Your Phone

as a Sensor:

Making IoT Accessible for Novice Programmers

Brian Broll
Vanderbilt University
Nashville, USA
brian.broll @ vanderbilt.edu

Devin Jean
Vanderbilt University
Nashville, USA
devin.c.jean@vanderbilt.edu

Abstract—Distributed computing, computer networking, and
the Internet of Things are all around us, yet only computer
science and engineering majors learn the technologies that enable
our modern lives. This paper introduces PhoneloT, a mobile
app that makes it possible to teach some of the basic concepts
of distributed computation and networked sensing to novices.
PhoneloT turns mobile phones and tablets into IoT devices and
makes it possible to create highly engaging projects through
NetsBlox, an open-source block-based programming environment
focused on teaching distributed computing at the high school
level. PhoneloT lets NetsBlox programs—running in the browser
on the student’s computer—access available sensors. Since phones
have touchscreens, PhoneloT also allows building a GUI remotely
from NetsBlox, which can be set to trigger custom code written
by the student via NetsBlox’s message system. The approach
enables students to create quite advanced distributed projects,
such as turning their phone into a game controller or tracking
their exercise on top of an interactive Google Maps background
with just a few blocks of code.

Index Terms—IoT, Mobile Devices, Sensors, User Interaction,
Block-Based Programming

I. INTRODUCTION

Most of the applications we use on our computers and
mobile devices every day are distributed and use the Internet to
provide their functionality. Networked sensors and actuators—
the Internet of Things (IoT)—are also becoming ubiquitous,
with smart homes and health monitoring leading the way.
Yet hardly any of the enabling technologies are taught in
introductory computer science classes in K-12. There do exist
classes and makerspaces where some students are exposed
to embedded computers, providing opportunities to program
Raspberry Pis or micro:bits with simple sensors and actuators,
such as LEDs, using connectivity based on either a USB cable
or Bluetooth. While these experiences are fun, they are fairly
disconnected from the IoT that otherwise surrounds us. In
addition, not many schools offer these types of classes due
to cost, logistics, and a lack of teachers.

84% of teenagers in the United States, however, already
own a device [1] that comes with a rich set of powerful
sensors, including accelerometers, gyroscopes, microphones,
cameras, GPS, and many more, and is Internet-enabled out
of the box. Smartphones offer an excellent opportunity to
expose students to networked sensing and make computing

Supported by the National Science Foundation (#1835874) and the National
Security Agency (H98230-18-D-0010).

Akos Lédeczi
Vanderbilt University
Nashville, USA
akos.ledeczi @vanderbilt.edu

Gordon Stein
Vanderbilt University
Nashville, USA
gordon.stein @vanderbilt.edu

more engaging by enabling them to be creators and not just
users of compelling applications. But how can we make these
powerful technologies accessible to novice programmers?

We introduce a mobile app, PhoneloT, to programmatically
access smartphones and tablets as IoT devices through Nets-
Blox [2], a block-based programming environment based on
Snap! [3]. NetsBlox introduced two powerful networking and
distributed computing abstractions to block-based languages.
Remote Procedure Calls (RPCs) make a rich set of online
services and data sources accessible to student programs, such
as Google Maps, gnuplot, earthquake data from USGS, climate
change datasets from NOAA, the Open Movie database,
and many more [4]. Message passing lets NetsBlox projects
running anywhere in the world communicate with one another,
making it possible to create multi-player games and other
distributed programs. RPCs and messages are also used to
control WiFi-enabled devices such as educational robot vehi-
cles [5]. PhoneloT utilizes these very same abstractions, so any
user familiar with NetsBlox will already have the necessary
knowledge to create projects using PhoneloT.

PhoneloT provides two main features: the ability to read
and/or stream live sensor data, and the ability to create an
interactive, configurable user interface on a mobile device.
Both of these features are accessible through RPCs and mes-
sages, allowing for the creation of fun and engaging projects
that integrate sensor data and custom user input and provide
feedback on the device’s display. By using a simple, yet
powerful, block-based interface, we abstract away much of
the complexity of networking and distributed computing while
allowing students to explore and learn the most important
concepts in a convenient framework.

II. PREVIOUS WORK

There are several approaches, including Thunkable, App
Inventor, and Kodular (formerly known as AppyBuilder), that
allow for the creation of standalone mobile apps that can be
constructed online with a block-based programming interface
[6]-[8]. Pocket Code (part of the Catrobat project) is similar
to these, although its app designer is built into the app itself
and is more focused on creating games or simulations [9].
Thunkable is perhaps the most similar to PhoneloT, as it
allows access to Internet resources (e.g., speech recognition
and translation services), as well as several device sensors,



such as the accelerometer and gyroscope. However, PhoneloT
is fundamentally different from these projects in that it does
not aim to be an app creation tool; rather, the custom controls
in PhoneloT are merely a means of interacting with NetsBlox
code running in the browser on the student’s computer. That
is, Thunkable and similar projects are not tools for teaching
distributed computing or IoT, as all user interaction and sensor
data is kept internal to the device running the app. Addition-
ally, because PhoneloT is tailored to a distributed computing
environment, it offers more possibilities for creating engaging
educational projects. For instance, PhoneloT could be used to
turn a phone into a custom game controller, with accelerometer
input and soft buttons on the phone’s screen making sprites
move or shoot on the computer’s screen. The phone could also
be used to control real robots in the same way, using a single
NetsBlox program to control multiple computers: one or more
mobile devices, one or more robots, and the laptop, creating
an engaging distributed application.

Another project similar to PhoneloT in terms of intent and
network architecture is Sensor Fusion, an education-focused
project which collects sensor data from a mobile device and
streams it to a computer for analysis [10]. This is similar to
the core sensor-based functionality of PhoneloT but is more
heavily focused on a scientific perspective, namely sensor
fusion, or the combination of data from multiple sensors to
achieve greater accuracy or precision than would otherwise be
possible. In contrast, PhoneloT is part of a distributed com-
puting environment, empowering students to utilize incoming
live data streams, as well as content from other NetsBlox
services, and reconfigure the phone’s display in real time
based on the desired application (e.g., a game controller, data
viewer, or fitness tracker). This is not possible with Sensor
Fusion, as its display and interactive components are not
configurable. PhoneloT’s programmability is a key factor in
creating engaging educational projects for young learners.

III. PHONEIOT

Mobile devices come with a wide variety of hardware
sensors, from simple accelerometers and gyroscopes to more
specialized sensors like step counters and relative humidity de-
tectors. Although a typical device does not contain all potential
sensors, there are several sensors that are reliably present even
on older devices, simply due to basic system requirements.
These include an accelerometer (used for landscape-portrait
rotation) and, for smartphones, a microphone and proximity
sensor (to disable the touchscreen when held to a user’s ear).
While not essential for core device functionality, virtually all
modern smartphones and tablets also have a camera, although
access to this sensor through PhoneloT is handled differently
due to privacy concerns (see below). Additionally, through
services such as Google’s Fused Location Provider API, any
mobile device connected to the Internet can retrieve live loca-
tion data, if not by GPS, then by estimating it from network
connectivity. PhoneloT continuously collects and streams data
from all available sensors to the NetsBlox server, in addition to

handling other specialized requests, such as GUI configuration
and interactions. Figure 1 visualizes this system architecture.

NetsBlox Server

Explicit requests from RPCs
for sensor data or GUI config/state

Formatted, forwarded requests
to the mobile device

Validated requests
with resulting data

Mobile device
running PhoneloT

> 9
= o

. Events/results become
NetsBlox Client NetsBlox messages for

the client

GUI events
and sensor stream

Fig. 1. A visualization of backend network interactions between a NetsBlox
client, the NetsBlox server, and a device running PhoneloT.

PhoneloT raises some potential privacy issues due to ac-
cessing live sensor data, including microphone, camera, and
location information. To address these concerns, PhoneloT

o Exposes only volume levels and not actual audio samples,

o Allows camera access only through direct user approval

(the user must actively take the image), and

o Secures location (and other) data by requiring a randomly

generated password that expires after one day.

Additionally, unless the “run in background” setting is
explicitly opted into, no communication is permitted unless
the app is open and active in the foreground.

A. Network Exchanges

When the PhoneloT app is started, it connects to the Nets-
Blox server, announces its presence, provides the server with
its unique identifier for further communications, and begins
streaming sensor data and accepting network requests via
UDP. This protocol was selected because our data exchange
model is already packet-based, making UDP a better model
than streaming protocols such as TCP. Although UDP has
the potential issue of dropping packets, for our purposes, this
is actually desirable due to providing real-world lessons on
error-handling in fallible network transactions. For instance,
an early project for students could be to make robust wrappers
for some PhoneloT functions by repeating the operation until
it succeeds.

SO0 N EMEEEE N He llo-World! Rslleveryonetinroom v

Se—
when | receive message ’m

Fig. 2. Example of sending and receiving messages in NetsBlox.

The networking primitives used by the NetsBlox side of
PhoneloT are composed of “messages,” the same concept used
throughout NetsBlox. In essence, a “message” is a structured
block of data that is identified by name and has a set of fields
associated with it. Messages can be sent with the “send msg”



block and received (typically on a different computer) with
a “when I receive” block. As an example, there is a default
message type called “message” which has a single field called
“msg.” Figure 2 shows a simple example of how to send and
receive a message of this type.

call PhoneloT | I listenToSensors | (device) [ list {15 |acn:e\eromeler\ 100| 4 b

when | receive accelerometer (x: G G

say (join FEEETIEER (x Ky Bz

Fig. 3. Registering for and receiving accelerometer updates at 10 Hz.

PhoneloT provides two primary ways of accessing sensor
data: either through explicit requests, or by registering a sensor
update event. Explicit requests are done with normal RPC
return values, while sensor update events are received by a
custom message type. If an explicit request does not receive
a response from the phone (e.g, due to a dropped packet), an
error is returned to the user, which would have to be checked.
Because of this, the streaming method is simpler for users as
sensor data are sent asynchronously from the phone, and a
dropped packet simply results in a skipped message. Figure 3
shows example code which registers for and receives sensor
updates from the accelerometer every 100ms.

B. Custom GUI Controls

An important feature of PhoneloT is its customizable in-
teractive display. The static GUI for the main screen of
the PhoneloT app is rather barren, showing only a button
to access the app main menu and a canvas for rendering
custom controls. This canvas is initially empty, but it can
be populated with content via various RPCs from the user’s
program. PhoneloT supports many standard GUI control types,
such as labels, buttons, text fields, image displays, and toggle
switches, as well as some controls tailored for designing game
controllers, such as virtual joysticks. Each of these controls is
fully customizable as to text content, location, size, color, and
many other options depending on the specific control. A non-
exhaustive example of custom controls is given in Figure 4 (a)
and (b).

Most custom controls have some form of event associated
with them, which is sent to the server each time it is raised in
the form of a message. For instance, buttons send a message
when they are pressed, text fields and image displays send a
message when a user updates the content (e.g., via the camera),
and joystick controls send a message each time the stick
is moved. Additionally, there are other RPC requests which
access state information about the controls, such as their text
or toggle state. As an example, a student could perform some
action every second while a button is held down.

This interactive component is important for teaching IoT
to younger K-12 audiences because it immediately gives the
students a useful tool related to things they already know,
such as game controllers or content sharing with text/image
displays. Due to how important phones are to today’s youth,

introducing them to new ways of engaging with and control-
ling their devices can be especially motivating for continued
interest in CS topics. The networking and IoT components are
added to this to provide even more functionality and to teach
the concepts to an already eager audience as a “side effect.”

IV. EXAMPLE PROJECTS

This section will cover several example projects to demon-
strate how phone-based IoT through the NetsBlox platform
enables powerful applications with very little code or special-
ized knowledge.

A. GPS Tracker

The NetsBlox platform already supports many online ser-
vices, one of which is Google Maps. With this service, a
program can get and display a map of the current location,
specified by latitude and longitude, or get the screen position
of a latitude and longitude point on the map and vice versa. By
reading live GPS data from a mobile device running PhoneloT,
it is possible to track the location of the device on a map
and use NetsBlox’s built-in drawing utilities (inherited from
Snap!/) to plot the course. Thus far, this has all been performed
on the NetsBlox client (for user logic and drawing) and the
NetsBlox server (for performing API requests), with the device
running PhoneloT only being used as a sensor. However,
by using PhoneloT’s custom GUI elements, we can add an
image display and send periodic updates to the mobile device.
Essentially, this creates a stripped-down form of the Google
Maps front-end that can be built in under ten blocks. See
Figure 5 for the blocks that set up the display, Figure 6 for
the update logic running on NetsBlox, and Figure 4 (b) for
the custom GUI shown on the mobile app.

B. Accelerometer Plotter

A common topic in introductory IoT is analyzing a live
data stream coming from a device. We have already seen that
receiving a data stream from PhoneloT is as simple as one
RPC call and listening for a NetsBlox message. Once we have
this data, the student can perform whatever analysis is needed
and output results to their NetsBlox client display. A simple
project that could be conducted on a student’s first day of
working with PhoneloT is to receive live accelerometer data
and plot its =, y, and z components.

This can be done with the Chart service, a pre-existing Nets-
Blox service for generating graphs from data points. Figure 7
shows the code required to do this, and Figure 4 (c) shows
the NetsBlox display (running on the student’s computer) after
the phone was picked up from rest, rotated slowly around one
axis, then another, and finally dropped onto a pillow.

V. CONCLUSION

In this brief overview, we have shown that PhoneloT is a
low-cost method for allowing K-12 students to access device
sensors for learning the concepts of networked sensing. These
concepts include API requests in fallible conditions, methods
for handling failures, sensor data processing, event based



@

PhoneloT PhoneloT

23Hundred at Berry Hill

Park at Melrose 10

(_® Blue setting
© ) Red setting
(__® Green setting

Boulton Renta Property

Google

Click Me!

This is an examle of a text field! ‘

Distance Covered: 419m -10
Joystick controls! 10
5
0
-5
SE Stop -10
-15
-20
n o < il (@] < =
(a) (b)

(©)

Fig. 4. Two PhoneloT apps with custom controls (a and b). Streaming acceleration data plotted on the stage of the example project in Section IV-B.

set display | to ! call PhoneloT | I addimageDisplay | (device: § B B8

call PhoneloT |/ addTextField evice 90!
set o_Jio) (.c Llist [aiign [center

(device) H EJ

run PhoneloT |I addButton

run PhoneloT |I addButton

(device 30,

Fig. 5. Blocks used to set up the PhoneloT device display for the GPS tracker.

when | receive location | {latitude ""Iungitude "Jbearing (altitude

I getXFromLongitude | (longitude @ y:
(latitude

go to x: | call GoogleMaps

(call GoogleMaps | I getYFromLatitude
point in direction (bearing

if= pen down?

- —_—
[9 add point ' list (latitude (longitude

(device ' (text "rjroin Distance*Covered:

distance | [}

~
Lun PhoneloT ‘l setText

-

run PhoneloT \l setimage (device “'-d]splay image of Stage

Fig. 6. Location message handler. It reads live GPS data from the mobile
device, plots the track on a map on the stage, and sends the map/track back
as an image to the device. Note that the “add point” custom block maintains
the list of locations and computes the distance using a Google Maps RPC.

programming via message passing, and potentially many other
topics depending on usage. Additionally, the custom display
on the phone allows students to come up with novel ways
to interact with their code running on NetsBlox. We believe
students will find PhoneloT an enjoyable educational tool that
will allow them to envision and create innovative distributed
applications. Along the way, they will learn important cutting
edge computing concepts rarely taught in K-12 today.

The PhoneloT app is already available on both Android and

clicked

when

initialize
CE GV (1 b1c1a193db68

run PhoneloT \I setCredentials | (device ) EESER

(device [ list ({5

run PhoneloT | [ listenToSensors

forever

wait 1 secs

broadcast |updat
i S

switch to costume

call Chart |/ draw |(list (xvals

‘ list

Fig. 7. Code running the accelerometer plotter project. The “add sample”
custom block maintains three lists (xvals, yvals, zvals). The “update display”
script is only shown for the x sprite.

10S. Our future work includes creating curricular units around
it, with some of the relevant educational topics having been
mentioned in this paper. As a test of learning efficacy and
student engagement, we intend to introduce PhoneloT into
our K-12 summer camps and collect data from real users.
The current curriculum is project-based and focuses on having
students learn the basic concepts and features, then apply
them in creative individual or group projects. We will also
be covering several other NetsBlox services and advanced
CS topics during the camp, giving the students plenty of
interesting possibilities for integration with PhoneloT’s sensor
data and input controls.



[1]

[2]
[3]

[4]

[5]

REFERENCES

“It’'s a  smartphone life: ~More than  half of wus.
children now have one,” Oct 2019. [Online]. Avail-
able: https://www.npr.org/2019/10/31/774838891/its-a-smartphone-life-
more-than-half-of-u-s-children-now-have-one

“NetsBlox website,” https://netsblox.org, cited 2021 April 15.

“Snap!: a  visual, drag-and-drop  programming language,”
http://snap.berkeley.edu/snapsource/snap.html.

B. Broll, M. Lu, A. Ledeczi, and et al.,, “A visual programming
environment for learning distributed programming,” in Proceedings of
the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. ACM, Mar 2017, pp. 81-86.

A. Lédeczi, M. Metelko, X. Koutsoukos, G. Biswas, M. Mar6ti, H. Zare,
B. Yett, N. Hutchins, B. Broll, P. Volgyesi, M. B. Smith, and T. Darrah,

[6]
[7]

[8]
[9]

[10]

“Teaching Cybersecurity with Networked Robots,” in Proceedings of
the 50th ACM Technical Symposium on Computer Science Education.
ACM, 2019, pp. 885-891.

D. Siegle, “There’s an app for that, and i made it,” Gifted Child Today,
vol. 43, pp. 64-71, Jan 2020.

“MIT App Inventor,” https://appinventor.mit.edu/.

“Kodular,” https://www.kodular.io/.

W. Slany, “Pocket code: a scratch-like integrated development environ-
ment for your phone,” in Proceeding of the companion publication of
the 2014 ACM SIGPLAN conference on Systems, Programming, and
Applications: Software for Humanity. ACM, Oct 2014, pp. 35-36.

G. Hendeby, F. Gustafsson, N. Wahlstrom, and S. Gunnarsson, “Platform
for teaching sensor fusion using a smartphone,” International Journal
of Engineering Education, vol. 33, pp. 781-789, Apr 2017.



