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Abstract—The need to recover high-dimensional signals from
their noisy low-resolution quantized measurements is widely
encountered in communications and sensing. In this paper, we
focus on the extreme case of one-bit quantizers, and propose a
deep detector network, called LoRD-Net, for signal recovering
from one-bit measurements. Our approach relies on a model-
aware data-driven architecture, based on a deep unfolding of
first-order optimization iterations. LoRD-Net has a task-based
architecture dedicated to recovering the underlying signal of
interest from the one-bit noisy measurements without requiring
prior knowledge of the channel matrix through which the one-
bit measurements are obtained. The proposed deep detector has
much fewer parameters compared to black-box deep networks
due to the incorporation of domain-knowledge in the design of
its architecture, allowing it to operate in a data-driven fashion
while benefiting from the flexibility, versatility, and reliability
of model-based optimization methods. We numerically evaluate
the proposed receiver architecture for one-bit signal recovery
in wireless communications and demonstrate that the proposed
hybrid methodology outperforms both data-driven and model-
based state-of-the-art methods, while utilizing small datasets, on
the order of merely ~ 500 samples, for training.

I. INTRODUCTION

Analog-to-digital conversion plays an important role in
digital signal processing systems. While physical signals take
values in continuous-time over continuous sets, they must
be represented using a finite number of bits in order to be
processed in digital hardware [!]. This operation is carried
out using analog-to-digital converters (ADCs), which typically
perform uniform sampling followed by a uniform quantization
of the discrete-time samples. When using high-resolution
ADC:s, this conversion induces a minimal distortion, allowing
to effectively process the signal using methods derived as-
suming access to the continuous-amplitude samples. However,
the cost, power consumption and memory requirements of
ADCs grow with the sampling rate and the number of bits
assigned to each sample [2]. Consequently, recent years have
witnessed an increasing interest in digital signal processing
systems operating with low-resolution ADCs. Particularly, in
multiple-input multiple-output (MIMO) communication re-
ceivers, which are required to simultaneously capture multiple
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analog signals with high bandwidth, there is a growing need
to operate reliably with low-resolution ADCs [3]-[5]. The
most coarse form of quantization is reduction of the signal
to a single bit per sample, which may be accomplished via
comparing the sample to some reference level, and recording
whether the signal is above or below the reference. One-bit
acquisition allows using high sampling rates at a low cost
and low energy consumption. Due to such favorable properties
of one-bit ADCs, they have been employed in a wide array
of applications, including in wireless communications [4]—[8],
radar signal processing [9]-[11], and sparse signal recovery
[12]-[14]. The non-linear nature of low-resolution quantiza-
tion makes symbol detection a challenging task. This situation
is significantly exacerbated in practical one-bit communication
and sensing where the channel is to be estimated in conjunc-
tion with symbol detection. A coherent symbol detection task
is concerned with recovering the underlying signal of interest
from the one-bit measurements assuming the channel state
information (CSI) is known at the receiver. On the other hand,
the more difficult task of blind symbol detection, which is the
focus here, carries out recovery of the underlying transmitted
symbols when CSI is not available. In the context of MIMO
systems, various methods have been proposed in the literature
for channel estimation and signal decoding from quantized
outputs, including model-based signal processing methods as
surveyed in [15], as well as model-agnostic systems based
on machine learning and data-driven techniques [16]-[24].
However, all these strategies inevitably induce non-negligible
CSI estimation error, which may notably degrade the accuracy
in signal detection based on the estimated CSI.

In this paper, we develop a hybrid model-based and data-
driven system which learns to carry out blind symbol detec-
tion from one-bit measurements. The proposed architecture,
referred to as LoRD-Net (Low Resolution Detection Net-
work), combines the well-established model-based maximum-
likelihood estimator (MLE) with machine learning tools
through the deep unfolding method [25]-[30] for designing
DNNs based on model-based optimization algorithms. To
derive LoRD-Net, we first formulate the MLE for the task
of symbol detection from one-bit samples. Next, we resort to
first-order gradient-based methods for the MLE computation,
and unfold the iterations onto layers of a DNN. The result-
ing LoRD-Net learns to carry out MLE-approaching symbol
detection without requiring CSI.



II. SYSTEM MODEL AND PRELIMINARIES

In this section, we discuss the considered system model. We
focus on one-bit data acquisition and blind signal recovery.
We then formulate the MLE for this problem, which is used
in designing the LoRD-Net architecture in Section III.

A. Problem Formulation

We consider a low-resolution data-acquisition system which
utilizes m one-bit ADCs. By letting y € R™ denote the
received signal, the discrete output of the ADCs can be

written as r = sign (y — b), where b € R™ denotes the
vector of quantization thresholds, and sign(-) is the sign
function, i.e., sign(z) = +1 if £ > 0 and sign(z) = —1

otherwise. The received vector y is statistically related to the
unknown vector of interest x € M™ C RR"™ according to the
relationship y = Hx + n, where n ~ N(0,C) denotes
additive Gaussian noise with a covariance matrix of the form
C = Diag(03,0%,...,02,_,) with diagonal entries {o?}7 "
representing the noise variance at each respective dimension,
and H € R™*" is the channel matrix. We assume that the
elements of the unknown vector  are chosen independently
from a finite alphabet M = {s1,s2,---, 5/ }. This setup
represents low-resolution receivers in uplink multi-user MIMO
systems, where «x is the symbols transmitted by the users, and
y is the corresponding channel output. The overall dynamics
of the system are thus compactly expressed as:

r =sign(Hx +n — b). (1)

In the sequel, we refer to © = {H,C} as the system
parameters. Note that the above system model can be mod-
ified using conventional transformations to accommodate a
complex-valued system model.

Our main goal is to perform the task of symbol detection,
i.e., recover x, from the collected one-bit measurements . We
focus on blind (non-coherent) recovery, namely, the system
parameters © = {H,C}, i.e., the channel matrix and the
covariance of the noise, are not available to the receiver.
Nonetheless, the receiver has access to a limited set of B
labeled samples {azg,rz}bB:_Ol, representing, e.g., pilot trans-
missions. The quantization thresholds of the ADCs, i.e., the
vector b, are assumed to be fixed and known.

B. Maximum Likelihood Recovery

To understand the challenges associated with blind low-
resolution detection, we next discuss the MLE for recovering
a from r. In particular, the intuitive model-based approach is
to utilize the labeled data to estimate the system parameters
O, and then to use this estimation to compute the coherent
(non-blind) MLE. Therefore, to highlight the limitations of
this strategy, we assume here that the system parameters
© = {H,CY} are fully known at the receiver. Let

m—1
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represent the log-likelihood objective for a given vector of

one-bit observations r, where (a) is shown in [8], [14]. The
coherent MLE is then given by
Ty (r) = argmax Fo(x; ). 3)

reMn

Although the MLE in (3) has full accurate knowledge
of the parameters ©, its computation is still challenging.
The main difficulty emanates from solving the underlying
optimization problem in the discrete domain, implying that the
MLE requires an exhaustive search over the discrete domain
M™, whose computational complexity grows exponentially
with n. A common strategy to tackle the discrete optimization
problem in (3) is to relax the search space to be continuous.
This results in the following relaxed unconstrained MLE rule:

Zo(r) = argmax Fo(x;T). 4)
xeR™

The optimization problem in (4) is convex due to the log-
concavity of @Q(-), and thus can be solved using first-order
gradient optimization. In particular, the gradient of the negative
log-likelihood function with respect to the unknown vector =
can be compactly expressed as [8], [14]:

VoFo(z;r) = H Ry (R(b- Ha)), 5)
where 7 is a non-linear function defined as n(z) £ Q' (x) ©
Q(x), in which the operator @ denotes the element-wise
division operation, Q' (z) is the derivative of Q(x), that is
given by the negative probability density function of a standard
Normal distribution, and R = RC—7 is the semi-whitened
version of the one-bit matrix R = Diag (ro,...,Tm—1)-

As T (r) obtained via (4) is not guaranteed to take values
in M"™, the final estimate of the symbols is obtained by
applying a projection operator Paqn : R™ — M™ to &(r),
viz. Pyn () = argminl||z — z||3.

zeEM
Tackling a discrete program via continuous relaxation, as

done in (4), is subject to an inherent drawback. As a case
in point, one can only expect Zg(r) to provide an accurate
approximation of the true MLE if the real-valued vector &g (7)
is very close to the discrete valued MLE @&y, (7). In such a
case, the MLE is obtained by projecting into the lattice points
in M"™. However, this is not the case in many scenarios,
and specifically, when the noise variance in each respective
dimension is high. In other words, it is not necessarily the case
that the minimizer of the objective function on the continuous
domain (4) is close to the MLE, which takes values in the
discrete set M™. Note that utilizing the true system parameters
will only lead to optimal estimates when considering the
original discrete problem (3). This insight, which is obtained
from the computation of the coherent MLE, is used in our
derivation of the blind unfolded detector in the following
section.
III. PROPOSED METHODOLOGY

In this section, we present the proposed Low Resolution
Detection Network, abbreviated as LoRD-Net. We begin with
a high-level description of LoRD-Net in Subsection III-A.
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Fig. 1. An illustration of the relation between the optimal point of a
competitive objective function (dashed blue line) and the true MLE @&\ pp,
obtained by an exact maximization of the log-likelihood objective function
(solid black line) over the discrete set M as well as an approximation of the
MLE &g obtained by a maximization of the log-likelihood objective function
over the continuous space R, when the true transmitted symbol is s3 € M.

Then, we present the unfolded architecture in Subsection II1-B
and discuss the training procedure in Subsection III-C.

A. High-Level Description

As noted in the previous section, the intuitive approach
to blind symbol detection is to utilize the labeled data
{xb,r5} ' to estimate the true system model ©, and then
to recover the symbol vector & from = using the MLE.
Nonetheless, the coherent MLE (3) is computationally pro-
hibitive, while its relaxed version in (4) may be inaccurate.
Alternatively, one can seek a purely data-driven strategy, using
the data to train a black-box highly-parameterized DNN for
detection, requiring a massive amount of labeled samples.
Consequently, to facilitate accurate detection at affordable
complexity and with limited data, we design LoRD-Net via
model-based deep learning [31], by combining the learning
of a competitive objective, combined with deep unfolding of
the relaxed MLE. Learning a competitive objective refers to
the setting of the unknown system parameters ©. However,
the goal here is not to estimate the true system parameters,
but rather the ones for which the solution to the relaxed MLE
coincides with the true value of . This system identification
problem can be written as

B )
]:@*(r;m):mén B ; Hm@(r;;)fmgHQ, (6)

where g is the relaxed MLE (4). The optimization problem
(6) yields a surrogate objective function Fg«, or equivalently,
a set of system parameters ©*, referred to as a competitive
objective to the true Fg. An illustration of such a competitive
objective obtained for the case of n = 1 is depicted in Fig. I.

The main difficulty in solving (6) stems from the fact that
ZTo(r) = argmax Fe(xz;r) is not differentiable with respect

seR”

to the system parameters ©. We overcome this obstacle by ap-
plying a differentiable approximation of &(r), or equivalently,
an algorithm that approximates the argmax operator specific
to our problem. Since Zo(r) can be computed by first-order
gradient methods, we design a deep unfolded network [26] to
compute the relaxed MLE in manner which is differentiable
with respect to ©, as detailed in the following.

B. LoRD-Net Architecture

We now present the architecture of LoRD-Net, which maps
the low resolution r into an estimated &. For given system
parameters © whose learning is detailed in Subsection III-C
based on the competitive objective rationale described above,
LoRD-Net is obtained by unfolding the iterations of a first-
order optimization of the relaxed MLE (4). Our derivation thus
begins by formulating the first-order methods to iteratively
solve (4) for a given ©.

Let g, : R® — R be a parametrized operator defined as
9o (;0,7) = & — G;VFo(x;7), where G; € R " is a
positive-definite weight matrix and ¢; = {G;} denotes the set
of parameters of the operator g, . Such a linear operator can be
used to model a first-order optimization solver by considering
a composition of ¢ mappings of the form:

Lit1 = gff,(iﬂo; 0,7) =z — G;VyFo(zi;0,7), (7

where x( is an initial point, ¢ = {¢g, - ,P:_1} is the set
of parameters of the overall mapping QZ). The mapping (7)
is differentiable with respect to the system parameters O,
and its local weights ¢. For a fixed number of iterations
L, the resulting function Qg(wo; ©,r) is thus differentiable
with respect to the set of parameters {¢,©} and its input
(unlike the original argmax operator). Therefore, it can now be
used as a differentiable approximation of Zg(7), which allows
for a training (optimization) over the set of its parameters
based on the gradient-based training algorithms and the back-
propagation technique.

Following the deep unfolding framework [26], the function
Q(Lﬁ(zco; ©,r) can be implemented as a L-layer feed-forward
neural network, where the initial point xy and the one-bit
samples 7 constitute the input to the network, and with
trainable parameters that are given by {©,¢}. By (5), the
i-th layer computes:

9o (i;0,7) = ¢; — G;z;, with (8)
zi:HTRn(R(b—Hwi)>7 9)
where the overall dynamics of the LoRD-Net is given by:

gé(ﬂ?(); ®a ’I’) =9¢r1 CYGpr o © O Gpo ("B(J; 97 ’I’). (10)

Upon the arrival of any new one-bit measurement r, the re-
covered symbols & are obtained by feed-forwarding r through
the L layers of LoRD-Net. In order to obtain discrete samples,
the output of LoRD-Net is projected into the feasible discrete
set M", viz. & = Ppyn gg,(mo; o,r)).

In principle, one can fix G; = §I for some § > 0, for which
(10) represents L steps of gradient descent with step size .
In the unfolded implementation, the weights {G;} are tuned
from data, allowing to detect with less iterations, i.e., layers.
As a result, once LoRD-Net is trained, i.e., its weight matrices
¢ = {G,;} and the unknown system parameters © are learned
from data, it is capable of carrying out fast inference, owing
to its hybrid model-based/data-driven structure. Furthermore,
the number of iterations L is optimized to boost fast inference
in the training procedure, as detailed in the following.



C. Training Procedure

Herein, we present the training procedure for LoRD-Net.
In particular, our main goal is to perform inference of the
unknown system parameters © based on the rationale detailed
in Subsection III-A, i.e., to obtain a competitive objective. The
learning competitive objective is used to tune the weights of
the unfolded network ¢. Accordingly, we present a two-stage
training procedure for LoRD-Net (10). Once the training of
the LoRD-Net is completed, it carries out symbol detection
from one-bit information without requiring the knowledge of
system parameters ©.

1) Training Stage 1 - Learning a Competitive Objective:
The first stage corresponds to learning the unknown system
parameter ©. However, as formulated in (6), we do not seek
to estimate the true values of the channel matrix H and
noise covariance C, but rather learn the surrogate values
which will facilitate accurate detection using the relaxed
MLE formulation. We do this by taking advantage of two
propertities of LoRD-Net: The first is the differentiability of
the unfolded architecture with respect to ®, which facilitates
gradient-based optimization optimization; The second is the
fact that for G; = 6I, LoRD-Net essentially implements L
steps of gradient descent with step size § over the convex
objective (4), and is thus expected to reach its maxima.

Based on the above properties, we fix a relatively large
number of layers/iterations L for this training stage, and fix
the weights ¢ to G; = JI. Under this setting, the output of
LoRD-Net giz (o1} (z;©,7) represents an approximation of
the relaxed MLE for a given parameter O, denoted Tg(r),
i.e., we have that

Zo(r) ~ Gg_ (5 (€0; 0, 7). (11)

We refer to the setting ¢ = {dI} using in this stage as the
basic optimization policy. Note that as the number of layers
grows large, the above approximation becomes more accurate.
Hence, by substituting (11) into (6) and replacing :E@(r;) with
the corresponding outputs of LoRD-Net, we formulate the loss
measure of the first training stage of LoRD-Net as:

* 1= L i i||?
0* = argénm B Z Hgd):{ﬂ}(wg;@,rp) — T, (12)
i=0

Owing to the differentiable nature of gé (xo;©,7) with re-
spect to ©, we recover ©* based on (12) using conventional
gradient-based training, e.g., stochastic gradient descent with
backpropagation, as detailed in our numerical evaluations
description in Section IV
2) Training Stage 2 - Learning the Unfolded Weights:

Having learned the unknown system parameters © in Stage
1, we turn to tuning the parameters of LoRD-Net, i.e., the
set ¢ = {G;} to carry out faster inference. Accordingly, we
optimize the weights according to the following criterion:

13)

B-1
1 . 12
x . L LO* i)t
¢ —arg(;nm B iE:O Hg(p:{al}le(woy(a S Tp) =T, ,

When the network is properly trained, LoRD-Net is ex-
pected to carry out learned and accelerated first-order op-
timization, tuned to operate even in channel conditions for
which such an approach does not yield the MLE for the true
channel.

IV. NUMERICAL STUDY

In this section, we numerically evaluate LoRD-Net, and
compare its performance with state-of-the-art model-based
and data-driven methodologies. As a motivating application
for the proposed LoRD-Net, we focus on the evaluation of
LoRD-Net for blind symbol detection task in one-bit MIMO
wireless communications. In the following, we first detail the
considered one-bit MIMO simulation settings, after which
we evaluate the performance of LoRD-Net under various
scenarios.

Simulation Setting: We consider an up-link one-bit multi-
user MIMO scenario as in (1). We focus on a single cell in
which a base station (BS) equipped with m antenna elements
serves n single-antenna users. Specifically, we consider the
case of (m,n) = (128,16) corresponding to a 128 x 16
MIMO channel setup, where we assume a Rayleigh fading
channel model, i.e., H ~ N(0,I). Moreover, we consider
the case that the one-bit ADC operation uses zero thresholds.
The transmitted symbols of the users  are randomized in
an independent and identically distributed (i.i.d.) fashion from
a BPSK constellation set M = {—1,41}. The projection
mapping is thus Pan (x) = sign(x), where the sign function
is applied element-wise on the vector argument. In the sequel,
we assume that while the channel matrix H, representing the
CSI, is not available at the BS, the noise statistics C' are known
and are fixed to C = I. We define the signal-to-noise ratio
(SNR) as SNR = E {||Hz |3} /E {|[n|3}

Benchmark Algorithms: As LoRD-Net combines both
model-based and data-driven inference, we compare its per-
formance with state-of-the-art model-based and data-driven
methodologies in a one-bit MIMO receiver scenario. In partic-
ular, we use the following benchmarking detection algorithms.
The first algorithm is the model-based nML proposed in
[32]. The nML algorithm is based on a convex relaxation
of the conventional ML estimator, and requires the exact
knowledge of the channel parameters © = {H,C}. The
second algorithm is the data-driven Deep Soft Interference
Cancellation (DeepSIC) methodology proposed in [33], with
five learned interference cancellation iterations. DeepSIC does
not require prior knowledge of neither the channel model nor
its parameters and can be utilized for symbol detection in non-
linear settings such as low-resolution quantization setups.

LoRD-Net Setting: The LoRD-Net receiver is implemented
with L = 30 layers. Unless otherwise specified, we focus
on the case where only H is unknown, and the correlation
matrix of the noise C is available, i.e., we set © = {H}. The
LoRD-Net is optimized using the Adam stochastic optimizer
[34] with a learning rate of 102 and 10~* for the first and the
second training stage, respectively. Moreover, during the first
training stage, we set 6 = 0.01. We consider the learning of
diagonal pre-conditioning matrices (unfolded weights) during
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Fig. 2. Performance of LoRD-Net for a 128 x 16 Rayeligh fading channel model: (a) the BER performance versus SNR, (b) the BER versus training size
B, and (c) the BER performance of LoRD-Net after completing training stages 1 and 2 versus the layer/iteration number for SNR = 8 dB.

the second training stage. The network is trained for 400
epochs during both training stages.

Receiver Performance: Here, we evaluate the performance
of the proposed LoRD-Net, comparing it to the aforementioned
benchmarks. In particular, we numerically evaluate the bit-
error-rate (BER) performance versus SNR using different
training sizes B € {1024,2048}, for the considered scenario.
For DeepSIC, we use only B = 2048, while the nML recever
of [32] operates with perfect CSI, i.e., with full accurate
knowledge of ©. All data-driven receivers are trained for each
SNR separately, using a dataset corresponding to that specific
SNR value. The results are depicted in Fig. 2(a). Accordingly,
one can observe that LoRD-Net significantly outperforms
the competing model-based and data-driven algorithms and
achieves improved detection performance under the simulated
channel. In particular, the nML algorithm, which is designed to
iteratively approach the MLE using ideal CSI (prior knowledge
of the channel matrix), is notably outperformed by LoRD-
Net. Such gains by LoRD-Net, which learns to compute the
MLE from data without requiring CSI, compared to the model-
based nML algorithm, demonstrate the benefits of learning
a competitive objective function combined with a relaxed
deep unfolded optimization process. Comparing LoRD-Net
to DeepSIC illustrates that LoRD-Net benefits considerably
from its model-aware architecture. The fact that LoRD-Net
is particularly tailored to the one-bit system model of (1)
allows it to achieve improved accuracy, even in the case
of training with small amounts of data. In addition, the
total number of trainable parameters of LoRD-Net is merely
|© ={H}| + |¢| = n(L+m) = 2528, where DeepSIC
consists here of over 8 x 10° trainable parameters.

Training Analysis: In this part, we investigate the per-
formance of the LoRD-Net versus the training data size B.
For this study, we generate training datasets of size B &
{32,64,128,256,512,1024,2048} and evaluate the perfor-
mance of LoRD-Net using 2048 test samples. Fig. 2(b) depicts
the BER achieved for each training size B, for SNR €
{0,2,4,6,8,10} dB. We can observe from Fig. 2(b) that
the performance of the LoRD-Net improves across all SNR
values, where the improvements are most notable for B < 256.
Interestingly, it may be concluded from Fig. 2(b) that LoRD-
Net is capable of accurately and reliably performing the task
of symbol detection without CSI with as few as B = 512

samples owing to the incorporation of the domain-knowledge
in designing the LoRD-Net architecture.

As discussed in Subsection III-C, the second training stage
allows LoRD-Net to achieve fast inference, i.e., accelerated
convergence to the optimal points of the competitive objective
function. To illustrate this behavior, we perform a per-layer
BER evaluation of LoRD-Net, exploiting the interpretable
model-based nature of the LoRD-Net. Fig. 2(c) depicts the
BER versus the layer/iteration number of LoRD-Net at the
completion of training stages 1 and 2. We observe in Fig. 2(c)
that the convergence of LoRD-Net after the completion of the
first training stage is slow and requires at least L = 30 lay-
ers/iterations to converge. Interestingly, we note from Fig. 2(c)
that the second training stage indeed results in an acceleration
of the convergence of LoRD-Net via learning the best set of
pre-conditioning matrices for the problem at hand in an end-
to-end manner. In particular, after the completion of the second
training stage, LoRD-Net can accurately and reliably recover
the symbols with as few as 10 layers. To quantify the quality
of the learned competitive objective in closing the gap between
the discrete optimization problem and its continuous version,
we further provide the per-iteration performance of the nML
algorithm and the LoRD-Net algorithm which operate with
perfect CSI. For this scenario, LoRD-Net utilizes the true ©,
and is thus optimizer only over the weights ¢ while employing
the exact channel model H. It is observed from Fig. 2(c)
that learning a new surrogate model for the continuous op-
timization problem at hand is indeed highly beneficial and
admits a far superior performance in recovering the transmitted
symbols.

V. CONCLUSION

In this work, we introduced LoRD-Net, which is a hybrid
data-driven and model-based deep architecture for blind sym-
bol detection from one-bit observations. The proposed method-
ology is based the unfolding of first-order optimization itera-
tions for the recovery of the MLE. We proposed a two-stage
training procedure incorporating the learning of a competitive
objective function, for which the unfolded network yields
an accurate recovery of the transmitted symbols from one-
bit noisy measurements. We numerically demonstrate that the
proposed LoRD-Net outperforms the state-of-the-art model-
based and data-driven symbol detectors in multi-user one-bit
MIMO systems.
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