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Abstract—Network intrusion detection systems (NIDS)
today must quickly provide visibility into anomalous be-
havior on a growing amount of data. Meanwhile different
data models have evolved over time, each providing a
different set of features to classify attacks. Defenders have
limited time to retrain classifiers, while the scale of data
and feature mismatch between data models can affect the
ability to periodically retrain. Much work has focused
on classification accuracy yet feature selection is a key
part of machine learning that, when optimized, reduces
the training time and can increase accuracy by removing
poorly performing features that introduce noise. With a
larger feature space, the pursuit of more features is not
as valuable as selecting better features. In this paper, we use
an ensemble approach of filter methods to rank features
followed by a voting technique to select a subset of features.
We evaluate our approach using three datasets to show that,
across datasets and network topologies, similar features have
a trivial effect on classifier accuracy after removal. Our
approach identifies poorly performing features to remove
in a classifier-agnostic manner that can significantly save
time for periodic retraining of production NIDS.

Index Terms—Network Intrusion Detection Systems,
NIDS, Ensemble Feature Selection

I. INTRODUCTION

Network intrusion detection systems (NIDS) lever-

age signature-based [1], specification-based [2]–[4], and

anomaly-based techniques [5] to identify malicious traf-

fic. Signature-based techniques are effective against

known attacks but are unable to detect novel (zero-day)

attacks. Specification-based techniques can detect novel

attacks but require a subject matter expert to create a

model of legitimate behavior. Anomaly-based techniques

can also detect novel attacks but, being based on statistical

machine learning classifier models, are prone to false

positives that cause problems for usability like alert fa-

tigue [6], [7]. In addition, anomaly-based NIDS face prac-

tical challenges in deploying state-of-the-art classifiers on

modern networks and achieving reproducible results [8].

In an attempt to balance advantages and disadvantages,

modern security solutions tend to use a hybrid approach

with both signature- and anomaly-based techniques [9],

[10] to detect suspicious activity.
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2001789, OAC-1920462, CNS-2046705, and Colorado State Bill 18-
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Anomaly-based NIDS research relies on datasets to

improve state-of-the-art classification techniques [11]. An

evolving network traffic landscape not only requires that

these datasets are created using rigorous metrics [12], but

also causes datasets to become quickly outdated based

on the protocols and their versions in use, traffic profiles,

and attacks included. Hence, in evaluating anomaly-based

NIDS, dataset selection plays a large role in reported

performance. A mismatch between a chosen dataset and

target environment undermines the validity of decisions

made based on experimental results derived from that

dataset. Further, feature selection in NIDS can be chal-

lenging due to an imbalance in the amount of attack and

benign data as attack data can be harder to capture in

bulk.

Datasets are primarily stored in two ways: in raw data

(packet captures, or pcaps) or in a key-value store (a

network flow, or netflow). In packet captures, the unen-

crypted portion of the network traffic provides more data

to distill into features for machine learning and facilitates

more custom use cases. However, this also requires that

researchers architect their own network traffic parser to

distill raw traffic into machine learning features or to rely

on prior work [13], [14]. Prior work for packet capture

parsers have extracted 27 fields [14] and 80 fields [13]. A

network flow, or netflow, more formally defined as a set

of packets or frames passing an observation point in the

network during a specific time interval, describes network

communication from a top-down conversational level.

Netflows provide metadata about the conversation—such

as the source and destination IP address—in lieu of

the raw data, and therefore the original data cannot be

restored [15]. Prior work for netflows has increased the

feature space from 18 fields [16] to 491 fields [17].

The undetermined compatibility and efficacy of features

across these approaches adds difficulty in evaluating

and comparing experimental results. The challenges are

particularly salient when approaches evaluate combined

datasets to cover more attack patterns.

Regardless of the network capture data model, netflows

or pcaps, network data follows a non-stationary distri-

bution [14]. Anomaly detection models are considered

quasi-stationary in that machine learning models can
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require retraining—daily [18], when a new attack is

discovered [19], or on-demand [20]. These requirements

place a constraint on model retraining time regardless of

the data model or size of the feature space. Retraining

time is defined as the amount of time spent training and

testing classification algorithms using the k-fold cross-

validation approach. As shown with the explosion of the

feature space facilitated by the maturity of the netflow

protocol to 491 mineable features [16], [17], there appears

to be prioritization to increase the number of features over

the need to select better features.

Effective feature selection leads to classifiers that re-

quire less memory and are faster to train and test, reduce

feature extraction costs, and lead to better generaliza-

tion [21]. While there is prior work in feature selection

research that applies filter methods to determine impact

on core metrics, the premise of our work attempts to

show a pattern of features that are poorly associated

with the label across common datasets. A feature’s poor

performance may be due describing a network artifact

with little correlation to the label.

In this paper, we approach the feature selection process

from a classifier-agnostic perspective based on correlation

among common feature selection algorithms to identify

such patterns across three different datasets and network

topologies. We make the following contributions:

• A classifier-agnostic approach for feature selec-

tion. We introduce an ensemble approach of filter

methods to rank 65 features followed by a voting

technique to select a subset of features. Our approach

does not rely on, or make explicit assumptions about,

the classifier that will utilize the selected features.

• Evaluation of ensemble feature selection vot-

ing. We evaluate our approach using three different

datasets with respect to classifier performance and

training time. We show that, across datasets and

network topologies, removal of similar features has

a trivial effect on accuracy.

• An analysis of the feature selection efficacy across

commonly-used machine learning classification

techniques. We show the classifier-agnostic nature

of our approach by applying it to typical classifiers.

We show that classifier performance converges be-

tween 30 to 50 features, depending on the dataset.

An ensemble of filter feature selection methods with

an aggressive feature elimination threshold achieved

the best classifier performance while substantially

reducing the training time.

The remainder of this paper is organized as follows.

Section II gives an overview of approaches for feature

selection. In Section III we provide the background

regarding the data models for feature extraction and the

datasets we use. Section IV presents our approach to

construct a classifier-agnostic feature elimination method,

and our experimental results are described in Section V.

Finally, Section VI concludes.

II. RELATED WORK

The closely related work involve approaches that re-

duce the feature space prior to training and tuning de-

tection algorithms. Three primary approaches are used to

eliminate features that are not relevant for classification:

wrapper, embedded, and filter methods. We briefly review

each of these methods before we discuss ensembles.

In wrapper methods, the classifier is wrapped in an

algorithm that searches the feature space for a subset

of features that yield the highest classifier performance

based on optimization of a predictor function [22]. Wrap-

per methods include genetic algorithms with logistic

regression [23], [24] and differential evolution with neural

networks [25]. A key drawback of wrapper methods is

that solving the optimization problem is time-consuming

to the detriment of our goal of identifying a feature set

for daily re-training of NIDS in production environments.

These methods are not recommended for high dimension-

ality datasets due to their computational complexity [26].

Filter methods rank features and select the highly-

ranked features for the classifier. Ranking is often based

on statistical techniques applied to a feature to determine

its correlation with the label or outcome. Common ap-

proaches include mutual information (MI) or information

gain [27]–[29] and analysis of variance (ANOVA) [30].

Filter methods are computationally efficient depending

on the time complexity of the filter used, but have low

precision and may fail to find linear correlations between

features [30].

Embedded methods seek to minimize the computation

time required to reclassify the optimal subsets gener-

ated in wrapper methods by combining both filter and

wrapper approaches in a two-stage process [31]. They

embed feature selection as part of the training process

without splitting the data into training and testing sets.

Selvakumar and Muneeswaran use mutual information,

a filter technique, prior to using a meta heuristic firefly

algorithm as a wrapper [32]. Kasongo and Sun used

Extreme Gradient Boosting (XGBoost) to select a subset

features from the UNSW-NB15 dataset in 2020 [33].

Unfortunately, embedded methods still require an iterative

convergence of an optimization step in the wrapper, thus

the time complexity remains high.

Ensemble methods combine multiple filters or filters

with embedded approaches. Krishnaveni et al. [34] in-

troduced a univariate ensemble feature selection method

using majority voting across three datasets. This ensemble

included MI, gain-ratio, Chi-squared, symmetric uncer-

tainty, and relief. The authors tested effectiveness on

the accuracy, detection rate, and false positive rate of

support vector machine, naı̈ve Bayes, logistic regression,

and decision tree. The reduction of build time and test

time was not reported. Seijo-Parso et al. [35] presented an

ensemble of filters and embedded methods tested using a

support vector machine classifier and different thresholds
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to determine performance of the feature selection methods

across diverse datasets outside of the NIDS domain.

Comparing and aggregating the results of heteroge-

neous classifiers into a single signal is traditionally

approached through voting or stacking. Malhotra and

Sharma [36] conducted an empirical study to determine

the threshold of features on the Apache Click dataset and

found that only 33-50% of the features were necessary to

yield reasonable results. Seijo-Pardo et al [37] proposed

a programmatically chosen threshold based on a formula

on various datasets and found that automatic means were

faster than a numeric threshold cutoff after evaluating fea-

ture selection on SVM. They further showed that Fisher’s

discriminant ratio was effective at reducing the number of

features without significantly affecting performance [38].

A thorough exploration of ensemble approaches can be

found in [39] and [40].

Many of the aforementioned works rely on KDD99

and NSL-KDD datasets. These datasets do not have the

latest attack techniques and thus these results may not

be representative of new protocols or attack techniques.

Due to the time constraints involved in daily retraining of

NIDS data, we chose to pursue a filter-based approach.

Our ensemble of filter methods, however, employs a

voting algorithm in addition to statistical tests to deter-

mine which features are the most useful. We apply our

approach across multiple datasets and reveal features that

do not improve classifier performance across samples,

network topologies, and captured attacks.

III. BACKGROUND

In this section, we provide background information

regarding the data models that can be used to extract

features from network traffic (Section III-A) and our

selection criteria for datasets as well as the ones we chose

in this work (Section III-B).

A. Data Models

Supervised machine learning approaches for NIDS re-

quire structured and labeled data. Choosing a data model

to capture a dataset such as raw packet captures or a

(specific) network flow version incurs tradeoffs. Network

flows can save on space and processing, but as the flows

provide metadata about a network connection, feature

visibility can be lost as the original traffic cannot be

reconstructed [41]. Packet captures, or pcaps, retain this

visibility and provide a richer feature domain, but are

larger to store and take longer to process. Pcap data,

as they are in raw form, must be distilled into usable

machine learning features [13], [42] and labeled prior

to training a supervised classifier. By contrast, network

flows began as a proprietary standard and the features they

provide have evolved over time [43]. What began as a 5-

tuple data object providing IP addresses, port numbers,

and protocol, evolved to 18 fields in version 5 [43]. As

network flow protocols matured, the number of fields

expanded to the 491 fields available in RFC 7011 [17].

Other packet capture distillation methods include CI-

CFlowMeter [13], formerly known as ISCXFlowMeter,

and Joy [14]. CICFlowMeter is an open source tool that

generates bidirectional network flows from raw packet

capture data. It distills 83 features into a CSV file and

requires (manual) labeling after distillation. Joy [14], by

contrast, performs feature extraction by distilling packet

captures into JSON or IPFIX. The number of features

extracted is dependent on user configuration.

B. Dataset Selection Criteria and NIDS Datasets

To select appropriate datasets, we used the follow-

ing selection criteria. First, as netflows can irreversibly

convert a pcap, we prioritized datasets in the packet

capture format that were publicly available. Second, we

chose multiple datasets to capture different types of attack

traffic over a range of network topologies instead of

focusing in a single domain like solely SSH attacks [44]

or botnet traffic [45]. Further, the datasets only contained

actual traffic and not traffic generated by an algorithm.

Lastly, the dataset had to be labeled, or provide adequate

documentation to manually label, to provide the ground

truth. In the following we describe the three datasets we

chose for this work using these criteria.

1) CTU-13: Czech Technical University (CTU) re-

leased a dataset in 2011 [45] comprised of thirteen

network traffic captures focused on detecting botnet traffic

totalling 1.9GB. The dataset includes an edited packet

capture, a labeled network flow, and documentation re-

garding the capture timeline. The preprocessed netflow

form is provided in addition to the raw data. The raw

data was processed using CICFlowMeter and labeled

according to the dataset documentation that included

the source of malicious traffic by IP. Malicious traffic

included click fraud, port scans, fast flux, and author-

controlled malware. The network used to generate traffic

consisted of virtualized computers running Windows XP

SP2, what the botnet malware could run on at the time, on

a Linux Debian host bridged into the university network.

The final set contains both the traffic from the virtualized

computers and the university router, though some of the

traffic was removed due to privacy concerns.

2) CICIDS17: The Canadian Institute for Cybersecu-

rity (CIC) released the CICIDS2017 dataset [13] which

includes a variety of attacks including password brute

forcing, a heartbleed exploit, botnet traffic, traffic floods

resulting in denial of service and distributed denial of

service, a web server SQL injection, cross site scripting,

and an infiltration. These attacks are recorded on a

diverse network consisting of Windows and Ubuntu hosts,

a firewall, several switches, and using both Windows

8.1 and Kali as attacking nodes. With the array of

attacks, Sharafaldin et al. [13] provided a more general

dataset available in both raw packet capture and pre-
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Fig. 1: Feature elimination pipeline between packet capture and classification.

processed by CICFlowMeter [46]. It covers five days

of documented events resulting in 51.1GB of data. With

the 80 features provided by CICFlowMeter, they utilized

RandomForestRegressor, part of the scikit-learn library,

to select prominent features per attack prior to training a

standard set of classification algorithms.

3) CUPID: Like CICIDS17, the CUPID dataset1 is

a more general dataset providing a variety of attack

types including webcrawling, reconnaissance techniques

like ARP and nmap, web attacks like SQL injection,

Layer 2 attacks, botnet traffic, and 10 pcaps generated

from human operators. It was generated on an isolated

test network consisting of Windows and Ubuntu hosts, a

firewall, a switch, and Kali provided an attacking node.

It is provided both in the pcap format and processed by

CICFlowMeter comprising approximately 50 GB of data.

IV. DESIGN

We now present our approach to construct a classifier-

agnostic feature elimination method. We use a pipeline

model, shown in Figure 1, to structure our approach and

in the following explain each stage subsequent to the

network packet capture. Note that this research does not

take into account adversarial attacks, like data poison-

ing, instead prioritizing on patterns revealed by feature

selection methods. Features that could easily be used to

introduce noise and affect the accuracy of the classifier,

like the timestamp or the IP address, were removed prior

to training.

A. Process Network Packets to Flows

We use the netflow output from CICFlowMeter [13]

as a common baseline for distilling features to feed

our classifier-agnostic feature elimination method. We

gathered the CTU-13 and CUPID datasets from their

respective repositories in the packet capture format and

processed the raw network data using CICFlowMe-

ter [13]. CTU-13 provides adequate documentation to

label the processed data. The CICIDS17 dataset is already

available in the CICFlowMeter format. This approach

facilitates analysis of the same 83 features over the three

datasets.

1https://www.cupid.directory/

B. Feature Cleaning

Several features were eliminated prior to performing

the feature selection process. The Flow ID, Source IP,

Destination IP, and Timestamp were dropped. The Flow

ID is a categorical feature that uniquely identifies each

conversation. Using it would require one-hot encoding

which would greatly increase the feature space. The IP

address can be spoofed by an attacker and is also a

categorical feature, so using the source or destination

IP address could add noise to the dataset while also

increasing the feature space. The timestamp was dropped

as individual sensors, like IDSs or honeypots, could not

be shown to be synchronized across devices nor datasets

and obtaining simple temporal relationships requires ad-

ditional heuristics [47].

Finally, features with zero variance in any dataset,

as shown in Table I, were removed from all datasets.

For the CICIDS17 dataset, redundant features were also

removed (i.e., “Fwd Header Length”) and rows containing

“Infinity” and “NaN” were dropped [48]. As a result of

this feature cleaning, we are left with the same 65 features

over three datasets. Features that could not be analyzed

across all datasets were dropped. For example, if the

active standard deviation was a zero-variance feature in

CTU-13 and CUPID, it was also dropped from CICIDS17

as it was not possible to compare the feature across the

datasets. While it is possible that removing specific fea-

tures from a dataset may affect classifier performance, the

features were removed for feature parity across datasets.

Several features available natively from CICFlowMeter

processing were not available in the processed CICIDS

files and were removed from the other datasets to main-

tain feature parity including the source port, the active

series (active minimum, active maximum, active mean,

and active standard deviation), and several flag counts.

C. Feature Selection Analysis

After dropping the fixed features (known worthless and

zero-variance), we use an ensemble of filter techniques—

ANOVA, Chi-square, and MI—to determine dependen-

cies and relationships between features. Prior to applying

each filter we applied min-max normalization on each

feature to rescale into [0, 1].

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

372



TABLE I: Zero variance features in each dataset.

Feature Name Dataset

Backward Avg Bulk Rate CICIDS17
Backward Avg Packets CICIDS17
Active Std CTU13, CUPID
Active Mean CTU13, CUPID
Active Max CTU13, CUPID
Active Min CTU13, CUPID
Forward URG Flag CTU13, CUPID
URG Flag Count CTU13, CUPID
Subflow Backward Packets CTU13, CUPID
Forward Avg Bulk Rate CICIDS17, CTU13, CUPID
Backward Avg Bytes/Bulk CICIDS17, CTU13, CUPID
Forward Avg Bytes/Bulk CICIDS17, CTU13, CUPID
Forward Avg Packets/Bulk CICIDS17, CTU13, CUPID
Backward PSH Flag CICIDS17, CTU13, CUPID
Backward URG Flag CICIDS17, CTU13, CUPID

ANOVA statistically determines if two or more features

are different by comparing the variance to estimate a

linear degree of dependence. Features are ranked higher

if they show a weak linear degree of dependence [49].

Chi-square evaluates the independence of two features by

measuring dependence between each non-negative feature

and class based on the class labels [50]. Mutual Infor-

mation (MI) measures the statistical dependence between

two random features. It is equal to zero if and only if the

two features are independent and higher values correlate

to dependence [27].

D. Voting

Since an ensemble of multiple filter methods has been

shown to perform better than a single filter method [34],

we explored two techniques—Borda count and min-max

normalized weight summation—to combine the rankings

of the three filter methods.

1) Borda Count: Borda count is a scoring rule used

in a voting system that gives candidates points according

to their voting rank position [51]. With a Borda count

rule, each filter selects candidate features with the highest

scores based on the statistical weights. m− j points are

given to a candidate that is ranked jth position, where m

is the total number of features (65 in our case); the points

awarded according to rank are m− 1, m− 2, ..., 0. The

scores given to each feature are summed across the three

filter methods and rank-ordered.

2) Normalized Weights Sum: In this approach, we

normalized the filter method weights to [0,1] to distribute

the weights uniformly. We sum the weights for each

feature across the three filters and rank-order the features

by their sums.

E. Thresholding

To determine the number of features to eliminate a

threshold must be identified. Rather than using a metric

to determine a quantitative threshold, we chose to use

the notion of diminishing returns to identify a threshold

rank above which adding more features does not im-

prove classifier performance. Our approach is inspired

by the theoretical approach of Mario et al. [52] but uses

an empirical method applied during the training phase.

Our approach finds the feature selection threshold by

modeling how feature selection affects one classifier’s

performance, and then applying that threshold on future

feature selection iterations with other classifiers. Classifier

performance converges after a set number of features

and the addition of more features does not improve

performance but adds to training time.

F. NIDS Training Algorithms

We use the decision tree, random forest, and k-Nearest

Neighbors (kNN) classifiers to determine the efficacy of

our approach. The decision tree classifier attempts to

predict a discrete target value from a set of observa-

tions. More specifically, we used the Classification And

Regression Trees (CART) algorithm, which differs from

traditional decision trees by constructing binary trees

using the feature and threshold that yield the largest

mutual information at each node. The random forest

classifier consists of a set of individual decision trees.

Each individual tree attempts to determine a class. The

class with the most votes from the individual trees wins.

The kNN classifier determines class membership based

on a plurality vote of the input’s neighbors.

The tree-based models use the raw values of the

selected features, while the kNN classifier uses the [0, 1]
normalized features. We chose these algorithms because

they are commonly used in NIDS [53], but we anticipate

that other classifiers could be used similarly.

V. EXPERIMENTS

In this section, we present the experiments and results

obtained from the process described in Section IV.

A. Experimental Setup

Our experiments were implemented in Python 3.8.1 on

a Microsoft Azure compute node, 4 cores, 28 GB RAM,

56GB disk.

B. Trivial Features

After performing our classifier-agnostic feature elimi-

nation technique, we mapped feature ranking as shown

in Figure 2. This annotated heatmap reflects the ranking

of each feature available across all three datasets after

processing by CICFlowMeter.

The feature ranking in Figure 2 is indicated by the

number and color where poor performers are darkly

shaded with a numerical rank closer to 65 and excellent

performers are indicated by a numerical rank closer to 0

and are lighter in shade. Notice that, when sorted by the

median of the rankings, certain features that are poorly

ranked across multiple analyses sink to the bottom of

the diagram. Consider the total_fwd_packets and

the total_length_of_fwd_packet, and their bwd

counterparts, that are represented towards the bottom of

Figure 2. These features indicate the number of packets
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