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Context & scale

Attainment of future energy

sustainability calls for the

development of large-scale

electrical systems that can not

only cheaply generate energy

from renewable sources such as

sun power but are also able to

efficiently convert the electricity

into desirable forms such as

display applications. At the core

of this prominent development is

the discovery and optimization of

semiconductor materials and

devices. Metal halide perovskites

(MHPs) are an emergent

semiconductor family that has the

potential to transform the current

electrical and electronic systems.

These materials exhibit a huge

composition space, which offers

an opportunity for exploring

various properties and device

applications, but meanwhile, this

generates a grand challenge in

the identification of suitable

candidates for specific

applications. The recent advances

in machine learning-guided
SUMMARY

Metal halide perovskites (MHPs) have catapulted to the forefront of
energy research due to the unique combination of high device per-
formance, low materials cost, and facile solution processability. A
remarkable merit of these materials is their compositional flexibility
allowing for multiple substitutions at all crystallographic sites, and
hence thousands of possible pure compounds and virtually a near-in-
finite number of multicomponent solid solutions. Harnessing the full
potential of MHPs necessitates rapid exploration of multidimen-
sional chemical space toward desired functionalities. Recent ad-
vances in laboratory automation, ranging from bespoke fully auto-
mated robotic labs to microfluidic systems and to pipetting
robots, have enabled high-throughput experimental workflows for
synthesizing MHPs. Here, we provide an overview of the state of
the art in the automated MHP synthesis and existing methods for
navigating multicomponent compositional space. We highlight the
limitations and pitfalls of the existing strategies and formulate the
requirements for necessary machine learning tools including causal
and Bayesian methods, as well as strategies based on co-navigation
of theoritical and experimental spaces. We argue that ultimately the
goal of automated experiments is to simultaneously optimize the
materials synthesis and refine the theoretical models that underpin
target functionalities. Furthermore, the near-term development of
automated experimentation will not lead to the full exclusion of
human operator but rather automatization of repetitive operations,
deferring human role to high-level slow decisions. We also discuss
the emerging opportunities leveraging machine learning-guided
automated synthesis to the development of high-performance
perovskite optoelectronics.
laboratory automation in

materials synthesis and

characterization have paved a

promising way to address this

challenge, but a further discussion

and an in-depth thinking are

required to enable more effective

methods for high-throughput

screening of MHPmaterials and to

leverage these to develop high-

performance energy devices such
INTRODUCTION

Metal halide perovskites (MHPs) are now one prominent focus of scientific interest

due to their outstanding optoelectronic properties and low fabrication cost, offer-

ing tremendous promise for applications in photovoltaics (PVs),1 light-emitting

devices,2 radiation sensors,3–5 and many others. The standard three-dimensional

(3D) MHPs possess the archetypical perovskite structure of ABX3, where A, B,

and X refer to monovalent organic/metal cations (e.g., methylammonium or

MA+, formamidinium or FA+, and Cs+), divalent metal cations (Pb2+ and Sn2+),

and halide anions (I�, Br�, and Cl�), respectively. These compounds are among

more than one thousand perovskites endmembers that have recently been

predicted.6–8
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as solar cells and light-emitting

devices. From a fundamental

viewpoint, the establishment of a

solid link between machine

learning-guided automated

synthesis and device

development will create a new

paradigm of research, impacting

the landscape of energy science.
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The characteristic aspect of these materials is the flexibility of the crystallographic

structure, allowing for substitution on A, B, and X sites. For example, the simple

combinatorial estimate by M. Saliba9 shows combinations between 7 possible

A site cations, 2 B site cations, and 3 halides, which can yield (27 � 1) , (22 � 1) ,

(23 � 1) = 2,667 possibilities. Beyond this, these materials form complex phase dia-

grams with varying limitations of solid solubility, multiple ferroic phases10 with asso-

ciated phase boundaries, etc. In addition to the 3D ABX3 compounds, layered

A2B
IVX6, and ordered A2B

IBIIIX6 double perovskites have been explored.11,12 Spatial

confinement has been also discovered, as in 0D quantum dots (QDs) and 1D nano-

wires. Figure 1 illustrates an overview of the computationally calculated selection of

desirable cation and anion substitutions in 3D ABX3 MHPs with the Goldschmidt

tolerance factor between 0.8 to 1,13 and potential BIBIII metal cations in 3D A2B
IBIIIX6

MHP structure.

However, despite extensive theoretical studies, only a handful of predicted com-

pounds have been experimentally realized since doing so involves a complex and

time consuming optimization cycle for synthesis and characterization. This has

severely limited the discovery rate. For example, the toxicity of Pb cations in the

MHPs can cause environmental problems, necessitating the search for alternative

B cations (much like the search for Pb-free ferroelectrics for actuators14,15). The

Pb-free MHPs including Sn based and Ge based MHPs have been extensively stud-

ied as alternatives.16 Consequently, Pb-free halide double perovskites have been

fabricated, such as Cs2InAgX6 and similar A2In
(I)M(III)X6-based compounds.17,18

Perhaps even more importantly, these vast compositional spaces contain tremen-

dous opportunities for serendipitous discoveries of novel and improved

functionalities.

More than one decade into the exploration of these materials, it has become

obvious that the potential commercialization of MHP devices is limited by the

long-term stability and responses to conditions such as light, humidity, and

heat.16,19 It has also been shown that alloying to form solid solutions offers a

pathway to combat this issue and allow for development of more stable MHP pho-

tovoltaics.20–23 However, the virtually infinite possible solid solutions, the fact that

different aspects of figures of merit such as band gaps, chemical, structural, and

thermal stabilities are optimized in the different regions of the phase diagrams,

and the need for optimization of synthesis conditions for each specific composition

make the classical search and optimization of these materials tedious and time

consuming. To date, only a few tens of binary and ternary solid solution composi-

tions have been explored24–26 compared with over thousands of possible variants

for 2- and 3-component systems6–8 and hundreds of thousands of possible 4- and

5-component systems.
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CATION AND ANION ALLOYING SUBSTANTIALLY EXPANDS THE
COMPOSITION SPACE IN MHPs

While the exact mechanisms behind the stability improvements by alloying remain to

be fully elucidated,27 qualitative analogies can be drawn with other materials clas-

ses. From the thermodynamic viewpoint, doping on the multiple sites can increase

stability of a solid solution if the enthalpy of mixing is negative, or by increasing

the configurational entropy of the solid solution similar to the high entropy metal al-

loys and high entropy oxide perovskites.28,29 In oxide materials, incorporation of

multiple metal cations into single phase crystal structures has led to interesting novel

and unexpected properties.28 Correspondingly, it can be expected that mixed
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Figure 1. Compositional versatility of metal halide perovskites

An overview of possible calculated cation and anion substitutions in 3D ABX3 MHPs with tolerance

factor between 0.8 to 113 and potential A2B
IBIIIX6 MHP structures. The red elements indicate the

combination of cations and anions that are commonly explored.
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cation effects in MHPs will lead to similar behaviors, with the additional effects not

only on the crystallographic,30 thermal,30,31 moisture, and photostability32,33 but

also kinetic behaviors, phase stability, and ionmigration. Some of thesemechanisms

have long been argued to underpin MHP functionalities, whereas others limit stabil-

ities or performance.

From the viewpoint of kinetics, alloying can significantly reduce the ionic mobility, as

is well known for the mixed alkali glass (MAE) effect in ionic conductors.34 When

more than two kinds of mobile ions are mixed in ionic conducting glasses and crys-

tals, there is a non-linear decrease of the transport coefficients of either type of ions.

While this effect created a major hurdle in ionic conductor materials, it can offer a

pathway toward suppression of ion migration and phase segregation in MHPs.

Recently, a combination of simulation and experimental studies revealed the

suppression of iodide ion migration in MAPbI3 by substitution of MA with a low

concentration of seven different size cations including Rb+, Cs+, FA+, Guanidium, di-

methylammonium, and acetamidinium.35 It was explained that cation substitution

results in an increase in the activation energy of iodide diffusion. Furthermore,
Joule 5, 1–26, November 17, 2021 3
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Figure 2. Structural and physicochemical phenomena in multicomponent MHPs

Schematic of unknown compositional regions in the phase diagram of a multicomponent MHP with

possible two-phase regions, phase boundaries, and morphotropic phase boundaries (MPBs) with

distinct structural, physical, and chemical behaviors from the endmembers which is difficult to

predict via theoretical calculations, necessitating extensive experimental exploration. The

additional degree of complexity is the potential capture of the solvent molecules by the lattice,

leading to the emergence of the latent chemical variable.
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chemical segregation and formation of the grain boundary phases, second phase in-

clusions, etc. can further lead to significant changes in macroscopic properties—

either beneficial or detrimental to target functionalities.

These considerations have stimulated an extensive search for optimal compositions

for specific applications, tailoring parameters such as stability, band gap, or photo-

luminescence (PL) quantum yield. Note that while several of these are (at least in

principle) fundamental material properties, others are controlled by the disorder,

defects density, and other complex to predict factors (see Figure 2). Similarly, in

real materials additional and seldom recognized factors can be the presence of anti-

solvent molecules, complex local microstructures evolving due to phase separation

or chemical instabilities, etc. Hence, materials optimization in these systems typically

requires multiple experiments and optimization cycles even for a single composi-

tion. From the perspective of machine learning (ML), this creates hidden variables

in the system (e.g., defect density) that can be affected by macroscopic processing

conditions but are also sensitive or difficult to control by the environmental factors.

As such, this creates latent variables and observational biases that need to be

considered when applying ML models or need to be frozen when simple correlative

models are used.

FACILE SOLUTION PROCESSABILITY OPENS THE DOOR TO
AUTOMATED SYNTHESIS OF MHPs

Solution processing makes MHPs relatively easy to explore and offers the promise of

low-cost, large-scale manufacturability. At the same time, it results in sensitivity to-

ward the solvent choices and processing sequence when many initial components

require different solvents and mixing sequence. Consequently, it can affect the

composition, morphology, strain, and eventually the stability of the material.
4 Joule 5, 1–26, November 17, 2021
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While simple in concept, experimental synthesis of the MHPs necessitates solving a

very large number of engineering challenges, including stability with respect to sol-

vents, solvent volatility, environmental sensitivity of the solutions and materials, and

antisolvent and solvent addition pathways to avoid second phase precipitation.

Commonly, antisolvent crystallization is an efficient solution-based method to pro-

duce these multicomponent MHP systems. To date, many studies have utilized

manual trial-and-error approaches to determine which antisolvent is applicable for

a particular perovskite system.36–38 Automated experimentation (AE) has acceler-

ated this process; however, few have investigated the effect of workflows regarding

antisolvent engineering. Recently, Langner et al.,39 have focused on the effect of a

large number of antisolvents on single endmember systems; however, none have

explored the effect of antisolvent engineering on the intrinsic stability of multicom-

ponent MHPs in ambient conditions. In a recent study, we have utilized our previ-

ously developed synthesis workflow to examine how the choice of two antisolvents,

toluene and chloroform, affect the stability of double cations and double halides pe-

rovskites over time in ambient condition.40 Roughly 1,100 uniqueMHP compositions

were synthesized by a pipetting robot and the stability was studied utilizing auto-

mated PL spectroscopy in ambient conditions for several hours. We developed an

unsupervised ML technique using multivariate statistical analysis, specifically non-

negative matrix factorization (NMF), to map the time- and compositional-dependent

PL behavior of each combinatorial library using these specific antisolvents. Through

the utilization of this workflow, we were able to effectively map the intrinsic stability

of 1,100 unique MHP compositions depending on the specific antisolvent. This

approach exemplifies how the automated synthesis workflow can be utilized to

explore the materials processing with respect to the stability and can be further

extended to explore possible dynamical processes, such as halide segregation,

responsible for either the stability or eventual degradation as caused by the choice

of antisolvent. The high-throughput study can finally demonstrate the vital role of

antisolvents in the synthesis of high-quality multicomponent MHPs.

Overall, the solution-based synthesis of MHPs readily allows for the automated

synthesis and discovery, enabled via fully automated chemical labs, microfluidic sys-

tems, or hybrid human-automated synthesis workflows. However, simple accelera-

tion of synthesis and characterization is insufficient to compensate for the extreme

dimensionality of the chemical and processing spaces, necessitating the develop-

ment of capabilities for in situ and ex situ characterization and especially ML

methods that can guide the synthesis process in the composition or processing

parameter spaces. Next, we will overview the recent advances in automated synthe-

sis and describe the opportunities and limitations of the current MLmethods for nav-

igation of synthesis spaces. We further discuss the emerging ML opportunities for

guiding this process. Finally, we provide our perspectives on leveraging ML-guided

automated synthesis to the development of perovskite device technologies.
PROMISING INSTRUMENTAL PARADIGMS HAVE BEEN DEVELOPED
FOR AUTOMATED SYNTHESIS OF MHPs

The recent development in the experimental domains is the emergence of AE, where

the artificial intelligence (AI)/ML methods are used both to enable automatization to

reduce latency within a specific scientific domain application (i.e., make experiments

faster) and to guide the discovery workflow (i.e., define the parameters and condi-

tions of new experiments based on previous experimental results). Combination

of these two elements gives rise to the concept of automated laboratories for accel-

erated discovery of new materials.
Joule 5, 1–26, November 17, 2021 5
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Figure 3. Paradigm of automated synthesis

(A–C) Schematics of (A) a self-driving laboratory for accelerated discovery of thin film materials,49

(B) microfluidic system for accelerated synthesis of perovskite QDs,52 and (C) pipetting robotic

platform for high-throughput synthesis of MHP microcrystals, the PL spectra of 96 binary

compositions and the ML analysis to effectively map the characteristic PL behaviors of the

synthesized binary system.40 (A) is adopted from Deeth et al.49 with permission under the Creative

Common licenses. (B) is adopted from Abolhasani et al.52 with permission from the Royal Society of

Chemistry. (C) is adopted from Ahmadi et al.40
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Automated synthesis is rapidly becoming one of the fastest developing areas in ma-

terials science. This approach is rooted in the combinatorial synthesis that has

broadly emerged in the late 90s41–43 that allowed massive upscaling of synthesis ca-

pabilities. However, the broad propagation of this approach was limited by a char-

acterization and physics discovery bottlenecks. While combinatorial libraries of

manymaterials systems can be created, the studies of functional behaviors were per-

formed one sample at a time. The exception was the materials with optical function-

alities that allow for ready identification,44 and to some extent magnetic materials.41

A second direction was automated synthesis methods as e.g., developed by Cronin

et al.45,46 for solution-based organic materials, andMaruyama et al. for carbon nano-

tube growth.47,48

Currently, the development of automated experiment platforms in MHPs and other

compounds for energy application follow three primary paradigms. One is the fully

automated robotic labs as developed by e.g., Aspuru-Guzik et al. (Figure 3A)49 and

others.39,50,51 Here, the human-based operations are substituted by the fully auto-

mated robotic handling. The synthesis process is controlled by Bayesian optimiza-

tion (BO) workflow that can simultaneously optimize the optoelectronic properties

by composition selection and processing parameters for thin film materials. The

alternative is the microfluidic systems as e.g., developed by Abolhasani et al. (Fig-

ure 3B).52,53,54 Here, using a modular microfluidic platform enables continuous

manufacturing of inorganic MHP QDs guided by an ensemble neural network

(ENN) exploration of the colloidal synthesis parameter space. Finally, significant

acceleration of MHP microcrystals and QDs can be achieved by the combination

of human and automated workflows, e.g., the recent studies based on
6 Joule 5, 1–26, November 17, 2021
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micropipetting robots by us (Figure 3C)55,56 and several other groups.57,58–60 The

experimental approach is much cheaper, still accelerated setup developed for syn-

thesis of several hundred MHP samples per day and can be scaled up to 1–3 thou-

sand samples/day throughput. This effort has recently shown the novelty of the

autonomous research system and applicability of automated photoluminescent

(PL) spectroscopy to characterize the ambient stability of MHP microcrystals55 as

well as QDs.56 Compared with the previous studies, this approach not only develops

a novel experimental workflow by utilizing a low-cost pipetting robot to create large

combinatorial libraries of MHPs by an antisolvent method but also is one of the first

to perform the systematic exploration of chemical and environmental stability on a

material level.

Note that continuous combinatorial libraries like those used in pulsed laser deposi-

tion require composition characterization, since the local composition can signifi-

cantly differ from the expected due to the specifics of the deposition process. The

use of the well plate-based libraries addresses both issues. First, the compositions

in this case are controlled by the pipetting/dilution process and endmember con-

centrations and as such are determined precisely (or at least as good as macroscopic

synthesis). Second, using the well plate allows for characterization via optical spec-

trometry enabled by a multi-mode optical plate reader. Third, the properties of the

synthesized microcrystals with the antisolvent precipitation approach have shown a

good agreement with the properties of thin films deposited via antisolvent assisted

crystallization.25,55,58 Therefore, this approach can be reliably used to discover and

optimize MHP thin films.

However, common to all three paradigms is the need for high-throughput character-

ization, including process monitoring and characterization of functionalities, and the

need for feedback, where the composition and processing conditions are chosen

based on characterization results and the iterative cycle is repeated toward the

desired outcomes. In other words, it necessitates the active learning ML methods

for navigation of composition and synthesis spaces. The questions we aim to address

below include what these algorithms are expected to achieve, what are the existing

ones and what are their limitation, and what are the future perspectives both from

ML and workflow development perspectives.
MACHINE LEARNING ALGORITHMS BRIDGE THE GAP BETWEEN
INSTRUMENTATION AND CONTROL, LEADING TOWARD EFFICIENT
AUTOMATION IN MHPs SYNTHESIS AND CHARACTERIZATION

The proliferation of the automated synthesis methods and particularly the tremen-

dous potential for the rapid growth in the field enabled by the availability of low-

cost laboratory automation naturally requires development of control algorithms

to navigate the composition and synthesis spaces. In some sense, these algorithms

complement and potentially substitute the human-based decision-making process.

However, human-based decision-making is a complex process that is based not only

on the results of prior experiments but also on the general body of knowledge in the

field available to an individual based on personal experience and communicated via

scientific literature and interpersonal communication, and general physical

principles (e.g., knowledge of basic thermodynamics and kinetics to name a few).

Similarly, very often observation during the experiment (e.g., color change of the so-

lution, etc.) are used to adjust synthesis condition or suggest early termination of an

experiment. Hence, when discussing the ML algorithms for AE, we focus on similar

considerations. Namely, (1) whether the decision-making process is based only on
Joule 5, 1–26, November 17, 2021 7
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observed experimental results, or incorporates prior knowledge in some form, (2)

whether the in situ observables, or more generally the hierarchy of observables

are used, or the navigation is based on target functionalities only, and (3) whether

the algorithm couples to a theoretical model, either known a priori or updated dur-

ing the experiment. Next, we briefly overview some of the existing approaches and

describe them in the light of the criteria above and formulate some of the related

opportunities.
Bayesian optimization

Currently, the leading paradigm for the exploration of relatively low-dimensional

parameter spaces is BO.61–67 For MHP synthesis, the natural examples of such space

will be the compositional space of the system, composition of antisolvent, or selec-

tion of ligands for nanoparticle growth. It is important to note that classical BO

methods implicitly rely on the smooth changes of target functionalities within this

parameter space (or the presence of only a small number of discontinuities) and re-

quires relatively low-dimensional (< 6) parameter spaces to be effective. Hence, it

can be readily adapted to exploration of compositional spaces, whereas adaptations

to e.g., synthesis require additional dimensionality reduction steps.

The two key parts of the BO are the surrogate model that captures our prior beliefs

about the (unknown) objective function and the acquisition function that trades off

the exploration and exploitation. The most common choice for the surrogate model

is the Gaussian process (GP). In general, GP refers to an approach for reconstructing

a target function f(x) over a certain parameter space x given the observations yi at

specific values xi.
62,64 For MHPs, the target function can be the band gap, PL inten-

sity, or any other functionality of interest, whereas parameter space is composition of

the material, antisolvent mixture, etc. Formally, this model is defined as y = f ðxÞ+ ε,

where f � GPð0; kðx; x0ÞÞ, with k as a covariance function (kernel), and ε represents

Gaussian observation noise with variance sn. This statement implies that the value

of the function itself is unknown, but at each explored point the measured signal rep-

resents the true value of the function with noise.

The important element of the GP is the kernel function, defining the strength of

connection between the points in the parameter space. The functional form of the

kernel is chosen prior to the experiment and defines the physics of the explored phe-

nomena. The numerical parameters of the kernel (e.g., length scale), as well as noise

level, are inferred from the data during the GPmodel training, which is performed by

maximizing the log marginal likelihood (more details about the Bayesian inference

[BI] will be given in following sections).

Given a number of observations, the trained GP model seeks to reconstruct the

values and uncertainties of the target function over the full parameter space. The

predictive mean (f� ) and variance (V½f��) for a single new (test) point x� are obtained

with the trained GP model as.

f� = ku�
�
K + s2nI

��1
y; (Equation 1)
V½f�� = kðx�; x�Þ � ku�
�
K + s2nI

��1
k� (Equation 2)

where k�is the vector of covariance between the test point and n training points, and

K is the n-by-nmatrix of covariances evaluated at all pairs of training points. This step

represents the basic GP prediction stage, sometimes also referred to as kriging.68
8 Joule 5, 1–26, November 17, 2021
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Figure 4. Framework for Bayesian optimization (BO)

(A) Schematic representation of the BO as applied to the optimization of the PL intensity. Here, the

red curve illustrates the true (unknown) concentration dependence of PL intensity. The blue dots

represent the points at which the measurements are taken, i.e., experimental data. The blue curves

are the uncertainty boundaries determined by the GP. The red and green dots illustrate possible

locations for subsequent experiment, chosen based on expected maximum and potential for

unknown behaviors, respectively.

(B) Illustration of the Pareto front between the stability and PL intensity. Different points

correspond for PL intensity-stability value pairs for different compositions. Pareto front shows the

concentrations with the optimal balance between the two. The task for multiparameter BO is to

map the Pareto front over the concentration space.
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The GP-predicted mean and variance on all the test points are the interpolation be-

tween the training points and the measure of uncertainty, respectively. In other

words, the GP process allows the estimation of the value of the target functionality

across the whole parameter space, and how much it can be trusted. These parame-

ters can serve as inputs into the acquisition function of BO which guides the explo-

ration of the configuration space balancing the uncertainty-based exploration and

the identification of the regions in this space where a desired property is maximized.

In other words, the algorithm will explore the parameter space weighting the poten-

tial to discover behaviors of interest and degrees of uncertainty about this behavior.

The common acquisition functions are the expected improvement (EI) over the cur-

rent best results and the upper confidence bound (UCB) with provable cumulative

regret bounds.69

To date, BO is the method of choice adopted in the automated synthesis24,47,70,71

and other AE approaches, e.g., X-ray measurements or scanning probe micro-

scopy,72,73 as well as exploration of theoretical models and theory-experiment

matching.74 Note that the GP-based BO can also be readily adapted for exploring

the vector function, i.e., multiple functionalities. In this case, the algorithm seeks

to discover points offering an optimal balance between target functionalities, i.e.,

the Pareto front of the system (Figure 4). For example, exploring the concentration

space for stability and PL intensity, the multi-objective BO will seek to find the

regions where the pairs of these values lay on the outer shell of possible

combinations.
AUTOMATED SYNTHESIS OF MHPs NECESSITATES THE
DEVELOPMENT OF ADVANCED ML TOOLS BEYOND SIMPLE
BAYESIAN OPTIMIZATION

The classical BO as described above has a number of significant limitations. First and

foremost, this method does not utilize any prior information available about the
Joule 5, 1–26, November 17, 2021 9
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system. Second, the experiment is optimized given only the final results and

does not utilize the additional proxy information available during the experiment

(e.g., color change during synthesis). Finally, and most importantly, it builds a fully

non-parametric model, whereas materials properties tend to allow for (often simple)

analytical functional approximations over the parameter space. Jointly, these con-

siderations necessitate fairly low dimensionality of control parameter space. Next,

we discuss some of the emergent trends in ML that allow one to relax some of these

limitations, allowing for physics-based Bayesian modeling.
Bayesian optimization with ‘‘informed’’ kernels

The classical GP is completely defined in terms of its mean function and covariance

function. The latter defines the strength of correlations between the properties in the

adjacent points in compositional space, e.g., how close will be the PL intensity and

the band gap be for adjacent compositions. Classical BO relies on the off-the-shelf

kernel functions (radial basis function [RBF], Matern, etc.) that are the same across

the whole composition space. This clearly is a significant limitation, since the prop-

erties tend to change slowly within the single solid solution region, and rapidly at the

phase boundaries. Furthermore, GP with standard RBF kernels have inductive biases

toward very simple solutions.

However, new opportunities emerge at the interface between deep learning and the

BO via the deep kernel learning (DKL) approach.75 In DKL, the kernel function is

learned from the data using a neural network (hence, it is sometimes referred to

as an ‘‘informed kernel’’). Technically, the data (e.g., PL spectrum) are embedded

into the (latent) feature space by a feedforward neural network, reducing it to a small

number of descriptors. These descriptors are then used as input to a spectral mixture

base kernel. The parameters of the base kernel and the weights of the neural network

are trained jointly by maximizing the log marginal likelihood of the GP, yielding the

non-parametric model of the system that can be used for BO. Note that this

approach is reminiscent to a previously used approach combining the non-NMF

and GP exploration55; however, in DKL the optimal features are discovered during

the experiment, rather than engineered prior to the experiment. Due to this

flexibility, the DKL GP could be well suited for non-stationary data and data with a

complex hierarchical structure. Finally, whereas the classical GP-BO is limited to rela-

tively low-dimensional spaces (D(6), the DKL approach allows for performing opti-

mization in a potentially high-dimensional space via learning the low-dimensional

embeddings of the data.

In addition, the GPmean function can be used to capture trends in the data. It can be

learned from the data with a neural network,76 which is somewhat similar to the DKL

approach. The learned mean function can be used for transfer learning and meta-

learning with GP.76
GP/BO with phenomenological model

The distinctive aspect of the physics of many condensed matter systems is the ex-

istence of a large number of simple phenomenological relationships between the

control parameters and target functionalities. Well-known examples include the

compositional dependence of band gap and molar volume in solid solutions, thick-

ness dependence of the switching voltage and domain size in ferroelectric mate-

rials,77 or size dependence of plasticity. In some cases, these relationships can

be derived from simple physical models; in others, they belie the complexity of un-

derpinning mechanisms while still providing convenient approximations.
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The existence of such universal relationships opens the pathway to extend the BO

approach by simultaneously exploring the parameter space of the system and

discovering (or improving) the phenomenological model of materials behavior.

From a technical standpoint, this approximate physical model of the system, e.g.,

compositional dependence of the band gap, becomes the GP mean function. In

this manner, the prediction of the functionality across the composition space is

based not only on the experimental data only, but also on expectation of what the

physics of the system is. Such an augmentation of GP with a probabilistic model of

the expected system’s behavior would allow making ‘‘physics-informed’’ decisions

about which points in the parameter space to evaluate next. In this case, one may

start with a flexible GP (non-parametric regime) and gradually switch to a GP

augmented with a structured probabilistic model (semi-parametric regime),

although a more sophisticated interplay between the non-parametric and semi-

parametric regimes is possible (e.g., explore the initial system behavior, discover

the physical model, and then explore the deviations from such a model).

Causal experiments

The fundamental limitation of the classical BO methods, and in fact the vast majority

of extant MLmethods, is their correlative nature. For example, in classical supervised

learning the neural network serves as a universal interpolator between the inputs

(features) and outputs (targets or labels). However, in this approach the causal rela-

tionship between features and targets is ignored. For example, there is a strong cor-

relation between the wetness of the grass and rain; however, it is the rain that makes

the grass wet and not the wet grass causing rain to happen. While this example is

obvious, for many physical systems the cause and effect relationships are less clear

and at the same time represent an obvious interest for the scientist (Figure 5).

Notably, the issues of causality tend to be overlooked both by the physics and ML

communities (Figure 6A).78 In the theoretical physics world, causal relationships

are often assumed to be known and intuitively understood. In some sense, in most

cases, theory explores the specifics of a certain causal mechanism or proposes a

new one. At the same time, in the ML community causality is often associated with

domain expertise, e.g., the choice of the feature and target set. Yet in the experi-

mental world, the causal relationships between the observables are often unknown

or known partially (Figure 6B).79 Given that the theoretical framework for experi-

mental sciences often emerges from theory domain, it is unsurprising that corre-

sponding issues often remain unexplored.

To illustrate a few examples of potentially non-trivial causal relationships that can

emerge in experimental settings, the photovoltaic efficiency in thin films can be

strongly affected by the presence of grain boundaries. However, whether the grain

boundaries serve as a sink for the detrimental ions or instead degrade the carrier

transport is unclear and suggests opposite strategies for materials optimization.

Similarly, halide segregation and phase evolution in ionic systems can be driven

by polarization system instabilities at morphotropic boundaries, or reciprocally pin

polarization and result in complex domain structures due to frozen disorder effects.

In addition to unknown causal relationships between observable variables and

mechanisms, a significant factor can be the presence of possible unobserved con-

founding variables, i.e., the common source of observed functionalities. For

example, if the improved defect density of a composition stems from the incorpora-

tion of antisolvent molecules during the synthesis that also changes the carrier

mobility, that will result in a strong correlation between the defect density and carrier

mobility (Figure 5). However, the direct change of composition via e.g., chemical
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Figure 5. Causal relationship in MHPs

Physical learning: it is generally expected that processing variables (synthesis) will control composition, and

composition will control parameters such as crystal structure, defect density, and band gap. Some of these

can be controlled well (gross composition), some will be controlled only weakly (defect density). These

materials parameters in turn control physical properties of interest (note that only some of the connections

are shown). In classical physical discovery, the relationships are assumed to be known and their strength is

explored using experiment. However, the ‘‘cause and effect’’ relationships (e.g., composition affects crystal

structure, but crystal structure does not affect composition) are assumed to be known. Note that only a

subset of causal relationships is shown.
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doping will not affect carrier mobility (or rather will affect it in an unpredictable

fashion, since the physical mechanisms involved will be completely different). This

may result in suboptimal solutions. From these examples, it is clear that knowledge

of causal mechanisms represents more than theoretical interest and in fact directly

offers the pathways for interventions.

To overcome this limitation, one could use a ‘‘causal’’ BO recently introduced by

Aglietti and co-workers.80 In causal BO, the GP surrogate model integrates observa-

tional and interventional data through a causal prior distribution computed using

Pearl’s do-calculus.81–86 It is important to note that causal BO does require actual

‘‘physical’’ interventions. However, it is not necessarily the case that causal interven-

tion implies ‘‘human’’ intervention. The causal interventions are realized via a learned

causal model that orders the control factors in the form of causal graphs. This both

provides insight into the plausible mechanisms and allows to significantly reduce the

volumes of the data necessary for the model training. The reason for the latter is that

instead of high-dimensional probability density, p(outcome|X1, X2, X3, .), the

model now operates on much more low-dimensional space of conditional probabil-

ities p(outcome|Xparents), p(X1|X1_parents) and so on, with the control variables

arranged as a corresponding directed acyclic graph.

In our case, the interventions can be performed by adjusting a particular growth/syn-

thesis control variable. Correspondingly, the classical acquisition functions are
12 Joule 5, 1–26, November 17, 2021
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Figure 6. Classical versus causal machine learning (ML)

(A) Compared with physics learning, in (A) classical ML the correlative relationships between the

variables are established and the causal links are ignored, often leading to paradoxical results.

(B) In causal ML, some (or none) of the relationships between observed and non-observed variables

are assumed to be known, and discovery of the presence and functional form of the others is the

goal of the analysis.

ll

Please cite this article in press as: Ahmadi et al., Machine learning for high-throughput experimental exploration of metal halide perovskites,
Joule (2021), https://doi.org/10.1016/j.joule.2021.10.001

Perspective
replaced with the causal ones to explore the possible interventions. Hence, the

causal BO allows for balancing the observation-intervention trade-off in addition

to the classical exploration-exploitation trade-off. Compared with the classical

BO, the causal BO was demonstrated to reach the global optimum using a much

smaller number of steps, both on synthetic and real examples. The causal BO

method can be further extended to allow for multi-task causal GP which accounts

for correlations between different intervention functions.87 Also, it should be noted

that while causal analysis for cases where causal structures have feedback and cannot

be represented as directed acyclic graph (DAG) is still at infancy, we expect that it will

be the directions that will become high-priority development in the general ML com-

munity. At the same time, existing DAG-based models are already capable of

capturing many aspects of the physical behaviors—e.g., composition does affect

the PL yield, but not vice versa. For other parameters, causal relationship can be

discovered from observations and confirmed via intervention. This allows for knowl-

edge transfer across different experimental setups and is critical in scenarios where

experiments (interventions) on some variables cannot be performed.
Theory co-navigation

Over the last 15 years, there has been remarkable progress in applications of ML to

theory and materials discovery.88–91 However, this success has not yet been trans-

lated to experiment—exactly because not all-important functionalities can be pre-

dicted, and even for those that can be predicted theory often requires certain

parameter refinement. In classical scientific domains, the models grew as a result

of multiple decades of slow experiment-theory cycles. However, for automated syn-

thesis some aspects of this discovery have to be accelerated. The purpose of this

perspective is to illustrate the specific aspects, challenges, pitfalls, and opportu-

nities of ML as applied to synthesis.
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It is a cornerstone belief in materials science that theory can offer the valuable guid-

ance in search for new materials and optimization of their properties. Yet the funda-

mental problem in the theory-assisted materials synthesis is that the theoretical

models have limited accuracy and precision, i.e., yield predictions with both

epistemic (i.e., choice of model) and aleatoric (e.g., precision) errors. Similarly,

many of the key properties are either difficult or impossible to calculate, for example,

device- or even material-level stability (often due to the presence of latent factors or

mechanisms not included in the model). Equivalently, experimentally synthesized

and characterized materials properties often are accessible only with inherent uncer-

tainties due to compositional and synthesis variability and can be affected by non-

observable and non-controllable factors. Hence, the scientific discovery process

often follows an iterative loop between materials synthesis, discovery, and theory

development. A well-known example of this is semiconductor theory, where devel-

opment of materials and device fabrication methods over decades92 both enabled

applications and enabled new physical discovery (e.g., quantum Hall effect that

can be discovered only in very pure semiconductors). Hence, from the AE

perspective, it is of interest to implement a co-navigation process to balance the

functionality and uncertainties in the experimental discovery with the refinement

of theoretical models for a specific materials system and synthesis route(s) and

generalize it to broader materials classes.

Here, the relevant comparison may be that of the car driving. Theory provides the

map, starting with a very low level of detail for simple models93 (or complex mate-

rials), whereas more advanced theoretical methods provide higher details. The

experiment in this analogy is driving the car along one of the roads indicated on

the map. While the map provides a general direction and informs on the global to-

pology, it cannot be used to stay on the road. At the same time, without the map

choosing the direction is impossible. The causal ML methods allow the combination

of the two paradigms, where themap is used to choose the initial direction of motion

and inform the driver on new opportunities, while at the same time navigation is per-

formed by the AE agent and derived information is used to refine the (local) map.

The idea of co-navigation of theory and experiment has been prevalent in materials

science and engineering for several decades now, as outlined in the 2008 report by

the National Academies of Sciences, Engineering, and Medicine entitled ‘‘Inte-

grated Computational Materials Engineering: A Transformational Discipline for

Improved Competitiveness and National Security,’’94 and reaffirmed by the

announcement of theMaterials Genome Initiative95 in 2011. Similar ideas and efforts

have been spawned across the globe over the last decade, including the so-called

‘‘Fourth Industrial Revolution,’’ or Industry 4.0.96 The idea of Integrated Computa-

tional Materials Engineering (ICME) is to bring computational modeling tools into

the materials discovery and design process, with the goal of reducing the time

and cost of materials development and deployment in commercial applications by

50% or more. A few examples of successful implementation of ICME to new mate-

rials development include references,97–100 while QuesTek Innovations, LLC,101 is

a small business founded in Evanston, Illinois, focused on computational Materials

by Design, which recently opened a new division in Europe.102 However, to date,

many of the ICME success stories have been in the realm of structural materials.

Such a synergistic approach tomaterials discovery was recently reported by incorpo-

ration of density functional theory (DFT)-calculated free energies of formation, DGf,

for mixed cation MHP into a ML-informed experimental approach.93 Using this co-

navigation approach a MHP composition of (Cs0.17MA0.03FA0.83)PbI3 with three

times greater stability compared with a state of the art MAPbI3 was discovered.
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Another case study was reported recently where simulation and AE were combined

to accelerate research on mechanics of additively manufactured structures.103
Generative physical models

As an alternative to the availability of past information, we can consider the fact

that phase evolution is indelibly linked to the generative physical models, e.g., sys-

tem thermodynamics, molecular force fields, or DFT parameters. Note that it is

important to separate the generative physical model (i.e., knowledge of mecha-

nism that allows for representation in the formula, computational scheme, etc.)

from the generative statistical models such as variational autoencoders or genera-

tive adversarial networks that offer black-box models capable of generating data

from the same distribution as training data. In addition to fundamentally different

operational principles, these two approaches come with opposite requirements for

data volumes—whereas generative a physical model can be often selected,

improved, or rejected with very few data points, the variational autoencoders

and generative adversarial networks require large volumes of data to establish a

statistical generative model.

Compared with classical BO methods, that means that we expect to have a (hidden

from observation) global generative model that underpins observed phases. This is

also different from the BO assisted by phenomenological models in that here past

knowledge incorporated in thermodynamic potentials, molecular dynamic force

fields, or DFT parameters as determined by the choice of the generative model,

are used. Note that while the models rarely allow for exact calculations, they can

often be tuned for specific materials systems and allow to generalize over similar

systems.

It is also important to note that for parameters that cannot be calculated exactly

(e.g., kinetics of degradation processes), there are often strong correlation (but

not deterministic relationships) to the predictions of a simplified model, e.g., ther-

modynamic properties of the system. Hence, the thermodynamic model provides

the global model for the systems, with some observed parameters directly linked

to it and some strongly correlated. As such, it has the flexibility (akin to human intu-

ition) to combine the quantitative knowledge and correlative trends into a single

framework.

Such a co-navigation approach can be illustrated using simple models of chemical

thermodynamic, ferroic,77 or coupled chemical-ferroic behavior,104 as examples.

For chemical thermodynamics, the generative thermodynamic models based on

calculation of phase diagrams (CALPHAD) approach can be used to co-navigate

the experimental space (Figure 6). Here, an initial approximation of the thermody-

namics of the system can be derived from the DFT or prior thermodynamic data

to initiate the discovery process from the theory or experimental side, respectively.

The CALPHAD approach is a semi-empirical methodology to describe the thermo-

dynamic properties of multicomponent alloys using composition- and tempera-

ture-dependent mathematical models of the Gibbs free energy of each possible

phase in the system.105,106 The general expression for the Gibbs free energy of a

phase, 4, is
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Figure 7. Co-navigation by theory and experiment

The flowchart of the co-navigation approach for discovery and optimization of vast compositional

spaces in MHPs using thermodynamic generative model. Note that the workflow can implement

more complex models including molecular dynamics or density functional theory, if required,

number of calculations is feasible.
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where xi is the mole fraction of component i, 4Go
i is the free energy of pure compo-

nent i in the form of phase 4, R and T are the ideal gas constant and absolute

temperature, respectively, and 4Uij and
4Uijk are binary and ternary interaction pa-

rameters, respectively, and can be functions of both composition and temperature.

CALPHAD modeling starts with thermodynamic descriptions of the pure compo-

nents, 4Go
i and builds binary, ternary, and higher-order systems by starting with

the lower-order subsystems, adding physics-based, but semi-empirical interaction

parameters (4Uij and
4Uijk ) to describe nonideal multicomponent behavior. These

interaction parameters can be optimized, or assessed, based on all available exper-

imental or computational data. In recent years, CALPHAD modeling has been

extended to describe other thermophysical properties (e.g., elastic moduli, and

molar volume, electrical resistivity) and kinetic behavior.100,106,107 The combined

methodology has become a powerful tool for engineering materials and process

optimization for predicting phase stability, time evolution, and material properties.

As such, the CALPHAD approach offers an ideal theory-based modeling companion

tool to AE and AI/ML (Figure 7).

An initial thermodynamic ‘‘map’’ can be constructed over an unknown composition

space by first performing a select number of DFT calculations, typically of the pure ‘‘end-

member’’ components, providing a foundation on which to build the CALPHADmodel.

Alternatively, the initial parameters can be derived via standard thermodynamic mea-

surements. Limited DFT calculations can also be performed at intermediate composi-

tions to provide an initial estimate of the nonideal solution behavior (i.e., the interaction

parameters). Similar to the Gibbs free energy, a CALPHAD-type model can be
16 Joule 5, 1–26, November 17, 2021



ll

Please cite this article in press as: Ahmadi et al., Machine learning for high-throughput experimental exploration of metal halide perovskites,
Joule (2021), https://doi.org/10.1016/j.joule.2021.10.001

Perspective
constructed for any relevant material property, such as band gap, using available exper-

imental information or DFT calculations as an initial calibration dataset. The preliminary

CALPHAD models can then be used to identify initial regions in composition space

where desirable phase stability and/or materials properties are expected.

With these, AE can then be targeted in these areas, providing new experimental in-

formation that can be used to improve model efficacy through refinement of the

interaction parameters or inclusion of new parameters using classical least-squares

(LS) or BI optimization.
Bayesian hierarchical modeling and model selection

In general, BI is based on the concepts of prior and posterior probabilities. The prior,

pðqiÞ, represents the level of knowledge about the system before the experiment.

The experiment yields the data, D, based on which the posterior distribution is

calculated via Bayes formula:62,64.

pðqijDÞ = pðDjqiÞpðqiÞ
pðDÞ (Equation 4)

Here, pðDjqiÞ represents the likelihood that this data can be generated by the theory,

e.g., given choice of model i, and model parameters q. The pðDÞ is the denominator,

that defines the total space of possible outcomes.

It is instructive to compare the BI and the classical LS fitting approach. Here, we as-

sume that the experimental observations are given in the form of measured scalar

values yi for the points xi. In LS fitting, we assume that the observed behavior is

described by the function f(q) and seek to find the function parameter vector q.

For example, for the PL intensity this will take the form of fitting the observed PL

peak to the chosen functional form, e.g., Lorentzian or Gaussian. The optimization

is performed by minimizing the least square error between the data and prediction,

defined as a calculated version of the function over the data points, f(xi). The mini-

mum of mean square error in the space of parameters q defines the point estimate

of the function. Note that in a classical least square fits the parameter can be fixed,

free, or rigidly constrained (e.g., non-negative).

The BI approach treats the prior information on parameters q as a joint probability

distribution. For convenience, the prior distributions are often marginalized, mean-

ing that the distributions are considered to be independent and the probability

density for one parameter is not affected by the others. For example, the probability

distribution for the PL peak width is a priori independent on the peak height.

If the specific parameter is well known, the corresponding distribution is narrow and

can be chosen based on prior experiments, available published data, or physical

models. If the parameter is known poorly, the distribution is broad and for bound pa-

rameters is typically chosen as a uniform distribution and for the unbound parameter

as a Gaussian (weakly informed priors). The result of the BI is then the posterior

parameter distribution, reflecting the updated knowledge on the parameters. For

example, before the experiment, we had no knowledge of the peak position and

only know that peak should exist in a given spectral interval, corresponding to uni-

form prior. Given the experimental data, the peak position is localized at a certain

interval, corresponding to a narrow posterior distribution.

Another strength of the BI approach is that it readily generalizes to distinguish

models via hierarchical Bayesianmodeling. In this case, a number of possible models
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of materials behavior can be selected, each with some prior probability so that total

probability is one. For example, for the PL response of theMHPQDs, themodels can

be chosen to be Gaussian, Lorentzian, and double Gaussian, and double Lorentzian

peaks.56 As the simplest example, initially all models can have equal probability. The

probability of the model then becomes one additional prior parameter, and the pos-

terior probability distributions now include both the probability of the model and

posterior distributions of model parameters.

Alternatively, the probabilities of the models can be estimated from the posterior

densities using the widely applicable information criterion (WAIC)108 as proposed

by Gelman and co-workers.109 The WAIC is defined as

WAIC =
Xn

i =1
log
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(Equation 5)

Here, S is the number of simulations draws and n is the number of available data-

points. The first term in (Equation 5) is the logarithm of predictive density defining

the quality of the fit. The second term is the effective number of parameters, pWAIC,

determined by the total variance of the log likelihood, log pðyijqÞ. This term defines

the complexity of the fitting function. Note that similar to the calculation of the

Bayesian estimate and uncertainty, calculation of WAIC requires traces acquired

during the sampling rather than just the point estimates. Subsequently, the proba-

bility of the model p(M) is recovered via a Bayesian model averaging approach.110

This approach has been previously applied for the analysis of the PL intensity in

multicomponent CsPbX3 (X: I, Br, Cl) QDs,56 and analysis of domain wall structure

in ferroelectrics111 and system responses in scanning probe microscopy.112
Co-navigation of theory and experimental domains

The BO and BI with structured probabilistic models described above offer two

limiting approaches for the exploration of the compositional spaces, based on the

obtained data (model-free) and refinement of the previously known global model,

respectively. We pose that the key step toward implementation of viable automated

experiment workflows is the integration of the co-navigation approach, when both

experimentally available data and the theoretical model are updated simulta-

neously, and the combined data-model uncertainty is minimized during the BO or

active learning process (with the former performing the global optimization and

the latter seeking to uncover the global distribution).

As an example, an initial global model can be chosen as an ideal solid solution (global

prior) and several experimental compositions can be chosen as seed points. One can

choose the class of prior functions that define the thermodynamics of the systems,

i.e., define what the deviations from the ideal solid solution can be as parametrized

by G(X) functions in the CALPHAD model. Based on the initial experiment and model,

the ‘‘unstructured’’ GP uncertainty and ‘‘structured’’ uncertainty of the generative

models with a preset weight coefficient are combined to yield the total uncertainty of

the system. In the exploratorymode, the next target of theAE is then chosen tominimize

the combined total uncertainty. The strategies for the choice of the weight coefficient

can be explored, but the obvious strategies for this can be either epsilon-greedy or

‘‘softmax’’ strategies favoring either model refinement or experimental exploration.

This approach allows a straightforward extension to the property optimization, or

exploitation, mode. In this case, the choice of the next compositions to explore is

defined by the maxima of the acquisition function that combines the predicted
18 Joule 5, 1–26, November 17, 2021
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functionality (from GP) and total GP and probabilistic model uncertainties. Note that

in this case the discovery and model development will both be driven by the choice

of acquisition function, and the model derived this way can be expected to predict

locations of these regions in the parameter space, and functional behaviors in these

locations, but perform poorly outside.

The co-navigation strategy can minimize the global model and GP uncertainties

while optimizing the target functionality. However, the key issue here is the connec-

tion between the experimentally detected functionalities and model prediction. For

co-navigation, one can use the highly robust descriptors such as phase composition.

We have recently demonstrated the framework for doing it via Bayesian methods56

approximated by the number of PL peaks) and band gap (specifically, its deviation

from the one expected from the average composition) as feedback signals, whereas

stability will be approximated by the time dependence of PL intensity.

However, the additional flexibility of the co-navigation approach is that it in principle

allows the exploration of composition-property relationships in the system and use

of these as an additional search variable during the AE and when selecting targets for

DFT calculations. As a simple example, consider the compositional dependence of

the band gap determined from the experiment or DFT model. In the zero-order

approximation, it will be a linear function of the composition. In a more realistic

case, it will be an unknown function of the composition, Eg = h(c). If the data, mean-

ing the several sets of Eg for c values are available, the relationship between the two

can be established using a functional fit, GP, or more complex approaches such as

Bayesian neural networks113 or variational autoencoders.114 For simplicity, one

can use the GP approach that is expected both to yield the best prediction of the

Eg from the concentration, and the uncertainty of this prediction. This uncertainty

can also be used for the exploration of composition space now.

We also note that in principle the co-navigation approach can be based on symbolic

regression models. In this case, we utilize the fact that in many cases materials func-

tionality follows certain functional relationships that provide a parametric model,

and the co-navigation process seeks to refine the model and the experiment

simultaneously.
LEVERAGING AUTOMATED SYNTHESIS TO THE CRITICAL DEVICE
DEVELOPMENTCANBEONEOFTHEFOUNDATIONALCOMPONENTS
FOR POTENTIALLY TRANSFORMING THE CONVENTIONAL ENERGY
TECHNOLOGIES

Finally, the ML-guided automated synthesis of MHPs may be leveraged to developing

knowledge and understanding immediately valuable for improving the performance

and stability of perovskite optoelectronics, imparting significant technological impacts.

There have already been a handful of such studies that particularly concern solar cell ap-

plications. Zhao et al.57 have employed a high-throughput robotic learning process to

guide them to fabricate stable FAPbI3 perovskite solar cells. In the first step of that study,

the robotic deposition and screening points to a region of high phase stability in FAPbI3
when incorporating at least 10 mol % MA and up to 5 mol % alkaline metal (Cs/Rb/K) in

the A-cation sites of the FAPbI3 perovskite. In the sequential device optimization step,

only a few perovskite compositions are triedwithin this predetermined narrower compo-

sition window (CsxMA0.15–xFA0.85PbI3), which leads to an optimal device stability

(Cs0.05MA0.10FA0.85PbI3) at the operational stability. In another study, Buonassisi and

co-workers95 have showed a physical data-fusion approach to enable a human-free
Joule 5, 1–26, November 17, 2021 19



Figure 8. ML-guided thin film and device optimization

The flowchart for leveraging ML-guided automatic micro-/nanocrystal synthesis to MHP device

optimization. The key device optimization loop entails exploring the ‘‘all-in-one’’ perovskite film

library fabrication, narrowing down the interested candidate composition space, expanding the

composition space for a fine screening via doping and additive.
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decision-making process for screeningCsxMAyFA1-x-yPbI3 with the best stability, which is

later attested by the device results. While both studies showcase the unprecedented

power of ML-guided automated synthesis for accelerating the device development,

there remains a huge research space for a further development of this promising

research area.

Shown in Figure 8 is the flowchart that outlines the rational procedures connecting

the ML-guided automatic micro-/nanocrystal synthesis to the optimization of perov-

skite optoelectronic devices. The key work loop iterates exploring the ‘‘all-in-one’’

perovskite film library fabrication, narrowing down the interesting candidate compo-

sition space for specific device applications, expanding the composition space for a

fine screening via doping and additives.

The current studies are mostly limited to demonstrating effective composition

screening based on solution-synthesized microcrystal or QD samples. However,

the properties of bulk semiconductor crystals may differ substantially from those

of thin films. Especially thin film materials contain various intra-grain and inter-grain

interfaces which are usually absent in microcrystals or QDs,115,116 while electronic or

chemical tolerance to the interface defects is one crucial factor determining the suit-

ability of an optoelectronic material to serve in a device. In this context, automated

synthesis of perovskite samples in the form of thin or thick films needs to be further

matured. Not only do the instrumental and ML methods of reliable robotic deposi-

tion of film libraries need to be improved, but various device-related factors should

also be taken into consideration in the experimental design. For example, depend-

ing on the device applications (solar cells, light-emitting devices, radiation sensors,

etc.), sample substrates such as mesoporous TiO2-coated fluorine-doped tin oxide

glasses and PEDOT:PSS-coated indium tin oxide glasses may be used for automatic

film fabrication. The examination of as-synthesized film properties on these specific

substrates can guide us to make a more accurate prediction regarding the device

performance. Furthermore, the ‘‘all-in-one’’ design concept could be used for
20 Joule 5, 1–26, November 17, 2021
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fabricating solid film sample libraries, which will involve the deposition of arrays of

small-size thin films on single patterned substrates. This may unlock opportunities

not only for a facile, automatic property investigation but also for a systematic

screening of device performance. Based on the ‘‘all-in-one’’ film library, high

spatial-temporal-resolution characterizations such as synchrotron (nanoscale X-ray

diffraction, X-ray ptychography, and X-ray-induced current technique, etc.) and

variousmicroscopies (PL, AFM, TEM, etc.) will become immediately useful for rapidly

characterizing these sample libraries, establishing a map of composition-property-

performance correlation. This will help us to narrow down the interested composi-

tion space for specific applications and guide us to continue with standard film

and device fabrications. It is also possible to fabricate ‘‘all-in-one’’ device libraries

as needed. In this case, those device characterization techniques, previously estab-

lished for large-scale device evaluation, can be used to compare the performance of

different film samples in the library chip. For example, electroluminescence and

lock-in thermography images can be used to quickly identify the compositions on

the chip that make the best solar cells.117

Once the interesting perovskite composition space is narrowed down, it becomes

feasible and promising tomove to the device optimization process. Device optimization

plays an important role in achieving the final performance of devices. For example, the

efficiency of solar cells made using the same MAPbI3 composition can easily vary from

0% to 20%, and their stability can also demonstrate substantial difference. The underly-

ing factor is frequently related to the incorporation of certain additives and dopants.

Especially those most recent achievements in reporting record perovskite solar cell de-

vices have been invariably associated with the additive/dopant use in the processing of

perovskite thin films.118–121 These additives are found to serve for various functions,

including crystallization control, defect passivation, carrier transport, anti-oxidation,

ion-blocking, and their combinations.116,122–124 Nevertheless, the discovery of these ad-

ditives have beenmostly driven by the chemistry intuition and trial-and-error processes.

In fact, the types of additives that are claimed effective for perovskite devices are

numerous, including small molecules, inorganic, polymer, and complex. Similar to pe-

rovskites, these additives or dopants can exhibit versatile compositions. For example,

in an early study, Zong and co-workers125 reported a complex additive of SnF2dxFACl

(x = 3) to enhance the Sn-Pb mixed perovskite solar cells that are attractive for their

low-band-gap characteristics.While this additive composition has contributed to decent

improvement in the device performance, there are still a number of possible complexes

based on the variation of Sn halide type, organic halide type, and their mole ratio. In this

context, the interesting compositions screened by the initial device trials will be further

integratedwith the composition space of additives and dopants, expanding the compo-

sition space to study in the sequential automatic sample film library fabrication.

The optimization of the device preparation process via ML represents a considerably

more complex task due to the higher dimensionality of control parameter space and

much stronger role of the non-observable parameters. Here, the BO based methods

discussed in previous sections can provide initial ML frameworks. For synthesis,

more opportunities can be opened by methods such as reinforcement learning.

However, these methods are known to be extremely data hungry, necessitating

development of new strategies.
SUMMARY AND OUTLOOK

To summarize, the rapid development of AE over the last several years opens

tremendous opportunities toward the low-cost automated synthesis of MHP
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materials and devices. However, harnessing these opportunities necessitates com-

parable developments in the ML methods controlling these instrumentations and

allowing for navigation in multidimensional compositional and synthesis spaces.

The simple combinatorial strategies are equivalent to grid search in these spaces

and offer a several orders of magnitude advantage compared with sequential

synthesis, completely insufficient to deal with the immensity of compositional and

synthesis parameter spaces.

BO methods are rapidly becoming the paradigmatic methods underpinning AE to

guide it toward specific functionalities. However, further developments require

incorporation of prior knowledge and physical priors in the form of search candi-

dates, addressing multidimensional and continuous spaces, incorporation of ther-

modynamic models, and known physical behaviors. Similarly, the existence of

generative physics models but the partial knowledge of the latter, as well as out

of distribution drifts require developing strategies for co-navigation of the experi-

mental and theoretical domains when both are explored simultaneously, and incor-

poration of causal AE strategies.

Further progress in the field necessitates the rapid adoption of the fully autonomous,mi-

crofluidic, and combined synthesis workflows, the development nowpossible due to the

low-cost of commercial tools and availability of Python interfaces. However, it also neces-

sitates the development of ML methods and infrastructure optimized for automated

experiment. This involves creation of publicly available ‘‘scientific’’ databases (as

opposed to databases containing images of cats and dogs) for training and/or evalua-

tion of the designed ML methods,24,126 and better understanding of ML predictive be-

haviors under the dataset shifts127—i.e., when a model is applied outside the domain of

training examples—which could include small changes in data acquisition parameters in

the real-time and characterization systems. Note that the need for creation of the data-

bases of materials properties and theoretical models is by now well recognized and is

well reflected in a number of recent publications and programmatic documents.128,129

The data repositories such as Citrination,36 NoMAD,37 and materials innovation

network38 are now becoming common. At the same time, the necessary algorithm

and code base is now actively emerging in ML communities and are disseminated via

repositories such as GitHub. Finally, cloud-based services such as Google Colab or Mi-

crosoft Azure now enable integration of the scientific publication with code and data as

implemented in Jupyter papers,57 and books and papers with code.130

The prospective development in ML-guided automated synthesis may stimulate the

progress of numerous directions in the MHPs research. In particular, searching for

Pb-free MHPs has been an active area of research that will influence the practical

commercialization of MHP PVs. The automation will facilitate the establishment of

a link between the experimental synthesis and theoretical predication, bringing

new opportunities in accelerating the discovery of promising Pb-free candidates

for perovskite PVs. In the context of structural versatility, MHPs can embrace mem-

bers beyond these 3D ABX3 perovskites or A2B
IBIIIX6 double perovskites. The

layered MHPs,131 either in a Ruddlesden-Popper, Dion-Jacobson, or alternative-

cation-interlayer (ACI) structure, have emerged as an attractive group of semicon-

ductors with anisotropic electronic properties and enhanced stability, which are

well suited for PVs and optoelectronic applications. More promising is that in layered

MHPs, the size of organic cations is not a constraint for forming a perovskite struc-

ture. This makes MHPs a huge materials family with even more versatile functions,

attesting the importance of ML-guided automated synthesis for accelerated mate-

rials screening and understanding. Furthermore, the methodology developed
22 Joule 5, 1–26, November 17, 2021
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based on MHPs as a model system can be extended to study various other solution-

processed optical and electronic materials such as chalcohalides and organic-inor-

ganic coordination complexes. Finally, owing to the solution processability of the

whole perovskite device stack, ML-guided automated synthesis and characterization

is also suitable for the investigation and optimization of other device layers including

carrier-transporting, contact, and encapsulant layer, and their chemical/physical in-

teractions with MHPs, transforming our conventional ‘‘black-box’’ synthesis/fabrica-

tion approach for co-optimization of various device components.

Finally, we believe that full automation of the synthesis process is actually unlikely

(think of autonomous driving which—as realized by now—turned out to be a much

harder problem than thought 3–5 years ago), and the purpose of ML is not to sub-

stitute human operator and decision-making but reduce it to the high-level high-la-

tency decisions. In some sense, it is already the case for the techniques such as BO,

where the acquisition function is selected based on the perceived (by human oper-

ator) target. It will also be the case for multi-objective BO methods, where the algo-

rithm yields the compositions on the Pareto front of certain components of figures of

merit, but it is up to humans (or a different expert system exploring the e.g., eco-

nomic considerations) to define what the balance should be. This list can be

continued, but ultimately, we believe that automated synthesis complements (or

‘‘augments’’) humans but does not substitute one.
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