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Abstract—The secure functioning of automotive systems is vital
to the safety of their passengers and other roadway users. One
of the critical functions for safety is the controller area network
(CAN), which interconnects the safety-critical electronic control
units (ECUs) in the majority of ground vehicles. Unfortunately
CAN is known to be vulnerable to several attacks. One such
attack is the bus-off attack, which can be used to cause a victim
ECU to disconnect itself from the CAN bus and, subsequently,
for an attacker to masquerade as that ECU. A limitation of
the bus-off attack is that it requires the attacker to achieve
tight synchronization between the transmission of the victim and
the attacker’s injected message. In this paper, we introduce a
schedule-based attack framework for the CAN bus-off attack
that uses the real-time schedule of the CAN bus to predict
more attack opportunities than previously known. We describe
a ranking method for an attacker to select and optimize its
attack injections with respect to criteria such as attack success
rate, bus perturbation, or attack latency. The results show that
vulnerabilities of the CAN bus can be enhanced by schedule-
based attacks.

Index Terms—Controller Area Network, Schedule-Based At-
tack, Bus-off Attack

I. INTRODUCTION

The evolution of electronic control units (ECUs) and net-

works has made the vehicle a complex cyber-physical system.

The modern vehicle now embeds up to 100 ECUs with

millions of lines of software code that enable their commu-

nication with the outside environment and the Internet. The

dramatic increase in vehicle functionality has exposed their

safety-critical systems to cyber-physical risks and attacks. In-

vehicle networks, such as the controller area network (CAN)

bus, have several vulnerabilities [1]–[3]. The CAN bus is

an attractive target for cyber attackers because it does not

implement security mechanisms despite being widely used in

automotive and avionics domains [4].

The CAN bus presents a predictable behavior to satisfy

the transmission requirements of each message. While the

schedulability analysis of the CAN bus guarantees messages

will meet their deadline in the worst-case [5], the determinism

of its timing model can expose the scheduling information

of the safety-critical messages [6,7]. In this paper, we show
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that this information enables an adversary to initiate schedule-

based attacks to compromise the automotive system more

effectively than prior attack methods.

A schedule is a sequence of resource allocations to entities,

and a successful schedule-based attack uses the schedule

to determine when an attack should happen with respect

to the timing and ordering of the targeted entity’s resource

access. We introduce, formalize, and evaluate the efficacy of

a schedule-based attack on the CAN bus by leveraging the

transmission schedule.

The main contributions of this paper are:

1) A comprehensive investigation of the vulnerabilities of

the CAN bus to schedule-based bus-off attacks. This

investigation includes analysis of the traditional bus-off

attack strategy for synchronizing the attack injection,

and demonstration that the schedule-based approach is

more effective.

2) A framework for schedule-based attacks that includes

schedule analysis, prediction, and exploitation.

3) An optimization strategy to maximize the attacker’s

criteria (e.g., short response time, high success ratio)

within the exploitation stage of the schedule-based attack

framework.

The remainder of the paper is as follows: first, we pro-

vide some background about CAN and the traditional bus-

off attack, followed by the motivation for this work in Sec-

tion II. In Section III-A we describe the system model and

in Section III-B the threat model used throughout this paper.

The schedule-based attack and our approach to implement

it are presented in Section IV. In Section V we describe

our experimental evaluation. The related work is reviewed in

Section VII and Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we provide some preliminaries about CAN

bus and the bus-off attack.

A. Controller Area Network (CAN)

CAN is a broadcast serial communication protocol

with carrier-sense multiple access and collision detection

(CSMA/CD) that uses a lossless bitwise arbitration to transmit

binary signals over twisted pair cabling. The bus facilitates
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reliable communication with no central controller. CAN trans-

fers messages according to a fixed-priority non-preemptive

scheduling policy and uses non-return to zero bit encoding.

CAN bus signifies bits with logic value of 0 as dominant

and bits with logic value of 1 as recessive. It distinguishes

4 different message frame formats: data, error, remote, and

overload frames. Data is transmitted in the bus through the

data frame that includes the identifier field (ID) used in the

arbitration process. A data frame contains up to 8 bytes of

data field and its length is specified in the data length code

(DLC).

CAN applies a non-destructive arbitration process and,

when a message wins arbitration and starts transmission, it

can not be preempted. Messages win arbitration according to

their priority determined by the message ID; the smaller the

ID the higher the priority. Any node may start transmission

when it has detected that the bus is idle, beyond the interframe

space (IFS). Transmission begins by sending a dominant start

of frame (SOF) bit, followed by ID bits, one at the time,

starting with the most-significant bit. When multiple nodes

start transmitting concurrently, the bus is recessive only if all

nodes float a recessive bit, and a transmitting node monitors

the bus to ensure that it does not read a dominant bit when it

sent a recessive bit, thereby losing arbitration.

Figure 1 shows an example of three nodes during arbitration.

At bit time T0, Node 1, Node 2, and Node 3 attempt to

start transmission by introducing a dominant SOF bit on the

CAN bus. At time T1, all three nodes send a dominant bit as

their first identifier bit. During the following bit time, Node

3 reads that a dominant bit has been introduced on the bus

(as both Node 1 and Node 2 sent a dominant bit) while it

fails to transmit a recessive bit. At that point, Node 3 loses

arbitration and stops transmitting. After T2, only Node 1 and

Node 2 remain in arbitration until time T3 when Node 1 fails

to transmit a recessive bit. Node 2 therefore wins arbitration

and continues transmission beyond T3. Node 1 and Node 3

will automatically attempt to retransmit at T4 after Node 2

has completed transmitting and the IFS has elapsed.

B. CAN Fault Confinement

The CAN protocol implements robust error management

that is essential for fault tolerance and aimed at detecting errors

caused by disturbances or hardware faults in the bus. When

an error occurs in the bus communication, an error flag is

raised that is signaled to all nodes on the bus. The node that

detects the error, depending on its state—error-active or error-

passive—transmits either an error-active flag of six dominant

bits or an error-passive flag of six recessive bits, and the

erroneous message is discarded by the receiving nodes. The

frame in transmission is then queued for retransmission by the

sending node.

Each node implements two error counters with initial values

of 0: transmit error counter (TEC) and receive error counter

(REC). The transitions between the error states depend on the

counters. When an error is observed by a non-transmitting

node, its REC is increased by 1, and when observed by a

Node 3

CAN Bus
T0  T1  T2         T3 

Inter Frame
Space 

End of Inter Frame
Space or Bus Idle Time 

                  

Node 1

Node 2

T4    

Dominant Bit (Logical 0) Recessive Bit (Logical 1)

Dominant or Recessive Bit (Logical 0 or Logical 1)

Fig. 1: CAN Arbitration Example. Node 1-3 arbitrate simul-

taneously. Node 2 wins the bus at time T3 and sends its

remaining bits (in green). During the next transmission attempt

at time T4, Nodes 1 wins arbitration against Node 3.

transmitting node, then the TEC is increased by 8. If the TEC

or REC exceeds 127, the node transitions from error-active

to error-passive state, and from passive to bus-off when TEC

reaches 255. An error-active state is restored when the TEC

and REC of a node are below 128.

The bus-off state is an error state of a CAN controller in

which the node is disconnected from the bus communications,

i.e., it can neither transmit nor acknowledge frames. A node

that is in the bus-off state can only rejoin the network

after observing 128 occurrences of the bus-free signal of 11

consecutive recessive bits. When a node recovers from bus-

off, it resets its counter and starts from the initial error-active

state.

C. CAN Bus-Off Attack

In 2016, Cho and Shin [8] introduced the bus-off attack,

which exploits the fault tolerance feature of the CAN protocol.

The authors identified three conditions that need to be satisfied

for a successful attack: (i) the attack message must have the

same ID as the victim message; (ii) it must be synchronized

with the victim message, and (iii) it must have a dominant

bit in at least one position where the victim message has a

recessive bit. Under the software-based (remote) threat model,

the dominant bit must occur in either the control or data fields

of the CAN frame since the ID field of both messages have

to match, and some fields (SOF, EOF, and IFS) have a fixed

format while other fields (CRC and ACK) are generated by

the controller hardware automatically.

The success of the attack depends on the adversary’s ability

to synchronize roughly 16 transmissions of the victim ID with

a guaranteed unique preceded message. We revisit discussion

of the existence and effectiveness of these preceded messages

in Section II-D. However, some of these messages could

be skipped or may require more than 16 transmissions if

the victim ECU sends multiple message IDs. (Successful

transmission of other messages from the same CAN controller

on the ECU would decrease the TEC, thereby lengthening the

attack success time.)
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It is feasible and typical to assume that an attacker knows

the make, model, or even trim of the target automobile,

and can analyze it offline to derive the message parameters,

i.e., their IDs, and relationship between data payloads and

functionality. Partial schedule knowledge is possible because

of the dependencies between some messages (i.e., receipt of

certain messages cause the transmission of others). Problem-

atically, the vehicle system comprises complex, distributed,

independently functioning ECUs, and therefore the schedule

of messages and their functionality cannot typically be deter-

mined statically [17]. Also, uncertainty introduced by jitter,

non-deterministic startup times, and physical effects caused

by clock drift and power fluctuation make it impossible to

reconstruct one precise system schedule offline.

The goal of the attacker is to send a predetermined node to

the bus-off state by increasing its TEC to 255. To achieve

this, the adversary enqueues attack messages (denoted as

Ma) at predefined times to transmit at the same time as the

transmission of a specific victim message (denoted as Mv).

We also suppose that the adversary aims to cause the least

disturbance (i.e., missed deadlines) to the CAN bus. Akesson

et al. [4] show that an overwhelming majority of systems have

a mechanism in place to respond (e.g., reporting the event,

rebooting the system, and restarting the task) in case of a

missed deadline. In addition, intrusion detection systems may

be triggered in such situations [18,19]. Thus, the adversary’s

aim is to succeed in the attack with the minimum number

of message injections to reduce perturbing the behavior of

non-victim message transmissions, by transmitting the attack

messages only on the instances of the victim when the chance

of a successful message injection is high, and using a sequence

of instances which result in increasing the TEC of the victim

in the shortest time frame.

IV. THE SCHEDULE-BASED ATTACK

The schedule-based attacker aims to drive a target node to

bus-off state, as in the work of Cho and Shin [8]. However,

it fundamentally differs from the previous approach in the

following ways:

• a1: the attacker does not fabricate preceded IDs;

• a2: the attacker does not rely on the uniqueness of

preceded IDs.

To satisfy a1, the adversary must only rely on normal

message transmissions to synchronize the attack message with

the victim. In the original bus-off attack, the adversary simply

observes the bus traffic until the unique preceded ID transmits.

It indicates to the adversary that the following message is

the victim. Thus, instances of Mv that are transmitted after

messages other than the known preceded ID are not exploitable

by the attacker. For a2, the schedule-based attacker can also

make use of those instances to drive the victim node’s TEC

to 255. This increases the number of instances that can be

targeted in a single hyperperiod to “any instance of Mv that

incurs blocking or interference” regardless of the message

causing it.

0

. . .

Attack Pattern
Identification

Schedule
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Schedule Analysis 

Periodic
Bounds

Estimates
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ID, DLC,
DATA,
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Observation

Mi High chance
of success

Attack Success/Failure

Schedule Exploitation 

Fig. 5: Stages of Schedule-Based Attack in CAN Bus.

To succeed in the schedule-based attack, the adversary needs

to learn when instances of interest are expected (since they

cannot simply rely on the transmission of a particular preceded

ID) and then send Ma at the appropriate time on the bus.

Specifically, the attacker must:

1) examine the sequence in which messages are transmitted

on the bus to estimate message parameters,

2) analyze the sequence to select and locate victim in-

stances of interest in a hyperperiod,

3) identify the first instance of Mv (Mv,n∗

v

) to be attacked

based on the attacker’s strategy,

4) observe the bus and enqueue Ma prior to Mv,n∗

v

arbi-

tration,

5) repeat step 4 for instances of Mv selected in step 2 until

the TEC of the victim node reaches 255.

We refer to these steps as message parameter estimation (step

1), schedule analysis (steps 2 and 3), and schedule exploitation

(steps 4 and 5). The first stage starts once the attacker has

collected message logs to estimate the parameters, such as the

message periods and instances. In the next stage, the adversary

records the beginning and compositions of successive message

transmissions ending with the transmission of an instance

of Mv . Each record indicates a potential time at which the

adversary can inject an attack message during the following

hyperperiod. It also specifies the priority of the message(s)

preceding a particular instance of the victim. The adversary

selects records that satisfy the attack strategy (as described

in section III-B) from which Mv,n∗

v

is identified. In the

exploitation stage, the adversary uses the noted time related

to the arrival of Mv,n∗

v

to anticipate its arrival. Once Mv,n∗

v

is

expected to arbitrate, the adversary enqueues Ma to transmit

with Mv,n∗

v

and the remaining victim message instances that

are of interest and identified in stage 2.

Figure 5 shows these different stages of the CAN schedule-

based bus-off attack. In the following subsections, we describe

these stages in further detail.

A. Message Parameter Estimation

Olufowobi et al. [6,7] have shown that a greedy algorithm

can be used to reverse engineer (estimate) parameters of a

set of periodic messages, such as the message period and

jitter, from a CAN log file. Their work focuses on using these

parameters to tune a specification-based IDS.

Our algorithm takes as input a CAN log and message

ID i and returns as output the period estimate Pi. This

approach follows the period estimation algorithm introduced
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by Olufowobi et al. [6] with a slight modification to assume

that a period is estimated when the difference between the

upper and lower bound is less than the transmission time of

a single bit. Specifically, for each transmission of Mi, the

period estimation algorithm infers period bounds at which each

message could occur by reasoning backward in the steps the

message will go through before transmission. By taking into

consideration the factors contributing to the message response

time as well as completion time of successive instances of Mi,

the algorithm tightens the bounds on the Pi.

Once the period of each message is estimated, the attacker

can calculate the hyperperiod, i.e., the least common multi-

ple of the periods. It is worth noting that since the period

estimation step requires observing at least two instances of

a message, the time at which it completes the calculation of

periods will be larger than the offset of any individual message.

Consequently, in any observation window of length h, the

attacker will see h/Pi message instances of a message Mi,

regardless of the start time of the observation window.

B. Schedule Analysis

As described in Section III-B, to succeed in the bus-off

attack, the adversary intends to launch the schedule-based

attack using the victim message instances which ensure that

the attack message will be transmitted at the same time as

the victim message. Such an assurance is provided by the

adversary’s ability to enqueue the attack message right before

the victim message, during the transmission of the message(s)

preceding the victim. In this stage of the schedule-based attack,

the adversary identifies all those transmissions, when they will

occur in the future and how they can be used to implement

the attacker’s strategy.

Definition 1: An attack pattern is a pattern that describes a

sequence of message transmission(s) ending with a transmis-

sion of an instance of the victim message.

In the schedule-based attack, attack patterns can be repre-

sented as a regular expression on a language whose alphabets

are α = {H,L, V,O}, where H and L are symbols that

represent any message ID with a higher-priority and lower-

priority than the victim, V represents the victim message, and

O represents any other message type or state of the bus (e.g.,

idle state, or error messages). Knowing the victim message ID

enables the attacker to directly translate the status of the bus

to any of the symbols in the alphabet.

Example 1: Consider an attacker that wants to perform a

bus-off attack on M1 in the example shown in Figure 6. The

attacker’s goal is to send its attack message (which has the

same priority as the victim message) at the time that the victim

message appears on the CAN bus.

The following regular expressions can be used to represent

three attack patterns: (i) 〈{H}+V 〉, where {H}+ represents

any non-empty sequence of higher-priority messages that

precede a message of M1 (the victim message) without any

idle time in between, (ii) 〈L V 〉, where L is any lower-priority

message than the victim message that immediately precedes

the victim message, and (iii) 〈O V 〉, i.e., the bus was idle

M1

M2

M3

CAN
Bus

M1,1      M2,1            M3,1           M1,2 M1,3       M2,2               M1,4

s1,1  s2,1             s3,1                     s1,2       s1,3   s2,2                    s1,4  

1

3

4

Fig. 6: CAN Schedule with three message IDs.

(or occupied by messages other than H and L types) prior to

the transmission of the victim message. Every instance of a

message will be subject to one and only one of these three

attack patterns (because the alphabet defined for the regular

expressions partition all four types of messages).

For pattern (i), the attacker can send its message anytime

in the interval from the start of the sequence of higher-

priority messages until the moment immediately before the

victim starts arbitration. Hence, the attacker has a higher attack

surface in this case. The attack surface for pattern (ii) is shorter

because it is at most as long as the transmission time of a

lower-priority message that precedes the victim. Finally, we

assume that the attack surface in the last case is 0, i.e., the

attacker can be successful only if it sends its message exactly

at the time the victim sends its message. Hence, in terms of

success when there are uncertainties in the system, the attacker

would be more successful in case (i) than in case (ii) and (iii).

In the rest of this section, we focus on how attack patterns

are used as the basis for the schedule-based attack. First we

explain how attack patterns are identified in the schedule

(Sec. IV-B1). Next, we describe how to find a robust set of

attack moments (that increase the chance of a successful victim

prediction) by proposing four heuristic methods (Sec. IV-B2)

Finally, we discuss how to locate the best attack patterns to

satisfy the adversary’s strategy as well as Mv,n∗

v

(Sec. IV-B3).

1) Identifying Attack Patterns: The attacker starts a timer

right after it obtains the length of the hyperperiod and then

observes messages being transmitted on the bus. It categorizes

each observed message ID into H , L, or V and checks its

observations against the attack pattern types. As soon as it

spots an attack pattern, it calculates the potential start time

and end time of the attack for the next hyperperiod to come.

Note that this attack does not require the nodes to be time

synchronized (messages can have any arbitrary offset). The

attacker only needs to know the length of a hyperperiod. The

example below explains how the attacker works.

Example 2. Consider the attack patterns used in the pre-

vious example and the system shown in Figure 6. Let us

assume that the attacker starts observing the schedule at time

tinit = 100 and the first message it sees is M2,1, i.e., the

attacker does not see the beginning of the hyperperiod. The

attacker keeps track of the lower- and higher-priority messages

that it observes on the bus using two counters: tl and th. These

counters store the start time of the transmission of a message

with a higher and lower priority than M1, respectively.
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The attacker updates the counters as soon as it sees mes-

sages matching the counter description, i.e., a higher or lower

priority message. For example, at time s2,1, tl is updated by

storing the start time of M2 as a relative time w.r.t. tinit
(i.e., tl ← 0). When the attacker observes another low-priority

message (M3), it updates tl ← C2 to point to the start time

of M3 w.r.t. tinit. As soon as the attacker observes M1, it

stores the current value of tl (since a lower-priority message

was transmitted prior to M1) in its attack-pattern table as a

potential attack opportunity which must start exactly at time

tinit + h+ C2. The high-priority counter th is updated when

a higher-priority message than M1 is observed, but it will not

be updated when another high-priority message is on the bus

(to match pattern (i)). Both counters are invalidated as soon as

the bus becomes idle. In this example, by the time tinit + h,

the attacker has already identified one window to perform the

attack, i.e., using pattern (ii) at time tinit + h+ C2.

We summarize the approach in Algorithm 1. Algorithm 1

is an online algorithm that processes the hyperperiod and for

each instance of the victim message, stores the type of attack

and the attack surface (starting moment and ending moment

of a successful attack to that message in that hyperperiod).

This algorithm produces a list ∆ = 〈δ1, δ2, . . . , δnv
〉 of the

attack opportunities that happens for each of the nv = h/Pv

message instances of message Mv in the observed hyper-

period. Each item δk ∈ ∆ is a tuple δk = ([sk, ek], θk)
that describes the attack type (θk ∈ {T1, T2, T3}) and the

attack surface (i.e., [sk, ek]) that appeared in the observed

hyperperiod before the kth message instance of message Mv .

For example, in Figure 6, when M2 is the victim message, we

have ∆ = 〈([s1,1, s2,1], T1), ([s1,3, s2,2], T1)〉.
This algorithm uses th and tl timers to keep track of the

latest observed high- and low-priority messages on the bus,

respectively. Because the adversary has configured the filters

of the attack node to receive all CAN messages transmitted,

the contents of the messages can be retrieved at the attack

node. Thus, every time a message completes transmission,

the attacker reads its ID i and compute the start time and

end time of its transmission on the bus, denoted by ti and

te, respectively (lines 4-6). Using ti and the completion time

of the previous message received before Mi, the attacker

determines whether the bus was idle before Mi, and invalidates

th and tl if true (lines 7-8). Otherwise, th and tl are updated

based on the priority of Mi as follows (line 10-21):

• Mi has a lower priority than Mv: ti represents the

beginning of the transmission time of a lower-priority

message (and potentially, the beginning of a type (ii)

attack pattern). Thus, th is invalidated and tl ← ti
(line 11).

• Mi has a higher priority than Mv: in this case, if th
is valid, i.e., the previous message(s) received had also

a higher priority than the victim, no change to th is

necessary. In other words, the sequence of high-priority

messages that has started with the previous higher-priority

message(s) can be continued (to possibly form a type (i)

attack pattern), and its start time remains the same. If, on

Algorithm 1 [online] Identification of Attack Patterns

Inputs: h, v
Outputs: ∆

1: tl ← −∞, th ← −∞
2: ∆← 〈〉
3: while length of observation window ≤ h do

4: i← the latest observed message ID

5: ti ← the start time of transmission of message i
6: te ← the end time of transmission of message i
7: if bus is idle then

8: th ← −∞, tl ← −∞
9: else

10: if i is lower priority than v then

11: tl ← ti, th ← −∞
12: else if i is higher priority than v and (th < 0) then

13: th ← ti, tl ← −∞

14: if (i = v) then

15: if (th ≥ 0) then

16: append ([th, te], T1) to ∆
17: else if (tl ≥ 0) then

18: append ([tl, te], T2) to ∆
19: else

20: append ([te, te], T3) to ∆

21: tl ← −∞, th ← −∞

22: return ∆

the other hand, th is not set yet, then th ← ti to indicate

that a new potential attack pattern has started (line 13).

When i = v (i.e., the message received is an instance of the

victim message), the algorithm appends one attack opportunity

to the final output ∆ depending on the type of attack (type

(i), (ii), or (iii)). If the attack is not type (i) or (ii), then it

is categorized as type (iii) with an attack surface with zero

length, i.e., from [te, te] (line 20). After storing the attack,

both timers th and tl are reset (line 21).

2) Dealing with Uncertainties: Although Algorithm 1

produces the list ∆ that include potential attack instants, the

attack’s success can be affected if there are uncertainties in

the start time and transmission time of messages on the bus

for the future hyperperiods. To address this challenge, we

propose to obtain statistically robust attack opportunities (and

attack surface) by observing the schedule over N hyperperiods

(instead of one), identify attack patterns for each hyperperiod,

and extract attack opportunities that repeated more frequently

(and hence are more robust to uncertainties). In this paper,

we propose three statistical methods to obtain a robust set

of attack opportunities per message instance of the victim

message, i.e., per Mv,k. The output of this step, denoted by

φ = (φ1, φ2, . . . , φnv
), where φk is a robust start time for

an attack on the kth instance of the victim message. Since

the time values stored in φ are relative w.r.t. one observation

window with length h, the attacker can reuse them every h
units of time to continue performing an attack over multiple

hyperperiods in the future.
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To explain our three methods, we use a superscribe i
(1 ≤ i ≤ N ) for ∆, i.e., ∆i, to represent the attack opportunity

vector obtained from Algorithm 1 during the ith observed

hyperperiod. For simplicity, we use the superscript i to refer

to the relevant data in the attack opportunity vector ∆i too.

Method 1: Average Starting Time. For each attack op-

portunity identified by Algorithm 1, we compute the average

starting time of that attack opportunity over N hyperperiods

(regardless of the attack types). Hence, the final attack moment

for the kth instance of the victim message will be

φk =
1

N

N∑

i=1

sik. (1)

Method 2: Intersection of Transmission Times. In this

method, regardless of the attack type, we calculate the intersec-

tion between the attack surfaces obtained over N hyperperiods

for the kth instance of the victim message as follows

φk = max{sik}∀i. (2)

In this method, if the interval Ik (see below) is empty,

namely, there is no intersection between the attack surfaces

of the N observations, then the attacker will not consider

attacking that instance of the victim message and will treat

that instance as an attack type (iii) (with zero attack surface).

Ik is obtained as follows Ik = [max{sik}∀i , min{eik}∀i].
Method 3: Average of Mid-Transmission Times. In this

method, for each attack pattern of victim instance k, we com-

pute the midpoint of the transmission time for the preceding

message(s) in the attack pattern. Then the average of is taken

over the N hyperperiods observed (regardless of variations in

the attack types) as follows:

φk =
1

2N

N∑

i=1

(eik − sik). (3)

In Section V-C3 we demonstrate that method 3 allows the

attacker to predict the arrival of attack opportunities over a

longer period of time. Thus, using the list of robust attack

opportunities, the attacker can select which victim instance

n∗
v (and consequently, which attack opportunity) to start the

attack from.

3) Identifying Mv,n∗

v

: One of the strengths of the schedule-

based attack is that it allows the adversary to develop the attack

based on the robust attack opportunities generated. Moreover,

when many attack opportunities exist in the schedule, the

adversary can choose the approach that has the highest chance

to result in a successful attack. For example, the adversary

can choose to only use attack patterns that have never been

classified as type (iii) during the N hyperperiods analyzed.

In this case, as described in Sec. III-B, the adversary wants

to launch the attack on the Mv instances that can be synchro-

nized with (in a robust way) to minimize bus disturbances

while increasing the victim ECU’s TEC to 255 very quickly.

The shortest possible attack requires that the adversary uses

consecutive instances so as to prevent the victim node from

decrementing its TEC due to successful transmissions. Thus,

Algorithm 2 Identifying n∗
v

Inputs: ∆̄ = (∆1, . . . ,∆N ), h, v
Outputs: nv

∗

1: nv ← h/Pv

2: n∗
v ← 1, i← 1

3: maxcount← 0
4: while i ≤ nv do

5: j ← i, count← 1
6: while count ≤ nv do

7: if j > nv then

8: j ← 1

9: if ∄θyj (for 1 ≤ y ≤ N) ∧ θyj = T3 then

10: count← count+ 1, j ← j + 1
11: else

12: if count > maxcount then

13: maxcount← count, n∗
v ← j

14: break

15: i← i+ 1

16: return n∗
v

to decrease the attack time, the adversary should identify

sufficiently long sequences of attack opportunities in ∆ with

no type (iii) attack patterns and launch the attack from the first

element n∗
v of that sequence.

We describe the process of finding n∗
v in Algorithm 2. We

start by selecting an instance of the victim message in ∆ and

counting the number of type (i) or type (ii) attack patterns

starting from that element in ∆ until a type (iii) pattern is

identified (lines 6 - 11). If the total number of patterns counted

is the maximum obtained thus far, it is recorded along with

the position of the attack opportunity from which the count

has started as nv∗ (line 13).

Once the attack opportunity n∗
v is known, the attacker needs

to predict when that particular attack pattern will contend for

the bus in order to schedule the first attack message at the

right time. Each of the three methods can provide one such

start time for the attack opportunity on the message instance

n∗
v (i.e., by using the value φn∗

v

). Further details of this step

will be discussed in the next section.

C. Schedule Exploitation

The attack starts by observing the CAN bus traffic until

the time indicated by φn∗

v

when Ma is queued to arbitrate

with Mv . Then the attacker follows its pre-calculated vector

of attack opportunities (i.e., φ) to continue injecting Ma until

the victim’s TEC reaches 255. Note that the times stored

in φ are relative to the start time of the first observation

window. The attacker needs to adjust these values by h units

of time whenever it reaches a new full cycle of nv messages

to continue its attack over multiple hyperperiods.

The success in the exploitation stage depends on how

robustly the attack framework can withstand inaccuracies

in message parameter estimations, jitter, message ordering.
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and sporadic messages transmission. We briefly discuss their

impact on the schedule-based attack.

Period Estimation Inaccuracies. Period estimation inaccu-

racies may lead to an error in the message sequence and hence

even change the attack patterns. For example, when the period

of a message Mi is underestimated by 10%, it leads to a false

expectation of an additional transmission of Mi after every

nine genuine transmissions of Mi. This error also inaccurately

inflates the number of messages in a hyperperiod, and possibly

the value of nv = h/Pv . Finally, such an inaccuracy in the

period estimation may result in an erroneous value for the

system’s hyperperiod.

DLC and Transmission Time. Increase in a preceded ID’s

DLC (although rare) from an expected value may decrease the

amount of time available to the attacker after the transmission

of Mv to retransmit the sixteen messages in order to reach a

high value of TEC and bus-off state.

Message Jitter and Message Ordering. Jitter can cause

the order of messages in the CAN schedule to vary by

introducing unexpected interference or blocking. Because of

jitters, a message in a previously observed attack pattern may

get transmitted later than its expected time. This can affect

the order of the victim message and therefore lead to a failed

prediction despite the statistical robustness of our methods to

obtain the starting point of the attack.

Sporadic Messages: Messages not belonging to the peri-

odic message set are considered sporadic messages when they

transmit. Since they start when the bus is idle, even if they

appear right before an instance of the victim message, our

solution would not be impacted because we do not consider

attacking instances of the victim message that are sent when

the bus is idle. However, if the sporadic messages push a

set of periodic messages, they may eventually change the

sequence of messages sent on the bus. Our current solution

relies only on fidelity of the observations we made during N
hyperperiods. If the sporadic messages do not frequently show

up in that observation window, then the accuracy of our attack

will reduce eventually.

V. EVALUATION

We have performed experiments to answer the following

questions: (i) How accurate is our approach to estimating the

period of CAN messages? (ii) How accurate is our solution

in predicting the arrival of a victim message? (iii) How

vulnerable is a CAN system to a schedule-based bus-off

attack. We address the first question in Section V-C1. Question

(ii) is evaluated in Section V-C2 using a set of random

schedules and random victim messages to estimate the number

of cases that result in an accurate schedule-based prediction. In

Section V-C3 we compare our approach with the traditional

bus-off attack approach. We evaluate the feasibility of each

stage of the schedule-based attack with these experiments.

A. Experimental Setup

We used a software-only simulation of CAN and a real CAN

dataset. Software for our setup is freely available1. The code

is written in Python 3 on a computer with Ubuntu 18.04.5 LTS

operating system, Intel Core i7-9700K CPU @ 3.60 GHz and

32 GB RAM

1) Simulator for Synthetic CAN Traces Generation: The

software simulation uses CAN traces—real traces were col-

lected from vehicles, and synthetic traces created using a

custom Python trace generator.

We used a discrete-event simulation to generate the CAN

logs. By examining the expected behavior of the CAN message

protocol, we analyze the different states a message will go

through before it can be transmitted on the bus. The three

possible states for a message are pending, active, and the

transmission state. The pending state represents the initial state

of the message before it is released into the active queue. In the

active state, the messages go through the arbitration process

before they can transmit. If a message wins the arbitration, the

message is moved into the transmission queue for processing.

In conformity with the CAN protocol, only one message

can occupy the transmission queue at a time, and message

preemption is not allowed in the transmission queue. The

messages’ transmission times are computed from the data

length code according to analysis in [5]. The completion

time of the message transmissions scheduled through the

transmission queue is recorded and denoted as the message

trace timestamps.

B. Datasets

1) Synthetic Dataset Description: We assume that the rel-

ative deadline of each message instance is equal to its period,

and priorities have been assigned based on the message ID

as explained in II-A. Messages coming through to the active

queue are guaranteed to be schedulable by the fixed-priority

non-preemptive scheduling algorithm of the CAN bus. We

simulate 50,000 ms to generate simulated data.

2) Real CAN Dataset Description: To evaluate the perfor-

mance of our proposed schedule based attack, we used real

vehicle CAN traffic captured for 30 to 40 minutes through

the OBD-II port [9,20]. The datasets recorded are of normal

vehicle operation and we used the Attack free data sets which

has 988, 987 number of messages.

C. Experiments

1) Period Estimation with Uncertainty: The first experi-

ment examines the accuracy of period estimation. We use the

software simulation to explore the parameter space, we created

408 schedules by varying the number of messages and their

parameters (period, data size, jitter, phase).

We created 17 message sets by varying the number of

unique periodic messages from 10 to 40 and assigning har-

monic periods to each message uniformly at random from the

16 divisors of 1000 ms (i.e., 1, 2, 4, 5, 8, 10, 20, 25, 40,

1https://github.com/Embedded-Systems-Security-Lab/sba-in-can/tree/rtss21
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TABLE II Modified SAE Benchmark. Type denotes periodic

(P) or sporadic (S), with sporadic messages having a minimum

interarrival time (IAT) in lieu of a period.

Sender ID (hex) Size (B) Type Period/IAT (ms)

VC

A0 1 P 5

B0 6 P 10

D0 1 P 1000

Brakes
A1 2 P 5

B9 1 S 100

C1 1 P 100

Battery

99 1 S 1000

B2 1 P 10

C2 4 P 100

D2 3 P 1000

Driver
A3 1 P 5

B3 2 P 10

IMC
A4 2 P 5

B4 2 P 10

Trans

A5 1 P 5

C5 1 P 100

D5 1 P 1000

Fig. 9: Experimental Setup for SAE Benchmark Case Study

microcontrollers with hardware CAN controllers connected

to 3.3v CAN transceivers that interface via a breadboard

(see Figure 9). We ran the bus at 125 kbps, for which

this benchmark has approximately 80% bus utilization. Note

that when the subsystems synchronize with each other, every

message except A0 has at least one genuine preceded ID. In

general, they do not synchronize with each other except by

happenstance. We simulate jitter in this setup by delaying

transmission of messages by a small number of processor

clock ticks (0-255) that introduces between 8 ns and 2 µs

of jitter, which varies cyclically and relatively unpredictably

throughout execution.

The Battery ECU is instrumented to be the attacker, and

the Brakes ECU is targeted as the victim. The other ECUs

just generate bus load and cause interference/blocking. We

conducted the original bus-off attack with periodic synchro-

nization as in prior work [8], and the schedule-based attack

TABLE III SAE Benchmark Case Study Results. The

schedule-based attack (SBA) we introduce is evaluated with

N hyperperiods for Schedule Analysis. We report the average

number of attack message transmissions (Ma Avg Tx) and

the success rate as the percent of the 50 attack trials that

put the victim into the bus-off state. Each trial lasts for 10

hyperperiods.

Attack Method Ma Avg Tx Success Rate

Periodic 1,998.7 76%

SBA N = 1 278.4 80%

SBA Avg, N = 2 371.4 84%

SBA Avg, N = 4 80.9 36%

using Algorithm 1 for 1, 2, and 4 hyperperiods. For the trials

using multiple hyperperiods we have used method 3 (average

of mid-transmission times) to aggregate measurements across

the hyperperiods. If any of the victim message instances

are suspected to be preceded by an idle bus in any of the

hyperperiods, then we do not use that attack opportunity.

Table III shows the results obtained from conducting the

bus-off attacks with 50 attempted trials each lasting for 10

hyperperiods (10 seconds). Although the periodic approach

achieves a reasonable success rate of 76%, it also generates

a lot of extra bus traffic, because it attempts to inject the

attack message at the same frequency as the authentic message.

As mentioned in Sec. II-D, the addition of this much traffic

would be trivially detected by even the simplest CAN intrusion

detection systems. The schedule-based attack (SBA) using just

one hyperperiod to make predictions achieves a better attack

success rate than the periodic approach with many fewer attack

injections, while the use of averaging the midpoint between the

start and end of the preceded message is even more effective.

Unfortunately, the performance drops off as more hyperperiods

are included. We attribute this to the increased likelihood of

encountering bus idle time prior to some victim instances,

which the attack conservatively avoids.

VI. DISCUSSION

The schedule-based attack does not rely on fabricated

messages, achieves a better synchronization (by using attack

patterns), lower detectability (by avoiding transmitting Ma in

idle gaps), and reduced overall attack injection messages.

To perform the attack, the adversary must go through N
hyperperiods and add a time instant for each item in the attack

opportunity list. Only then the attacker can perform an attack

according to any of the attack patterns that it selects (based

on attack pattern type, for example). Hence, the preparation

phase of this attack takes at least N ·h units of time. Although

N is a configuration parameter and can be a reasonable

constant number to reduce the attack overhead, larger N values

can increase the statistical robustness of the solution against

system uncertainties.

Our solution stores one attack opportunity tuple per instance

of the victim message during N hyperperiods. Hence, its
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memory complexity is in the order of O(nv · N), where

nv = h/Pv is the number of message instances of the

victim message in a hyperperiod. While N is a configuration

parameter and can be a reasonable constant value, nv will

depend on the period of the victim message and the length

of the hyperperiod. In automotive systems, for example, this

can be between one and a thousand message instances. The

response time of our attack is in O(N · h). As said earlier,

here N is a reasonable constant number and h is the length

of the hyperperiod and, for example, in automotive systems

[21] is in the order of a few seconds. This means that a few

seconds (or a minute) after being activated, the attacker can

effectively start the bus-off attack.

Even when some nodes disconnect and reconnect to the

network, the attacker can restart the attack and adjust with

the new changes and after a few minutes, brings the victim

message back to the bus-off mode.

On the negative side, despite using statistical robustness

factor N to deal with system uncertainties, the proposed attack

can still be affected by the uncertainties that have not been

captured during our observation window. This could be the

case when sporadic or aperiodic messages appear on the bus

after the attack starts. Bit stuffing is another example of such

uncertainty: Although the CAN timing model used in this work

accounts for bit stuffing, the message data payloads we used

were constant and therefore changes in transmission times

were not included in the experimental evaluation.

VII. RELATED WORK

Schedule-based attacks. The success of cyberattacks that

depend on a particular ordering between the execution window

of the attacker and its targeted task are called schedule-based

attacks. Nasri et al. [22] introduced a taxonomy of such attacks

and categorized them into four groups (anterior, posterior,

pincer, and concurrent) based on the timing relation that makes

the attack successful. They point out several challenges in

analyzing schedule-based attacks.

Inferring task set parameters. Often, the success of a

schedule-based attack depends on the ability of the attacker

to predict the future schedule and possibly to influence it (so

that it can execute the attack at the right moment). Chen et

al. [23] proposed a parameter inference method for processor

schedulers in a real-time operating system based on hijacking

the idle task. The problem we consider, however, is different

because the attacker can see all message transmissions on

the bus and therefore has access to the actual schedule albeit

delayed by the message transmission times.

Olufowobi et al. [6,7] infer the real-time parameters of

messages on the CAN bus using the worst-case response

time analysis framework for CAN [5,10]. They extract the

timing model of the message schedule to develop an intrusion

detection system. We adapt and improve their approach to

improve estimating the message period in the presence of jitter

and offsets with the goal of launching an attack.

Other techniques such as fast Fourier transform and cir-

cular auto-correlation [24] have also been used to infer a

task’s period from execution traces [25,26]. Together with

Periodogram [27], these techniques have been used to infer

periodicity of a signal [24,27]–[34]. However, none of these

techniques alone provide an accurate period estimate because

they are affected drastically by the presence of preemption,

sporadic or aperiodic tasks, missed jobs, and any uncertainty

in the release and execution time of tasks [35].

Chen et al. [36] have shown a successful case of a schedule-

based attack in which the attacker tries to infer the initial offset

of a strictly periodic task (the victim) in order to predict its

future releases. The work assumes that the attacker is in the

same computer as the victim task, which does not hold in

CAN and hence their solution cannot be applied directly to

this problem.

Defenses against schedule-based attacks. To prevent in-

formation leakage, Völp et al. [37] modified the system’s

schedule by switching the execution of potentially leaky

threads with the idle task. Mohan et al. [38] include security-

oriented directives in the schedule to prevent information

leakage. Schedule randomization techniques have been intro-

duced [39,40] to reduce the success of schedule-based attacks.

However, Nasri et al. [22] showed that regardless of the

granularity of randomization, these techniques are ineffective

against schedule-based attacks and may even increase the

system’s vulnerability.

VIII. CONCLUSION

In this paper we have introduced a novel optimization to

improve the efficiency of the traditional CAN bus-off attack by

leveraging the real-time nature of CAN to design a schedule-

based attack. We have shown that the schedule-based attack

is more widely applicable than the traditional approach that

relies on a unique preceded message.
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