof.

APPENDIX H
PROOF OF THEOREM 5

Considering the consistency of θ̂ and following the same
arguments as in [21, App. B], for sufficiently large N , the
asymptotic estimation error expression for EOCAB-MUSIC is
given by

θ̂k − θk = −<{z
T
kTJ†∆r}

πpkqk cos(θk)
, (96)

where ∆r = r̂ − r and T =
[
TT
v TT

v−1 · · · TT
1

]T ∈
Cv

2×(2D−1). From (96), the covariance of the asymptotic
distribution (as N → ∞) of the DoA estimation errors is
given by

Eθk1 ,θk2 = E{(θ̂k1 − θk1)(θ̂k2 − θk2)}

=
E
{
<{zTk1TJ†∆r}<{zTk2TJ†∆r}

}
π2pk1pk2qk1qk2 cos(θk1) cos(θk2)

. (97)

Making use of the identity <{cH1 c2}<{cH3 c2} =
1
2<{c

H
1 c2c

H
2 c3 + cH1 c2c

T
2 c∗3}, we obtain

E
{
<{zTk1TJ†∆r}<{zTk2TJ†∆r}

}
=

1

2
E
{
<{zTk1TJ†∆r∆rHJ†HTHz∗k2}

+ <{zTk1TJ†∆r∆rTJ†HTHzk2}
}
. (98)

The matrix matM,M (J†HTHzk) is Hermitian [21, Lemma 6],
thereby

J†HTHz∗k = KMJ†HTHzk. (99)

where KM ∈ {0, 1}M
2×M2

is the commutation matrix defined
as vec(CT ) = KMvec(C) for any arbitrary matrix C [69]. In
addition, since R

H
= R, we have

∆rT = ∆rHKH
M . (100)

Inserting (99) and (100) into (98) and using the fact that KM =
KH
M = K−1

M , we obtain

E
{
<{zTk1TJ†∆r}<{zTk2TJ†∆r}

}
= E{<{zTk1TJ†∆r∆rHJ†HTHz∗k2}}. (101)

Recalling (44) and (30), we have

TJ†∆r = T

0 ID−1 −jID−1

0 0 0
0 ID−1 jID−1

[ 0

φ̂− φ

]
. (102)

Additionally, from [23, Eq. (114) and Eq. (116)], we know

T = (103)[
0v2×(D−v), vec(L

T
v−1), · · · , vec(L0), · · · , vec(Lv−1),0v2×(D−v)

]
,

where [Ln]p,q =

{
1, if p− q = n,
0, otherwise. . Substituting (103) into

(102) yields

TJ†∆r = TΨ(φ̂− φ), (104)

where

T = (105)[
0v2×(D−v), vec(L

T

v−1), · · · , vec(L
T

−1), vec(L1), · · · , vec(Lv−1),0v2×(D−v)

]
.

Inserting (104) into (101) gives

E
{
<{zTk1TJ†∆r}<{zTk2TJ†∆r}

}
= <{zTk1TE{Ψ(φ̂− φ)(φ̂− φ)HΨH}TH

z∗k2}}. (106)

As a result, for sufficiently large N , using a first-order
perturbation expansion leads to

E{Ψ(φ̂− φ)(φ̂− φ)HΨH} ' (107)(
J
H

FHdiag(b)F−HΣ−1F−1diag(b)FJ
)−1

× J
H

FHdiag(b)F−HΣ−1F−1diag(b)FE{˜̈r˜̈rH}
× FHdiag(b)F−HΣ−1F−1diag(b)FJ

×
(
J
H

FHdiag(b)F−HΣ−1F−1diag(b)FJ
)−1

−ΨφφHΨH ,

where Σ = Σ(γ) given in Appendix K (kindly refer to the
supplementary document) and [b]n = 1√

1−|[γ]n|2
for 1 ≤ n ≤

M2 −M . It remains to compute E{˜̈r˜̈rH}. Making use of the
relation ˜̈r = sine(π2

̂̈rx), we obtain

E{[˜̈r]p[˜̈r]∗q} =

1

4
E
{
e
jπ(<{[̂̈rx]p}−<{[̂̈rx]q})

2 + e−
jπ(<{[̂̈rx]p}−<{[̂̈rx]q})

2

− e
jπ(<{[̂̈rx]p}+<{[̂̈rx]q})

2 − e−
jπ(<{[̂̈rx]p}−<{[̂̈rx]q})

2

+ e
jπ(={[̂̈rx]p}−={[̂̈rx]q})

2 + e−
jπ(={[̂̈rx]p}−={[̂̈rx]q})

2

− e
jπ(={[̂̈rx]p}+={[̂̈rx]q})

2 − e−
jπ(={[̂̈rx]p}+={[̂̈rx]q})

2

}
+
j

4
E
{
e
jπ(={[̂̈rx]p}−<{[̂̈rx]q})

2 + e
−jπ(={[̂̈rx]p}−<{[̂̈rx]q})

2

− e
jπ(={[̂̈rx]p}+<{[̂̈rx]q})

2 − e
−jπ(={[̂̈rx]p}+<{[̂̈rx]q})

2

− e
jπ(<{[̂̈rx]p}−={[̂̈rx]q})

2 − e−
jπ(<{[̂̈rx]p}−={[̂̈rx]q})

2

+ e
jπ(<{[̂̈rx]p}+={[̂̈rx]q})

2 + e−
jπ(<{[̂̈rx]p}+={[̂̈rx]q})

2

}
. (108)

Considering that ̂̈rx
D→ CN (r̈x,

4
π2NΣ), the expectations in

(108) can be computed using the characteristic function of the
Gaussian distribution as follows:

E{[˜̈r]p[˜̈r]∗q} =
e
−[Σ]p,p−[Σ]q,q

4N

2

×
[

cos
(π

2
[<{[r̈x]p} − <{[r̈x]q}]

)
e
<{[Σ]p,q}

2N

− cos
(π

2
[<{[r̈x]p}+ <{[r̈x]q}]

)
e−
<{[Σ]p,q}

2N

+ cos
(π

2
[={[r̈x]p} − ={[r̈x]q}]

)
e
<{[Σ]p,q}

2N

− cos
(π

2
[={[r̈x]p}+ ={[r̈x]q}]

)
e−
<{[Σ]p,q}

2N
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+ j cos
(π

2
[={[r̈x]p} − <{[r̈x]q}]

)
e
={[Σ]p,q}

2N

− j cos
(π

2
[={[r̈x]p}+ <{[r̈x]q}]

)
e−
={[Σ]p,q}

2N

− j cos
(π

2
[<{[r̈x]p} − ={[r̈x]q}]

)
e−
={[Σ]p,q}

2N

+ j cos
(π

2
[<{[r̈x]p}+ ={[r̈x]q}]

)
e
={[Σ]p,q}

2N

]
. (109)

Exploiting the Taylor expansion of the exponential function,
(109) can be approximated for sufficiently large N as

E{[˜̈r]p[˜̈r]∗q} '
1

2
(110)

×
[

cos
(π

2
[<{[r̈x]p} − <{[r̈x]q}]

)(
1 +
<{[Σ]p,q}

2N

)
− cos

(π
2

[<{[r̈x]p}+ <{[r̈x]q}]
)(

1− <{[Σ]p,q}
2N

)
+ cos

(π
2

[={[r̈x]p} − ={[r̈x]q}]
)(

1 +
<{[Σ]p,q}

2N

)
− cos

(π
2

[={[r̈x]p}+ ={[r̈x]q}]
)(

1− <{[Σ]p,q}
2N

)
+ j cos

(π
2

[={[r̈x]p} − <{[r̈x]q}]
)(

1 +
={[Σ]p,q}

2N

)
− j cos

(π
2

[={[r̈x]p}+ <{[r̈x]q}]
)(

1− ={[Σ]p,q}
2N

)
− j cos

(π
2

[<{[r̈x]p} − ={[r̈x]q}]
)(

1− ={[Σ]p,q}
2N

)
+ j cos

(π
2

[<{[r̈x]p}+ ={[r̈x]q}]
)(

1 +
={[Σ]p,q}

2N

)]
= sin(

π

2
<{[r̈x]p}) sin(

π

2
<{[r̈x]p})

+ sin(
π

2
={[r̈x]p}) sin(

π

2
={[r̈x]p})

+ j sin(
π

2
={[r̈x]p}) sin(

π

2
<{[r̈x]p})

− j sin(
π

2
<{[r̈x]p}) sin(

π

2
={[r̈x]p})

+
<{[Σ]p,q}

2N

[
cos(

π

2
<{[r̈x]p}) cos(

π

2
<{[r̈x]p})

+ cos(
π

2
={[r̈x]p}) cos(

π

2
={[r̈x]p})

]
+ j +

={[Σ]p,q}
2N

[
cos(

π

2
={[r̈x]p}) cos(

π

2
<{[r̈x]p})

+ cos(
π

2
<{[r̈x]p}) cos(

π

2
={[r̈x]p})

]
. (111)

Consequently, it follows from (28) that

[Γ]p,q =E{[˜̈r]p[˜̈r]∗q} ' [r̈]p[r̈]∗q (112)

+
1

2N

(√
1− [<{[r̈]p}]2 ×

√
1− [<{[r̈]q}]2

+
√

1− [={[r̈]p}]2 ×
√

1− [={[r̈]q}]2
)
<{[Σ]p,q}

+
j

2N

(√
1− [={[r̈]p}]2 ×

√
1− [<{[r̈]q}]2

+
√

1− [<{[r̈]p}]2 ×
√

1− [={[r̈]q}]2
)
={[Σ]p,q}.

Inserting (112) into (107) and making use of (31) yields

E{Ψ(φ̂−φ)(φ̂−φ)HΨH}' (113)(
J
H

FHdiag(b)F−HΣ−1F−1diag(b)FJ
)−1

×

J
H

FHdiag(b)F−HΣ−1F−1diag(b)FΓFHdiag(b)F−HΣ−1F−1

× diag(b)FJ
(
J
H

FHdiag(b)F−HΣ−1F−1diag(b)FJ
)−1

,

Finally, substituting (113) into (106) and considering that pk =
pk

σ2+
∑K
k=1 pk

concludes the proof of Theorem 5.

APPENDIX I
PROOF OF COROLLARY 2

OCAB-MUSIC employs r̃ = vec(R̃) instead of r̂. Hence,
its asymptotic estimation error is obtained by replacing ∆r
with r̃−r in (96). Following the same steps from (97) to (101),
the covariance of the asymptotic distribution (as N →∞) of
the DoA estimation errors for OCAB-MUSIC is obtained as

Eθk1 ,θk2 = <{zTk1TJ†E{(r̃− r)(r̃− r)H}J†HTHz∗k2}. (114)

Considering the fact that the diagonal elements of R̃ and R
are equal to one, (114) is simplified as

Eθk1 ,θk2 = <{zTk1TJ
†
[
E{˜̈r˜̈rH} − r̈r̈H

]
J
†H

T
H

z∗k2}. (115)

Substituting E{˜̈r˜̈rH} from (112) completes the proof.

APPENDIX J
PROOF OF THEOREM 6

To derive limSNR→∞ Eθk , we need to calculate
limSNR→∞(σ2 +

∑K
k′=1 pk′)

2/p2
k, W∞ = limSNR→∞W

and Γ∞ = limSNR→∞ Γ. It is obtained from (87) that

lim
SNR→∞

(σ2 +
∑K
k′=1 pk′)

2

p2k
= lim
SNR→∞

1

p2k
= K2. (116)

In addition, it follows from (53) and (54) that W and Γ depend
on SNR through R, γ and r̈. Hence, for calculating W∞ and
Γ∞, it is sufficient to first compute R∞ = limSNR→∞R,
γ∞ = limSNR→∞ γ and r̈∞ = limSNR→∞ r̈, and then
insert them back into the expressions of W and Γ given
in (53) and (54). R∞ is obtained in (88). Given R∞,
γ∞ = limSNR→∞ γ is equal to the (M2 −M) × 1 vector
containing the real and imaginary parts of the elements of R∞
above its main diagonal elements. Then, exploiting (36), we
have r̈∞ = limSNR→∞Ψ−1J

†
F−1γ = Ψ−1J

†
F−1γ∞. This

completes the proof.
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