Work-in-Progress: Strong APA Scheduling in a Real-Time
Operating System

Richi Dubey
Birla Institute of Technology and Science Pilani
Goa, India
£20170099@goa.bits-pilani.ac.in

ABSTRACT

Arbitrary processor affinities are used in multiprocessor systems to
specify the processors on which a task can be scheduled. However,
affinity constraints can prevent some high priority real-time tasks
from being scheduled, while lower priority tasks execute. This paper
presents an implementation and evaluation of the Strong Arbitrary
Processor Affinity scheduling on a real-time operating system, an
approach that not only respects user-defined affinities, but also
supports migration of a higher priority task to allow execution of a
task limited by affinity constraints. Results show an improvement
in response and turnaround times of higher priority tasks.

CCS CONCEPTS

« Computer systems organization — Real-time operating sys-
tems.

KEYWORDS
RTOS, RTEMS, SMP, APA Scheduling

1 INTRODUCTION

In symmetric multiprocessing (SMP) systems, each processor has
direct access to system resources and is treated as an independent
unit by the operating system (OS). Many OSs using SMP also allow
setting a processor affinity for a task, i.e., the set of processors that
can execute it. Affinity scheduling reduces task migrations and
can result in better performance. However, it can also affect the
system’s schedulability: a task can miss its deadline if all processors
in its affinity set are executing higher priority tasks, even if there
is an idle processor in the affinity set of a higher priority task.

In this work, we present the implementation of an arbitrary
processor affinity (APA) scheduler on the Real-Time Executive
for Multiprocessor Systems (RTEMS) that allows shifting of tasks
without violating original affinity restrictions, thus improving the
response-time and turnaround times for higher priority tasks. RTEMS
is an SMP-supported POSIX-compliant real-time OS that supports
task affinity through its SMP framework from the application layer
using rtems_task_set_affinity() [1]. In contrast, the Priority Affinity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EMSOFT’21 Companion, October 8-15, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8712-5/21/10...$15.00
https://doi.org/10.1145/3477244.3477623

Vijay Banerjee, Sena Hounsinou, Gedare Bloom
University of Colorado Colorado Springs
Colorado Springs, CO, USA
(vbanerje,shoueto,gbloom)@uccs.edu

') Running Task

Scheduled-on

® Ready Task

Processor Aftinities

m, Processor

T,
a5

o)

o

T,
(a) Initial State att, (b) Priority Affinity at t, (c) Strong APA at t,
Figure 1: Priority Affinity vs. Strong APA Scheduling: At
time t; (a), 71, T> and Ty are assigned to 7, 72, and 3 respec-
tively. (b) Weak APA: T; is blocked by T; executing on 7;. (c)
Strong APA: T; migrates to 73, blocks Ty and T3 gets 73
Scheduler in RTEMS guarantees a task is scheduled on a proces-
sor in its affinity set, but does not migrate higher priority tasks
executing on a processor in the affinity set of a newly arrived task.

Affinity scheduling has multiple use cases such as providing
security against cache side-channel attacks and maintaining cache
locality.Migration allows an arriving task to displace a running task
from its current processor to another processor in its affinity. In
Weak APA, a task cannot be scheduled if all processors in its affinity
are executing higher-priority tasks. Strong APA allows the schedu-
ling of a lower priority task with affinity constraints by dislodging
higher-priority tasks to other processors in their affinity set [2]. In
this work, we consider a system with a set of n real-time tasks that
run on a set of m identical processors II = {1, ..., 7, }. Each task T;
(1 < i < n) has a user-defined affinity o; C II, a scheduler node Nj,
and a priority prio;. Fig. 1 illustrates the difference between Weak
APA and Strong APA scheduling with n = 4 and m = 3. Priorities
are in decreasing order (i.e., T; has highest priority). a1, a2, a3 and
ay are {my, m, m3}, {m2}, {71}, and {m3}, respectively. Ty, T, Ty are
released at time t1, and T3 at time ¢ (t2 > t1).

2 STRONG APA SCHEDULER ON RTEMS

At a task arrival or departure, the Strong APA scheduler uses task

reachability to update the scheduled task set. .
Definition 2.1. A minimum reachable unit is a triplet Ui] =<

Tj, m, Tj > consisting of a source task Tj, a destination task Tj,
and a processor 7 such that 7 € a; N @j. A task Tj is called a
reachable task from Tj, if there exists an ordered reachability set
Rij= {Ui“, Uf, Ug, Ué} such that the ordered set |R; j| > 0 and
{a,b,...,c,d} € [1,n].

Task Arrival: When a task T; arrives, the scheduler finds R; j,, such
that VUé’ € R; 1o, Tp is executing on processor 7 € U;, and Tj, is
the lowest priority scheduled reachable task. The handling of task

EMSOFT’21 Companion, October 8-15, 2021, Virtual Event, USA

Dubey et al.

Algorithm 1 _Scheduler_strong_ APA_Enqueue

Algorithm 2 _Scheduler_strong_APA_Schedule_highest_ready

Input: T; Output: stat
1: cpu_to_preempt « nil, front « 0, rear «— —1
2 prioj, — HIGHEST_PRIORITY_IN_SYSTEM
3: for m; € a; do

4 queue[++rear] «— 7;, mark 7; as visited

5 preempting_node(r;) < N;

6: while front < rear do

7: Teur < queue[front + +], Teyr < Task running on 7y,
8: if priocyr < prioj, then

9: prioj, < priocyr, cpu_to_preempt < mcyr

10: for m; € acyr do

11: if T,y # Idle_task and 7; not visited then

12: queue[+ + rear] « m;, mark m; as visited

13: preempting _node(m;) < Neyr

14: if (prioj,>prio;) then stat «— Add N; to Ready Queue
15: else

16: Npreempt < preempting_node(cpu_to_preempt)
17: while Npyreempr # Ni do

18: next_cpu_to_preempt < cpu running Npreempt
19: Preempt(cpu_to_preempt, Npreempt)

20: cpu_to_preempt < next_cpu_to_preempt

21: Npreempt < preempting_node(cpu_to_preempt)

22: stat < Add Nj to Scheduled Queue

arrival is shown in Alg. 1. If prioj, < prio;, the scheduler preempts
Tj, and allocates the processor from the first element of R ;, to T; by
shifting the tasks along the path based on R; j,. On T;’s arrival, the
scheduler calls _Scheduler_strong APA_Enqueue() which main-
tains a queue of processors initialized with ; (lines 2 to 5). To find
Tj,, for each processor 7¢y, in the queue, if the task Ty, running on
Teur 1s the lowest priority task seen so far, then 7¢y,, is marked for
preemption. Further, if Ty, is not the idle task, then each processor
7Tt € deyr is inserted to the queue and Ny, marked as the preemp-
ting node for 7y (lines 6 to 13). Once T}, is identified, if its priority
is higher than T;’s, then T; is enqueued to the ready queue (line 13).
Otherwise T; is assigned a processor by backtracking from Tj,’s
processor: cpu_to_preempt (lines 15 to 21).

Task Departure: When task (Tyepar) departs processor (mgepart)s

Alg. 2 finds Ryepart,hi> such that VUé’ € Riepart,his Ta is execu-
ting on processor m € Ulf, and Tj; is the highest priority ready
reachable task. The scheduler schedules Tj; and allocates a task to
Tdepart D shifting the tasks along the path based on Ryepart,hi-
A queue of processors is maintained and initialized with 7754+
For each processor ¢, in the queue, the function identifies any task
Teur in the system that has Ty inits affinity. If T¢y,, is scheduled,
then the processor that it is executing on, 7¢yr, is inserted into the
queue. Else, if Ty, is the highest priority ready task witnessed so
far, it is marked as (Tj,;). In both cases, 77, is marked as the cpu
that Ny, would preempt (lines 3 to 10). Once Tj; is identified, it is
allocated a processor by backtracking through the path from Ty; to
Tdepart> allocating a task to 7gepqr as well (lines 12 to 17).

Evaluation and Preliminary Results. We evaluated the Strong
APA implementation on QEMU with ARM target realview-pbx-a9.

Input: Tyepart: Tdepart
1: front < 0, rear < 0, queue[rear] «— mgepars
2. priop; < LOWEST_PRIORITY _IN_SYSTEM
3: while front < rear do
4 Ty < queue(front ++]
5: for each task T, such that Tfrt € Geur do
6 if Ty, is scheduled then
7 Teur < Processor Ty is executing on
8 queue[++rear] «— 7cyr, Neyr.to_preempt «— Tfre
9 else if priocyr > prioy; then priop; = priocyr
10: Thi < Teur; Neur.to_preempt «— Tfre
11: cur_node <= Np;, cur_cpu < Ngyyr node-to_preempt
12: while cur_cpu # 74epary do -

13: next_node « Node for task scheduled on cur_cpu
14: Preempt(cur_cpu, cur_node)

15: cur_node <« next_node

16: cur_cpu < Neyp node-to_preempt

17: Preempt(cur_cpu, cur_node)

Avg. Response time(in ps) | Avg. Turnaround time(in ys)
Task PA SAPA PA SAPA
1 141.05 306.95 3086783.75 3230183.83
2 207.95 614.78 3197499.71 3136835.88
3 3088997.91 198.45 6373255.57 3169505.46
4 134.72 325.54 3175646.44 6160782.63

Table 1: Response Time and Turnaround Time

We compared the average response time and average turnaround
time of the tasks under Priority Affinity (PA) and Strong APA (SAPA)
scheduling. Table 1 shows average times over 100 runs. We note a
stark difference in the response time of T3 due to the fact that T3 was
blocked by T; in PA scheduling, while SAPA allowed T; to migrate
to 73, allowing T3 to execute. Similarly, the average turnaround
time demonstrates that T3 is scheduled when it arrives with SAPA
scheduling and Ty, which is the lower priority task, was blocked
until T; finished its execution.

3 CONCLUSION AND FUTURE WORK

We presented an implementation of Strong APA scheduling on the
RTEMS real-time OS. The evaluation results show that Strong APA
scheduling has lower response and turnaround times for higher
priority tasks. As a next step, we intend to evaluate context switch
overhead due to task migration and the performance of the schedu-
ler over a large task set.

ACKNOWLEDGMENTS

This work is supported by NSF OAC-2001789 and Colorado State
Bill 18-086. We thank Sebastian Huber and the RTEMS community.

REFERENCES

[1] Gedare Bloom, Joel Sherrill, Tingting Hu, and Ivan Cibrario Bertolotti. 2020. Real-
Time Systems Development with RTEMS and Multicore Processors. CRC Press.
https://doi.org/10.1201/9781351255790

Felipe Cerqueira, Arpan Gujarati, and Bjérn B. Brandenburg. 2014. Linux’s Proces-
sor Affinity API, Refined: Shifting Real-Time Tasks Towards Higher Schedulability.
In 2014 IEEE Real-Time Systems Symposium. 249-259. https://doi.org/10.1109/
RTSS.2014.29

[2

	Abstract
	1 Introduction
	2 Strong APA Scheduler on RTEMS
	3 Conclusion and Future Work
	Acknowledgments
	References

