


EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA Dubey et al.

Algorithm 1 _Scheduler_strong_APA_Enqueue

Input: 𝑇𝑖 Output: 𝑠𝑡𝑎𝑡

1: 𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← nil, 𝑓 𝑟𝑜𝑛𝑡 ← 0, 𝑟𝑒𝑎𝑟 ← −1

2: 𝑝𝑟𝑖𝑜𝑙𝑜 ← 𝐻𝐼𝐺𝐻𝐸𝑆𝑇_𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌_𝐼𝑁_𝑆𝑌𝑆𝑇𝐸𝑀

3: for 𝜋𝑖 ∈ 𝛼𝑖 do

4: queue[++rear]← 𝜋𝑖 , mark 𝜋𝑖 as visited

5: preempting_node(𝜋𝑖 )← 𝑁𝑖

6: while 𝑓 𝑟𝑜𝑛𝑡 ≤ 𝑟𝑒𝑎𝑟 do

7: 𝜋𝑐𝑢𝑟 ← 𝑞𝑢𝑒𝑢𝑒 [𝑓 𝑟𝑜𝑛𝑡 + +], 𝑇𝑐𝑢𝑟 ← Task running on 𝜋𝑐𝑢𝑟
8: if 𝑝𝑟𝑖𝑜𝑐𝑢𝑟 < 𝑝𝑟𝑖𝑜𝑙𝑜 then

9: 𝑝𝑟𝑖𝑜𝑙𝑜 ← 𝑝𝑟𝑖𝑜𝑐𝑢𝑟 , 𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← 𝜋𝑐𝑢𝑟

10: for 𝜋𝑡 ∈ 𝛼𝑐𝑢𝑟 do

11: if 𝑇𝑐𝑢𝑟 ≠ Idle_task and 𝜋𝑡 not visited then

12: 𝑞𝑢𝑒𝑢𝑒 [+ + 𝑟𝑒𝑎𝑟 ] ← 𝜋𝑡 , mark 𝜋𝑡 as visited

13: 𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔_𝑛𝑜𝑑𝑒 (𝜋𝑡 ) ← 𝑁𝑐𝑢𝑟

14: if (𝑝𝑟𝑖𝑜𝑙𝑜>𝑝𝑟𝑖𝑜𝑖 ) then 𝑠𝑡𝑎𝑡 ← Add 𝑁𝑖 to Ready Queue

15: else

16: 𝑁𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← 𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔_𝑛𝑜𝑑𝑒 (𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡)

17: while 𝑁𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ≠ 𝑁𝑖 do

18: 𝑛𝑒𝑥𝑡_𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← cpu running 𝑁𝑝𝑟𝑒𝑒𝑚𝑝𝑡

19: 𝑃𝑟𝑒𝑒𝑚𝑝𝑡 (𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡, 𝑁𝑝𝑟𝑒𝑒𝑚𝑝𝑡 )

20: 𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← 𝑛𝑒𝑥𝑡_𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡

21: 𝑁𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← 𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔_𝑛𝑜𝑑𝑒 (𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡)

22: 𝑠𝑡𝑎𝑡 ← Add 𝑁𝑖 to Scheduled Queue

arrival is shown in Alg. 1. If 𝑝𝑟𝑖𝑜𝑙𝑜 < 𝑝𝑟𝑖𝑜𝑖 , the scheduler preempts

𝑇𝑙𝑜 and allocates the processor from the first element of 𝑅𝑖,𝑙𝑜 to𝑇𝑖 by

shifting the tasks along the path based on 𝑅𝑖,𝑙𝑜 . On 𝑇𝑖 ’s arrival, the

scheduler calls _𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟_𝑠𝑡𝑟𝑜𝑛𝑔_𝐴𝑃𝐴_𝐸𝑛𝑞𝑢𝑒𝑢𝑒 () which main-

tains a queue of processors initialized with 𝛼𝑖 (lines 2 to 5). To find

𝑇𝑙𝑜 , for each processor 𝜋𝑐𝑢𝑟 in the queue, if the task𝑇𝑐𝑢𝑟 running on

𝜋𝑐𝑢𝑟 is the lowest priority task seen so far, then 𝜋𝑐𝑢𝑟 is marked for

preemption. Further, if𝑇𝑐𝑢𝑟 is not the idle task, then each processor

𝜋𝑡 ∈ 𝛼𝑐𝑢𝑟 is inserted to the queue and 𝑁𝑐𝑢𝑟 marked as the preemp-

ting node for 𝜋𝑡 (lines 6 to 13). Once 𝑇𝑙𝑜 is identified, if its priority

is higher than 𝑇𝑖 ’s, then 𝑇𝑖 is enqueued to the ready queue (line 13).

Otherwise 𝑇𝑖 is assigned a processor by backtracking from 𝑇𝑙𝑜 ’s

processor: 𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 (lines 15 to 21).

Task Departure:When task (𝑇𝑑𝑒𝑝𝑎𝑟𝑡 ) departs processor (𝜋𝑑𝑒𝑝𝑎𝑟𝑡 ),

Alg. 2 finds 𝑅𝑑𝑒𝑝𝑎𝑟𝑡,ℎ𝑖 , such that ∀𝑈𝑏
𝑎 ∈ 𝑅𝑑𝑒𝑝𝑎𝑟𝑡,ℎ𝑖 , 𝑇𝑎 is execu-

ting on processor 𝜋𝑘 ∈ 𝑈
𝑎
𝑏
, and 𝑇ℎ𝑖 is the highest priority ready

reachable task. The scheduler schedules 𝑇ℎ𝑖 and allocates a task to

𝜋𝑑𝑒𝑝𝑎𝑟𝑡 by shifting the tasks along the path based on 𝑅𝑑𝑒𝑝𝑎𝑟𝑡,ℎ𝑖 .

A queue of processors is maintained and initialized with 𝜋𝑑𝑒𝑝𝑎𝑟𝑡 .

For each processor 𝜋𝑓 𝑟𝑡 in the queue, the function identifies any task

𝑇𝑐𝑢𝑟 in the system that has 𝜋𝑓 𝑟𝑡 in its affinity. If 𝑇𝑐𝑢𝑟 is scheduled,

then the processor that it is executing on, 𝜋𝑐𝑢𝑟 , is inserted into the

queue. Else, if 𝑇𝑐𝑢𝑟 is the highest priority ready task witnessed so

far, it is marked as (𝑇ℎ𝑖 ). In both cases, 𝜋𝑓 𝑟𝑡 is marked as the cpu

that 𝑁𝑐𝑢𝑟 would preempt (lines 3 to 10). Once 𝑇ℎ𝑖 is identified, it is

allocated a processor by backtracking through the path from 𝑇ℎ𝑖 to

𝜋𝑑𝑒𝑝𝑎𝑟𝑡 , allocating a task to 𝜋𝑑𝑒𝑝𝑎𝑟𝑡 as well (lines 12 to 17).

Evaluation and Preliminary Results. We evaluated the Strong

APA implementation on QEMU with ARM target realview-pbx-a9.

Algorithm 2 _Scheduler_strong_APA_Schedule_highest_ready

Input: 𝑇𝑑𝑒𝑝𝑎𝑟𝑡 , 𝜋𝑑𝑒𝑝𝑎𝑟𝑡

1: front← 0, rear← 0, 𝑞𝑢𝑒𝑢𝑒 [𝑟𝑒𝑎𝑟 ] ← 𝜋𝑑𝑒𝑝𝑎𝑟𝑡
2: 𝑝𝑟𝑖𝑜ℎ𝑖 ← 𝐿𝑂𝑊𝐸𝑆𝑇_𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌_𝐼𝑁_𝑆𝑌𝑆𝑇𝐸𝑀

3: while front ≤ rear do

4: 𝜋𝑓 𝑟𝑡 ← 𝑞𝑢𝑒𝑢𝑒 [𝑓 𝑟𝑜𝑛𝑡 + +]

5: for each task 𝑇𝑐𝑢𝑟 such that 𝜋𝑓 𝑟𝑡 ∈ 𝛼𝑐𝑢𝑟 do

6: if 𝑇𝑐𝑢𝑟 is scheduled then

7: 𝜋𝑐𝑢𝑟 ← Processor 𝑇𝑐𝑢𝑟 is executing on

8: queue[++rear]← 𝜋𝑐𝑢𝑟 , 𝑁𝑐𝑢𝑟 .𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← 𝜋𝑓 𝑟𝑡
9: else if 𝑝𝑟𝑖𝑜𝑐𝑢𝑟 > 𝑝𝑟𝑖𝑜ℎ𝑖 then 𝑝𝑟𝑖𝑜ℎ𝑖 = 𝑝𝑟𝑖𝑜𝑐𝑢𝑟
10: 𝑇ℎ𝑖 ← 𝑇𝑐𝑢𝑟 ; 𝑁𝑐𝑢𝑟 .𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← 𝜋𝑓 𝑟𝑡

11: 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 ← 𝑁ℎ𝑖 , 𝑐𝑢𝑟_𝑐𝑝𝑢 ← 𝑁𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 .𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡

12: while 𝑐𝑢𝑟_𝑐𝑝𝑢 ≠ 𝜋𝑑𝑒𝑝𝑎𝑟𝑡 do

13: 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 ← Node for task scheduled on 𝑐𝑢𝑟_𝑐𝑝𝑢

14: 𝑃𝑟𝑒𝑒𝑚𝑝𝑡 (𝑐𝑢𝑟_𝑐𝑝𝑢, 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒)

15: 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 ← 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒

16: 𝑐𝑢𝑟_𝑐𝑝𝑢 ← 𝑁𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 .𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡

17: 𝑃𝑟𝑒𝑒𝑚𝑝𝑡 (𝑐𝑢𝑟_𝑐𝑝𝑢, 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒)

Avg. Response time(in 𝜇s) Avg. Turnaround time(in 𝜇s)

Task PA SAPA PA SAPA

1 141.05 306.95 3086783.75 3230183.83

2 207.95 614.78 3197499.71 3136835.88

3 3088997.91 198.45 6373255.57 3169505.46

4 134.72 325.54 3175646.44 6160782.63

Table 1: Response Time and Turnaround Time

We compared the average response time and average turnaround

time of the tasks under Priority Affinity (PA) and StrongAPA (SAPA)

scheduling. Table 1 shows average times over 100 runs. We note a

stark difference in the response time of𝑇3 due to the fact that𝑇3 was

blocked by 𝑇1 in PA scheduling, while SAPA allowed 𝑇1 to migrate

to 𝜋3, allowing 𝑇3 to execute. Similarly, the average turnaround

time demonstrates that 𝑇3 is scheduled when it arrives with SAPA

scheduling and 𝑇4, which is the lower priority task, was blocked

until 𝑇1 finished its execution.

3 CONCLUSION AND FUTUREWORK

We presented an implementation of Strong APA scheduling on the

RTEMS real-time OS. The evaluation results show that Strong APA

scheduling has lower response and turnaround times for higher

priority tasks. As a next step, we intend to evaluate context switch

overhead due to task migration and the performance of the schedu-

ler over a large task set.

ACKNOWLEDGMENTS

This work is supported by NSF OAC-2001789 and Colorado State

Bill 18-086. We thank Sebastian Huber and the RTEMS community.

REFERENCES
[1] Gedare Bloom, Joel Sherrill, Tingting Hu, and Ivan Cibrario Bertolotti. 2020. Real-

Time Systems Development with RTEMS and Multicore Processors. CRC Press.
https://doi.org/10.1201/9781351255790

[2] Felipe Cerqueira, Arpan Gujarati, and Björn B. Brandenburg. 2014. Linux’s Proces-
sor Affinity API, Refined: Shifting Real-Time Tasks Towards Higher Schedulability.
In 2014 IEEE Real-Time Systems Symposium. 249ś259. https://doi.org/10.1109/
RTSS.2014.29


	Abstract
	1 Introduction
	2 Strong APA Scheduler on RTEMS
	3 Conclusion and Future Work
	Acknowledgments
	References

