
Removing the Walls Around Visual Educational
Programming Environments

Brian Broll∗, Ákos Lédeczi∗, Gordon Stein∗, Devin Jean∗, Corey Brady∗

Shuchi Grover†, Veronica Catete‡, and Tiffany Barnes‡
∗Vanderbilt University, Nashville, Tennessee, Email: akos.ledeczi@vanderbilt.edu
†Looking Glass Ventures, Palo Alto, California, Email: shuchig@cs.stanford.edu

‡North Carolina State University, Raleigh, North Carolina, Email: tmbarnes@ncsu.edu

Abstract—Many block-based programming environments have
proven to be effective at engaging novices in learning program-
ming. However, most restrict access to the outside world, limiting
learners to commands and computing resources built in to the
environment. Some allow learners to drag and drop files, connect
to sensors and robots locally or issue HTTP requests. But in
a world where most of the applications in our daily lives are
distributed (i.e., their functionality depends on communicating
with other programs or accessing resources and data on the
internet), the lack of support for beginners to envision and
create such distributed programs is a lost opportunity. This
paper argues that it is not only feasible, but crucial, to create
environments with simple yet powerful abstractions that open
up distributed computing and other widely used but advanced
computing concepts including networking, the Internet of Things,
and cybersecurity to novices. By thus removing the walls around
our environments, we can expand opportunities for learning
considerably: programs can access a wealth of online data and
web services, and communicate with other projects. Moreover,
these changes can enable young learners to collaborate with each
other during program construction whether they share their
physical location or study remotely. Importantly, providing access
to the wider world will also help counter widespread student
perceptions that block-based environments are mere toys, and
show that they are capable of creating compelling applications.
The paper presents NetsBlox, a programming environment that
supports these ideas and shows that tools can be designed to
democratize access to powerful ideas in computing.

I. INTRODUCTION

There are many block-based educational programming en-
vironments designed to make programming accessible to
novices. With inspiration from Logo, many have been very
effective at teaching programming to young learners. However,
many of them keep students confined within the tool. This
paper argues that removing these walls would be highly ben-
eficial, both, to be able to teach more advanced concepts and
to broaden participation in computing among young learners.

We believe that it is desirable to provide uniform sup-
port, in the form of a few intuitive abstractions, to open
up block-based programming environments in such a way
that students can create truly distributed applications. First,
modern environments need to be easily extensible, and afford
loosely coupled, easily-discoverable methods of integration
with external resources such as web APIs. Adding a new
resource should require no code changes or user interface

changes on the client (i.e., no new blocks). This not only
reduces the implementation effort required but also presents
the external resources in a uniform, predictable way to the
young learners.

Second, environments should support methods of communi-
cation between projects. Distributed computing is ubiquitous
both generally and in applications popular among today’s
youth. Block-based environments, designed to make comput-
ing accessible and engaging, seem to be missing a crucial
opportunity when they restrict learners from creating “social”
applications that leverage the internet for communications.

Finally, collaborating with peers can be fun and engaging
and can also improve learning [1]. Furthermore, collaboration
and teamwork are vital parts of industry applications. Support-
ing equitable collaboration that goes beyond co-located pair-
programming helps promote engagement and valuable 21st

century skills, and also dispels misconceptions about software
being developed in isolation.

For the rest of the paper, we use the open source NetsBlox
tool [2], [3] to demonstrate how advanced computing concepts
can be made accessible to novice programmers. At the same
time, some of these very same features make it possible
for students to both develop the programs in a collaborative
fashion and debug, test and use them together whether they
are in the same classroom or studying from home.

II. RELATED WORK

Scratch [4] is arguably the most popular tool among block-
based programming environments. Designed for younger
learners, Scratch led the field in making programming ac-
cessible through visual programming, immediate effects, and
affordances that help prevent programming errors. It facilitates
the creation of “Scratch extensions” with blocks that bring new
capabilities to the environment, including language translation
and support for interacting with a number of physical devices,
such as Micro:bit and Makey Makey. At the time of this
writing, there are 11 supported extensions: 6 for interacting
with physical devices, 2 related to language, and 3 providing
custom blocks for local capabilities such as drawing or playing
music. With each of these extensions, Scratch brings in a
number of new blocks, which can make it harder to find
blocks and may steepen the learning curve. Scratch supports

978-1-6654-4592-4/21/$31.00 ©2021 IEEE

limited distributed data sharing via Cloud Variables that enable
instances of the same program to share variables.

Snap! is a conceptual descendant of Scratch designed to
support more advanced features including first class lists and
functions, as well as richer support for custom blocks [5].
Snap! also allows for extensions, e.g., to physical devices via
libraries, and provides a block for making HTTP requests.
However, processing the information returned by such requests
is anything but intuitive, thus adding unnecessary complexity
that block-based environments are designed to remove in the
first place.

BlockyTalky [6] supports the development of distributed
applications for devices like the Raspberry Pi and Micro:bit.
It facilitates communication between the devices allowing
network messages which can be sent to a given IP address
and port, but it does not support generic internet access or the
creative programming elements of Scratch & Snap!.

MIT App Inventor is designed for development of mobile
applications [7] and consists of “Designer” and “Blocks”
editors. The “Designer” editor is used to add components to
the app and the “Blocks” editor is used to program the app’s
behavior. App Inventor has native support for HTTP requests,
Lego Mindstorms, and Firebase [8]. Additional capabilities
are supported using “extensions” that consist of new types of
components and their corresponding blocks similar to Scratch.
In contrast, NetsBlox uses a single self-documenting block
(called “call”) to provide access to a large number of online
services and WiFi enabled hardware devices.

CloudDB, Internet-of-Things, and machine learning capa-
bilities are supported as App Inventor extensions and enable
apps to store data in the cloud, communicate with various de-
vices like Arduino, and incorporate various ML-based pattern
recognition capabilities. After adding a component from one of
these extensions to an app, the user has the ability to configure
the component accordingly. This may include providing a
secret access token or URL for a web-based service. After
the component has been added to the app, the corresponding
blocks will be available in the palette of the Blocks editor. App
Inventor also has some support for real-time collaboration and
merging projects.

A recent addition to the App Inventor toolbox is support for
the creation of Alexa skills; although currently this is through
a forked version of the environment. This version changes the
editor to add new programmable entities (i.e., Alexa skills)
and provides a chat dialog for testing it. Creating Alexa skills
in App Inventor is exciting, but achieving it by modifying
the editor itself is not scalable. NetsBlox required neither a
user interface change nor any new blocks to add a similar
capability.

Today, web services are becoming a required topic to teach
in some high school computer science curricula [9]. Lim et
al. believe that web services should begin to be taught in
introductory computer science classes [10]. However, there
have been difficulties in teaching web services without proper
tools [11]. Instructors Assunção and Osório found that when
teaching web services to computer science undergraduates,

students focused more on issues involving the configurations
of tools for the course instead of the actual material [11].
With its simple implementation of the Remote Procedure Call
(RPC) “call” block, NetsBlox allows web services to be taught
as an easy-to-comprehend concept. The “call” block eliminates
tooling issues and allows novice programmer students to
focus more on the subject matter at hand without being
overwhelmed—a key notion in introductory computer science
programming classrooms.

While tool support for collaboration is generally lacking
in educational programming environments, educators still try
to encourage their students to work together. For example,
collaboration in Snap! for the popular Beauty and Joy of
Computing course is encouraged through side-by-side driver-
navigator pair programming [12]. This paradigm requires the
driver to make edits to a program, while the navigator monitors
the progress (e.g., by reading instructions or requirements).
Built-in tool support in NetsBlox enables such pair program-
ming without having to be co-located, and it also opens the
door for other models of collaboration.

In summary, most existing environments lack 1) a uniform
and intuitive way to access resources on the internet, 2)
general support for distributed applications and 3) flexible,
synchronous and asynchronous collaboration support.

III. ONLINE DATA AND WEB SERVICES

NetsBlox introduces a simple abstraction to provide access
to a set of selected online data sources and web services.
Remote Procedure Calls (RPC) allow users to invoke functions
running remotely on the NetsBlox server and provide results
as return values. Related RPCs are grouped into Services.
Examples are Google Maps, Weather, Earthquakes, the Movie
Database, and many others. Additional services that run
directly on the NetsBlox server, and do not require third
party support, include a Gnuplot-based chart service and a
hierarchical key-value store called Cloud Variables.

How much complexity does it involve to have this much
functionality available? Won’t users get overwhelmed and
confused by this? RPCs use a single block called “call.”
Furthermore, the block is self documenting. It has two pull-
down menus, one for the service and one for the RPC. When
a service is selected, the second menu reconfigures itself to
show the RPCs available within the selected service. When
an RPC is selected, slots for the required input arguments
appear along with their names. See examples in Figure 1. In
addition, service- and RPC-specific documentation is available
by context clicking on the call block and selecting help.

Fig. 1: Example RPC calls

To illustrate the simplicity and intuitive nature of this
abstraction, consider a 13-block program that shows a map

of the local area of the user and displays an icon representing
current weather conditions anywhere the user clicks (Figure 2).
It is not necessary to know anything about NetsBlox or read
comments to understand what the code does and how it
works. To make the background a pan-able and zoom-able
fully interactive map of the world requires only 20 additional
blocks.

Fig. 2: Current weather conditions project. Top two scripts:
stage. Bottom script: sprite.

The “call” block is a truly powerful abstraction. Using a
single generic block that configures itself according to context
removes the cognitive load of learning a new set of blocks
for every service. It also eliminates palettes full of new and
unfamiliar blocks that would require searching for just the
right one. Another factor that makes the RPC concept familiar
to students is that it closely resembles custom blocks. Both of
them have multiple inputs and a single output, and are blocking
calls that cause the program to wait for the result. The only
differences are that RPCs run on the server and they are not
user-defined.

RPCs return data in the form of numbers (e.g., temperature),
text (e.g., city name), lists (e.g., movie IDs), multi-dimensional
arrays (e.g., geolocation search results), or images (charts,
maps, movie posters, etc.). These are built-in data types and
students are already familiar with them. Users do not need
to de-serialize the data, parse text, or a process a JSON data
structure to extract useful information from results, unlike with
HTTP calls available in other tools.

Services allow students to create projects that utilize a wide
array of information freely available on the internet. Many of
these are sources that students already use in their daily lives
(e.g. maps, weather, movie ratings, etc.). Others are related
to topics they may care about, such as climate change or
sports. Helping students create projects tied to their interests
and related to real world issues will increase their motivation
to learn to program and make programming and computer
science more relevant to them [13].

IV. COMMUNICATION

Teenagers spend a lot of time on social media and with
online multi-player games. What kind of support would a

programming environment need to let them create such ap-
plications as opposed to just consuming them? Message pass-
ing is probably the most important abstraction in distributed
computing. We picked it to enable NetsBlox projects running
anywhere on the internet to be able to communicate with each
other.

Messages in NetsBlox are very similar to events in Scratch
and Snap!. Messages are more powerful, though, as they can
carry data and they do not have to stay within the project
(i.e., within the walls of the environment); they can travel to
any other NetsBlox project running at the time of sending.
Messages have types, defined by a name and the data the
message is to carry (i.e., an ordered set of input slot names).
Message type definition is done similarly to how one defines
a custom block header in Snap!.

Only two blocks are needed for message passing: one for
sending and one for receiving. Selecting a message type in
the “send” block pull down menu reconfigures it to show the
corresponding input slots with their names provided. Similarly,
selecting a message type in the “when I receive” receiver hat
block shows the same fields as variables, just like a custom
block definition does, as shown in Figure 3.

Fig. 3: Message passing blocks

Message data can be of any of the data types supported by
the environment, even scripts that the receiver can later run!
The data is not strongly typed, so the sender and receiver must
agree on what the message means. If the two projects need a
prescribed interaction pattern then they also need to agree on
a sequence of different messages of typically different types.
In other words, they have to design a protocol. But for simple
applications, a single message type suffices. Consider Figure
4 showing a 6-block chat application (using the ‘chat’ message
type defined in Figure 3), which allows two or more students
to chat with each other, each running the same project shown.

Fig. 4: Simple chat app

Another important concept in message passing is address-
ing. The sender must specify where to send the message.
NetsBlox supports local addressing. A NetsBlox project can
consist of multiple subprojects, each of which plays a Role
in the project, while the project itself is referred to as the

Room. This naming convention comes from the fact that we
anticipate many students will use message passing for creating
multi-player games. Subprojects can be assigned to different
users to run on different machines, e.g., play a game against
each other. In turn, messages can be sent to any role or a
group of roles within the same project. For example, in the
chat application in Figure 4, the chat messages are sent by any
one role to all the other roles, i.e., to others in room.

Messages can also be sent to any running application.
A globally unique address is constructed by the (username,
project name, role name) tuple, since each of these is guaran-
teed to be unique within its context. Global addressing is useful
when one wants to support a dynamic number of participants
in a distributed application. For example, the simple chat
application could be extended to be an actual chatroom that
users can dynamically join and leave. Another example would
be peer to peer networking or a citizen science project, where a
server (also a NetsBlox project) divides up a parallel complex
problem into small tasks and distributes them to volunteer
workers (running the same NetsBlox “client” project). The
famous NASA SETI project [14], [15] is a real world example
of this kind of distributed computing.

These examples illustrate that the message passing abstrac-
tion in NetsBlox has a low threshold, enabling students to
write non-trivial applications with just a few blocks. But it
also has a high ceiling, allowing students to create complex
distributed applications in a block-based environment. The
abstraction hides a lot of the accidental complexity associated
with message passing and networking, but it exposes the
most important concepts for distributed computing, including:
message types, protocols, latency, and addressing.

Note that services can include messages and not just RPCs.
For example, a call to the Earthquake service may need to
provide data on thousands of earthquakes in the requested
geographic area. Instead of returning a huge multi-dimensional
array, the service sends one message per earthquake containing
the date, magnitude, and location in separate fields. The N-
Player game service that provides generic support for turn-
based games also utilizes messages. For example, upon re-
ceiving an “end of turn” RPC call from one player, the service
sends a message to the player whose turn is next.

V. ROBOTICS REIMAGINED

The traditional approach to educational robot program-
ming requires a local connection to the device via USB
or Bluetooth to download the program to be executed on
the robot. NetsBlox takes a different approach. WiFi-enabled
robots can connect to the NetsBlox server directly via the
internet. In turn, a service called RoboScape allows NetsBlox
programs to send wireless commands to the robots. The
robot runs a command interpreter that executes these remote
commands. Robots respond by sending messages back to the
user’s program containing, for example, sensor values. This
approach has several advantages. The student’s code runs in
the browser, making it much easier to test and debug. Student
programs, and consequently, the robots, can communicate with

each other and hence, collaborative robotics becomes feasible.
Furthermore, the environment makes it possible to “overhear”
other students’ communication with their robots and hijack
them. This motivates the need for cybersecurity and makes the
subject much more tangible and fun to learn. We have carried
out multiple successful and popular high school cybercamps
built around wireless robotics [16].

Since the student’s running program and the robot do not
have to be co-located, remote robotics becomes possible. All
one needs is a webcam streaming a video of the robot “arena”
and multiple students can use the robots from their own
homes. Remote robot programming can also be accomplished
with more traditional Bluetooth-enabled robots that do need a
local computer to interface with. In the Spring of 2020, after
the pandemic started, Birdbrain Technologies set up multi-
ple Hummingbird robots, connected them to a laptop where
they run a NetsBlox program that controls the local robots
using messages they receive from a remote NetsBlox project.
Students are provided with various remote template projects
that have the required message types already predefined and
encapsulated in custom blocks. They can then use these blocks
in their programs to control the robots remotely. The first
command sends the “reserve” message that assigns the robot
to the given user for a fixed amount of time if it is available.
The robot action is live-streamed in another window [17].

Real physical robots are fun, and students love hands-on
activities. However, robots are either inexpensive but simple,
or powerful but expensive, and they can be hard to maintain,
especially in a school setting. Furthermore, connecting WiFi
devices to a school network can be problematic. Our work-in-
progress project has created a flexible, modular, and immersive
virtual robotics environment in which a group of students share
an instance of a virtual world and each has their own virtual
robots to program. The virtual robots are programmed just
like the physical ones through the RoboScape service. Virtual
robotics is an ideal setting to introduce advanced computing,
because many of the constraints of physical devices can be
controlled—either removed or, when pedagogically useful,
amplified [18]. Yet, they are still tangible for today’s youth
accustomed to virtual experiences. Virtual robots can vary
widely in their capabilities regarding locomotion, sensors, and
actuators. They can contain the most advanced hardware from
GPS to Lidar since there is virtually no cost associated with
them. Virtual worlds can range from urban environments to
deserts; from the open ocean to space. Students can view
the entire virtual world on the classroom projector or their
own computers/devices, or they can wear a VR headset to
get a first-person view and a truly immersive experience. The
environment is designed to be remotely accessible, so students
can share worlds regardless of their geographic location. The
environment looks just like a VR game, except that students
create and program it, and not just play with it. We will
conduct multiple summer camps for high school students
where they will work on robot and cybersecurity challenges.

VI. YOUR PHONE AS A SENSOR

Many schools offer makerspaces and other opportunities for
students to get their hands on simple embedded computers,
sensors and educational robots. However, most do not. Also,
the kind of sensors and devices available are limited by cost.
Finally, these kinds of activities are necessarily in-person, re-
stricted to the school where the lab is located. However, almost
every student in developed and even developing countries has
a smartphone (or other mobile device) that contains a rich
collection of sensors that are connected to the internet out
of the box. This presents an opportunity to teach concepts
related to the Internet of Things (IoT), networking, and dis-
tributed computing in a manner that is not only accessible
to novices but also highly engaging and motivating. To make
this approach a reality, we have created PhoneIoT, a mobile
app which allows the built-in sensors of the device to be
accessed remotely from NetsBlox. Since these devices have
touchscreens as well, PhoneIoT makes it possible to configure
a graphical user interface on the phone from the very same
NetsBlox program that processes the sensor data and handles
events from the mobile device. Hence, students can build truly
distributed applications that run on two or more computers
connected via the internet and that interact with the physical
world via sensors.

Exercise Tracker

To illustrate how PhoneIoT can be used to create powerful
and engaging projects, we present a simple exercise tracker
which plots the user’s route on top of Google Maps displayed
in the NetsBlox client, streams the updated display back to the
mobile device and prints the total distance covered as well.
To emphasize the use of PhoneIoT’s custom GUI controls, we
also add start/stop buttons.

Figure 5 shows a portion of the initialization code. The
device ID and password displayed in the PhoneIoT menu are
manually entered in the NetsBlox client code for security.
If the correct credentials are provided, PhoneIoT will accept
configuration RPC calls such as the ones in the figure, which
add controls at certain coordinates and dimensions. Adding
the other controls is done with similar RPCs (not shown). The
last block in the figure requests location data every 2 seconds.

Fig. 5: NetsBlox code to initialize communication with the
PhoneIoT app and add GUI widgets on a mobile device

After initialization, we receive location updates via the
“location” message type and begin plotting the course. Each
message gives us the latitude and longitude (among other
things), which we can convert into screen coordinates with the

GoogleMaps coordinate translation RPCs. See Figure 6. The
“getDistance” RPC of the GoogleMaps service can give us the
distance between two locations, though we need to perform
some averaging to reduce errors due to GPS inaccuracy [19].
This is done inside the “add point” custom block (i.e., func-
tion). The only other required logic is handling the stop and
start events from the custom buttons on the phone. See Figure
7 for the final app screens in NetsBlox and PhoneIoT.

Fig. 6: Exercise tracker code. The “add point” custom block
maintains the distance covered.

Fig. 7: NetsBlox client stage (left) and phone display (right)
of the exercise tracker app at slightly different times

VII. COLLABORATION

Once we remove the walls around the programming environ-
ment, it becomes possible to support collaborative program-
ming on projects. NetsBlox allows users to issue and accept
invitations to collaborate on a project. Collaborators can then
work on the same project simultaneously. Concurrent editing
operations show up on everyone’s screen. The server resolves
conflicting changes by approving the first one, and rejecting
subsequent ones. However, since the typical latency is under
100 milliseconds, this rarely happens.

Since NetsBlox stores only a single shared copy of the
project, students can also work asynchronously. This is similar

to how popular collaborative editing tools such as Google Docs
or Overleaf work. However, there is a conceptual difference
between static documents and continuously executing block-
based code. The latter has a state: variable values and the
appearance of the sprites and the stage. Since each user’s
computer executes the code independently, the program state
would be hard, if not impossible, to synchronize. So NetsBlox
only keeps the program itself in sync across collaborators. The
scripts will be the same, but the stage and the variable values
will typically be different across users.

Collaboration support enables pair programming, team
projects, remote tutoring, and remote collaboration. The latter
two have been especially important with online learning in
the middle of a pandemic. Furthermore, it also makes it
possible to try out novel ways of teaching. For example,
designing for collaboration can involve assigning subtasks to
collaborating students. This can also help highlight problem
decomposition—a key aspect of learning programming and
computational thinking [20].

Yet another novel way to collaborate and share one’s work
with classmates and/or the teacher in NetsBlox is through
Activity Galleries. Galleries enable members of a class or
group to publish in-process and final-form NetsBlox projects
to a shared space. Published entries preserve the projects’
current state and also allow them to be viewed, commented
on, loaded, and remixed by other group members. Finally, an
Activity Gallery can be scoped to a particular classroom, so
the group can benefit from seeing and giving feedback on each
other’s ideas as they emerge.

VIII. EXTENSIBILITY

The NetsBlox environment has two major components: the
client and the server. The client has unlimited undo and redo
support and the capability to replay the entire history of the
project. This also serves as simple version control, since one
can go back to any past point in the history and continue from
there. The NetsBlox client also adds a new block category to
Snap! called Network, containing the RPC block and blocks
related to message passing.

Unlike other environments, most NetsBlox functionalities
are provided by the server, which runs the various services,
routes messages, and manages collaboration (Figure 8). The
architecture of the server is modular, facilitating extensibility.
To add a new service, only a single JavaScript file (based on a
template) needs to be added. Some are as simple as a few lines
of code, while others providing more complex functionality
can get large. But they are well separated, with a simple API
connecting them to the core.

The power of this approach is illustrated by the fact that
adding support for hardware devices in the form of the
RoboScape service that manages WiFi connected robots or
the PhoneIoT app that connects to mobile devices required
no change on the client side or the server core at all. Most
importantly, students do not have to learn any new blocks when
a new service is added. All they see is a new, self-documenting
option in the pull down menu of the “call” block.

Fig. 8: NetsBlox architecture

It is important to note that the clients access the server
via a well documented open RESTful API. Therefore, all the
services and message passing support are available to potential
alternative clients that do not need to be block-based. For
example, we are already working on a Python front-end.

A. Make your own service

Up until recently, it was cumbersome for outsiders to add
a new service to NetsBlox. One would either need to ask the
authors to add something or implement it oneself and issue
a pull request on GitHub. Many teachers are not JavaScript
experts, so providing a service relevant specifically to their
school was not really possible. To address this need, one of the
latest NetsBlox services is called “Service Creation.” It makes
it possible to add one’s own service that will then appear in
the “call” block pull down menu under the Community and
then username submenus.

Fig. 9: Create Your Own Service

To create the data field in Figure 9, user can drag in a csv
file to turn into a variable (a two-dimensional array). The first
row of this file should contain column headers (e.g., “date,”
“temperature,” etc). The user can then pass the variable with
the data as an input argument of the “createServiceFromTable”
RPC as shown above. The new service will immediately
become available with a set of predefined RPCs: one for each
column of the table (e.g., “getTemperatureColumn”, as well
as one for each column as a function of the first column
(e.g., getTemperatureByDate”). This latter option is useful
when the data is some kind of time series and the first
column contains the date/time values. The ‘options’ argument
to ServiceCreation enables the user to change these default
behaviors. It is even possible to provide a NetsBlox script
for any of the desired RPCs. NetsBlox translates these into
JavaScript and they become the code associated with the RPC.

This is yet another feature that helps students create relevant
projects. Instead of emailing the students a data file, a teacher

can create a new service in a few minutes that becomes
available to students instantly. If some revision needs to be
made, the service can be updated just as easily, and all students
will have the latest data automatically.

B. Alexa Integration

Enabling students to integrate voice assistants, like the
Amazon Echo, into their distributed programs, is yet an-
other opportunity to make programming more compelling
and meaningful to young learners. Students can make games
where players control their characters with voice commands
or even control network-enabled robots using the RoboScape
service from Section V. Even if they simply want to create a
standalone skill, they are able to utilize many of the standard
services such as Weather, MovieDB, and Translation.

NetsBlox provides an Alexa service, a collection of RPCs
for creating a skill from a configuration (defined as a 2D
list) along with additional helper RPCs. Using this service,
users can define intents, give example utterances, and intent
handlers as anonymous functions. Upon calling the creation
RPC, the NetsBlox server creates the skill for the given user
and stores the handlers in the database. When a command is
spoken to the Alexa skill, the request is handled entirely by
the NetsBlox server using the appropriate user-defined block-
based intent handler. That is, when an intent is received by
NetsBlox, the user-defined intent handler is retrieved from
the database, compiled to JavaScript, and executed with the
received values for each slot. As the intent handlers can utilize
the message passing blocks, they can be used to forward
messages to student projects, such as games where the players
are controlled via Alexa.

IX. EVALUATION

We have conducted several small-scale evaluation studies of
NetsBlox through summer camps and in after-school settings.
Since we cannot assume prior programming knowledge, the
first two days of a week-long camp usually focus on introduc-
tory programming before tackling the more advanced topics
NetsBlox was designed to teach.

Nevertheless, our studies have shown both statistically
significant learning gains and increased student interest and
engagement. Broll et al. report results from two summer camps
that demonstrated between 15 and 20 percentage point gains
in both CT and networking knowledge using a pre- and post-
test [21]. Four summer camps with 62 students total were
conducted in 2018 and 2019 focusing on robotics and cyber-
security using physical robots [16], [22]. Significant learning
gains were achieved in both CT and cybersecurity. A quote
from a participating high school teacher illustrates the level of
student engagement: “I did not see them on cell phones, they
were engaged with programming their robot.” Feedback after
a professional development workshop involving Distributed
Computing using NetsBlox revealed teachers’ ease with using
RPCs and message passing blocks, excitement about how these
features could expand students’ projects to include various data
sources from the internet, and an interest in using it in various

ways in their schools–as part of teaching CS topics such as
networks in AP CS Principles or in after-school camps [23].
NetsBlox has also been used to introduce first-year college
students to programming during the first two weeks of an
introductory programming course at Vanderbilt for several
years now. The course teaches programming with MATLAB
to non-CS engineering students. Anonymous surveys indicate
that students with previous programming experience would
rather not spend time with block-based programming, but most
students appreciate the gentle introduction before switching to
the main text-based language of the course.

The curricula used in these studies are all project-based.
Many times we present a starter project, e.g., a current weather
app or a chat program, and then let students work on enhancing
it any way they like. For example, one student team in one
of the camps added their own encryption algorithm to the
chat project, so that they could keep their conversation private.
Most camps conclude with an individual or team project of the
students’ own choosing. Innovative examples include various
multi-player games such as a “Tron” clone, an interactive
map interface for learning about country demographics and
a running route planner on top of Google Maps.

The various collaboration models supported by NetsBlox
have also been examined in multiple studies. Zacharia et al.
compared students working in driver-navigator or driver-driver
pairs, showing that the driver-driver configuration did not
have the perceived imbalance in student agency that driver-
navigator did [24]. These results align with a 2020 study
by Tsan, et al. on pair programming in 4th and 5th grade,
comparing programming on one computer versus students
both acting as drivers on their own devices [25]. Student
interviews suggested that the one-computer condition helped
them communicate more with their partner, and the two-
computer condition was preferred, but that students struggled
to coordinate the programming with their partner.

Lytle et al. compared three types of driver-driver NetsBlox
collaboration in a middle school summer camp [26]. In this
study, pairs of students worked on a series of four game-
themed programming projects using different collaboration
styles in NetsBlox: separate, together, and puzzle. “Separate”
involved students programming two separate NetsBlox Roles
to complete a pong game, with one student programming
the Left Paddle role, and the other taking the Right—with
no collaborative editing across Roles. “Together” involved
two students in the same Role, with synchronous editing to
create a single paddle for Brick Breaker. “Puzzle” involved
collaborative programming of a basket sprite to collect falling
fruit—but with the blocks partitioned so that each partner
could only access half of them, requiring partners to talk
to coordinate efforts. In a fourth game project, 16 of 24
pairs chose Puzzle while 8 chose Together collaboration,
with many citing that working with complementary blocks
was more fun and interesting. An overwhelming majority
expressed interest in collaborative programming in the future,
with 27 preferring Puzzle-style, 17 preferring Together, and
only 4 preferring to work Separately on future projects. These

statistics demonstrate that students in middle grades 6-8, aged
11-14, appreciate collaboration while learning to program!

The virtual robotics platform and the PhoneIoT app are
recent developments. We are running three camps with 28 stu-
dents and a week-long PD with four high school teachers this
summer. Early feedback indicates that students are motivated
and are engaging with these new technologies.

X. CONCLUSIONS

There is a widespread perception among high school-aged
students that block-based environments are toys and not real
programming languages. There is only so much one can do in
a closed environment. Contrast that with the typical teenager’s
phone or laptop where the power of the entire internet is one
click away.

But it does not have to be this way. Leveraging modern web
technologies and the affordances of block-based programming
environments can enable young learners to create projects that
matter to them–making programming more relevant, motivat-
ing, and interesting. Projects such as distributed multi-player
games, a shared whiteboard, and interactive global maps with
superimposed climate data place powerful, creative possibili-
ties in young learner’s hands. Both teachers and students from
middle grades up can successfully program such projects using
NetsBlox. Furthermore, such projects can democratize access
to learning important modern computing concepts, such as dis-
tributed computing and computer networking. Until now, these
topics have only been taught to computing undergraduates,
despite their importance to computer literacy for everyone.

Let us summarize what’s possible once we remove the walls
around a block-based programming environment:

• Student programs can access the wealth of information
and services available on the internet. This makes it
possible to create all kinds of STEAM-related projects
sparking the interest of students who are traditionally not
attracted to computing. For example, Figure 10 shows
a project visualizing up-to-date pandemic information
anywhere in the world.

• Being able to create programs that can communicate with
each other opens up a world of online multi-player games
and social apps for students to create.

• A novel approach to robot and device programming
becomes possible. This enables collaborative robotics,
remote control of games and robots with mobile devices,
voice assistant integration, and an engaging, hands-on
way of teaching cybersecurity.

• Novel forms of collaboration, including truly remote
teamwork and sharing of in-process work can be sup-
ported seamlessly. In the age of COVID-19, this is a
crucial requirement.

As we have shown, a lot of added functionality becomes
available once programs have access to the internet. The most
important consideration is to keep the abstractions that provide
this access simple and intuitive. When a new extension is
provided to the typical block-based environment, it comes with
many new blocks. This makes it difficult to learn them and

(a)

(b)

Fig. 10: Clicking on an interactive map of the world (a) shows
up-to-date COVID data in the selected country (b).

find them, especially if multiple extensions are used. Instead,
a more general mechanism should be provided. NetsBlox
added just two new abstractions introducing three new blocks
(call, send, when I receive) to those typical of block-based
environments, to provide a wide array of new capabilities.
Furthermore, these two new abstractions are similar to ones
that many students are already familiar with: an RPC is like a
custom block, and messages are similar to events. This makes
them intuitive and easy to learn and use.

Another important consideration is to keep the environment
extensible, even by the users themselves. Adding services,
including support for new devices, should not require new
custom blocks or any changes to the client code or the
interface. Moreover, users themselves can add their own online
data services for everyone to use without leaving NetsBlox.

Once you show students the wide variety of advanced
projects and technologies such an environment enables with
just a few blocks of code, they will quickly reconsider the
misconception that block-based programming is just for little
kids. As two students said last summer: “It’s really cool to
see real world experience and real world data and real world
things,” and these projects help “a lot more people think
[block-based programming] was really cool.” A teacher added:
“With the virtual delivery of my course, allowing students to
collaborate in real time on a project, and understand HOW the
collaboration works is a great learning experience....”

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1835874, the National
Security Agency (H98230-18-D-0010) and the Computational
Thinking and Learning Initiative of Vanderbilt University.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] F. J. Rodrı́guez, K. M. Price, and K. E. Boyer, “Exploring the
pair programming process: Characteristics of effective collaboration,”
in Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, ser. SIGCSE ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 507–512. [Online].
Available: https://doi.org/10.1145/3017680.3017748

[2] “NetsBlox website,” https://netsblox.org, cited July 1, 2021.
[3] B. Broll, A. Lédeczi, P. Volgyesi, J. Sallai, M. Maroti, A. Carrillo, S. L.

Weeden-Wright, C. Vanags, J. D. Swartz, and M. Lu, “A visual program-
ming environment for learning distributed programming,” in Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. ACM, 2017, pp. 81–86.

[4] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, and
M. Resnick, “Scratch: A sneak preview,” in Proceedings of the
Second International Conference on Creating, Connecting and
Collaborating through Computing, ser. C5 ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 104–109. [Online]. Available:
http://dx.doi.org/10.1109/C5.2004.33

[5] B. Harvey, D. D. Garcia, T. Barnes, N. Titterton, O. Miller,
D. Armendariz, J. McKinsey, Z. Machardy, E. Lemon, S. Morris,
and J. Paley, “Snap! (build your own blocks),” in Proceedings of
the 45th ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’14. New York, NY, USA: ACM, 2014, pp. 749–749.
[Online]. Available: http://doi.acm.org/10.1145/2538862.2539022

[6] A. Kelly, L. Finch, M. Bolles, and R. B. Shapiro, “BlockyTalky:
New programmable tools to enable students’ learning networks,”
International Journal of Child-Computer Interaction, vol. 18, pp. 8
– 18, 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S2212868918300394

[7] S. C. Pokress and J. J. D. Veiga, “MIT App Inventor: Enabling Personal
Mobile Computing,” 2013.

[8] L. Moroney, “The firebase realtime database,” in The Definitive Guide
to Firebase. Springer, 2017, pp. 51–71.

[9] K. P. Birman, “Consistency in distributed systems,” Reliable Distributed
Systems: Technologies, Web Services, and Applications, pp. 375–390,
2005.

[10] B. B. Lim, C. Jong, and P. Mahatanankoon, “On integrating web services
from the ground up into CS1/CS2,” in Proceedings of the 36th SIGCSE
technical symposium on Computer science education, 2005, pp. 241–
245.

[11] L. Assunção and A. L. Osório, “Teaching web services using. NET
platform,” in Proceedings of the 11th annual SIGCSE conference on
Innovation and technology in computer science education, 2006, pp.
339–339.

[12] D. Garcia, B. Harvey, and T. Barnes, “The beauty and joy of computing,”
ACM Inroads, vol. 6, no. 4, pp. 71–79, 2015.

[13] D. Franklin, D. Weintrop, J. Palmer, M. Coenraad, M. Cobian, K. Beck,
A. Rasmussen, S. Krause, M. White, M. Anaya, and Z. Crenshaw,
“Scratch encore: The design and pilot of a culturally-relevant
intermediate scratch curriculum,” in Proceedings of the 51st ACM
Technical Symposium on Computer Science Education, ser. SIGCSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
794–800. [Online]. Available: https://doi.org/10.1145/3328778.3366912

[14] S. J. Garber, “Searching for good science: the cancellation of NASA’s
SETI Program,” J Br Interplanet Soc, vol. 52, pp. 3–12, 1999.

[15] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky,
“SETI@home-massively distributed computing for SETI,” Computing
in Science Engineering, vol. 3, no. 1, pp. 78 –83, jan/feb 2001.

[16] Á. Lédeczi, M. Metelko, X. Koutsoukos, G. Biswas, M. Maróti, H. Zare,
B. Yett, N. Hutchins, B. Broll, P. Völgyesi, M. B. Smith, and T. Darrah,
“Teaching Cybersecurity with Networked Robots,” in Proceedings of
the 50th ACM Technical Symposium on Computer Science Education.
ACM, 2019, pp. 885–891.

[17] BirdBrain Technologies, “Remote Robots,” https://www.
birdbraintechnologies.com/remote-robots/, cited 2021 July 1.

[18] E. B. Witherspoon, R. M. Higashi, C. D. Schunn, E. C. Baehr,
and R. Shoop, “Developing computational thinking through a virtual
robotics programming curriculum,” ACM Trans. Comput. Educ., vol. 18,
no. 1, Oct. 2017. [Online]. Available: https://doi.org/10.1145/3104982

[19] B. Bennett, “Accurate distance calculation using gps while performing
low speed activity,” Master’s thesis, University of Oregon, Jun 2018.

[20] S. Grover and R. Pea, “Computational thinking: A competency whose
time has come,” Computer science education: Perspectives on teaching
and learning in school, vol. 19, 2018.

[21] B. Broll, Á. Lédeczi, H. Zare, D. N. Do, J. Sallai, P. Völgyesi, M. Maróti,
L. Brown, and C. Vanags, “A visual programming environment for
introducing distributed computing to secondary education,” Journal of
Parallel and Distributed Computing, vol. 118, pp. 189–200, 2018.

[22] B. Yett, N. Hutchins, G. Stein, H. Zare, C. Snyder, G. Biswas,
M. Metelko, and Á. Lédeczi, “A hands-on cybersecurity curriculum
using a robotics platform,” in Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, 2020, pp. 1040–1046.

[23] S. Grover, V. Cateté, T. Barnes, M. Hill, A. Ledeczi, and B. Broll,
“First principles to design for online, synchronous high school cs teacher
training and curriculum co-design,” in Koli Calling’20: Proceedings of
the 20th Koli Calling International Conference on Computing Education
Research, 2020, pp. 1–5.

[24] Z. Zacharia, D. Boulden, J. Vandenberg, J. Tsan, C. Lynch, E. Wiebe,
and K. Boyer, “Collaborative talk across two pair-programming config-
urations,” in A Wide Lens: Combining Embodied, Enactive, Extended,
and Embedded Learning in Collaborative Settings, 13th International
Conference on Computer Supported Collaborative Learning (CSCL)
2019, vol. 1, 2019.

[25] J. Tsan, J. Vandenberg, Z. Zakaria, J. B. Wiggins, A. R. Webber,
A. Bradbury, C. Lynch, E. Wiebe, and K. E. Boyer, “A comparison
of two pair programming configurations for upper elementary
students,” ser. SIGCSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 346–352. [Online]. Available:
https://doi.org/10.1145/3328778.3366941

[26] N. Lytle, A. Milliken, V. Cateté, and T. Barnes, “Investigating different
assignment designs to promote collaboration in block-based environ-
ments,” in Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, 2020, pp. 832–838.

