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Abstract

We develop a two-dimensional, plan-view formulation of ice-shelf flow and viscoelastic ice-shelf
flexure. This formulation combines, for the first time, the shallow-shelf approximation for hori-
zontal ice-shelf flow (and shallow-stream approximation for flow on lubricated beds such as
where ice rises and rumples form), with the treatment of a thin-plate flexure. We demonstrate
the treatment by performing two finite-element simulations: one of the relict pedestalled lake
features that exist on some debris-covered ice shelves due to strong heterogeneity in surface
ablation, and the other of ice rumpling in the grounding zone of an ice rise. The proposed
treatment opens new venues to investigate physical processes that require coupling between
the longitudinal deformation and vertical flexure, for instance, the effects of surface melting
and supraglacial lakes on ice shelves, interactions with the sea swell, and many others.

Introduction

In early 2002, the Larsen B Ice Shelf, Antarctica, disintegrated into thousands of pieces over
just a few weeks (Scambos and others, 2003). Efforts to understand how and why this event
occurred (Banwell and others, 2013; Robel and Banwell, 2019; Leeson and others, 2020),
and what circumstances could lead to the disintegration of other ice shelves in the future,
as well as the timing of such events, have failed to reach a consensus. To some degree, this
shortcoming is because many of the diverse physical mechanisms needed to understand ice-
shelf disintegration are studied in isolation from the other relevant physical processes. Here, we
develop a methodological framework for coupling horizontal ice-shelf flow processes with ver-
tical ice-shelf flexure processes. By doing this, we create a framework that allows investigation
of an ice-shelf stress regime that is simultaneously forced by two generators of stress: (i)
large-scale ice-shelf flow; and (ii) ice-shelf flexure.

The physical mechanisms proposed to be involved in the disintegration of Larsen B Ice
Shelf in 2002 include:

1. Hydrofracture by surface meltwater of existing surface crevasses, causing crevasses to propa-
gate vertically and become rifts (e.g. Scambos and others, 2003; Lai and others, 2020). This
process can also encourage sudden, cooperative drainage of surface lakes which, through
the hydrostatic rebound of the ice shelf thus unloaded of lake water, and associated flexure,
ignites a chain-reaction of lake drainage, fracture and further rifting (e.g. Banwell and
others, 2013; Robel and Banwell, 2019).

2. Break down of a compressive arch in the stress regime associated with the ice shelf’s sea-
ward flow, leading to pervasive tensile stresses that allow fracture (Doake and others, 1998).

3. Continuum damage mechanics processes coupled to large-scale horizontal stress features
(e.g. Borstad and others, 2012; Lhermitte and others, 2020).

4. Iceberg capsize both within and in front of an advancing calving front (MacAyeal and
others, 2003), iceberg capsize tsunamigenesis and cooperative iceberg capsize
(Guttenberg and others, 2011; Burton and others, 2013).

5. Sea swell, potentially coupled with band gaps in ice-shelf wave transmissivity, thereby con-
centrating swell energy at the ice front (Freed-Brown and others, 2012; Banwell and others,
2017; Massom and others, 2018).

6. Loss of soft, stabilizing basal marine ice (Kulessa and others, 2014).

This list also includes the many ideas related to fracture mechanics and rupture (e.g. van
der Veen, 1998; Lai and others, 2020). The purpose of our study is to develop a coupled set
of governing equations that allows the investigation of all these mechanisms.

Our approach is to modify the traditional reduced-order ice shelf model (Thomas, 1973;
Morland, 1987; MacAyeal, 1989; Weis and others, 1999; Hindmarsh, 2004), which involves
three variables (two horizontal flow velocities and ice thickness), by including a fourth vari-
able: the vertical deflection of the ice-shelf due to flexure induced by bending moments caused
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by a variety of forcings. These forcings include the effects of com-
pressive stress against ice-rumple grounding lines (Matsuoka and
others, 2015; De Rydt and others, 2019), cumulative thicknesses
of ice added or subtracted at the surface and base (Sergienko,
2013; Le Brocq and others, 2013; Banwell and MacAyeal, 2015;
Dow and others, 2018; Macdonald and others, 2019), movement
of surface meltwater loads (Banwell and others, 2019), as well as
more exotic effects such as: thermally generated bending
moments (Bazant, 1992), atmospheric pressure gradient effects
(e.g. Ross, 1854), bending moments induced by horizontal gradi-
ents in the depth-variation of ice density, dynamic changes to the
ocean surface from tides (Rosier and others, 2018), long-period
swell (Sergienko, 2017), geostrophic circulation changes, and
bending moments generated at ice fronts (Reeh, 1968;
Christmann and others, 2019) and grounding lines (e.g. Schoof,
2011; Sayag and Worster, 2011; Glasser and Gudmundsson,
2012).

In the development here, we: (i) derive the governing equa-
tions of the shallow-shelf approximation (part of a broader
scheme of approximation referred to as the SSA, which includes
shallow-sheet and shallow-stream approximations) for the case
where an ice shelf is not in local flotational equilibrium; (ii) derive
a thin viscoelastic plate treatment for ice-shelf flexure and (iii)
modify the traditional treatment of mass balance to embrace
cumulative build-up or decay of surface and basal ice loads. By
flotational equilibrium, we are referring to the situation where
each local ice column of a small surface area displaces exactly
its weight in seawater (i.e. Archimedes principle). Where an ice-
shelf is not in flotational equilibrium, the surface elevation will
not be related to the ice thickness by the familiar expression
involving the densities of ice and seawater. Generally speaking,
we expect the ice shelf as a whole to be in flotational equilibrium,
and areas, where it is not in flotational equilibrium, will be limited
to smaller-scale regions (e.g. 10km and less) where bending
moments are significant. Our focus will be on processes within
the ice shelf interior, away from the ice front and grounding
zones, where the SSA is not applicable. In circumstances where
the SSA applies to both sides of a grounding zone, such as the
junction between an ice stream that is sliding over a highly lubri-
cated bed and an ice shelf, our treatment is assumed to be
applicable.

Following the derivation of the equations, we conduct two
demonstration simulations using our viscoelastic treatment and
implemented it using the finite-element package Comsol™. The
simulations are highly idealized and intended to demonstrate
behaviors rather than study specific phenomena in depth. We
first simulate relict pedestalled lake features (Macdonald and
others, 2019) associated with strong spatially variable surface
ablation on debris-covered ice shelves such as the McMurdo Ice
Shelf (McMIS), Antarctica. Our second simulation is of ice-shelf
viscous buckling, with an eye toward demonstrating how phe-
nomena such as ice rumples (Matsuoka and others, 2015; De
Rydt and others, 2019) and traveling lakes (LaBarbera and
MacAyeal, 2011) may form on ice shelves.

Underlying approach

Our goal is to couple the reduced-order shallow-shelf treatment of
horizontal ice-shelf flow with the reduced-order thin-plate treat-
ment of viscoelastic flexure. The SSA is a well-known, successful
description of the large-scale, long-time ice-shelf flow. The thin-
plate approximation is also a well known and successful descrip-
tion of ice-shelf flexure phenomena. The two are ‘orthogonal’ in
the sense that the vertical variations in the shallow-shelf approxi-
mation are higher-order, but in the thin-plate approximation they
are the lead order. The two approximations, however, deal with
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the vertically integrated momentum (SSA) and bending moment
(thin plate) balances. Although we develop the coupling between
shallow-shelf flow and the thin-plate flexure in detail here, our
treatment also applies to cases where the shallow-stream approxi-
mation (MacAyeal, 1989) is used to simulate coupled ice-stream/
ice-shelf flow across a grounding zone that is an internal bound-
ary of the system. The shallow-stream approximation is very simi-
lar to the shallow-shelf approximation but it involves a fixed basal
elevation determined by bed topography and a basal friction
coefficient.

We achieve the goal of coupling the SSA to the thin-plate
approximation by following the approach of various asymptotic
analyses in the past which justify dropping terms in the kine-
matics and dynamics of thin-shelves and thin-plates that are of
order € (O(€?)) and smaller (MacAyeal, 1989; MacAyeal and
others, 2015), where € <« 1 is the ratio of typical thickness to typ-
ical horizontal scale. Our treatment is designed to be applicable to
interior regions of ice shelves away from boundaries where
short-length-scale processes are active, such as ice fronts (e.g.
Christmann and others, 2019), side walls where ice abuts an ice-
free land boundary, and grounding lines (e.g. Schoof, 2011; Sayag
and Worster, 2011), where the ice flow is treated by the shallow-
shelf approximation on one side and the shallow-stream approxi-
mation (MacAyeal, 1989) on the other. For research interested in
local-scale boundary processes, we recommend using a full-Stokes
treatment.

Kinematic assumptions

We begin by defining x and y as horizontal coordinates, z as the
vertical coordinate aligned with the acceleration of gravity g at the
Earth surface and zero at the undisturbed long-time sea level, and
t as time. The vertical dimensions of the ice shelf are described by
surface and basal elevations S(x, y, t) and B(x, y, t), respectively,
and ice thickness H(x, y, t) = S — B. At time ¢t = 0, we assume
that the ice shelf is in an undisturbed state with no flexure and
is floating such a way as to satisfy Archimedes principle on a
local basis (where each vertical ice column, no matter how
small in horizontal surface area, displaces a weight of seawater
equal to its own weight). We call the state of the ice shelf when
floating in this way ‘flotational equilibrium’, which is when:

S(x, y,t=0) = (1 - ﬁ)H(x, y,t=0), (1a)

Sw

B(x,y,t =0) = — P H(x, y, t = 0),

sw

(1b)

where p;(x, y, t) is the vertical average of the ice density
pi(x, ¥, z, t), and py,, is the density of seawater. Using the famil-
iar averaging operator:

S H/2
lej .dzzlj L& )

where { is an alternative z-coordinate that is zero at the middle
surface of the ice shelf, half way between the surface and base,

= B ) _ S H 3
{—z—< +5>—z—< _E>' )

At t=0, we assume that the initial ice thickness is
H(x, y, t = 0) = h(x, y) and that as time progresses, H will be
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given by:
H(x, y, t) = h(x, y) + Hs(x, y, t) + Hp(x, p, 1), (4)

where H; and H,; are the cumulative amounts of ice thickness
gained at the surface and the base of the ice shelf since t = 0.
(A restatement of mass balance equations comes in the following
section.) At times greater than zero, the surface and basal eleva-
tions are described by:

_ P

sw

S(x, y, t > 0) = (1 >h(x, ¥) + Hs(x, p, 1) +m, (5a)

B(x, .t > 0) = — ;—"h(x, Y)+ Hy + 1 (5b)

W

where 7 is the cumulative change in the z elevation of the ice
shelf's middle surface (neutral surface) at t = 0 for t > 0 (when
the addition of cumulative ice thicknesses #; and H;, at the top
and bottom, and the effect loads and bending moments begin
to take effect). The ice shelf is defined to be flexed when, except
for short term effects of waves and bobbing, S and B do not
have the flotational equilibrium values given by Eqns (la) and
(1b). We further write 1 as the sum of a viscous part 7, an elastic
part 1), and an ice-shelf area mean part 77,

N, 3, 1) = 0,6 3, 1) + 0,6 3, 1) + 7@ + 3°(). (6)

The terms 7 and 7© are required to satisfy the constraint that
the entire ice shelf is, on average, in flotational equilibrium:

;,w:ﬂ —ﬁHsdxd)H—ﬂ (1—ﬂ>mdxdy» (7)
A A

sw SW.

and to account for the possibility that surface and basal accumu-
lation will rotate, or tilt, the ice shelf about a horizontal axis while
keeping it in flotational equilibrium as a whole:

70 = ” —&XO(’HS) dxdy + ﬂ (1 - &>Xo(7‘lh) dxdy,
A sw A Psw
(8)

where A is taken to be the area of the ice shelf, and the operator
XC(-) represents the averaging operator needed to resolve what
parts of H, and H,, satisfy the condition of perfect ice shelf tilting.
The displacements 7*” and 1© are understood to induce no
curvature to the middle surface ice shelf, and thus do not induce
flexure stresses. This is why we consider spatially non-uniform
surface and basal accumulation to be a process that generates flex-
ure, which is embodied by 7, and 7,.

Stress and strain rate

Having described our definitions of ice-shelf geometry and state
of flotation both when flexure effects are present and when they
are not, we turn to describing the velocity and strain rate of the
ice shelf based on the common assumptions of shallow-shelf
and thin-plate approximations described in previous studies
(Love, 1888; MacAyeal, 1989). We refrain from describing dis-
placement and strain associated with elastic deformation, but
it is similar (MacAyeal and others, 2015). The key assumption
is that the square of the ice-shelf aspect ratio €, defined to be
the ratio of typical ice thickness to the typical horizontal extent
of the ice-shelf phenomena of interest, is much less than 1. This
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assumption allows terms in quantities that are O(e?) and smal-
ler to be disregarded in formulating the governing equations.

We define u and v to be the x and y horizontal velocities, w to
be the vertical velocity, and é to be the strain-rate tensor (bold
faced variables are considered to be vectors or tensors).
Considering one component of the horizontal velocity, u, we
make the following decomposition based on our application of
shallow-shelf and thin-plate assumptions:

u(x, y, & 1) = alx, y, 1) + e (x, 3, )+ O(E) + - -,
total velocity = z- and {-independent shallow-shelf flow
+ linear-in-{ flexure effect

+ terms that are small,

where é,, is a vertical shear component of strain rate given by:

b =L O 4. (10)
0z

We note that the term dw/dx does not appear in the above equa-
tion, because it is considered to be O(€?). To identify vertical
shear with just the vertical gradient of the horizontal velocity is
common in shallow-shelf, shallow-sheet and thin-plate
applications.

Considering only the viscous component of ice-shelf flexure,
the vertical strain rates are generated by the rate of change of
the viscous component of 7, which is 7,

o,

ax’ an

€xz = —

where 17, is the time-derivative of 7,. With this relationship, Eqn
(9) may be written:

9i
u(x,y,é’,t):ﬁ(x,y,t)—%g—i-(?(ez)—i—n'. (12)

We next consider the horizontal strain rate component é,,, which,
given Eqn (11) is expressed as a sum:
ou P,
by = — —
T ax?

L+OE) +---. (13)

All the other components of velocity and strain rate are parti-
tioned as sums in the same manner. We note that the second
term on the right-hand side of the above equation depends on
{. This means that this term’s average over depth is zero, and it
does not contribute directly (by integration over z) to the
depth-averaged horizontal flow of the ice shelf.

The stress within the ice shelf is determined by gravity (giving
pressure p a glaciostatic term) and by deviatoric stress T that is
related to the strain rates by the constitutive relation for ice. To
illustrate just one deviatoric stress term, we consider Ty,:

o R
Ty = ZVa —2v szv

e (14)
where v(x, y, z, t) is a flow-law and ice-parameter (e.g. tempera-
ture, ice stiffness parameters) dependent effective viscosity, and
we have dropped < O(€?)-terms from the sum. If we take
v(x, y, z) to be the sum of its mean over depth and an arbitrary
extra function that has no mean (which accounts for variations of
ice temperature and stiffness parameters with z):

v(x, y, §) = v(x, y) + S(), 15)
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where S({) (not to be confused with ice shelf surface elevation S)
is a function with no mean (i.e. S({) = 0). Substitution of this
expression for v into Eqn (14) gives:

&1,
0x?

.
Tee = 20 + S()) a—;‘ —20+ 8@k (16)

For the depth-average part of the above stress component, we
have

9,
0x2

_ 9
Ty = 200 + S(0) % 20+ 8Ly

(17)
&,
ox2

= 217%— 2(2S)
0x

In the above expression, we see two viscosity-like parameters, v
and {S5({). Normally, in shallow-shelf flow without flexure, ¥ is
the effective viscosity that determines the flow. Here, we see as
a first-element of coupling that an additional viscosity parameter
is involved, namely £S(9).

We now consider the bending moment M. We assume a
Maxwell style of viscoelasticity in our treatment of flexure, and so
both the elastic and the viscous parts of 7 respond to the same sin-
gle bending moment, like how a spring and a viscous attenuating
piston/cylinder device (dashpot) respond to a force when connected
in series. Here we consider how m,, the viscous part of 7, depends
on M,,:

Douglas R. MacAyeal and others

As is customary in shallow-shelf and thin-plate approximations
we drop the vertical shear terms (assuming they are O(€?) or
smaller, and substitute for T,, = 2v(aw/d{):

D (™

We next invoke the incompressibility condition and the defini-
tions of ., and é,, in terms of the x and y derivatives of n,

ow _ ou + v
o \dx 3y

(2]

= (@ + @) - <3é"” + aé”) ¢ (22)
ax oy ox ay
N 2. 2.
() (5
to give:
3 )
i y y (23)
T pg=0

We define the density, like the viscosity, to be the sum of its
depth-average and a term that varies with ¢

pi(x) Y g’ t) = pi(-x’ Y t) + R(x, Y, g, t), (24)
H/2
My = —[ (Txx _P)gdz
~(H/2)
H/2 o 32”fl H/2
:j (2(17+S(£))8f—2(17+5(£)) 3 > é“)é"dz—j p(x, y, 2z, t){dz
—(H/2) X X —(H/2)
— 2. H/2 H/2
= ZH@% -2 0 ZVJ @+ S dz — j p(x, y, 2, ){dz
0x 0x —(H/2) —(H/2)
__ o (vH® *q, (12
=2H(S ——<—+2H82> V—j (x, v, z, H){ dz.
O 6 (58) ) 5 7<H/2>P e (18)

We note that the above expression for bending moment depends on
three measures of ice viscosity, the depth average viscosity ¥ and
two measures SZ and S¢? that depend on the variation of viscosity
with {. We thus anticipate that the viscosity that primarily governs
shallow-shelf flow, v, will be different from the viscosity that gov-
erns flexure, although this is not the case when S = 0, i.e. the ice
is of constant viscosity.

If viscosity variation with { is presumed to be zero, a simpler
expression for M,, emerges. We record this expression for use in
describing the demonstration simulations in sections below:

vH? 9*7) jH/Z
__— v _

Mxx = -
6 ox?

p(x, v, 2z, t){dz. 19)

—(H/2)

To proceed further with deriving the bending moment M,, we
need to determine the pressure p. We start with the vertical stress
balance:

d d i ap B
&(sz) + 3_}/ (Tyz) + a_é,,(Tzz) - a_é, - P,(()g =0. (20)

where R = 0. Integrating Eqn (23) over the vertical, from a lower
limit of { to an upper limit of H/2 where we apply the boundary
condition that atmospheric pressure is zero, we obtain:

oy Pq,  #7 H
] il ) v ) B
V(ax+ay)+ v§<ax2+ay2> P ”’g(g 2)

H/2
—gj R(Hd{=0,

¢
(25)
which gives:
o
p() =2v (a + 8_y>
82 7 \4 32 ] \4
+2v{ <a—; + 3; ) (26)
H\ (H2
~pe(e-5) [ mww
¢
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We record for future use the depth average of p:

= 95 ou + ov
= ZV| — —_—
P ox  dy

— Y
+2<§s<§>>( e+ ayz)

H (27)
+ pig 35

H/2
- g(J R(D di) .
14

For future reference, if the depth variation of viscosity and ice
density are zero, i.e. S =0 and R = 0 we obtain:

_(ou v
p(Q) = _2])(&_'—8_)/)

Pi, 0
2— 4 v
- v§< PR 3y2>

H

which gives for the depth-average pressure:

(28)

(29)

We can now compute the contribution of the pressure to the
bending moment using the simplified form in Eqn (28):

H/2 =173 /922 2 .
vH” (0°n, 0°M
" pgzae < (B 71)
j ~(H/2) Py 6 \ox* = 9y?
pigH’®

+12

(30)

This then renders the expression obtained previously (Eqn (19))
into the following form:

M.. = _1_’_113327%_‘7_1{3 82hv azhv pigH3
= Xz 9y 12

6 Ox? 6
3D
_ VH’®0, VH’9’W,  pgH’
T3 ? 6 92 12

For what follows, we note that components of M = [M,, M,, M,,] T
are related to the second derivatives of 7, by the following linear
relation when we disregard { variations in ice viscosity and dens-
ity, i.e. when S({) =0 and R({) = 0, respectively (as we shall
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assume in our demonstration simulations in sections below):

¥,
1 Lo 82x'2
vHE | | 2 a1,
M=M,=——[1 10 >
Sloo 1] | ¥
2 2 5
o,
0xdy
o,
0x?
0
:V' 5 > (32)
dy?
¥,
| 0xdy |

where we have added the subscript v in the above expression to
differentiate the bending moment due to viscous stresses from
those due to glaciostatic (subscript g) and elastic (subscript e).
The glaciostatic contribution to the bending moment expressed as

__pgH }

= , 33
=" (33)

will be treated as a forcing term to the vertical force balance equa-
tion (derived in the section presenting our treatment of flexure
below), because it does not depend on 7. We note that the
above expression for M, is not written with terms that depend
on ({S) or R({), however, these terms could be very important
in situations where ice shelves have voids or englacial water that
disturbs the viscosity and density structure with depth. Such a
situation is envisioned for Arctic ice shelves such as the Milne
Ice Shelf, where channelized englacial water bodies and voids
are detected, and which may contribute to the pervasive rumpling
of the ice shelf (Rajewicz, 2017).

To avoid repeating the similar, but lengthy, derivation of the
elastic contribution for the bending moment M,, we simply
record it here:

&,
ox?
R & :L weos #n,
e — — : 2
12(1 - V“Z) 0 0 (1 - ,u) 2))
7,
| 0xdy |
C o,
0x?
Y]
=D. <, (34)
dy?
&,
axady

where E is the Young’s modulus and w is Poisson’s ratio, which
we assume to be constants. (We do not consider their variation
with depth in this study, however, such consideration, if war-
ranted, would follow the above treatment for how ice viscosity
and density vary with depth.)

The linear operator expressions are given above for V and D
will be used in the section below on developing the coupled treat-
ment of ice-shelf flow and flexure. They will also be used in the
demonstration simulations presented below. We reiterate, how-
ever, that the linear operators given above have been simplified
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under the assumption that contributions from S and R, repre-
senting vertical variations in viscosity and density, are zero. Full
consideration of variable viscosity and density is relegated to
applications that go beyond simple demonstrations.

Ice rheology in the coupled system

As indicated above, the depth-averaged stress appearing in the
SSA depends on the depth-averaged effective ice viscosity, and
the bending moment depends on both the depth average of,
and the first moment of, the effective ice viscosity. This difference
can be understood by considering the situation where an anom-
alously viscous ice layer (e.g. because of temperature or ice impur-
ity) exists at the ice-shelf middle surface. This viscosity anomaly
will contribute to a depth average, but not to the first moment.
In this study, we do not seek to clarify or demonstrate the effects
of ice rheology, e.g, specific variation of effective viscosity with ¢
caused by the flow law and by other effects such as temperature.
We thus proceed in the demonstration simulations below to use
two different Newtonian viscosities for ice, one that is the depth
average v relating to the SSA and one that includes an arbitrary
(for our demonstrations) additional viscosity variation used for
the thin-plate approximation which we call vs. In the case of
the ice-rumple demonstration presented in the following section,
we find that it is convenient to have vy < v for the ad hoc way in
which we set up the simulation. This could, for example, be
explained by ice near the upper and lower surfaces of the ice
shelf having lower viscosity than in the centre (i.e. near the middle
surface) where the ice is colder.

Pre-stressing of newly accumulated ice layers

In the foregoing derivation, we have focussed on computing
bending moments via the integral:

H/2
M,y oc j -d¢=
—(H/2)
H, —(h/2) (35)

h/2
j -d{—i—j -d§+J - de.
—(h/2) h/2 —H,

Let us consider what happens when, at t = 0, the ice thickness is
changed from h to h + H, through the instantaneous addition of
an accumulated layer of ice H;. Let us further suppose that at
t = 0 the ice shelf is in a state of flexure so that n # 0 and bend-
ing moments exist within it. The new addition of ice H; is added
by a process (e.g. snow fall and densification) that does not intro-
duce intrinsic bending moments. This means that the original
part of the ice shelf contained within the thickness h is pre-
stressed, and the new part of the ice shelf contained within the
thickness H; is stress-free. As t > 0 this disparity between the
old and new ice will mean that for the old ice to deform viscoe-
lastically toward its equilibrium shape, it must deform the new ice
from its deposited, stress-free shape. This is a bit like pre-stressing
in concrete or metallurgy. The proper way to account for this is to
track each layer of the ice shelf as it is added. And this can be done
via a full Stokes treatment. Since our intention is to reduce com-
plexity, we deal with this subtle problem by assuming that any
new ice added to the ice shelf instantaneously inherits the stress
state of the ice shelf that it joins.

Modification of the shallow-shelf approximation

The SSA (Muszynski and Birchfield, 1987; Morland, 1987;
MacAyeal, 1989; Weis and others, 1999; Hindmarsh, 2004) is a
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diagnostic, time-independent set of depth-integrated stress bal-
ance equations for two depth-independent horizontal velocities,
u and v (MacAyeal, 1989). Here we derive these equations
under the assumption that the ice shelf is not in flotational equi-
librium, i.e.:

S # (1 —ﬂ>H, and B %« —PLH, (36)
pSW pSW
due to a non-zero flexure (1 # 0).
The stress-balance equations for x and y are written:

O (T = p@) + (1) =0, (372)
ox ay
a (T, — p2)) + 9 (Ty:) = 0. (37b)
3)/ »y ox e

We next integrate the above equations over z, noting the defini-
tions of ¥ and p, recognizing that u and v are independent of z,
and use Leibniz rule:

(1T p) + T

as

S

= + (T — p(9) T (Ty) % (38a)
oB 0B

- (Txx - P(B)) a - (Txy) a—y,

0, — B _

3_)/ (H(Tyy —p)+ a (HTyx)
aS aS

= +(Ty — p(S) P + (T) P (38b)

JB 0B
- (Tyy - P(B)) 87)/ - (T}’x) ™

We now make use of boundary conditions on the horizontal stress
at z=3S, B, and substitute for the depth-averaged deviatoric
stress and pressure using Eqns (17) and :

T -n=0 at z=2, (39a)

T -n=p,gB at z=B5, (39b)

where Ty is the full stress tensor (sum of deviatoric stress T and
pressure pI, where I is the identity matrix) given by:

T —p T,
Tf: [ E ’ ]’
Ty« T,y —p

(40)

and n = [n, n, n,]7
Noting that

is the normal to the surface in question.

aS aS

Ny, nyoca, @ atz =S, (41a)
0B 0B

Ny n}, Oca, 8_)/ at z =B, (41b)
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we can substitute the boundary conditions of Eqns (39a) and
(39b) for the terms on the right-hand sides of Eqns (38a) and
(38b):

N 3B
= (H(Txx - p)) *5 (HT,y) = —PagB (42a)
3\ 0, - 9B
o (H(Tyy - p)) + - (HT,,) = ~pasB, (42b)

We next make use of Eqns (17) and (27) to substitute for p:

a Hp 48u+28v n a Hp 8ﬂ+817
i v =4+Z
ox ox o9y ay dy ox

3 jH/Z 3 ¥
+— R(O)dL +—( )
ox ( ¢ dy oxdy
3B oH
= B—— .H—’
(43a)
D (a2 1 22)) 1 2 (g (22
Py T ) T\ T
(43b)

9 H/2

+— j R(HdL
ay ¢

9 (s P B
Ox oxdy) Pows dy

We simplify the above expression by collecting terms that depend
on R({) and second derivatives of 1), onto the right-hand side of
the equations and calling them coupling terms C,(#,) and C,(7,):

d Hy 48ﬁ+286 +8 Hy 8ﬁ+8T/
(4= 22 “(ep(=4+Z2
ox ox ay ay dy Ox

oH

HaH

oB
= py,gB o pigH s Cy, (44a)
O (o424 2 Y L 8 (2L Y
ay ay ox ox dy ox
oB oH
= B— — p.gH—+ C,. 44b
Psw& ay pi& 8)/ + Y ( )
We will take C; = C, = 0 in our demonstration simulations in

sections below because these coupling terms depend on (S
which is zero under the assumption that the vertical variation
in viscosity is zero, i.e. when & = 0. We also anticipate that the
coupling terms will likely be small and restricted to small regions
of the ice shelf because 1), will likely be related to localized pro-
cesses and may be periodic with zero mean over long horizontal
distances.

891

Boundary conditions used to solve the shallow-shelf approxi-
mation for u and v here are the specification of # and v at ground-
ing lines and other land-constrained boundaries of the ice shelf,
and a stress condition at the seaward ice front:

port(27 2 N (P
-— n — |n
VI T Tay) T T gy )™

B
(Ptg 2 — Psw& ) (45a)
+ 811+§
o) TH dy ox x

H2 2
(p,g 5 T Pug ) (45b)

where n = [n, ny]T is the outward pointing normal to the ice
front in the x, y plane. We note that the right-hand sides of
Eqns (45a) and (45b) involve the variable B(x, y, t) which is
the elevation of the ice-shelf bottom, and for which its absolute
value is the ice-shelf draft. Like S, B is not assumed to be related
to H by the flotation equilibrium relationship wherever flexure is
present.

Governing equations for flexure

The purpose of this section is to determine the change in vertical
elevation of the ice shelf due to flexure effects, namely, Dn/Dt,
where D/Dt = (9/0t) +u-V is the material time derivative,
u=[uv]' and V= (8/0x) + (9/9y), from the thin-plate theory
of vertical force balance of Kirchhoff and Love (Love, 1888) (see
also Slim and others (2012); Ribe (2003)) and from the forcings
that cause the ice shelf to deviate from flotational equilibrium
on a local basis. Given that n = 1, + 7, + 7 + 7°, we antici-
pate that 1), and 7, will be determined by the governing equations
of thin-plate theory. We do not develop expressions for D /Dt
and D7 /Dt, because, as noted above, these do not contribute to
flexure. In what follows, we shall assume 7 = 7° = 0 for nota-
tion convenience.

Vertical force balance due to bending moments

The vertical force balance on ice columns in the ice shelf is used
to determine D7, /D; and D1),/Dt. In this balance, the divergence
of bending moment gradients is equal to the sum of vertical force
acting on the ice shelf (Love, 1888; Slim and others, 2012):

32_7) _ azMxx +2 82 x}’ + azMJ’}’ :f>
ot? dx? dxdy dy?

(46)

where M = [M,, M,, Mxy]T is a column vector of bending
moments (the order of appearance of its elements has no physical
meaning, but is defined for convenience), and f is the sum of
forces acting vertically on the plate. We shall further adopt the
convention that terms depending on the glaciostatic part of the
bending moments M, will be written as a forcing term in the
expression for f, to be discussed below. This is because M, does
not depend on 7. Our first assumption is that the flexure of an
ice-shelf is quasistatic, we thus drop the acceleration term on
the left-hand side of Eqn (46).
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Referring to Eqns (32) and (34), we write:

r ]
ax?
0*n
-1 _ e
DM=| 55 | (47a)
¥,
| 0x3y |
[ o,
dx?
3%
VM= = (47b)
dy?
&,
oxdy
By the definition mn=mu,+m, (and assuming that
7 = 79 = 0), we can write:
[@a] [@a] [#a,]
ax? ax? ax?
] ¥, &,
W = 3y> + 3> (48)
Sk ¥, &,
| 0x3y | | 0x0y | | 0x3y |

Substitution of the expressions in Eqns (47a) and (47b) into the
above equation gives:

0]
a2
97
Pa
97
axiy |

=DM+ VM. (49)

This equation forms the constitutive relation used in our
formulation.

In other examples of the application of the viscoelastic consti-
tutive relation in a linear form, such as by Rosier and others
(2018), the constitutive relation appears as:

6,] = ClA’Tij + C2Tijs (50)
where ¢; and ¢, are constants, and the overset triangle denotes the
upper convective time derivative (Oldroyd time derivative), hav-
ing as its leading term the material time derivative indicated by
the overdot. We do not use the upper convective time derivative,
because its extra terms account for large-amplitude flexure which
rotate the neutral surface of the viscoelastic plate significantly out
of horizontal. We anticipate that ice-shelf flexure will be of low
amplitude and that we may assume that components of stress,
strain and strain-rate tensors with indices xx, yy and xy can still
represent these tensor components on the neutral surface,
which will only be slightly tilted out of horizontal.

One final modification is made to the constitutive relation to
avoid mixing time derivatives of M with undifferentiated M in
the same equation. We introduce a new variable of convenience,
which we shall refer to as a ‘generating potential’,
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(D = [(I)l (pz @3]T2

LD
b=" u vo-vm

ot 1)

This allows Eqn (49) to be written in a manner where all terms are
time differentiated:

¥
dx?
& . .
E? — D 'M+ d, (52)
7
| 0x3y |
or
- 82_7) 5
dx?
9 . *n
<§+u-V> ®+D"M-— 32 =0. (53)
3*n
| dxdy |
Integration over ¢ gives,
— 82_7) -
dx?
®+D'M ¥ 0 (54)
|7
Fn
| 0xdy |

where we assume the constant of integration to be zero. This
assumption is equivalent to assuming that at some initial time
(the lower bound of the integration at t = 0), there are no viscous
contributions to bending moment.

We summarize the full formulation of flexure based on the
many assumptions and on our novel approach to working with
bending moment and 7 as the principle variables:

FPMy . PMy, M,
—( oz T2 oxdy + % )=f, (55a)
b
—4u- VO -VM=0, (55b)
at
d+D 'M-H=0, (55¢)
where H is defined as
_[#n @ #n]" 56)
CLax 9y dxdy]

Normally, in derivations such as those presented here, the effort is
to replace the bending moments with terms involving second
derivatives of 7. This then yields a single equation that is fourth
order in spatial derivatives of 1 when u is zero; and fifth order
if u # 0. We prefer to work with the system of three equations
written above because its largest spatial derivatives are only
second order, and this conforms well with the capabilities of
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Comsol™, which requires all equations of higher than second
order spatial derivatives be divided into systems of equations hav-
ing lower-order spatial derivatives.

We note that our formulation is intended for both short-
timescale (seconds to days) and long-timescale processes
(years). An argument can be made that, in the case of processes
with long timescales, it is unnecessary to retain the elastic part
of the viscoelastic constitutive relation we propose here. This
may be true. We note, however, that treatment of both elastic
and viscous behavior introduces only additional coefficients to
the governing partial differential equations (PDEs) expressed
above, not new variables; so elastic treatment comes without sig-
nificant computational cost even if the phenomenon of interest is
dominated by the viscous part of flexure. Also, in some applica-
tions, such as the differential-ablation phenomena we will discuss
in the demonstration simulations below, elastic deformation is
introduced to the ice shelf continuously with time (e.g. with
each day’s spatially variable melting and water movement); and
thus elastic effects cannot be so easily separated from viscous
effects based on their short-term importance even when the phe-
nomena evolve over many cycles of the viscoelastic relaxation
time, commonly referred to as the Maxwell timescale. Finally,
the initial elastic response may determine length scales of features
that subsequently evolve through viscous deformation. The elastic
response, thus, may provide an initial condition for the time-
dependent viscous flexure which would otherwise develop differ-
ently in the absence of elasticity.

Flexure forcing

The physical meaning of Eqn (55a) is the balance of bending
moments and forces f(x, y, t) caused by a number of physical
processes. We represent these processes in the following sum:

f=-pug(n.+mn,) (57a)
+ (Pow — p,»)g(Hb —HY - A ) (57b)
- pig(’Hs — " 7O ) (57¢)
— pugd (57d)
R BT TN |
+ (T =Py 5 + 2TW@ + (T,y — Py) P (57€)
pg (PH | H
+75 ( ot e (57f)
+ 7(0) (57g)
+ A(pa) (57h)
+ O(ha). (57i)

We describe each term in the sum on the right-hand side in order
from a to i in Eqns (57a)-(57i):
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a. The restoring force of buoyancy acting on the initial ice thick-
ness h.

b. The buoyancy of accumulated mass between the base and the
flotational equilibrium value of the basal elevation. This
depends on spatial gradients in #, and H; and spatially
inhomogeneous basal accumulation. This term arises, for
example, in the creation of basal channels (Le Brocq and
others, 2013; Alley and others, 2016) and inhomogeneous
marine ice deposition (Koch and others, 2015).

c. The weight of accumulated mass between the surface and the
flotational equilibrium value of the surface elevation. This
term arises, for example, in the creation of surface channels
(Dow and others, 2018, Boghosian, personal communication,
2020).

d. The effect of additions or subtractions of surface meltwater
(where p,, is the density of fresh meltwater). This term arises,
for example, where there are filling and draining supraglacial
lakes (Banwell and MacAyeal, 2015; MacAyeal and others,
2015; Banwell and others, 2019; Robel and Banwell, 2019)
and dolines (Moore, 1993; Bindschadler and others, 2002).

e. The effect of the membrane (horizontal ice-shelf flow) stres-
ses associated with ice-shelf flow having a vertical component
when there is acurvature in the middle surface of the ice-shelf
(Ribe, 2003; Slim and others, 2012). This term arises when
there is a second derivative of 7, because a ‘horizontal sec-
tion’ of the ice shelf which has vertical sides when unflexed
will have both its sides tilt slightly ‘face down’ or ‘face up’
when curved. This means that the membrane stress will
have a slight vertical coordinate. This term is expected to
be important when there are strong compressive membrane
stresses in the ice shelf, such as at ice rumples (Matsuoka
and others, 2015; De Rydt and others, 2019) and traveling
lakes (LaBarbera and MacAyeal, 2011).

f. The effect of glaciostatic pressure generated bending
moments (derived in a previous section). This term is
expected to be important where there are large second deri-
vatives of ice thickness and significant variations of ice dens-
ity with depth, such as in the case of the Milne Ice Shelf
(Rajewicz, 2017).

g. The effect of thermal stresses (6 is temperature). This can be
important where ice is thin and there is a significant annual
or diurnal cycle in surface temperature (Sanderson, 1978;
Bazant, 1992; MacAyeal and others, 2015, 2017).

h. The effects of atmospheric pressure gradients p,(x, y, t)
which bear down on the upper surface of the ice shelf such
as the inverse barometer effect (Ross, 1854).

i. The effects of ocean dynamic topography h,(x, y, t) changes
due to tides (Rosier and others, 2018) and sea swell
(Sergienko, 2010, 2017).

Flexure is also forced by boundary conditions, such as at
grounding lines (Schoof, 2011; Glasser and Gudmundsson,
2012; Rosier and others, 2018) and ice fronts (Reeh, 1968;
Hindmarsh, 2012; Christmann and others, 2019); however, we
do not focus on this well known forcing in this study.

In the present study, our focus is on the first, third and fifth
terms of the right-hand side of Eqns (57a)-(57i). We thus relegate
to future research determination of how relevant the other forcing
terms are to ice-shelf behavior, and to what processes they pertain.
The second term of Eqns (57a)-(57i) controls the response to
accumulation and ablation, and especially their gradients in situa-
tions where ablation causes surface channels to incise into the ice
shelf, and where debris cover (e.g. the McMIS, Antarctica), and its
absence in limited areas, cause pedestalling of high-albedo sur-
faces (e.g. pedestalled, relict lakes, Macdonald and others, 2019).
The fourth forcing term is of interest when the ice-shelf flow
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stresses are compressive and give rise to viscous buckling instabil-
ity that leads to ice rumples along grounding lines where ice flows
toward, rather than away from, the grounding line.

To solve the above formulation of viscoelastic flexure, initial
and boundary conditions are required. Thus we choose simple,
bending moment free boundary conditions for M and 7. For
the initial conditions, we will take 7 to be zero or some other
function, as the case examined requires. The details of these spe-
cifications will depend on the application, as we discuss below for
our demonstration simulations.

Reframing the mass balance equations

Variables needed to force the coupled flow and flexure process
formulated in the previous sections are ice thickness, surface ele-
vation and basal elevation, H, S and B, respectively, and cumula-
tive mass gained/lost at the surface and base by mass-balance
processes, H; and Hy, respectively. The surface and basal eleva-
tions in the situation where flexural dynamics and hydrostatic
buoyancy forces can interplay are given by

S= <1 —;—i>h+7-ls +m, (58a)
_ bi
B=——"h—Hy+m, (58b)

sw

where, as above, 1(x, y, t) is the vertical displacement of the ice-
shelf mid-plane in response to bending moments and changes in
ice thickness associated with surface and basal accumulation,
h(x, y, t) is a reference ice thickness that represents two ideas.
Assuming that n(x, y, 0) =0 at t = 0, h(x, y, 0) represents the
initial ice-shelf thickness when in flotational equilibrium. This
may be an imaginary reference state, if flexure is always present,
however it is needed as the ‘seed’ from which the ice thickness
H(x, y, t > 0), surface and basal elevations S(x, y, t > 0) and
B(x, y, t > 0), and n(x, y, t) evolve during ¢t > 0. This reference
thickness, for example, may be the start of a simulation of an ice
shelf that has not yet encountered the forcing that causes flexure.
The reference thickness h also represents what H(x, y, t > 0)
would be in the absence of cumulative surface and basal accumu-
lation/ablation since ¢t = 0, the thicknesses of which are denoted
by H(x, y, t) and H,(x, y, t) (for ablation, H; and H,; have
negative values). In other words, #, and #; denote the cumula-
tive ice accumulated or ablated which requires n(x, y, t) to
respond. In the absence of flexural strength (zero elasticity and
viscosity), 1 is designed to change S and B to conform exactly
with flotational equilibrium.
Note that, h(x, y, t) obeys

% = —V - (uh).

ot (>9)

This indicates that h changes with time due to advection with
the horizontal flow (u- Vh) and with flow divergence (hV - u).
Accompanying this behavior in h, the cumulative thickness ice
accumulated or ablated also changes with time due to advection
and flow divergence:

a;:S =-V-(u#Hy) +A: (60a)
d .
% =—V-(uHy)+B, (60b)
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which then gives the familiar expression for ice-shelf mass
balance:

E:—v.(uH)JméhtB, (61)
where the total ice thickness H is:
H(x, y, t) = h(x, y, t) + Hs(x, 35 ) + Hplx, p, 1), (62)

In the above decomposition of the familiar mass-balance equa-
tion for ice-shelf flow into three separate mass balance equations,
one for each of h, H;, and H,, we are keeping track of the evolu-
tion of ice thickness, but allowing the parts of that thickness, the
cumulative thickness of ice gained or lost at the surface and base,
to be tracked as time increases so as to allow flexure to respond to
additions or subtractions of ice. That cumulative changes of thick-
ness caused by surface and basal accumulation (ablation) is
tracked explicitly using Eqns (60a) and (60b) is a key feature of
our formulation, and is motivated by the fact that ice-shelf visco-
elastic flexure at time ¢ > 0 proceeds in response to all accumu-
lated changes in ice-shelf loads at times 7 where 0 < 7 < .

To aid understanding of the partitioning of surface and basal
mass balance into cumulative terms obeying Eqns (59) and
(60a), we note the special case where bending moments are
absent. In this circumstance, the sum of terms comprising f in
Eqn (57i) must be zero. If only the first three terms are non-zero,
we have

n=—Liy + (1—ﬂ>’ﬂb. (63)
Substitution of 7 into Eqns (58a) and (58b) gives:
S= (1—ﬂ)h+%—ﬂ%s+(1—ﬁ>m, (64a)
pSW pSW SW.
B:—;)—ih—Hb—;—i?{s—i-(l—&)Hb, (64b)

which, along with the relation in Eqn (62) gives the familiar result:

S= (1 — ﬂ)H, (65a)
Pay
B=-Pin (65b)
P

which is a statement of flotation equilibrium in the absence of
flexure.

Numerical implementation

In the next sections, we demonstrate several idealized, preliminary
applications of the formulation. These demonstrations are con-
ducted numerically with a finite-element PDE solver set up to
represent the above equations for ice-shelf flow, flexure and
cumulative mass balance. The simulations are demonstrations
only, and are not intended to reach specific conclusions about
any of the processes demonstrated.

To conduct the numerical simulations, we used Comsol™ to
implement the simulations undertaken. We use Comsol because
it is optimized for easy and quick implementation of PDEs such
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as ours, without the attendant need to develop discretization, mesh-
ing, solving and visualization algorithms. Specifically, Comsol
allows representation of general, coupled PDE’s in coefficient
form, which means the user simply has to specify the coefficient
constants or functions that multiply each of the various generic
terms of a PDE (many of which will be specified as zero). For one-
dimensional (1-D) simulations, we use sextic Lagrange shape func-
tions and a direct solver. For two-dimensional (2-D) simulations,
we use cubic Lagrange shape functions on a triangular mesh and
a direct solver. Further details of our numerical implementation
of the governing equations in Comsol are provided in the
Supplemental material.

Demonstration simulations

We conduct two idealized demonstration simulations to illustrate
how the above formulation deals with two examples of ice-shelf
behavior: (1) formation of pedestalled, relict lakes (Macdonald
and others, 2019) and (2) the formation of ice-rumples
(Thomas, 1973; Matsuoka and others, 2015; De Rydt and others,
2019) and traveling lakes (LaBarbera and MacAyeal, 2011). These
two specific phenomena are chosen because they display the
effects of the third and fifth forcing terms in Eqns (57a)-(571),
respectively: pedestalled, relict lakes associated with differential
ablation on debris-covered ice shelves, and ice-shelf rumpling
(or viscous buckling instability) active along compressive ground-
ing zones of some ice shelves. The first application is motivated by
pedestalled, relict lakes on the McMIS where there are strong gra-
dients in surface ablation due to superimposed high-albedo ice
surrounded by debris cover (Macdonald and others, 2019;
Banwell and others, 2019). The second application is motivated
by the so-called traveling lakes on the George VI Ice Shelf
(GVIIS) (LaBarbera and MacAyeal, 2011; Banwell and others,
2021) and by the McDonald Ice Rumples (MIR) on the Brunt
Ice Shelf (BIS) (Thomas, 1973; Matsuoka and others, 2015; De
Rydt and others, 2019). We present 1-D simulations of these
two applications, and we also present a 2-D simulation of the
second application (ice-shelf rumpling). In all demonstration
runs, we specify E = 10° Pa, u = 1, and take various choices for
the ice viscosity v as discussed below.

Differential ablation: pedestalled, relict lakes

In our first idealized demonstration, we investigate the effects of
spatially heterogeneous surface ablation in the context of pedes-
talled, relict lakes we have observed on the McMIS, Antarctica
(Macdonald and others, 2019; Banwell and others, 2019)
(Fig. 1). Pedestalled, relict lakes are found on debris-covered ice
shelves, and each begins as a lake that forms in a debris-covered
depression during one melt season. During the first winter, the
lake water freezes, becoming superimposed ice that conceals the
original debris cover with high-albedo ice. In subsequent years,
the superimposed high-albedo ice reduces surface ablation relative
to the surrounding debris-covered ice-shelf surface. This causes
the surface of the surrounding ice shelf to lose mass at a rate
much greater than the spatially limited zone of the original
lake, now covered by superimposed ice and free of surface debris.
The sharp contrast between the ablation rate at the high-albedo
original lake site and the low-albedo debris-covered surroundings
(Fig. 1b) leads to circumstances where the second term, #,, in the
forcing for flexure has a strong spatial gradient at the shoreline of
the original lake. This is what is investigated in the second
demonstration.

Our demonstration simulation will consider only a cross-
section of the ice shelf (along a flowline) containing a relict lake
feature. The 1-D version of the ice-shelf flow, mass balance and

895
flexure equations derived above are:
O (o2 = B8 e (66a)
ax " ax ) T P8 T PER :
0* M, u 1
~ ol = Pe8N = P&+ H 4vo o — o pgH
3*n
R 66b
X 02 (66b)
0P L) 3
— —+—M 0, 66
o Tl T (66c)
12(1 — p?) ¥n
D — e M Fohe 0, (66d)
oH + oH ou (66¢)
—+u—=-H—. e
ot ox ox

We use a 1-D domain that is 14 km long (motivated by the flow-
line length of the McMIS depicted in the field study map of
Macdonald and others (2019)), and specify an inflow boundary
condition of u =50ma~! at the upstream side of the domain.
Initial ice thickness is taken to be 50 m. For the ice viscosity, we
take ¥ = 10'° Pa s and vy = v/2. This is an arbitrary choice, as
explained above, but recognizes that the viscosity applicable in
thin-plate flexure will not necessarily equal the depth-averaged
viscosity applicable in shallow-shelf flow.

To simulate the effects of variable ablation at the surface, we
introduce a debris cover of depth R(x, t) satisfying the following
equation:

dR
— =—V-(uR), 67
o (uR) (67)
with an initial condition given by,
_Jom x€[45] km
R= { 1 m  otherwise ’ (68)

To specify the surface ablation (A < 0), we determined where
R <0.15 m:

. Oma! R<0.lm
A= . m
—1ma otherwise

This ablation rate was then used to force the equation for #,. We
assumed that basal accumulation/ablation was zero everywhere,
although there is good evidence that the McMIS is sustained
against surface ablation by basal freezing (Koch and others, 2015).

The results of a 20-year simulation of the pedestal formation
process are shown in Figure 2. As seen in Figure 2a, the pedestal
has an uplifted core, and is surrounded by a moat that is at a
slightly lower elevation than the more distal ice shelf ablation
area. The presence of the moat surrounding the pedestal suggests
that surface meltwater would likely pool there, and this may be in
accord with an aerial photograph of Ring Pedestal on the McMIS
in 2008 shown in Figures. 3 and 1d.

(69)
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Ring Pedestal

A

surface
channels,
drained
lake

-

(lobe 2)
(lobe 1)

Peanut Pedestal

Fig. 1. (a) Aerial photograph (altitude ~ 500 m) of Ring Pedestal on the McMIS looking from North to South (Macdonald and others, 2019) (photo taken in January
2016 by A. Banwell). (b) Photograph at the edge of Peanut Pedestal looking from North to South (photo taken in January 2016 by A. Banwell). The height of the
pedestal at its edge is approximately 3 m, however is variable depending on local debris conditions. (c)-(e) True color pan-sharpened Landsat 7 and 8 images
showing the initial lakes (c), and development of pedestalled features (d) and (e) over a 7-year period (Macdonald and others, 2019).

Ice rumples and traveling lakes

Ice rumples and traveling lakes are viscoelastic buckling phenom-
ena (Thomas, 1973; Ribe, 2003; LaBarbera and MacAyeal, 2011;
Slim and others, 2012) evident along margins of ice shelves
where both ice flow and strong compressive stress are directed
toward the grounding line (Fig. 4). The ice-rumples demonstra-
tion presents a case where we assume that the shallow-shelf
approximation and the shallow-stream approximation apply on
opposite sides of the grounding zone, and the grounding line itself
is an internal boundary in the numerical domain. For the shallow-
stream approximation, we simply add a basal friction parameter
as described by MacAyeal (1989).

The McDonald Ice Rumples are caused when the BIS episod-
ically pushes up on a seabed shoal (Thomas, 1973; Matsuoka and
others, 2015; De Rydt and others, 2019). An aerial photograph of
the MIR, showing ice shelf flexure features upstream of the zone
of grounding, is shown in Figure 4a. Traveling lakes (LaBarbera
and MacAyeal, 2011) are similar to the ice-rumpling features of
the MIR, however, they involve continuous ice-shelf flow onto
and compression against the shore where the GVIIS abuts
Alexander Island (Figs. 4b-d), and they often fill with water (add-
ing to the complexity of forcing) (Banwell and others, 2021). For
the traveling lakes, the rumpling process creates sets of
en-echelon, petal-shaped depressions that fill with meltwater
(Figs. 4b-d) and that appear to propagate with time along the
coastline even though the ice-flow is directed against the coastline.
Ice rumpling and traveling lakes are related to the same phenom-
ena, i.e. where compressive stress sets up an instability that allows
the sinuous structure of n(x, y, t) to grow exponentially with
time, as demonstrated in the Appendix.

To demonstrate how rumpling is initiated by our coupled flow/
flexure formulation, an idealized 1-D simulation of ice rumpling
is conducted using the 1-D version of the ice-shelf flow, mass bal-
ance and flexure equations:

- % +pugn=H (41;% - %p,»gH> 227? (70b)
Ei“);(t)—i_u%_'—%Mxx:O’ (70¢)
%—}—u%——@ng, (70¢)

where 8% = 10'° Pa s m™! is a basal sliding coefficient (MacAvyeal,
1989) that is non-zero wherever the base of the ice shelf is in con-
tact with the seabed feature causing the rumples (MacAyeal,
1989). Note that we have zeroed out the ice-convergence term
on the right-hand side of Eqn (70e) in order to avoid excessive
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Fig. 2. (a) Ice-shelf surface and basal profiles at
4 t = 20 a. The basal profile has been moved up
by 25m so that the two profiles are easier to
see. The pedestalled, relict lake feature stands
about 2m above the surrounding ice shelf. Its
1 weight is mostly compensated by a larger
draft indicated by the downward projection of
the ice-shelf base. Some weight compensation
is supported by flexure, as indicated by (b)

t=20a

a b
. - - ' 18F -
! S H 4 7l
i - n
2F 1 14+
_(2)_ | 12t
-4 B+25m 1 10t
m :g: 1 m gl
-10t 1 6f
<12t 1 L
-14¢ 1 4
g t=20a gl
18t ol
20t . J
0 5
x (km)

Fig. 3. Aerial view of Ring Pedestal in 2008, at roughly the time the Landsat 7 image
of Fig. 1d. We speculate that the blue ring is the depressed area inside the highest
part of the Pedestal, seen in Fig. 2. Immediately outside the blue ring is evidence
of the debris cover, which is likely exposed within the wall of the moat that surrounds
the pedestal. Beyond the pedestal, the surface debris is covered by a thin layer of sea-
sonal snow. This aerial photograph was taken by Andris Apse, the artist in residence
at the New Zealand Antarctic Program’s Scott Base, who kindly permitted its use in
this study.

thickening of the ice upstream of the grounding zone. This
approximates the 2-D situation where transverse divergence bal-
ances longitudinal convergence, as observed for the BIS upstream
of the MIR (De Rydt and others, 2019).

For viscosities v and vy, we take 10'* and 2- 10" Pa s. This
choice was made subjectively using a trial-and-error process
with a sequence of simulations designed to find a choice of the
two viscosities that would yield ice rumple amplitude growth in
roughly an 8-year time span (what we believe is the best guess
of how MIR grew during the BIS’s grounding on the seabed
shoal where the rumples are found). The subjective criterion
was that we wanted our demonstration to produce rumples that
were neither too large nor too small compared with the
meters-scale rumples of the MIR. In some simulations, if vy
was too high, rumples would not grow; in others, they grew too
fast.

The simulation is conducted for 20 years, starting from an
undisturbed initial condition (1 = 0, h = 50 m). The numerical
domain is 14km in extent (Fig. 5), with a grounding zone
between x = —2km and x = 0. An ice front is on the left-hand
boundary of the domain (x = —4km) and an inflow boundary
is on the right-hand side of the domain. From t =0 ato t = 84,
the inflow condition is that the ice velocity is —1000 ma~!, after
t = 8 a, the inflow condition is set to zero. We anticipate that any
rumples generated in the domain will grow while the inflow condi-
tion causes large compressive stress. Once the inflow becomes zero,
we anticipate that the rumples will then decay in amplitude, because

5 showing the oscillations of 7 near the edges

x (km) of the pedestal feature.

there is no work being done at the inflow boundary to drive the
gravitational potential energy increase of the system when rumples
grow. For boundary conditions on the flexure equations, 1 and
927/0x* are both set to zero for all time at both boundaries (we
choose to disregard bending moments at the ice front so as to
focus only on the rumples).

Initial conditions at t = 0 are that h =50 m and =0 m
everywhere except in the zone of grounding, where n(x) follows
a Gaussian profile (Fig. 5) according to a grounding constraint
described below. At the right end of the domain x = 10km in
Figure 5, inflow is specified as

—1000 ma! t<8a
u= (71)

0 t>8a

and h = 50 m is specified for all time. The 8-year time span for
applying the non-zero inflow condition was based on a purely
heuristic reason: to stop rumple growth before their amplitude
became unreasonably large (i.e. of the order of the ice thickness).
With energy being continually provided to the system prior to the
cutoff of inflow, rumple amplitude will grow without bounds, as
there is no place for the energy to go other than to build ice thick-
ness and rumples in front of the grounding zone. (Relatively little
energy is dissipated in the grounding zone by work done against
basal friction because the velocity is so low there.)

To simulate a grounding zone on the sea bed, a bell-shaped
seabed profile g(x) is specified for the region of the domain
—2 < x < 0 km. The maximum height of the bell-shaped profile
is 10 m and its height is 0 m at either end of the grounding zone.
We adopt a novel, possibly useful in future studies, a technique for
constraining the ice to be grounded. We approximate the region
within —2 <x < O0km to be ‘floating’ in an extremely dense
hydrostatic liquid with density p, = 10p,,, and where the ‘liquid
surface’ conforms to the bell-shaped seabed profile. In essence,
this will yield approximately compliant contact between the ice
and bed as p, — o0. To enforce the compliant contact, we replace
the second term in Eqn (70b) (p,,gm) with the following term:

p,g(n — G(x)). (72)
This enforces 7 to follow the curving surface of G(x) as the ice-
shelf flows over the seabed causing the ice to rumple. The advan-
tage of specifying the grounding zone with this novel approxima-
tion is that boundary conditions do not have to be specified at the
contact between floating and grounded parts of the domain.

As expected from the stability analysis of the Appendix (see
also Ribe (2003) and Slim and others (2012)), the compressive
flow against, and over, the top of a grounded region treated
with the shallow-stream approximation causes a series of sinus-
oidal waves in 7, S and B to grow approximately exponentially

Downloaded from https://www.cambridge.org/core. 20 Apr 2022 at 19:01:08, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

898

Douglas R. MacAyeal and others

Fig. 4. (a) Aerial photograph of the McDonald Ice
Rumples on the Brunt Ice Shelf seen from
upstream. Image was provided by an on-line
facility of U.S. NASA (https://earthobservatory.
nasa.gov/). (b) En-echelon, petal-shaped lakes
on the GVIIS that propagate along the coast of
Alexander Island onto which ice-shelf flow is
directed (see LaBarbera and MacAyeal, 2011)
(WorldView-2 image, 2011, provided by the

Polar Geospatial Center, Imagery ©2011
DigitalGlobe, Inc.). Ice flow is directed toward
the coast which is the brown area at the bottom
of the photograph. (c) and (d) Landsat 7TETM+
enhanced thematic mapper images taken
approximately 1 year apart ((c) in 2008, (d) in
2009, see LaBarbera and MacAyeal (2011) for
details). Red vertical lines provide a fiducial ref-
erence to fixed points in the two georegistered
images. The leftward movement of the water-
filled rumple features (traveling lakes) is appar-
ent between panel (d) and panel (c).

b

right boundary of 1000m a~! and an input -45

a
- Somal secti ] 16
10 /\domaln cross section, t =0 | 15 la-ahaltauracs
5 . 1 -
0 ice-shelf surface =~ || 1‘31 t=7,8a
-5 . 1 12
10 inflow (1000 m/a) — || 11
m  -15{<+— ice front | m 1o
-20 . 9
Fig. 5. (a) Surface and basal profile at t =0, -25 grounded zone i 8
grounded zone indicated by shading. For the -30 / i 7
first 8 a of the simulation, flow is from the -35 ) i 6
right to the left, with an input velocity at the -40 ice-shelf base\‘ 1 5
. 4
0

thickness of 50 m. After t = 8a, the inflow is

10 5 16

0 5

> c x (km) d x (km)
set to Om a~! and the rumples are allowed to ; : ‘ ; - .
dissipate. The amplitude of the bell-shaped sea- -200 depth-averaged stress ]
bed profile is 10 m. (b) Surface elevation at 7.5 -250 t=8a 1 2 maximum crest
(blue line) and 8.0 (green line) years. (c) -300 { elevation
Depth-average stress (}(T.x—p)) at 8 a. (d) 350 ]
Growth of maximum rumple elevation (crest ele- -400 |
vation) as a function of time for the 20-year  kPa m
simulation. The rumples grow in amplitude for -450 ' 1
the first 8 a while inflow at the right-hand -500 1
boundary is an energy source for gravitational -550 1
potential increase associated with rumple -600 ,
growth. After 8 a, when the inflow is set to -650 | X
zero, no energy source for building rumples | 0 «inflow cut to 0
can overcome the natural tendency for rumples 10 0 16
to decay, and so they do. x (km) Time (a)

with time and propagate right-to-left toward the leading edge of
the ice rumple (Fig. 5). Ice velocity profiles, stress profiles and
the growth of maximum rumple amplitude (maximum 7 in the
region x > 0) are also presented in Figure 5.

A key question arises from the simulation of 1-D ice rumpling:
what process eventually limits the growth of ice-rumple ampli-
tude? In our demonstration simulation, we limited rumple growth
by simply cutting off the inflow at the right-hand boundary at
t = 8a. This eliminated the energy source (work done by inflow-
ing ice against stress), and so the rumples decayed. We do not
know what other physical processes may limit ice-rumple growth,
and this remains to be investigated in the future. Certainly, as

ice-rumple amplitude grows to a few percent of the ice-thickness,
the assumptions (primarily that n is small relative to H) that
allow us to use the reduced-order flow and flexure formulations
are violated. Even so, this does not necessarily guide us to an
explanation of why ice-rumple growth is limited in the physical
world.

We speculate on a number of possible processes that may limit
ice-rumple growth, and which must be explored further in the
future study. As ice-rumple amplitude increases, troughs in the
surface corresponding to over-deepened ice-shelf bottom eleva-
tion may themselves ground on the seabed, thus limiting further
growth of the rumple amplitude (e.g. deactivating the rumpling
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(red dotted line in

process). Another possible process is that as rumple amplitude
increases, the horizontal span of the rumpled ice shelf must con-
tract in an accordion-like manner. This perhaps limits the com-
pressive stress within the rumpled ice shelf thereby limiting or
removing the impetus for further rumple amplitude growth.
Finally, there is a fracture within the rumpled zone that may
relieve bending moments and initiate more of a thrust and fold
like response to the continued application of compressive stress.
This may lead to a situation where the fractured ice no longer
can flex and simply pushes forward onto the ice rise as a coarse
ice mélange. Investigating these speculative ideas as well as others
not yet known will be a priority in our future research.

Two-dimensional simulation of ice rumples and traveling lakes

To demonstrate a numerical simulation of ice rumpling in 2-D,
we conduct an idealized experiment using the numerical domain
shown in Figure 6. The simulation set-up is identical to that of the
1-D simulation presented above insofar as model parameters and
geometry are the same along the x-axis center section of the
numerical domain (the red dotted line in Figure 6a). One differ-
ence is that we chose a value of vy equal to 17 using the same sub-
jective criteria and a trial-and-error process to obtain meters-scale

Figure 6a).

rumples in the demonstration. Boundary conditions are the same,
and the grounding zone that excites the rumpling is treated the
same way, except that the bell-shaped seabed profile is taken to
be circular in plan view (centered in the center of the circle
shown in Fig. 6a). For the 2-D simulation, lower spatial resolution
(see the variable finite-element mesh in Figure 6b) was required
relative to the 1-D simulations (100 m), because of the computa-
tional performance limits of the desktop computer we used.

In 8 years, the rumples developed to meters-scale amplitude
(Fig. 7), and following the cutoff of inflow at t = 8 a, the rumple
amplitude decayed with time (Fig. 8). We speculate, but reserve
investigation for future study, that the lower resolution of the
2-D demonstration relative to the 1-D demonstration excited
rumples with a longer wavelength and thus faster growth rate
(see the Appendix). Details of what physical process determines
the length scale, and thus growth rate, of rumples, and that repre-
sented in their numerical simulation, is again left to future study.

Aside from the difference in rumple amplitude between the
1-D and 2-D simulations, which may involve numerical artefacts
in addition to the 2-D geometry of the latter simulation, the 2-D
simulation produced features that are compatible with what is
seen for the MIR. As shown in Figure 4a, the crests and troughs
of the rumples curve around the approximately circular plan-
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Fig. 8. Growth of maximum rumple elevation (crest elevation) as a function of time
for the 20-year simulation. The rumples grow in amplitude for the first 8 a while
inflow at the right-hand boundary is an energy source for gravitational potential
increase associated with rumple growth. After 8 a, when the inflow is set to zero,
the rumples decay. Oscillations in the maximum rumple elevation occur prior to
t=28a, and these are due to rumples being pushed onto the grounded zone,
where they quickly decay.

form of the grounding zone (assumed to be the feature just down-
stream of the rumples). This curvature is developed in the 2-D
demonstration shown here (as in the inset of Figure 7b). We
refrain from attempting to demonstrate the rumpling style asso-
ciated with traveling lakes (Figs. 4b-d), leaving it to future
research. We do emphasize, however, that there are numerous
ice rumpling styles associated with the flow/flexure formulation
presented above.

Discussion: computational cost of the proposed flow/
flexure formulation

The 2-D form of the coupled flow/flexure formulation, as pro-
posed here, consists of 13 independent variables that require 13
partial-differential or algebraic equations to solve:

1. u and v requiring solution of two stress-balance PDE’s to be
determined.

2. h, H, H, and H,; requiring four mass-balance PDE’s to be
determined,

3. m requiring one PDE to be determined.

4. My, My, M.y, ®;, ®; and P; requiring three PDE’s and
three algebraic equations to be determined.

Note that the three variables of H appearing in Eqn (55c) are
represented by second-derivatives of 7, and thus do not need to
be counted as separate variables, as the expressions for 1 can be
substituted into Eqn (55¢) thus changing the algebraic form of
that equation to a PDE form. For a traditional reduced-order
ice shelf formulation, there are only three variables and three
PDE equations for u, v and H. This means that there are ten
more variables in the proposed formulation of coupled ice-shelf
flow/flexure than used commonly in ice-shelf modeling. In add-
ition to the increased number of variables and their governing
equations, there are more parameters that need to be determined
or estimated: E, u and vy.

Adding ten variables increases the computational cost by
roughly a factor of four, compared to the traditional
reduced-order ice-shelf formulation. An immediate question is:
what is gained from the increased cost? Some modelers may
argue that many of the physical processes whose effects can be

Douglas R. MacAyeal and others

modeled using the formulation we present here are not of interest
in large-scale ice-sheet modeling, because their spatial or tem-
poral scales are too small. This is likely true in many problems
where ice-shelf models are used to investigate climate change.
Other modelers may also argue that where these small-scale phe-
nomena are of interest, a three-dimensional (3-D) full-Stokes for-
mulation with viscoelastic rheology could be superior to the
reduced-order formulation we have presented here. A 3-D
full-Stokes formulation, of course, vastly amplifies the number of
variables in the formulation; so our formulation using simplifica-
tions of the shallow-shelf and thin-plate approximations may
have merit and practicality in some applications. For the present,
we leave the arguments and questions posed above open, as we
believe more experience with the presented formulation will be
needed to correctly evaluate whether it is always useful in large-scale
modeling or as an efficient substitute for 3-D full-Stokes formula-
tions. Ultimately, however, it is essential that all formulations be
explored as a means to improve model simulations so that they
are able to better predict the controls and timing of ice-shelf
instability, such as evidenced by the Larsen B Ice Shelf in 2002.

Conclusions

Here we have developed governing equations useful for investigat-
ing coupled ice-shelf flow/flexure behavior with numerical mod-
els. The strength of our treatment is that it makes use of the
reduced-order shallow-shelf and thin-plate approximations that
have been used in previous studies. A possible weakness is that
our treatment requires more variables and degrees of freedom; how-
ever, this increase is likely less than what would be the case required
to treat the same phenomena with a full-Stokes approach.

We have demonstrated the performance of the treatment pre-
sented here in two idealized examples by simulating pedestalled,
relict lakes and ice-rumples and traveling lakes. We believe that
the demonstrations, while not providing any specific insight
into the phenomena, show that there is the promise that the treat-
ment may prove to be useful in future, focused studies of relevant
ice-shelf phenomena. At the very least, understanding of the
small- and medium-scale ice shelf processes involving flow and
flexure, made possible with formulations such as developed
here, will help to inform how to parameterize such processes.
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Appendix A

We write a 1-D version of the flexure treatment under the assumption that h, u
is 0 and that there is an idealized, external compressive stress f (not related to
flow) that drives the rumpling process that is also constant:

2 2
M n
- 2 + P& :fW’ (Ala)
od 3
— M, =0, Alb
M (Alb)
12(1 — p?) #n

To examine this system analytically, we solve Eqns (A1b) and (Alc) for an
expression relating M, to n:

B Ll . A Y (A2)

We next take the second x-derivative of the above equation and use Eqn (Ala)
to make substitutions:

_3 M 12(1 — w? M. !
3 # M ( 3#)33 be 00 _, (A3a)
vehd Bx Ehd 9t ox* Ot dx*
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To simplify, we consider the case where E — o0 so as to remove the elastic
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response term giving:

?n 90y
—0(7]+Bfw—§w:0, (A4)
where
3
a= psw;g, and 8 = @ (A5)
vh Pon

The result of the transformations above is a non-homogeneous PDE that is
fourth order in x and first order in t.

We now seek to determine if there are sinusoidal modes that grow with
time allowed by Eqn (A4). We thus substitute a trial solution,

nx, 1) = € - o(t). (A6)
Equation (A4) now reads:
%—‘: + (ka4 Bk )o=0. (A7)
In the absence of forcing (f = 0) is:
at
olt) o< e (k_4) (A8)

This result shows that in the absence of forcing by compressive stress, any
rumples will decay exponentially with time. When f # 0, the solution is

_ <3 n B_f> ;
o) oc e \K' R/ (A9)
For the solution to grow with time, we must have,
Bk +ak™ <0,
f< _%k*, (A10)
f < —p,.gk2.

Since all terms on the right-hand side of the above inequality are positive, this
result implies that f must be a negative number less than a cut-off value deter-
mined by k for rumples to grow with time. Since f is an externally applied
stress, the result implies that the stress must be compressive. This is in accord
with our numerical results.
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