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autotrophy. The seed is typified by developmental stages 
intended to maximize germination success. One advantage 
of the seed is the ability to survive long periods in dor-
mancy (Finch-Savage and Leubner‐Metzger 2006), which 
is defined as the inability of a viable seed to germinate 
under favorable environmental conditions (Holdsworth et 
al. 2008). Dormancy can occur during seed maturation (pri-
mary), which does not occur in all plant species, or later 
induced (secondary) (Buijs et al. 2020). Primary dormancy 
is overcome via “after-ripening”, a time- and environment-
sensitive process allowing the capacity for seeds to com-
plete germination when exposed to favorable germination 
conditions (Chahtane et al. 2016). Even once dormancy is 
broken, non-dormant seeds can remain ungerminated until 
environmental conditions are suitable for germination and 

Introduction

Spermatophytes (or seed plants) are a dominant clade of vas-
cular plants on earth (Friis et al. 2011; Simonin and Roddy 
2018). Their dominance is due in large part to the evolu-
tion of the seed, which provides protection to the embryo 
prior to germination and nutrition during the transition to 
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Abstract
A striking feature of plant ecology is the ability of plants to detect and respond to environmental cues such as herbivore-
induced plant volatiles (HIPVs) by priming or directly activating defenses against future herbivores. However, whether 
seeds also respond to compounds that are common constituents of HIPV blends and initiate future plant resistance is 
unknown. Considering that seeds depend on other environmental cues to determine basic survival traits such as germi-
nation timing, we predicted that seeds exposed to synthetic constituents of HIPV blends would generate well-defended 
plants. We investigated the effect of seed exposure to common volatiles on growth, reproduction, and resistance character-
istics in the model plants Arabidopsis thaliana and Medicago truncatula using herbivores from two feeding guilds. After 
seed scarification and vernalization, we treated seeds with one of seven different plant-derived volatile compounds for 
24 h. Seeds were then germinated and the resulting plants were assayed for growth, herbivore resistance, and expression 
of inducible defense genes. Of all the synthetic volatiles tested, indole specifically reduced both beet armyworm growth 
on A. thaliana and pea aphid fecundity on M. truncatula. The induction of defense genes was not affected by seed expo-
sure to indole in either plant species, indicating that activation of direct resistance rather than inducible resistance is the 
mechanism by which seed priming operates. Moreover, neither plant species showed any negative effect of seed exposure 
to any synthetic volatile on vegetative and reproductive growth. Rather, M. truncatula plants derived from seeds exposed 
to (Z)-3-hexanol and (Z)-3-hexenyl acetate grew larger compared to controls. Our results indicate that seeds are sensitive 
to specific volatiles in ways that enhance resistance profiles with no apparent costs in terms of growth. Seed priming by 
HIPVs may represent a novel ecological mechanism of plant-to-plant interactions, with broad potential applications in 
agriculture and seed conservation.
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(VOCs) have been known for a long time (Bradow and 
Connick 1990; Koitabashi et al. 1997; Mirabella et al. 2008; 
Muller 1965; Muller and Muller 1964; Oleszek 1987). 
Whereas these VOCs do not necessarily provide contex-
tual information about future environmental conditions, 
herbivore-induced plant volatiles (HIPVs) represent poten-
tially reliable and adaptive indicators of herbivory (Frost et 
al. 2008a). The function of HIPVs in priming or directly 
inducing plant defenses is now well established (Engel-
berth et al. 2004; Frost et al. 2007; Rodriguez-Saona and 
Frost 2010), and exposure of undamaged plants to HIPVs 
is known to induce or prime the genes in phytohormone 
pathways (Bate and Rothstein 1998; Engelberth et al. 2007; 
Frost et al. 2008c). Moreover, aboveground HIPV priming 
cues are also produced belowground by plant roots (Barsics 
et al. 2017; Gfeller et al. 2013; Lawo et al. 2011; Palma et 
al. 2012) and rhizosphere organisms (Bhattacharyya et al. 
2015; Kanchiswamy et al. 2015). There are multiple eco-
logically relevant routes by which seeds could be exposed 
to HIPVs, including simple diffusion of HIPVs produced 
belowground (Peñuelas et al. 2014) and precipitation and 
leaching of HIPVs produced aboveground (Muller et al. 
1964; Tukey Jr 1970). While some HIPVs may have allelo-
pathic effects on seed germination (Karban 2007; Mirabella 
et al. 2008; Preston et al. 2001), whether exposure of seeds 
to HIPVs alters subsequent plant physiology and resistance 
is currently unknown.

Here, we tested the hypothesis that post-dormancy, 
ungerminated (“activated”) seeds respond to the applica-
tion of exogenous, individual synthetic volatiles that are 
common constituents of HIPV blends and determined the 
effect of seed exposure to these volatiles on plant growth, 
resistance against herbivores, and direct defense genes. Spe-
cifically, we used a comparative approach to investigate the 
effects of volatile exposure to the seeds of (1) A. thaliana on 
the performance of a chewing herbivore (beet armyworm; 
Spodoptera exigua) and (2) M. truncatula on the perfor-
mance of a phloem-feeding herbivore (pea aphid; Acyrtho-
siphon pisum). We also tested the effect of seed exposure 
to plant volatile on the growth, development, and inducible 
defense gene expression of A. thaliana and M. truncatula. 
We specifically tested volatiles that have been shown previ-
ously to prime plants: indole, (Z)-3-hexenol (z3HOL), (Z)-
3-hexenyl acetate (z3HAC), β-caryophyllene (BCP), and 
(E)-2-hexanal (e2HAL) (Erb et al. 2015; Farag et al. 2005; 
Frank et al. 2021; Frost et al. 2008c; Mirabella et al. 2008; 
Scala et al. 2013). We predicted that volatile exposure to 
seeds would prime the resulting plants for enhanced resis-
tance against both chewing and phloem-feeding herbivores.

growth (Carrera et al. 2008). During the complex devel-
opmental stages prior to germination, seeds are inevitably 
exposed to a variety of biotic and abiotic environmental 
conditions such as temperature, moisture, fire, soil chemi-
cals, and chemical exudates of plant and microbial origin 
that may affect their germination (Fenner 2000). Many of 
these conditions are well-established cues that seeds use 
to coordinate their physiology and metabolism to properly 
time germination to maximize viability and establishment 
(Bentsink and Koornneef 2008; Koornneef et al. 2002). 
Temperature (Probert 2000; Reynolds et al. 2001), rainfall 
(Gutterman 1994; Levine et al. 2008; Pake and Venable 
1996), and light (Flores et al. 2006; Milberg et al. 2000; 
Wesson and Wareing 1969) are well-documented abiotic 
environmental cues that affect the germination of seeds, and 
responses to these cues are regulated through phytohormone 
signaling pathways (Chen et al. 2008; Seo et al. 2009; Toh 
et al. 2008).

In addition to abiotic cues, seeds can perceive a variety 
of chemical cues of biological origin that can affect ger-
mination and subsequent defensive profiles. For example, 
low molecular weight phenolic compounds in soil (Mus-
colo et al. 2001), artemisinin released from leaves (Chen 
and Leather 1990) and catechin released from plants after 
herbivory (Thelen et al. 2005) inhibit seed germination. 
In contrast, smoke-derived karrikins (Dixon et al. 2009; 
Flematti et al. 2004; Nelson et al. 2012) and strigolactone 
(SL) phytohormones released from plant roots can stimu-
late seed germination (Bergmann et al. 1993; Cook et al. 
1966). Moreover, the direct application of exogenous phy-
tohormones to seeds can activate plant defenses (Haas 
et al. 2018; Rajjou et al. 2006; Worrall et al. 2012). For 
example, treating tomato seeds with jasmonic acid (JA) and 
β-aminobutyric acid (BABA) led to plants expressing JA- 
and ethylene-dependent resistance against spider mite, cat-
erpillars, aphids, and pathogens (Worrall et al. 2012). Seed 
treatment with JA also changes the volatile composition 
of the subsequent plants, making their blends more attrac-
tive to predatory mites (Smart et al. 2013). Similarly, seed 
treatment with salicylic acid (SA) enhances the expression 
of SA-related genes and the endogenous SA level against 
root holoparasite (Orobanche cumana) (Yang et al. 2016). 
Additionally, seed coating with plant growth promoting 
rhizobacteria (PGPR) and plant growth promoting fungus 
(PGPF) enhances seed germination, seedling establishment, 
and boosts induced defenses in future plants in SA-, ET-, 
and JA-dependent manners (Rudrappa et al. 2010; Ryu et al. 
2004; Sharifi and Ryu 2016).

Seeds also come in contact with volatile biotic agents 
that can also provide informational cues or directly affect 
germination. Inhibitory and allelopathic effects of some 
plant and microbial-derived volatile organic compounds 



Journal of Chemical Ecology

1 3

volatile was administered to seeds in multiple plastic cups 
(biological replicates) and seeds planted from within a sin-
gle plastic cups were considered technical replicates of each 
other. No visible signs of germination were observed during 
volatile exposure treatments.

A. thaliana Seed Germination and Growth. After one day 
of volatile treatment, two A. thaliana seeds were transferred 
from each plastic cups to agar plates containing 1.0% (w/v) 
agar (Sigma) and standard 0.5X MS medium (Murashige 
and Skoog basal salts, pH of 7.0). Nine agar plates (units 
of replication) with ten seeds each were used for each vola-
tile treatment. Percent germination on each plate was deter-
mined by the number of seeds that germinated on the plate. 
The Petri dishes were kept in a growth chamber at 25 °C 
under a 16 h light: 8 h dark (16 L: 8D) day/night cycle for 
two days. Percent seed germination was measured after two 
days of seed transfer from plastic cup to petri-plates.

After one day of volatile treatment, A. thaliana seeds 
were transferred to 5.5 × 5.5 × 5.5 cm pots filled with sterile 
Metro-Mix 360 soil. After transplanting, pots were placed 
on trays (54 × 28 × 6 cm) in a growth chamber at 25 °C under 
a 12 h light: 12 h dark (12 L: 12D) cycle (Conviron). Once 
seedlings had 4–6 leaves, they were fertilized twice a week 
with 10 ml 1/2 strength Hoagland’s solution. Arabidopsis 
growth and fitness were measured in terms of number of 
leaves, maximum rosette diameter, the length of the bolt, 
and number of siliques produced. This experiment included 
58 plants, with 8–10 replicates per treatment.

M. truncatula Growth. Volatile-exposed M. truncatula 
seeds were planted in 9 × 6.5 × 6.5 cm pots. The trays were 
kept in growth chamber at 25 °C under a 12 h light: 12 h 
dark (12 L: 12D) day/night cycle for ten days. After 10 days 
the trays were moved to greenhouse and kept there until the 
end of the experiment. M. truncatula growth and fitness 
were measured in terms of petiole length, leaf blade length, 
leaf blade width, main shoot length, axillary shoot length, 
and number of fruits using a numerical nomenclature coding 
system developed by Bucciarelli et al. (2006). The numeri-
cal nomenclature for vegetative growth (see Fig. 3B) starts 
with first unifoliate leaf as metamer 1 (m1) followed by 
first trifoliate as metamer 2 (m2) and so continues likewise. 
The axillary shoots are coded from their metamer of origin 
(e.g., the axillary shoot originating from first unifoliate or 
metamer 1 is also designated as m1). Additionally, decimal 
addition to numerical coding system defines the develop-
ment stage of the leaf (e.g., m2.1 represents the bud break 
for the first trifoliate, m2.5 represent the half-open blade of 
first trifoliate while m2.9 represents fully developed first tri-
foliate). Sixty plants were included in this experiment, 10 
per treatment group.

Caterpillar Herbivory. Beet armyworm (S. exigua) was 
used to evaluate the effect of seed exposure to HIPVs on 

Methods and materials

Plant Material. We posited that seeds in a non-dormant, 
ungerminated “activated” physiological state would be 
receptive to volatile cues, as it is this physiological state 
where environmental cues are critical to germination and 
germination can occur (Holdsworth et al. 2008). We, there-
fore, prepared the seeds for the post-dormancy develop-
mental stage prior to radicle or plumule emergence or other 
outward signs of germination. This physiological stage can 
be mimicked experimentally by stratification (for both plant 
species) and scarification (for M. truncatula).

A. thaliana (Col-0) seeds were surface sterilized in 75% 
(v/v) ethanol for five minutes and 20% bleach (v/v) in 0.01% 
Tween-20 for ten minutes. After sterilization, the seeds were 
washed three times with distilled water and spread on petri-
plates with wet Whatman paper. Seeds were then stratified 
on petri plates kept at 4 °C for 2 days.

M. truncatula, A-17 seeds were scarified in concentrated 
H2SO4 for 10 min and surface sterilized in 20% (v/v) bleach 
in 0.1% (v/v) Tween-20 solution for 10  min. Seeds were 
rinsed five times with sterile water and were spread on petri 
plates with wet Whatman paper. Petri plates were covered 
with aluminum foil and kept at 4 °C for two days.

Seed Treatment with Plant Volatiles. Volatile dispensers 
were used to treat A. thaliana and M. truncatula seeds to 
individual plant volatiles. For preparing volatile dispensers 
20 µl of z3HOL, z3HAC (Engelberth et al. 2004), e2HAL, 
β-caryophyllene, and 20  mg indole (Erb et al. 2015) was 
added into separate 2.0 ml amber glass vial (Agilent Technol-
ogies) with 1 mg of glass wool (Figure S1). Indole is a solid 
at room temperature, but the masses of the different volatiles 
were similar based on specific density (1 µl = 1.17 mg). Con-
trol volatile dispensers had only glass wool. The amber vials 
(control or with volatiles) were sealed with a rubber septum 
and connected to the 2-ounce plastic cup by piercing the 
plastic cup and amber vial rubber septum with an 18-gauge 
needle. This procedure of using a volatile delivery system 
with a restricted diameter connection between the volatile 
and the seeds was similar to what has been used previously 
for controlled administration of indole to plants (Erb et al. 
2015), except that there was no airflow in our treatment to 
seeds. Whereas priming experiments on aboveground plant 
organs often appropriately use artificial air flow to mimic 
natural air movement (e.g., Frost et al. 2007; Frost et al. 
2008c), seeds often are in soil environments with limited 
air flow and where volatiles may concentrate and not dis-
perse long distances (e.g., β-Caryophyllene in Rasmann et 
al. (2005)) and static volatile delivery systems are common 
experimental techniques for seed treatments (Bradow and 
Connick 1990; Koitabashi et al. 1997; Mirabella et al. 2008; 
Muller 1965; Muller and Muller 1964; Oleszek 1987). Each 
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seed treatment on aphid-inducible marker genes (Maurya 
et al. 2018). Total RNA was isolated from approx. 150 mg 
of ground tissue using modified cetyl trimethylammonium 
bromide (CTAB) method (Frost et al. 2012). RNA was 
quantified with Nanodrop and integrity was confirmed using 
a native 1% agarose-0.5x TAE gel. Total RNA (2.5 µg per 
sample) was treated with DNAse (Turbo DNAse, Ambion), 
then 0.7 µg of DNA-free RNA was reverse-transcribed to 
cDNA using High Capacity cDNA Reverse Transcript Kit 
(Applied Biosystems). Real-time PCR was performed using 
the Quant Studio-3 PCR System (Applied Biosystems) with 
each reaction containing 2 µl of EvaGreen® PCR Master 
Mix (Mango Biotechnology), 0.3 µl of 10 µM forward and 
reverse primer, 5.4 µl of DI water, and 2 µl (2.5 ng) of cDNA 
in a total volume of 10 µl. Primer specificity was confirmed 
by melting curve analysis, and relative transcript levels were 
calculated using the 2−ΔCT method (Frost et al. 2012; Tsai 
et al. 2006) with Actin-7 and Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) as reference genes for A. thali-
ana. and elongation factor 1-alpha (EF1-α) and GAPDH as 
reference genes for M. truncatula. Primer sequences for all 
genes tested are listed in Supplemental Table S1.

Statistical Analysis. Statistical analyses were performed 
using R version 4.0.3. Caterpillar growth rate was analyzed 
using a mixed model (lme4) with volatile treatment as a 
fixed factor and Experiment as a random factor. Dunnett 
contrasts (glht) assessed statistical comparisons between 
controls and each volatile treatment. Aphid fecundity and 
nymph weight were analyzed for significance using (glm) 
followed by Dunnett contrasts. For plant growth assays, 
leaf number and rosette diameter of A. thaliana were ana-
lyzed using mixed models (lme4) with Treatment and Time 
as fixed, interacting effects and Plant as a random factor. 
All other growth data for A. thaliana were analyzed with 
glm followed by Dunnett contrasts. M. truncatula growth 
data were analyzed with mixed models with Treatment and 
Metamer Code as fixed factors and Plant as a random fac-
tor. Subsequently, metamer-specific data were analyzed by 
glm followed by Dunnett contrasts. Gene expression data 
were analyzed using glm followed by Tukey’s HSD con-
trasts to test for differences among all the treatment groups. 
Residuals of the models were checked for normality and 
homogeneity of variance. Figures were generated in R using 
ggplot2.

Results

Seed Exposure to Indole Enhances Plant Resistance against 
Chewing and Sap-feeding Herbivores. Indole exposure 
to A. thaliana seeds reduced the relative growth rate of 
S. exigua caterpillars feeding on subsequent plant foliage 

Arabidopsis resistance against caterpillar herbivory. Egg 
masses were ordered from Benzon Research Inc. USA (Per-
mit #P526P-16-02563, as required for interstate transport 
of S. exigua at the time of our study), and were immedi-
ately transferred to artificial diet in 2-ounce plastic cups, 
then maintained at 24 oC on artificial diet until the desired 
instar. Third instar caterpillars were used for feeding experi-
ments on five to six-week-old, vegetative stage, Arabidopsis 
plants. For the first feeding experiments, caterpillars were 
first starved for 3 h and weighed before their transfer to Ara-
bidopsis plants. One third-instar caterpillar was placed on 
a single Arabidopsis plant. The plants were covered with a 
nylon mesh bag to contain the caterpillars. The caterpillars 
were allowed to feed freely for 24 h before being removed 
and kept at room temperature for three hours before being 
re-weighed. This experiment was repeated three times, the 
first two trials included all five volatiles, and the last trial 
focused only on indole. Trial 1 included 48 plants with 6–8 
biological replicates per treatment. Trial 2 included 100 
plants with 6 biological replicates per treatment (different 
treatment cups) and 2–3 technical replicates per biological 
replicate (seeds derived from the same treatment cup). Trial 
3 included 43 plants, 17 controls (8 biological replicates 
with 1–3 technical replicates each), and 26 indole-treated 
(10 biological replicates with 1–4 technical replicates each). 
Aboveground plant material was collected in liquid nitrogen 
and stored at -80 ºC.

Aphid Herbivory. Pea aphid (Acyrthosiphon pisum) col-
ony was maintained on fava bean plants in a growth chamber 
(20 ºC, 12:12 h light:dark). For aphid feeding experiments, 
three adult aphids (defined as the F0 generation) (Tomczak 
and Müller 2017) were placed in a mesh bag (L15 X W6, 
BugDorm) on three trifoliates (6 to 8 plants per treatment; 
43 plants in total). After 24 h, the adults were removed and 
one trifoliate was collected for molecular analysis, and 5 
nymphs (defined as F1 generation) were left on the plant for 
13 more days. For 13 d the nymphs grew and produced off-
spring (F2 generation). On day 14, all the aphids were col-
lected and the total offspring (F2) were counted and weighed 
collectively. The remaining trifoliates were also collected 
on day 14 into liquid nitrogen and stored at -80 ºC.

Gene Expression Analysis. Leaf tissue collected from A. 
thaliana plants after one day (24 h) of caterpillar herbivory 
and M. truncatula after 14 d of aphid feeding were used for 
gene expression analysis. We selected a 24 h time point for 
S.exigua herbivory on A. thaliana because both faster and 
stronger priming responses have been observed previously 
at this time point with real caterpillar herbivory (Frost et 
al. 2008c) and it coincided with the length of the caterpil-
lar feeding trials. The time point for M. truncatula likewise 
coincided with the end of the aphid feeding trials, provid-
ing an opportunity to explore sustained effects of indole 
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assessed whether this effect was due to indole-mediated 
changes in inducible responses. In A. thaliana challenged 
with S. exigua, we analyzed the expression of key marker 
genes related to JA synthesis (LOX2, Fig. 4 A) and signal-
ing (MYC2 and VSP2, Fig. 4B,C), and myrosinase (TGG1, 
Fig. 4D) and indolyl glucosinolate biosynthesis (CYB79-B2 
and CYB79-B3, Fig.  4E,F) important for defense against 
chewing herbivores in Arabidopsis (Dombrecht et al. 2007; 
Mewis et al. 2006). JA synthesis and signaling pathways 
are known to be primable by HIPVs (Arimura et al. 2000; 
Engelberth et al. 2007; Frost et al. 2008c). Caterpillar her-
bivory induced the expression of these six marker genes as 
expected, whereas indole-seed treatment neither directly 
stimulated nor statistically altered the caterpillar-induced 
expression patterns of these genes. In M. truncatula chal-
lenged with aphids, we analyzed two SA-regulated marker 
genes, PR5 and BGL-1, which have previously been shown 
to be responsive to aphid feeding (Gao et al. 2008; Maurya 
et al. 2018; Moran and Thompson 2001). PR5 and BGL-1 
were induced by aphid feeding (Fig. 4G,H), but indole seed 
treatment neither directly stimulated nor statistically altered 
the aphid-induced expression patterns of these genes. That 
is, in all cases, indole did not directly induce or affect the 
magnitude of herbivore induction of these defense genes at 
the time points measured.

Discussion

We show that post-dormancy, ungerminated (“activated”) 
seeds are viable receivers of individual volatiles in ways 
that prime resistance and, in some cases, directly stimulate 
growth. Specifically, our study demonstrates that the pre-
germination exposure of seeds to indole enhances resistance 
against herbivores of two feeding guilds in two different 
plant species without any apparent effects on plant growth 
or fitness in a single generation of two plant species. Our 
study also showed that seed exposure to z3HOL and z3HAC 
can enhance plant growth in M. truncatula. Biotic cues that 
reliably indicate future biotic stress can prime plant defenses 
for faster and/or stronger defenses following subsequent 
stress events (Conrath et al. 2006; Frost et al. 2008a). The 
phenomenon of HIPV-mediated priming is now well estab-
lished in aboveground plant organs (Engelberth et al. 2004; 
Erb et al. 2015; Frost et al. 2007; Frost et al. 2008b; Frost 
et al. 2008c; Rodriguez-Saona et al. 2009). To our knowl-
edge, our study is the first to show that seeds can also be 
primed by common components of HIPV blends. Moreover, 
seed exposure to indole and z3HAC at the concentrations 
we used had no adverse effect on seed germination, vegeta-
tive growth and reproductive output of the primed plants 
(Figs.  2 and 3). Such a long-persisting defense response 

by an average of 37.1% (P = 0.003, Fig. 1 A). In contrast, 
seed exposure to the three GLVs and BCP had no consis-
tent effect on S. exigua growth. Indole seed exposure had 
similar effects on pea aphids feeding on M. trucatula, reduc-
ing fecundity by an average of 28.0% on plants grown from 
indole-treated seeds relative to control seeds (P = 0.022, 
Fig.  1B). Additionally, z3HAC seed treatment to M. tru-
catula reduced pea aphid fecundity by 27.1% (P = 0.037, 
Fig. 1B). Total nymph weight was also reduced by an aver-
age of 40.6% in the indole seed-treated group relative to 
controls (P = 0.038, Fig. 1 C).

Seed Exposure to Indole does not Affect Growth and 
Development of A. thaliana. A. thaliana seed exposure 
to volatiles had no significant negative effect on the veg-
etative and reproductive growth relative to controls, and 
in fact exposure to z3HOL increased metrics of vegetative 
growth over time. We found Treatment*Time interactions 
for leaf counts (Treatment *Time P = 0.015, Fig. 2 A) and 
rosette diameter (Treatment*Time P < 0.001, Fig. 2B), both 
of which were the result of enhanced growth over time in 
plants grown from z3HOL-treated seeds relative to controls 
(Supplemental Fig.  2). There were no statistically signifi-
cant differences in shoot mass (P = 0.108, Fig.  2  C), bolt 
length (P = 0.334, Fig.  2D), or silique number (P = 0.460, 
Fig. 2E) from seeds exposed to any volatile relative to con-
trol plants. There was a modest effect of z3HOL seed treat-
ment on shoot fresh mass (P = 0.089).

We also measured the effect of volatile exposure on seed 
germination of A. thaliana on MS media. Indole did not 
affect seed germination and, of all the volatiles tested, only 
seed exposure to the GLV e2HAL reduced seed germination 
compared to controls (P < 0.001, Fig. 2 F).

Seed Exposure to z3HAC and z3HOL Enhances M. trun-
catula Growth. M. truncatula plants grown from seeds 
exposed to z3HAC were noticeably larger than controls 
(Fig.  3  A). Moreover, using standardized metrics for M. 
truncatula growth (Fig.  3B), M. truncatula plants from 
z3HOL- and z3HAC-treated seeds had greater petiole length 
(Fig. 3 C), leaf blade length (Fig. 3D), axillary shoot length 
(Fig. 3E), and leaf blade width (Supplemental Figure S3) 
compared to control plants. In contrast, main shoot length 
was not affected by either cis-GLV (Supplemental Figure 
S4A). Furthermore, while z3HOL and z3HAC affected the 
vegetative growth, there was no apparent difference in fruit 
production of plants grown from volatile-exposed seeds rel-
ative to control seeds (Supplemental Figure S4B). No other 
volatile tested, including indole, affected vegetative growth 
of M. truncatula.

Seed Exposure to Indole does not Affect Herbivore-
Inducible Defense Gene Expression after Caterpillar or 
Aphid Herbivory. Since there was a clear effect of indole 
seed treatment on caterpillar and aphid fecundity, we 
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Fig. 1  Seed exposure to indole 
reduces herbivore performance. 
The effect of seed exposure to 
plant volatiles on the herbivore 
fitness (A) Relative growth rate 
(RGR) of Spodoptera exigua 
caterpillars after 24 h her-
bivory on Arabidopsis thaliana 
plants grown from control and 
volatile-exposed seeds. (B) 
Fecundity (nymphs produced 
per adult) after 14 days of 
Acyrthosiphon pisum herbivory 
on M. truncatula plant grown 
from control and volatile-
exposed seeds. (C) Total weight 
of nymphs produced after 14 
days. S. exigua growth (A) data 
were analyzed by mixed models 
(lme4) with Treatment as a 
fixed factor and Experimental 
Trial as a random factor; A. 
pisum fecundity (B) and nymph 
weight (C) were analyzed by 
general linear model (glm). 
All models were subject to 
Dunnett’s post-hoc for pairwise 
comparisons against the control 
group. Dots represent individual 
experimental herbivores, differ-
ent shapes represent different 
experimental trials. For the 
box plots, the center line is the 
median of the data, the lower 
and upper hinges correspond 
to the first and third quartiles, 
and the whiskers are 1.5* IQR 
(Interquartile range) in either 
direction. z3HOL = (Z)-3-hex-
enol; z3HAC = (Z)-3-hexenyl 
acetate; e2HAL = (E)-2-hexe-
nal; BCP = β-caryophyllene
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Fig. 2  Seed exposure to plant volatiles does not affect Arabidopsis thaliana plants growth and reproductive output. The effect of seed exposure to 
plant derived volatiles on (A) the number of leaves produced, (B) rosette diameter, (C) shoot weight, (D) bolt length and (E) silique count. DPS rep-
resents days after seed sowing. Points (A,B) are means ± 95% SEM (n = 8–10). (F) Seed germination efficiency. Points in B-F represent individual 
observations, their arrangement is spaced using jitter (ggplot). z3HOL = (Z)-3-hexenol; z3HAC = (Z)-3-hexenyl acetate; BCP = β-caryophyllene; 
e2HAL = (E)-2-hexenal. *** P < 0.001
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Fig. 3  Seed exposure to cis configuration green leaf volatiles enhances growth of Medicago truncatula. (A) Picture of representative control 
and z3HAC seed exposed M. truncatula plants. (B) Diagram of nomenclature and standardized measurements for M. truncatula (Bucciarelli et 
al. 2006). Nomenclature coding starts with the unifoliate leaf as the first metamer and subsequent trifoliate are labeled along the main shoot in 
ascending order. Axillary shoots are named as per the metamer of origin. (C) petiole length, (D) leaf blade length, and (E) axillary shoot length 
of M. truncatula plants. “Vol” – Volatile; “MC” – Metamer Code. All the measurements were taken when the leaves were fully developed 
(i.e., “.9” classification per M. truncatula nomenclature (Bucciarelli et al. 2006)). z3HOL = (Z)-3-hexenol; z3HAC = (Z)-3-hexenyl acetate; 
BCP = β-caryophyllene; e2HAL = (E)-2-hexenal. * P < 0.05 of the volatile treatment group compared to controls based on Dunnett contrasts
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Fig. 4  Seed treatment with indole does not enhance herbivore-induced expression of defense marker genes relative to controls. Relative transcript 
levels of the genes Lipoxygenase 2 (LOX2), MYC2, Vegetative Storage Protein 2 (VSP2), Myrosinase 1 (TGG1), Cytochrome P450 79s (CYB-B2 
and CYB-B3) in A. thaliana after 24 h of Spodoptera exigua herbivory was measured by quantitative RT-PCR analysis (A-D). Similarly, transcript 
levels of SA regulated marker genes Pathogenesis-Related 5 (PR5) and β-Glucosidase 1 (BGL-1) were measured in Medicago trunacatula after 14 
days of Acyrthosiphon pisum aphid herbivory (E & F). Relative expression was determined (2− ΔCt) using the geometric mean of two housekeeping 
genes for normalization. Dots represent individual biological replicates. Different letters on the bar represent significant difference (p < 0.05) based 
on Tukey HSD contrasts. “Vol” – Volatile; “Herb” – Herbivore

 



Journal of Chemical Ecology

1 3

of the M. truncatula data are more limited since the single 
time point at the end of a 14 d feeding trial only indicates 
the lack of a sustained effect of indole seed treatment on 
the expression of two aphid-induced genes (Maurya et al. 
2018), even though a stronger sustained response is also an 
important aspect of defense priming (Frost et al. 2008a). 
Taken together, the enhanced resistance in plants grown 
from seeds exposed to indole in our study may therefore be 
a result of the changes in plant nutritive and defense chem-
istry that are directly stimulated by seed responses to indole.

Indole was the only volatile we tested in which seed 
exposure primed anti-herbivore plant defenses in both 
model plants, and did so across two different feeding 
guilds. Indole is an ubiquitous, inter-kingdom intermediate 
in critical biochemical pathways (Zhang et al. 2008) and 
a signaling molecule (Lee et al. 2015). In plants, indole is 
also a common HIPV that contributes to direct and indirect 
defenses (Gasmi et al. 2019; Veyrat et al. 2016) and also acts 
as a defense priming cue (Erb et al. 2015; Ye et al. 2018). 
That said, rhizosphere bacteria also produce volatile indole, 
which can modulate plant growth via auxin signaling (Bailly 
et al. 2014; Bhattacharyya et al. 2015; Blom et al. 2011; 
Yu and Lee 2013). We tested the A. thaliana CYP79B2 
and CYP79B3 genes, which encode enzymes that convert 
tryptophan (Trp) to indole-3-acetaldoxime (IAOx), a rate-
determining intermediate in the pathway regulating indolyl 
glucosinolate biosynthesis (Mewis et al. 2006; Zhao et al. 
2002). CYP79B2 and CYP79B3 are induced by the pathogen 
Erwinia carotovora (Jones) and are regulated by JA (Brader 
et al. 2001; Guo et al. 2013). Seed exposure to indole alone 
did not upregulate either CYP79 gene, but S. exigua feeding 
induced their expression independent of seed exposure to 
indole (Fig. 4 C&D). Therefore, the IAOx pathway, which 
is one potential route for auxin biosynthesis (Zhao et al. 
2002), may not be involved in indole-mediated seed prim-
ing. There are several potential pathways for the synthesis 
of indole in plants (Mashiguchi et al. 2011), so our study 
cannot necessarily rule out that indole-mediated priming of 
auxin could occur via a non-IAOx pathway. Moreover, it is 
possible that indole treatment affected JA signaling through 
cross-talk with auxin signaling pathways (Tyagi et al. 2018) 
that we did not capture with our targeted gene expression 
approach. Nevertheless, seed priming with indole produced 
consistent effects in two different plant species against dif-
ferent feeding guilds of herbivores. This result is encour-
aging since responses to caterpillars and aphids are often 
regulated by antagonistic phytohormone pathways (e.g., JA 
vs. SA) (Mewis et al. 2005). Since JA-mediated defenses 
can impact SA-mediated activation of pathogen resistance 
(Thaler et al. 2002), determining the mechanisms of indole 
seed priming will be important for predicting its positive 

without apparent negative consequence on plant growth and 
development is indicative of defense priming via direct acti-
vation of defense responses, which potentially provides a 
contrast to priming of leaves by HIPVs.

HIPV-mediated defense priming is theoretically a com-
ponent of an inducible resistance phenotype (Frost et al. 
2008c; Hilker et al. 2015), but this was not the case in our 
study with synthetic volatile treatments to activated seeds. 
Since seed treatment with defense phytohormones (e.g., 
JA, SA and BABA) primes defenses by modulating stress-
related signaling pathways (Azooz 2009; Haas et al. 2018; 
Worrall et al. 2012), we hypothesized that volatile indole 
would prime seeds through inducible signaling pathways. 
We therefore predicted that seed-primed plants would show 
primed inducible defenses compared to controls when chal-
lenged with herbivores. For example, Worrall et al. (2012) 
showed that seed treatment with JA and BABA primed 
antiherbivore and antipathogen defenses in the subesquent 
Arabidopsis plants by JA-dependent processes. However, 
in our case, JA-related octadecanoid pathway (Ballare 
2011; Wasternack 2007) and glucosinolate biosynthesis 
(Hopkins et al. 1998; Reymond et al. 2004) marker genes 
were induced by S. exigua feeding to similar levels inde-
pendent of indole seed treatment (Fig. 4). Similarly, marker 
genes for SA-related defense (Walling 2008) in M. trun-
catula were induced by A. pisum but were not additionally 
enhanced by seed treatment (Fig.  4). Given that some of 
these marker genes (i.e., LOX2 and VSP2 [a MYC-branch 
marker gene (Vos et al. 2013)]) are primable (Frost et al. 
2008c) and MYC2 is a potential regulator of priming of the 
JA pathway (Dombrecht et al. 2007; Kazan and Manners 
2013), volatile-mediated seed priming apparently operates 
through a mechanism of directly activating resistance. That 
said, indole seed treatment did not induce any marker gene 
before herbivory (Fig.  4), further ruling out activation of 
induced resistance via seed priming and supporting direct 
activation of resistance. Since we measured just single time 
points as indicators of inducible defense, it is possible that 
seed priming altered the temporal dynamics of induced 
defense, one hallmark of priming (Frost et al. 2008a). 
However, the lack of transcriptional priming in A. thaliana 
grown from indole-treated seeds is particularly noteworthy 
because it has been established that transcriptional evi-
dence of priming is observable after 24 h of real caterpillar 
herbivory (Frost et al. 2008c). Moreover, while individual 
marker genes may not necessarily reflect priming that might 
be observed if interrogating at a transcriptome level (Appel 
et al. 2014; Frost et al. 2008c), at least some of the marker 
genes we tested in A. thaliana are known to be primed by 
HIPVs or synthetic components of HIPV blends and there-
fore had a reasonable expectation of serving as “priming” 
marker genes in this study. In contrast, the interpretation 
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management. Considerable attention has focused on lever-
aging priming of innate plant immunity (Dervinis et al. 
2010; Pichersky and Gershenzon 2002; Pickett and Khan 
2016; Song and Ryu 2013; Song et al. 2015), due in part 
to presumed lower fitness costs of priming based defenses 
(Buswell et al. 2018; van Hulten et al. 2006). In-field foliar 
or soil application of these agents can induce plant defenses 
against herbivores (Bruce et al. 2003; Song and Ryu 2013; 
War et al. 2011), but can also be prohibitively costly for 
large-scale application. In contrast, seed treatments are a 
common method of inoculating crops (Paparella et al. 2015), 
and direct application of synthetic components of HIPV 
blends to seeds could provide more viable priming-medi-
ated solution to pest management. Moreover, M. thaliana is 
a close relative of fodder crop alfalfa and improved vegeta-
tive growth after seed treatment with GLVs may provide a 
mechanism for enhancing fodder capacity and rejuvenating 
soils during crop rotations. Our experiments here focused 
on ungerminated seeds that had dormancy overcome exper-
imentally to mimic after-ripening. While this is a critical 
stage for seed germination, future efforts to determine if 
such priming can enhance plant innate immunity in dormant 
seeds will also be essential for potential applications in 
seed management. Likewise, an important future step will 
be to establish the ecological importance of our results in 
field experiments with actual HIPVs. Ultimately, volatile-
mediated seed priming may represent a novel mechanism 
in plant-plant interactions affecting plant-herbivore inter-
actions within a generation, impacting trans-generational 
dynamics on ecological communities, and potentially mod-
ulating resilience to environmental variation.
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and negative effects on defenses against different herbivores 
and pathogens.

Exposure of M. truncatula seeds to two GLVs (z3HOL 
and z3HAC) stimulated vegetative growth. Our group has 
observed similar vegetative and reproductive growth stimu-
lation using a low-dose, persistent application of z3HAC 
in field-grown lima bean plants (Freundlich et al. 2021). 
z3HAC-treated lima bean plants were also better defended 
(Freundlich et al. 2021), consistent with our M. truncatula 
findings here (Figs. 1 and 3). Moreover, z3HOL seed treat-
ment stimulated modest but statistically significant growth 
over time in Arabidopsis (Fig.  1, S2). GLVs are well-
established priming cues against biotic stress (Engelberth 
et al. 2004; Frost et al. 2008c), and volatile communica-
tion between plants can alter biomass allocation (Ninkovic 
2003). Our results suggest that GLVs can also stimulate 
plant growth and ostensibly overcome the growth-defense 
dilemma (Herms and Mattson 1992) in some plant spe-
cies. z3HAC has been shown to stimulate maize growth in 
some cases (Engelberth and Engelberth 2019). One caveat, 
though, is that our group also has shown that persistent 
exposure to z3HAC reduces growth in Capsicum annuum 
(Freundlich et al. 2021), therefore the stimulating effect 
of cis-GLVs is not universal. One plausible hypothesis for 
future consideration is that z3HAC triggers an overcompen-
sation response in lima bean (Garcia and Eubanks 2019; 
Godschalx et al. 2016).

Synergy and dose-dependency of volatile cues are 
important aspects of defense priming. Recently, Hu et al. 
(2019) showed that indole and z3HAC act synergistically to 
enhance priming and plant defense in maize. In our study, 
these were the two volatiles that reduced aphid performance 
on M. truncatula. Even though specific mechanisms under-
lying synergistic effects of volatile exposure are not fully 
understood, it is possible that we would have seen even 
stronger seed priming effect in both systems had we incor-
porated combinatorial treatments. In addition to synergistic 
effects, the dose of a volatile cue affects plant responses. For 
example, the dose of an insect-derived volatile cue impacts 
the amount of damage inflicted by a specialist herbivore 
(Helms et al. 2017). We specifically held volatile concentra-
tion constant in this study, using ecologically relevant con-
centrations consistent with recent work (Erb et al. 2015), 
but the potential for dose-dependent seed priming is also an 
intriguing possibility that merits future work. Moreover, one 
limitation of this study we did not account for variation in 
volatility among the individual volatiles tested. While this 
would not affect the main treatment effects of indole and 
z3HAC, it is possible that the effective doses were not the 
same among the volatiles.

As a final point, our results have potential applications 
for applied chemical ecology of pest control and seed 
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