
Work-in-Progress: Enabling Secure Boot for

Real-Time Restart-Based Cyber-Physical Systems

Sena Hounsinou∗, Vijay Banerjee∗, Chunhao Peng∗, Monowar Hasan†, Gedare Bloom∗

∗University of Colorado Colorado Springs, Colorado Springs, CO, USA
†Wichita State University, Wichita, KS, USA

Abstract—Several cyber-physical systems use real-time restart-
based embedded systems with the Simplex architecture to provide
safety guarantees against system faults. Some approaches have
been developed to protect such systems from security violations
too, but none of these approaches can prevent an adversary from
modifying the operating system or application code to execute
an attack that persists even after a reboot. In this work, we
present a secure boot mechanism to restore real-time restart-
based embedded systems into a secure computing environment
after every restart. We analyze the delay introduced by the
proposed security feature and present preliminary results to
demonstrate the viability of our approach using an open-source
bootloader and real-time operating system.

Index Terms—Secure Boot, TEE, U-Boot, RTEMS

I. INTRODUCTION

Real-time embedded systems (RTES) are used in many

application domains to control cyber-physical systems (CPS).

Many CPS are modeled using the Simplex architecture [1],

[2]. The architecture was initially developed to provide a

framework for high-reliability and fault-tolerance in rapidly

evolving mission-critical systems. In general, the architecture

comprises a complex partition and a safety partition (see

Figure 1). The complex unit typically integrates system timers

and a monitoring unit to detect a fault and trigger a system

reset, when necessary. Although this partition is designed to

efficiently execute all the functionalities that constitute the

mission of the system, it is usually too complex to fully verify.

The safety partition is managed by a fully verified controller

designed with state-dependent constraints to guarantee that the

system will not reach certain predetermined states that are

deemed unsafe. The safety unit is located on separate hardware

that is not connected to the outside world. The goal of this

partition is to allow the system to recover from a software fault

originating from the complex unit, using a read-only memory

which has an unaltered image of the operating system (OS).

Although the Simplex architecture guards against faults, it

does not secure the system against security threats targeting

restart-based CPS. To address this problem, a few approaches

have been presented recently. They focus on diversifying

configuration files, randomizing the location of the executable

code, and randomizing hardware to prevent the attacker from

using the same method to attack the system after a restart.

This work is supported in part by NSF grants OAC-2001789, CNS-2046705,
and Colorado State Bill 18-086.

RTOS
Complex Controller

Monitoring Block

Watchdog Timer

RESET Periodic Timer

D
ec

is
io

n
U

ni
t

Actuators

Sensors

Complex Partition Safety Partition

ROM

Peripherals,
I/O,

User Inputs

Plant

Safety
Controller

Fig. 1. Architecture of Restart-Based Systems.

These mechanisms however do not prevent a skillful attacker

from controlling the system beyond a restart: an adversary can

modify the OS or application codes and execute an attack that

persists even after a reboot.

In this work, we present an approach that restores the system

into a secure computing environment after every restart, by

integrating the secure boot and chain of trust features in the

booting sequence. Secure boot prevents booting a corrupted

OS or application during the boot process, by building a chain

of trust located in the safety unit. The “root of trust” module

verifies a trusted boot code that initializes the hardware.

Next, the bootloader proceeds to verify the OS which in turn

authenticates the application(s). At each step, if the component

is successfully verified, it is added to the chain of trust.

Otherwise, the system locks itself and become unusable. In

that way, every OS and application image is authenticated prior

to being loaded and available for use.

Our contributions are summarized as follows:

• We propose a secure boot mechanism for restart-based

real-time systems.

• We provide a detailed analysis of the delay introduced by

the proposed security feature and determine its bounds.

II. SYSTEM AND ADVERSARY MODELS

System Model. We consider a real-time CPS with strict

safety and temporal requirements. Examples of such systems

include industrial process control systems or avionic systems.

The RTES invokes a system-wide restart from a hardware root

of trust [3] to restore the plant into a safe operational window

if one of the following occurs: (1) the monitoring unit has

detected an attack, (2) the periodic timer indicates that the

predefined interval between two restarts has elapsed or (3) the

watchdog timer has detected a failure of a critical component.

We consider that the system is composed of n periodic

tasks τ1, . . . , τn and a sporadic restart task τr. Let h be the

hyperperiod of the periodic tasks (i.e., the least common mul-

tiple of their periods). Each task produces multiple instances

and τi,k represents the k-th instance of the task τi. All tasks

are executed on the same processor under a fixed priority

preemptive scheduling policy where i is the priority of τi. τr
is the highest priority task in the system. Each periodic task

τi is characterized by a tuple (Ci, Ti, φi). Ci is the worst case

execution time of τi. Ti represents the period (and relative

deadline). φi is the release time of the first job τi,0. For the

restart task, Tr represents the minimum time between two

restarts and Cr is the duration of a single restart operation after

which any job that has not been completed prior to the restart

is executed in its entirety (i.e., jobs that have been preempted

are re-executed).

Adversary Model. We assume that the safety partition of

the RTES is isolated and cannot be accessed by any user

or remote attacker. Therefore, the safety unit, including the

root of trust, is out of reach of the attacker. In contrast,

the complex partition is connected to user input interfaces

and to the peripherals through the system network. In this

work, we specifically focus on an adversary that manipulates

the OS image or application in the complex partition, with

the intention of taking control of the system. Finally, we

assume that the attacker has no physical access to the system.

Therefore, any malicious action taken against the system is

done remotely using software manipulations.

III. PROPOSED DESIGN

Our goal is to increase the security of CPS by providing a

mechanism that guarantees that the system is tamper-free right

after each restart without impacting the proper operation of

the system (that is, all tasks can still execute without missing

their deadlines, even in the presence of restarts). A tamper-

free computing environment is usually achieved by integrating

a secure booting sequence at power up. Thus, to achieve our

goal, we need to integrate a security module to provide the

functionalities needed to implement secure boot in the current

architecture. We describe the module in Section III-A.

In addition, we analyze the impact of the proposed mecha-

nism on the system’s performance; by implementing the secure

boot feature, the restart task will require more time to execute

and therefore may affect the schedulability of the system.

Thus, in addition to providing the architectural resources,

our next challenge is to ensure that the integration of secure

boot sequence does not degrade the system’s performance. We

study these implications in Section III-B.

A. Secure Boot for Simplex-based Embedded System

Generally, secure boot provides four features: 1) protected

access-control capabilities, 2) integrity measurement, 3) secure

storage and 4) integrity reporting. The most important feature

provided by secure boot for resource-constrained RTES is

the ability to authenticate all the components that are needed

by the platform, starting from the root of trust. The image

authentication operation consists of verifying the signature

provided in certificates. We assume all images are signed by

the developer.

Security Module. A dedicated security module allows

to execute the cryptographic instructions (hash computation,

signature comparison). Security modules usually come in the

form of a trusted platform module (TPM) [4] or a hard-

ware security module (HSM) [5]. TPMs are embedded on

the platform while HSMs are external (removable) and are

generally plugged into the system using a system port or via

a TCP/IP connection. Although both options require that the

data used by the module be securely transferred to and from

it, a networked-connected system might be vulnerable the

connection between the HSM and the safety unit represents

an attack surface: an adversary can exploit this connection to

gain access to the otherwise isolated safety unit of the system

and compromise the safety controller, the restart mechanism,

as well as the decision unit. Therefore, although a TPM costs

more in design area, we choose this option 1. Also, TPMs

generally offer some storage in the form of nonvolatile random

access memory (NVRAM) for keys and sensitive data which

will be sufficient for our purpose.

The proposed mechanism is illustrated in Fig. 2. The arrows

indicate the order in which events occur in the secure boot

sequence. At the beginning, a reboot signal is sent to the

TPM which acts as the root of trust as shown in 1 . The

TPM verifies the integrity of the bootloader (see marker 2).

After a successful verification, the TPM provides the security

services requested by each component added to the trust chain,

starting with the bootloader. Before a component is added to

the chain, its integrity is measured (indicated by arrows 3

and 6). If the measurements obtained by the authenticating

component match the expected value stored in the NVRAM,

the component is executed (4 and 7). Then, the platform

configuration register of the TPM containing the current hash

measurement of the current chain of trust is extended by

integrating the hash of the new component (5 and 8).

B. Impact on Schedulability and System Availability

The restart-based approach to security relies on the fact that

the booting sequence does not disturb the normal operation

of the plant. In Section IV, we show that by introducing a

secure boot mechanism, the restart process is lengthened. In

the following, we estimate this delay for single and multiple

restarts.

Single-Restart Disturbances. We consider that there has

been no disturbance to the system due to a particular restart

task τr,k if, when restart is triggered, the schedule can ac-

commodate all the following activities without missing any

deadline: t1: execution of the restart sequence; t2: execution

of all ready tasks that have been suspended due to the restart

1However, this does not preclude the use of HSM.

